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Induced gravity with a non-minimally coupled scalar field on the brane
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We present the four-dimensional equations on a brane with a scalar field non-minimally coupled to
the induced Ricci curvature, embedded in a five-dimensional bulk with a cosmological constant. This
is a natural extension to a brane-world context of scalar-tensor (Brans-Dicke) gravity. In particular
we consider the cosmological evolution of a homogeneous and isotropic (FRW) brane. We identify
low-energy and strong-coupling limits in which we recover effectively four-dimensional evolution.
We find de Sitter brane solutions with both constant and evolving scalar field. We also consider the
special case of a conformally coupled scalar field for which it is possible (when the conformal energy
density exactly cancels the effect of the bulk black hole) to recover a conventional four-dimensional
Friedmann equation for all energy densities.

PACS numbers: 04.50.+h, 98.80.-k hep-th/0408061

I. INTRODUCTION

Over recent years there has been a great deal of interest in higher-dimensional models of space-time where matter
fields are restricted to a lower-dimensional brane in a higher-dimensional bulk space-time: the simplest case being a
3-brane of codimension one in a five-dimensional (5D) bulk.

This raises the possibility that the four-dimensional (4D) gravity we observe is the projection of a higher-dimensional
gravity. In particular Randall and Sundrum [1] discovered that conventional 4D gravity can be recovered at large
scales (low energies) on a Minkowski brane-world embedded in a 5D anti-de Sitter space-time. Even if there is no
4D Einstein-Hilbert term in the classical theory then such a term should be induced by loop-corrections from matter
fields [2]. Dvali, Gabadadze and Porrati [3] argued that in this case 4D gravity can then be recovered at small scales
(high energies) on a Minkowski brane-world in 5D Minkowski space-time. More generally one can consider the effect
of an induced gravity term as a quantum correction in any brane-world model such as the Randall-Sundrum model.

Cosmology is a natural arena in which to put to the test alternative theories of gravity. In particular the DGP
model admits late-time accelerating solutions. The cosmology of induced gravity corrections to Randall-Sundrum
type models have been considered by several authors [4, 5, 6, 7, 8, 9].

In this paper we will consider the effect of an induced gravity term which is an arbitrary function of a scalar field on
the brane. Scalar fields play an important role both in models of the early universe and late-time acceleration. They
also provide a simple dynamical model for matter fields in a brane-world model. In the context of induced gravity
corrections it is then natural to consider a non-minimal coupling of the scalar field to the intrinsic (Ricci) curvature
on the brane that is a function of the field. The resulting theory can be thought of as a generalisation of Brans-Dicke
type scalar-tensor gravity in a brane-world context.

The layout of this paper is as follows. In section II we present the five- and four-dimensional terms in the action
and then use the geometrical approach of Shiromizu, Maeda and Sasaki [10] to give the effective Einstein equations
projected onto the brane. Although in general these equations are not closed, due to the presence of the projected 5D
Weyl tensor, the symmetries of a homogeneous and isotropic brane cosmology are sufficient to determine the evolution
of the projected Weyl tensor on the brane [11, 12, 13]. In section III we identify two regimes in which we expect to
recover effectively 4D behaviour and in section IV we show that this is indeed the case for cosmological (homogeneous
and isotropic) branes. We discuss static (de Sitter or Minkowski) brane solutions in section V and then consider
the special case of a conformally coupled scalar field on the brane in section VI. The rather complicated form of the
modified Friedmann equation on the brane is somewhat simpler for a conformally coupled field and we show that
it is even possible to recover a conventional four-dimensional Friedmann equation, at all energies, as a special case.
Finally we summarise our results in section VII.

∗Electronic address: mariam.bouhmadi@port.ac.uk
†Electronic address: david.wands@port.ac.uk

http://arXiv.org/abs/hep-th/0408061v1
http://arXiv.org/abs/hep-th/0408061
mailto:mariam.bouhmadi@port.ac.uk
mailto:david.wands@port.ac.uk


2

II. INDUCED SCALAR-TENSOR GRAVITY ACTION

A. 5D gravity

We consider a brane, described by a 4D hypersurface (b , metric g), embedded in a 5D bulk space-time (B, metric
g(5)), whose action is given by

S =

∫

B

d5X
√
−g(5)

{
1

2κ2
5

R[g(5)] + L5

}
+

∫

b

d4X
√−g

{ 1

κ2
5

K + L4

}
, (2.1)

where κ2
5 is the 5D gravitational constant, R[g(5)] is the Ricci scalar in the bulk and K the extrinsic curvature of

the brane in the higher-dimensional bulk, corresponding to the York-Gibbons-Hawking boundary term [14]. Thus we
have 5D Einstein gravity with a 4D boundary.

We will consider the simplest case of a constant vacuum energy density on the bulk, L5 = −U , i.e., a cosmological
constant. In this case the bulk geometry is given by an Einstein space with constant scalar curvature

GMN [g(5)] = −κ2
5Ug

(5)
MN . (2.2)

B. 4D induced gravity

For simplicity we will assume a Z2-symmetry at the brane (which is also motivated by specific M-theory constructions
[15, 16]). In practice one can easily generalise to non-Z2-symmetric branes [17]. The effective Einstein equation on
the brane is then [10]

Gµν [g] = −1

2
κ2

5Ugµν + κ4
5Πµν − Eµν , (2.3)

where g is the induced metric on the brane. Πµν is the quadratic energy momentum tensor [10]

Πµν = −1

4
τµστν

σ +
1

12
ττµν +

1

8
gµν(τρστρσ − 1

3
τ2) , (2.4)

and τµν is the total energy-momentum tensor for fields on the brane defined by

τµν = −2
δL4

δgµν
+ gµνL4 . (2.5)

Eµν is the (trace-free) projected Weyl tensor on the brane. The trace-free property determines the isotropic effective
pressure of this projected Weyl tensor in terms of its effective density, but the anisotropic effective pressure due to
this non-local term cannot in general be determined without some additional information about the 5D gravitational
field.

The most general scalar field Lagrangian L4 for a scalar field, φ, confined on the brane can be written as

L4 = −1

2
gµν∇µφ∇νφ − V (φ) + α(φ)R[g], (2.6)

where ∇µ is the covariant derivative associated with the induced metric on the brane g. Previous studies of scalar
fields in induced brane-world gravity [8] are restricted to the case α = constant. Here we include a coupling between
the scalar field φ and the induced gravity term on the brane, given by α(φ). In this case, substituting (2.6) into (2.5),
the total energy-momentum tensor on the brane becomes

τµν = ∇µφ∇νφ − 1

2
gµν(∇φ)2 − gµνV (φ) − 2αGµν [g, φ] . (2.7)

This includes the “Einstein-Brans-Dicke” tensor

Gµν [g, α] ≡ Gµν [g] +
1

α
(gµνgρσ − gµ

ρgν
σ)(α′∇ρ∇σφ + α′′∇ρφ∇σφ), (2.8)

due to the non-minimal coupling, α(φ), between the scalar field φ and the scalar curvature R[g]. In this expression
the prime denotes derivative with respect to φ.
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We can thus split the total energy-momentum tensor as follows

τµν = Tµν
(φ) + Tµν

(α) − 2αGµν [g], (2.9)

where the canonical (minimally coupled) scalar field energy-momentum tensor is given by

Tµν
(φ) ≡ ∇µφ∇νφ − 1

2
gµν(∇φ)2 − gµνV (φ), (2.10)

and the extra terms arising from the dependence of the induced gravity term upon φ are given by

Tµν
(α) ≡ −2 (gµνgρσ − gµ

ρgν
σ) (α′∇ρ∇σφ + α′′∇ρφ∇σφ) . (2.11)

Using the 5D Codacci equation one can show that the total energy-momentum tensor τµν must be conserved on
the brane [10]

∇ντµν = 0. (2.12)

C. Scalar field wave equation

Finally, the equation of motion for the scalar field reads

∇µ∇µφ = V ′ − α′R[g] . (2.13)

This is the same as the standard equation of motion for a non-minimally coupled scalar field in 4D, but it is often
re-written using the Einstein-Brans-Dicke equations to give R in terms of the trace of the energy-momentum tensor.
Here we must take the trace of the effective Einstein equations on the brane (2.3) to give

R = 2κ2
5U − κ4

5Π
µ
µ , (2.14)

where

Πµ
µ =

1

4
τµντµν − 1

12
τ2 . (2.15)

Although the wave equation (2.13) is sufficient to determine to evolution of the scalar field φ given the induced
metric on the brane, the effective Einstein equation (2.3) is not in general sufficient to determine the evolution of the
induced metric given φ. This is due to the presence of the non-local term Eµν , representing the bulk gravitational
field. Nonetheless if we restrict our analysis to homogeneous and isotropic brane-worlds these symmetries restrict the
bulk solution to either (anti-)de Sitter or Schwarzschild-(anti-)de Sitter and the equations become closed [11].

III. EQUATIONS IN LOW ENERGY AND STRONG COUPLING LIMITS

A. Low-energy limit

In order to obtain the effective Einstein equations (2.3) in a low-energy limit close to the Randall-Sundrum solu-
tion [1] it is helpful to define a “renormalised” energy-momentum tensor on the brane

τ̄µν = τµν + σgµν . (3.1)

where σ is a constant brane tension. The quadratic tensor Πµν defined in Eq. (2.4) then becomes

Πµν = − 1

12
σ2gµν +

1

6
στ̄µν + Π̄µν , (3.2)

where Π̄µν is the quadratic energy-momentum tensor (2.4) formed from τ̄µν instead of τµν .
Substituting Eq. (3.2) for Πµν into Eq. (2.3) gives

Gµν [g] = −Λ4gµν +
κ4

5σ

6
τ̄µν + κ4

5Π̄µν − Eµν . (3.3)



4

where we have defined

Λ4 =
κ2

5

2
U +

κ4
5σ

2

12
. (3.4)

For U < 0 we can choose σ =
√
−6U/κ2

5 so that Λ4 = 0, but in principle we can work with any value of σ and hence
Λ4.

The energy-momentum tensor on the right-hand-side of Eq. (3.3) includes a contribution from the Einstein tensor,
so ultimately we can re-write the induced gravity equations on the brane as

2ΦloGµν [g, Φlo] = −6Λ4

κ4
5σ

gµν + T̄ (φ)
µν +

6

κ4
5σ

(
κ4

5Π̄µν − Eµν

)
, (3.5)

where Gµν [g, Φlo] is the Einstein-Brans-Dicke tensor (2.8) for the effective Brans-Dicke field

Φlo(φ) ≡ 3

κ4
5σ

[
1 +

κ4
5σ

3
α(φ)

]
. (3.6)

Thus at low energies, if we can neglect the quadratic tensor Π̄, and in a conformally flat bulk (Eµν = 0), we will
recover the usual Brans-Dicke equations for a non-minimally coupled scalar field in four-dimensions. Moreover,
for α =constant we recover Einstein gravity with a minimally coupled scalar field on the brane and an effective
gravitational coupling κ2

4 = (2Φlo)
−1 =constant.

The effective potential for φ can be written as

Vlo(φ) = V (φ) − σ

2
+

3U

κ2
5σ

, (3.7)

and the effective Brans-Dicke parameter is

ωlo ≡ Φlo

2[Φ′
lo(φ)]2

=
3

2κ4
5σα′2

[
1 +

κ4
5σ

3
α(φ)

]
. (3.8)

B. Strong-coupling limit

There is an alternative limiting case to consider where the 5D curvature is negligible, or the induced coupling α is
large. In this case we expect the conventional 4D Lagrangian L4 given in Eq. (2.6) to dominate in the action (2.1).
In this case we have the standard 4D Einstein-Brans-Dicke equation

2αGµν [g, α] = T (φ)
µν , (3.9)

with effective Brans-Dicke field

Φhi(φ) ≡ α(φ) , (3.10)

effective potential

Vhi(φ) = V (φ) , (3.11)

and dimensionless Brans-Dicke parameter

ωhi(φ) =
α

2α′2
. (3.12)

Note that this coincides with the limiting form of Eq. (3.8) in the strong coupling limit, i.e., for κ4
5σα ≫ 1.

IV. DYNAMICS OF A HOMOGENEOUS AND ISOTROPIC BRANE

In the present section we will consider the cosmological evolution of a Friedmann-Robertson-Walker (FRW) brane
with a non-minimally coupled scalar field. In the special case of an isotropic brane geometry the projected Weyl tensor
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Eµν necessarily has a vanishing anisotropic stress and the projected field equations (2.3) and (2.13) form a closed set
of evolution equations for scalar field and metric on the brane. Indeed, it can be shown that for an expanding FRW
brane the unique bulk space-time (in Einstein gravity in vacuum, as we assume here) is 5D Schwarzschild-anti de
Sitter space-time [11, 18].

The trace-free property of the projected Weyl tensor implies that it acts like a “dark radiation” [12, 13] and hence

Ė0
0 + 4HE0

0 = 0 , (4.1)

where a dot denotes derivatives with respect to proper cosmic time and H is the Hubble rate. Thus Eµν evolves like
a radiation fluid with E0

0 = C/a4, where C is an integration constant.
After some lengthy but straightforward calculations, the modified Friedmann equation on the brane can be obtained

from Eq. (2.3) as

3

(
H2 +

K

a2

)
=

κ2
5U

2
+

κ4
5

12

[
ρ − 6α

(
H2 +

K

a2

)]2
+

C

a4
, (4.2)

where K = ±1, 0 depending on the geometry of the spatial three-dimensional sections on the brane. The modified
Friedmann equation can be rewritten as

H2 +
K

a2
=

1

6α

{
ρ +

3

κ4
5α

[
1 ±

√

1 +
2

3
κ4

5α

(
ρ − κ2

5αU − 2α
C

a4

)]}
, (4.3)

which shows the existence of two branches of solution for H2 as a function of ρ. The modified Raychaudhuri equation
is

{
1 +

κ4
5

3
α

[
ρ − 6α

(
H2 +

K

a2

)]}(
Ḣ − K

a2

)
= −κ4

5

12
(ρ + P )

[
ρ − 6α

(
H2 +

K

a2

)]
− 2

3

C

a4
. (4.4)

Thus the modified Einstein equations can be written in exactly the same form as obtained for constant α [7]. The
effect of the non-minimal coupling of the φ field is hidden in the definition of the effective energy density, ρ, of the
scalar field which includes non-minimal terms. In the limit α → 0 we recover the modified Einstein equations of the
Randall-Sundrum model [13] with a minimally coupled scalar field on the negative branch (lower sign in Eq.(4.3)).

Following the notation introduced in Eq. (2.9) we will write

ρ = ρ(φ) + ρ(α) , (4.5)

P = P (φ) + P (α) . (4.6)

The effective energy density and pressure of the scalar field has been split into a part associated with the canonical
scalar field energy-momentum tensor, given from Eq. (2.10) as

ρ(φ) ≡ −T 0
0

(φ)
=

1

2
φ̇2 + V (φ) ,

P (φ) ≡ T i
i

(φ)
=

1

2
φ̇2 − V (φ) , (4.7)

and a part due to the non-minimal coupling, given from Eq. (2.11) as

ρ(α) ≡ −T 0
0

(α)
= −6α′Hφ̇ ,

P (α) ≡ T i
i

(α)
= 2(α′φ̈ + 2Hα′φ̇ + α′′φ̇2) , (4.8)

where i = 1, . . . , 3 labels the spatial coordinates on the brane.
The equation of motion (2.13) for the scalar field, φ, in the FRW geometry is

φ̈ + 3Hφ̇ + V ′(φ) = α′R[g] , (4.9)

where the intrinsic Ricci scalar for a FRW brane is

R[g] = 6

(
Ḣ + 2H2 +

K

a2

)
. (4.10)
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In conventional 4D scalar-tensor gravity the Ricci scalar is often eliminated from the scalar field equation of motion
in favour of the trace of the energy-momentum tensor, using the contracted Einstein-Brans-Dicke equation for the
Einstein tensor. In our brane-world scenario the contracted effective Einstein equation (2.3) yields a more complicated
expression for the Ricci scalar.

The non-minimal coupling of the scalar field to the Ricci curvature on the brane through α(φ) leads to the non-
conservation of the scalar field effective energy density

ρ̇ + 3H(ρ + P ) = 6α′φ̇

(
H2 +

K

a2

)
. (4.11)

This equation can be deduced from the definition of ρ and P [see Eqs. (4.5), (4.6), (4.7), (4.8)] and the equation of
motion for φ (4.9). We see that ρ and P are conserved whenever α is constant, i.e. when φ is a minimally coupled
scalar field. For this particular case, ρ and P reduce to ρ(φ) and P (φ) [see Eq. (4.7)], respectively.

In general, although the scalar field effective energy density ρ is not conserved, it is always possible to construct a
total energy density from the total energy momentum tensor τµν , defined in Eq. (2.5),

ρtot = ρ(φ) + ρ(α) − 6α

(
H2 +

K

a2

)
, (4.12)

which is locally conserved on the brane, in accordance with Eq. (2.12).

A. Low energy regime

In order to analyse the different possible regimes for the effective Friedmann equation on the brane, we introduce
an (arbitrary) constant brane tension σ, as in Eq. (3.1) so that

ρ̄ = ρ − σ , P̄ = P + σ . (4.13)

If we then expand the quadratic term on the right-hand side of the modified Friedmann equation (4.2), we obtain

3

(
H2 +

K

a2

)
= Λ4 +

κ4
5σ

6

[
ρ̄ − 6α

(
H2 +

K

a2

)]
+

κ4
5

12

[
ρ̄ − 6α

(
H2 +

K

a2

)]2
+

C

a4
, (4.14)

where Λ4 is given by Eq. (3.4).
We can identify a low-energy regime corresponding to

∣∣∣∣ρ̄ − 6α

(
H2 +

K

a2

)∣∣∣∣≪ σ , (4.15)

where we recover from (4.14) an effective 4D Friedmann equation

3

(
1 +

κ4
5σα

3

)(
H2 +

K

a2

)
≃ Λ4 +

κ4
5σ

6
ρ̄ +

C

a4
. (4.16)

with the effective gravitational coupling given by Eq. (3.6).
If we choose σ =

√
−6U/κ5, i.e., set Λ4 = 0, and consider an anti-de Sitter bulk (C = 0) then the constraint

equation (4.16) allows us to express the low-energy condition (4.15) as

ρ̄ ≪ σ

(
1 +

κ4
5σα

3

)
. (4.17)

B. Strong coupling regime

In order to identify the strong coupling regime we rewrite the modified Friedmann (4.2) equation as

[
1 − ρ

6α
(
H2 + K

a2

)
]2

=
1

κ4
5α

2(H2 + K
a2 )

[
1 − κ2

5U

6(H2 + K
a2 )

− C

3a4(H2 + K
a2 )

]
. (4.18)
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We identify a strong coupling regime where

α2 ≫ 1

κ4
5(H

2 + K
a2 )

[
1 − κ2

5U

6(H2 + K
a2 )

− C

3a4(H2 + K
a2 )

]
. (4.19)

in which case we recover from Eq. (4.18) an effective 4D Friedmann equation

6α

(
H2 +

K

a2

)
≃ ρ , (4.20)

with the effective gravitational coupling given by Eq. (3.10).
Consistency of the last two equations implies that strong coupling also requires a lower bound on the energy density

ρ ≫ 6

κ4
5α

∣∣∣∣1 − κ2
4αU

ρ
− 2αC

a4ρ

∣∣∣∣ . (4.21)

Note that the strong coupling form for the Friedmann equation, (4.20), can also be obtained from the low energy
regime, Eq. (4.16), for κ4

5σα ≫ 1 and Λ4 = C = 0.

C. Intermediate energy and weak coupling regime

Having shown that one recovers two effectively 4D regimes in the limits of low energy or strong coupling, it is
interesting to consider whether or not one can recover an essentially 5D regime where H2 ∝ ρ2 as is found in Randall-
Sundrum cosmology (where α = 0) at high energies [13, 19].

The high-energy regime in the Randall-Sundrum model corresponds to

ρ ≫ σRS , (4.22)

where σRS =
√

6|U |/κ5 corresponds to the brane tension required for a static Minkowski brane. In the induced
gravity model we must add the additional condition

ρ ≫
∣∣∣∣6α

(
H2 +

K

a2

)∣∣∣∣ , (4.23)

Thus we require both high energy and weak coupling. In this case, the modified Friedmann equation (4.2) reads

3

(
H2 +

K

a2

)
≃ κ4

5

12
ρ2 +

C

a4
. (4.24)

Substituting Eq. (4.24) into the inequality (4.23) requires

ρ− ≪ ρ ≪ ρ+ , (4.25)

where

ρ± =

∣∣∣∣∣
3

κ4
5α

(
1 ±

√
1 − 4κ4

5α
2C

3a4

)∣∣∣∣∣ . (4.26)

For this intermediate regime to exist requires both

κ4
5α

2C

a4
≪ 1 , (4.27)

and

κ4
5|α|ρ ≪ 1 . (4.28)

Finally combining (4.22) and (4.28) we obtain the consistency condition

σRS ≪ ρ ≪ 1

κ4
5|α|

, (4.29)

which only exists for sufficiently weak coupling

|α| ≪ 1

κ4
5σRS

. (4.30)
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V. DE SITTER AND MINKOWSKI BRANES

In this section, we describe some maximally symmetric branes that can be obtained in the framework given in
Sec. IV. In particular, we will obtain inflationary branes with de Sitter geometry or purely Minkowski space-times on
the brane. We consider that the bulk is given by a 5D maximally symmetric space-time and therefore the projected
Weyl tensor on the brane is zero. For simplicity we will use the spatially flat coordinate chart on the brane so that
K = 0 and the Ricci scalar R = 12H2 =constant.

From the Friedmann equation (4.2) we see that we require ρ−6αH2 =constant. In addition, the last condition and
the continuity equation (4.11) implies that P = −ρ for H 6= 0. Note however that unlike 4D general relativity, we do
not necessarily require ρ =constant.

Equations (4.5)-(4.6) for the density and pressure of the non-minimally coupled scalar field give

ρ + P = (1 + α′′)φ̇2 + 2α′
(
φ̈ − Hφ̇

)
. (5.1)

The scalar field equation (4.9) and the condition P = −ρ then gives the first-order constraint

(1 + 2α′′)φ̇2 + 2α′
(
12α′H2 − 4Hφ̇ − V ′

)
= 0 . (5.2)

If the scalar field does not evolve in time (φ̇ = 0) and α′ 6= 0, then we require V ′ = 12H2α′, i.e. the potential gradient
is balanced by the non-minimal coupling to the scalar curvature. The scalar field has to be at an extremum of the
potential (V ′ = 0) if φ is constant in time and H = 0.

For a Minkowski brane H = 0, the Raychaudhuri equation (4.4) requires either ρ + P = 0 or ρ = 0. For ρ = 0 we
must have U = 0 from the Friedmann equation (4.2), but we may in principle have P 6= 0. Equation (5.1) together
with the equation of motion (4.9) then yields for ρ = 0

P = (1 + 2α′′)φ̇2 − 2α′V ′ . (5.3)

However, in the following we will restrict our discussion to de Sitter or Minkowski branes with P = −ρ.

A. De Sitter branes with φ̇ = 0

In the following, we will describe the fixed points of the theory, i.e., values of the scalar field, φ = φc such that
φ̇ = φ̈ = 0 and Ḣ = 0, where H = Hc corresponds to the Hubble parameter for φ = φc. For φ̇ = φ̈ = 0 we necessarily
have ρ = −P = Vc, where Vc = V (φ).

Using Friedmann equation (4.2) and the equation of motion of the scalar field (4.9), we obtain

H2
c =

1

6αc

{
Vc +

3

κ4
5αc

[
1 ±

√
1 − 2

3
κ4

5αc (κ2
5αcU − Vc)

]}
, (5.4)

V ′
c = 12H2

c α′
c, (5.5)

where V ′
c , αc and α′

c correspond to V ′(φc), α(φc) and α′(φc), respectively. Note that we require 2κ4
5αc(κ

2
5αcU−Vc) < 3

for H2 to be real.
To obtain a Minkowski brane with Hc = 0 requires [see Eq. (4.2)] the usual Randall-Sundrum fine-tuning between

the 5D cosmological constant and the potential

V 2(φc) = −6U

κ2
5

≥ 0 , (5.6)

In addition φc must coincide with an extremum of the potential, V ′
c = 0. The Minkowski brane is only obtained for

the branch corresponding to the upper choice of sign in Eq. (5.4) for κ4
5αcVc + 3 ≤ 0 or lower sign for κ4

5αcVc + 3 ≥ 0.
Only for αc = −3/κ4

5Vc do we obtain Hc = 0 for both branches.
In the following, we see under which conditions the fixed points correspond to stable solutions. The potential V (φ)

and the coupling α(φ) can be approximated near φc by

V (φ) ≃ Vc + V ′
c (φ − φc) +

1

2
V ′′

c (φ − φc)
2, (5.7)

α(φ) ≃ αc + α′
c(φ − φc) +

1

2
α′′

c (φ − φc)
2, (5.8)
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where V ′′
c and α′′

c are V ′′(φc) and α′′(φc), respectively. The equation of motion (4.9) for a small perturbation
δφ = φ − φc, to first-order in δφ becomes

δφ̈ + 3Hcδφ̇ + (V ′′
c − 12H2

c α′′
c )δφ = α′

cδR, (5.9)

where δR = R(φc + δφ) − 12H2
c . If δR is negligible, we have that a fixed point is stable when V ′′

c − 12H2
c α′′

c > 0.
However, in general the perturbed Ricci scalar (4.10) can be calculated using the Friedmann and Raychaudhuri
equations (4.2) and (4.4), which gives

δR = − κ4
5(Vc − 6αcH

2
c )

1 + (1/3)κ4
5αc(Vc − 6αcH2

c )

[
α′

cδφ̈ + 3α′
cHcδφ̇ − 4α′

cH
2
c δφ

]
. (5.10)

Substituting this into the equation of motion of δφ, Eq. (5.9), we obtain (for κ4
5(αc + 3α′2

c )(Vc − 6αcH
2
c ) 6= −3) the

canonical equation of motion for a field perturbation in a de Sitter background

δφ̈ + 3Hcδφ̇ + m2
effδφ = 0 . (5.11)

where the effective mass

m2
eff ≡ V ′′

c − 12H2
c α′′

c − 4βH2
c

1 + β
> 0 , (5.12)

with

β =
κ4

5α
′2
c (Vc − 6αcH

2
c )

1 + (αc/3)κ4
5(Vc − 6αcH2

c )
. (5.13)

The general solution to Eq. (5.11) is given by

δφ = C+ exp(λ+t) + C− exp(λ−t) . (5.14)

where

λ± =
−3Hc ±

√
9H2

c − 4m2
eff

2
. (5.15)

Thus the stability condition for the fixed point is simply m2
eff > 0. For a constant (minimal) coupling (α′

c = α′′
c = 0)

this stability condition takes the usual form V ′′
c > 0. But non-minimal coupling can stabilise the fixed point even for

V ′′
c < 0. For example, for a Minkowski brane with Hc = 0, the stability condition m2

eff > 0 reduces to φc being a
maximum (or minimum) of the potential for 1 + β negative (or positive).

a. Quadratic model As an illustration, we apply the previous analysis to the following simple quadratic model
for the non-minimal coupling and potential:

α(φ) = α0 +
1

2
α2φ

2, (5.16)

V (φ) = V0 +
1

2
m2φ2, (5.17)

where α0, α2, V0 and m2 are constants.
Imposing the condition (5.5), yields two possible fixed points for the model:

• φc = 0. The square of the Hubble parameter is given by Eq. (5.4) with Vc = V0 and αc = α0. The parameter
β = 0 and the effective mass m2

eff = m2 − 12α2H
2
c . The fixed point is stable as long as

m2 >
2α2

α0

{
V0 +

3

κ4
5α0

[
1 ±

√
1 − 2

3
κ4

5α0 (κ2
5α0U − V0)

]}
. (5.18)

• φc 6= 0. This fixed point is obtained for α2 6= 0 when the Hubble constant satisfies H2
c = m2/12α2. The square

of the Hubble parameter is given by Eq. (5.4) with α0 given by α0 + (1/2)α2φ
2
c . From Eq. (4.2) we obtain

φ2
c =

2α0

α2
− 4V0

m2
± 4

κ2
5m

2

√
3m2

α2
+ 6κ2

5U .

Thus this fixed point only exists for m2 > −2α2κ
2
5U . From Eq. (5.12) we find m2

eff = −4βH2
c /(1+β) and hence

this fixed point is stable as long as −1 ≤ β < 0.
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B. De Sitter branes with φ̇ 6= 0

We cannot find the general solution of the constraint Eq. (5.2) for φ̇ 6= 0 without specifying the form of V (φ)
and α(φ). Adopting the simple quadratic model introduced in Eqs. (5.16) and (5.17) it can be shown that there are

solutions to the scalar field equation of motion (4.9) with φ̇ 6= 0, which satisfy Eq. (5.2), when the mass of the scalar
field satisfies

m2

H2
=

2α2(1 + 6α2)(3 + 16α2)

(1 + 4α2)2
. (5.19)

In this case we have a solution to the equation of motion (4.9) where the scalar field evolves exponentially with respect
to cosmic time

φ = φ0 exp (µHt) . (5.20)

where the dimensionless parameter µ is given by

µ =
2α2

1 + 4α2
. (5.21)

For −1/4 < α2 < 0 this describes the decay of the scalar field to the fixed point with φ = 0, but for α2 > 0 or < −1/4
the φ = 0 fixed point is clearly unstable.

This limiting behaviour where φ → 0 is consistent with linear perturbations (5.14) studied in the previous sub-
section about the φ = 0 fixed point for the particular case (5.19). The Hubble parameter, which remains constant for
all φ, is thus given by the corresponding solution to Eq. (5.4) for φ = 0:

H2 =
1

6α0

{
V0 +

3

κ4
5α0

[
1 ±

√
1 − 2

3
κ4

5α0 (κ2
5α0U − V0)

]}
, (5.22)

which is real so long as 2κ4
5α0(κ

2
5α0U − V0) < 3.

The effective energy density ρ and the pressure P of the evolving scalar field, φ, can be expressed as

ρ = −P = V0 + 3α2H
2φ2 , (5.23)

which will be time-dependent for α2 6= 0. On the other hand, it can be checked that,

ρ − 6αH2 = V0 − 6α0H
2 = constant . (5.24)

VI. CONFORMALLY COUPLED SCALAR FIELD ON THE BRANE

An interesting model to consider is the case of a conformally coupled scalar field on the brane, with conformal
coupling

α = α0 −
1

12
φ2, (6.1)

where α0 is a positive constant, and a vanishing potential V = 0.
It is known in 4D General Relativity that the trace of the effective energy-momentum tensor of a conformally

coupled scalar field is zero. Therefore, the behaviour of a spatially homogeneous conformally coupled field can be
effectively described as a radiation fluid [20]. We will show that this remains true in brane-world models.

We split the energy-momentum tensor (2.7) as follows

τµν = T̂µν − 2α0Gµν , (6.2)

where, from Eq. (2.9) we have

T̂µν = Tµν
(φ) + Tµν

(α) +
1

6
φ2Gµν . (6.3)

The scalar field equation (2.13) then ensures that T̂µν is traceless for the conformal coupling given by Eq. (6.1). We
recover the usual 4D result because we only use the scalar field equation on the brane (2.13) and this is formally the
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same as in 4D General Relativity case. This result remains true if we include a quartic self-interaction potential for
the scalar V = λφ4, but for simplicity we will consider here the case of a non-self-interacting field (λ = 0).

In the following, we will consider cosmological solutions where the brane is homogeneous and isotropic. For conve-
nience, we define a dimensionless scalar field χ = φ/a. Now, the scalar field equation of motion (4.9) can be rewritten
as

d2χ

dη2
+ Kχ = 0, (6.4)

where η =
∫

dt/a corresponds to the conformal time on the brane and K is the spatial curvature. In addition, we

have that the effective energy density ρ̂ and pressure P̂ , described by T̂µν , are given by

ρ̂ = 3P̂ =
1

2a4

[(
dχ

dη

)2

+ Kχ2

]
. (6.5)

Using Eq. (6.5) and the first integral of the scalar field equation of motion (6.4), we obtain ρ̂ = B/a4, where B is an
integration constant.

If in addition, we consider a non-vanishing, but constant potential V = V0 on the brane, we have that T̂µν is no
longer trace free. On the other hand, the evolution of the scalar field χ is unchanged and given by Eq. (6.4), while ρ̂

and P̂ are shifted such that

ρ̂ =
B

a4
+ V0, (6.6)

P̂ =
B

3a4
− V0. (6.7)

The cosmological evolution of the brane is given by Eqs. (4.2) and (4.4), where now ρ, P and α are substituted by

ρ̂, P̂ and α0, respectively. The Hubble parameter (4.3) thus reads

H2 = −K

a2
+

1

6α0

{
B

a4
+ V0 +

3

κ4
5α0

[
1 ±

√

1 +
2

3
κ4

5α0

(
−κ2

5α0U + V0 +
B − 2α0C)

a4

)]}
, (6.8)

This Friedmann equation is the same as that found in [7] for a radiation filled brane-world universe with a non
vanishing brane tension.

We note that it is possible to recover the conventional evolution for a 4D cosmology filled with radiation and an
effective vacuum energy density with a fine tuning of the parameters of the solution. This is possible, when the energy
density of the conformally coupled scalar field on the brane exactly cancels the effect of the projected Weyl tensor on
the brane, i.e.,

B = 2α0C . (6.9)

Then the Friedmann equation (6.8) becomes

3

(
H2 +

K

a2

)
=

B

2α0a4
+ Λ±, (6.10)

where the effective cosmological constant is given by

Λ± =
1

2α0

{
V0 +

3

κ4
5

[
1 ±

√
1 − 2

3
κ4

5α0(κ2
5α0U − V0)

]}
. (6.11)

A vanishing cosmological constant on the brane requires the usual Randall-Sundrum fine-tuning V 2
0 = −6U/κ2

5. We
then obtain Λ± = 0 for ±(κ4

5α0V0) ≤ 0.
Going back to the projected Einstein equations (2.3) we can see that it is possible to recover the standard 4D

Einstein equations

Gµν = −Λ4gµν +
1

2α0
T c.c.

µν , (6.12)
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for the special case of a conformally coupled field with (trace-free) energy-momentum tensor if it exactly matches the
projected Weyl tensor

T c.c.
µν = −2α0Eµν . (6.13)

In this case the conformally coupled field and the projected Weyl tensor exactly cancel out in the total effective energy-
momentum tensor (6.2) on the brane, τµν = (2α0Λ4 − V0)gµν , and hence Πµν ∝ gµν in Eq. (2.4). The conformally
coupled energy-momentum tensor, T c.c.

µν (or equivalently the projected Weyl tensor, Eµν) then only appears linearly

in the induced Einstein equations (2.3).

VII. DISCUSSION

In this paper we have studied the field equations for a scalar field living on a 4D brane embedded in 5D vacuum
space-time, including the effect of a non-minimal coupling of the field to the 4D scalar curvature on the brane. This
is a natural generalisation of previous studies of the dynamics of minimally coupled scalar fields on the brane, just
as Brans-Dicke scalar-tensor models are a natural generalisation of minimally coupled fields in 4D general relativity.
Such a non-minimal coupling would be expected to arise as a quantum correction for any self-gravitating field, but in
the present paper we have just considered the classical dynamics of an effective theory with non-minimal coupling.

In a 4D scalar-tensor gravity theory with a non-minimally coupled scalar field it is always possible to perform a
conformal transformation [21] gµν → Ω2(φ)gµν to recast the theory as Einstein gravity plus a minimally coupled field,
in what is known as the Einstein frame [22]. This is no longer possible in a brane world context with a non-minimally
coupled scalar field on the brane, as the bulk gravity already defines a “5D Einstein frame” [23]. The non-minimal
coupling of the scalar on the brane results in the Einstein-Brans-Dicke tensor (2.8) appearing as a source term in the
total energy-momentum tensor on the brane. If one attempts to simplify this by a conformal transformation to the
“4D Einstein frame” on the brane, then this simplifies the total energy-momentum source term on the brane, but
results in more complicated effective gravitational field equations in the bulk. There seems to be no easy way to avoid
the rather messy gravitational field equations for a non-minimally coupled scalar field on the brane.

We identify two different regimes in which the evolution reduces to the usual 4D form. At low energies (relative
to the brane tension σ) the projected 5D Einstein equations reduce to an effective 4D gravity theory (3.5), which
is a generalisation of the Randall-Sundrum model [1]. The non-minimal coupling α(φ) leads to a correction to the
effective gravitational constant on the brane (3.6). On the other hand, if the non-minimal coupling term is large so
that the effects of the bulk gravity is negligible, we recover an effective 4D scalar-tensor gravity theory (3.9) where
α(φ) describes the gravitational coupling (3.10).

We give the form of the modified Friedmann equation for homogeneous and isotropic cosmologies with a non-
minimally coupled scalar field. For a FRW brane moving in 5D anti-de Sitter space-time it is then possible to give
expressions for the 4D low-energy and strong-coupling regimes in terms of the energy density. Only for sufficiently
weak coupling (4.30) is it possible to recover an intermediate “5D” regime where the Hubble expansion is linearly
proportional to the scalar field energy density on the brane [19].

We have given the projected field equations on the brane following the approach of Shiromizu, Maeda and Sasaki
[10] where the non-local effect of bulk gravity is described by the projection of the 5D Weyl tensor. The most general
5D vacuum solution respecting the symmetries of a homogeneous and isotropic (FRW) brane is 5D Schwarzschild
anti-de Sitter where the projected Weyl tensor acts like a radiation fluid.

An interesting special case is that of a conformally coupled scalar field on the brane. As in 4D gravity, one can use
the scalar field equation of motion to define a trace-free energy-momentum tensor (6.3) for a conformally coupled field
on the brane. In general this obeys the same modified Friedmann equation as found previously [5, 7] for a radiation
fluid on a brane with fixed induced gravity coupling α0. But for particular values of the conformal field’s energy
density it is possible for it to exactly cancel out the non-local effect from the projected Weyl tensor and we recover a
standard 4D Friedmann equation for a conformal field.

We also identify de Sitter brane solutions with constant H . We find solutions with a constant scalar field displaced
from the minimum of the potential, where the potential gradient is balanced by the gradient of the non-minimal
coupling term. But for some scalar field Lagrangians it is also possible to find de Sitter solutions with constant 4D
Ricci scalar, but non-constant scalar field.

It is natural to consider extending previous analyses of slow-roll inflation due to a self-interacting scalar field on
the brane [24] to include the effect of a non-minimal coupling for the scalar field to the induced Ricci curvature
on the brane. Several authors have considered the spectrum of scalar metric perturbations produced by quantum
fluctuations of an inflaton field on the brane in the presence of a constant induced gravity correction [8, 9]. Indeed
we have recently shown that the 4D consistency relation for the tensor-scalar ratio from inflation remains true with
a constant induced gravity correction. It would be interesting to see whether this remains true for a scalar field with
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non-minimal coupling α(φ). However our ability to relate the scalar metric perturbations produced during inflation to
observables at late times may be limited due to the non-conservation of the scalar field energy density ρ in Eq. (4.7).
Only the total effective energy density ρtot in Eq. (4.12) is locally conserved and so we require strictly adiabatic
perturbations in this total effective energy density in order for the scalar curvature perturbation to remain constant
in the large scale limit [25]. We leave this interesting question for future work.
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