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INDUCED HOMEOMORPHISM AND ATSUJI

HYPERSPACES

A. K. GUPTA†∗ AND S. MUKHERJEE†

Abstract. Given uniformly homeomorphic metric spaces X and Y , it
is proved that the hyperspaces C(X) and C(Y ) are uniformly home-
omorphic, where C(X) denotes the collection of all nonempty closed
subsets of X, and is endowed with Hausdorff distance. Gerald Beer has
proved that the hyperspace C(X) is Atsuji when X is either compact
or uniformly discrete. An Atsuji space is a generalization of compact
metric spaces as well as of uniformly discrete spaces. In this article,
we investigate the space C(X) when X is Atsuji, and a class of Atsuji
subspaces of C(X) is obtained. Using the obtained results, some fixed
point results for continuous maps on Atsuji spaces are obtained.

1. Introduction

Let (W, τ) be a topological space in which every singleton set {x} is
closed. A hyperspace of the space W is the collection C(W ) of nonempty
closed subsets of W , endowed with a topology τ ′ such that the mapping
I : (W, τ) → (C(W ), τ ′), defined as I(x) = {x}, is a homeomorphism onto
its range. This suitable topology τ ′ is called hypertopology or hyperspace

topology [9]. If W is a metric space, then the induced Hausdorff distance H,
an extended real-valued metric on C(W ), gives a hypertopology.

A metric space X is said to be Atsuji space if each continuous map from
X to a metric space Y is uniformly continuous [3]. The property of being
Atsuji lies in between the completeness and the compactness. For last few
decades, the theory of these spaces has attracted the attention of several
researchers. These spaces demonstrate not only several interesting internal
characterizations (see [1, 3, 7]) but also exhibit several interesting external
characterizations in the theory of hyperspaces (see [5, 6, 8]). Atsuji spaces
are also known as normal metric spaces (see [11]) and as Lebesgue metric
spaces (see [13, 14]).

In [2], Gerald Beer has shown that a metric space X is either compact or
uniformly discrete if and only if its Hausdorff hyperspace C(X) is Atsuji. A
compact metric space and a uniformly discrete space both are Atsuji spaces.
In this manuscript, we take X to be Atsuji and investigate the space C(X).
It is found that the space C(X) fails to be Atsuji, however C(X) contains
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2 A. GUPTA AND S. MUKHERJEE

a class of Atsuji subspaces. These Atsuji subspaces include the completions
of those point-finite collections in C(X) which contain all the singletons
{x}, x ∈ X.

This article is organized as follows. Section 2 contains some preliminaries
required for the discussion in later sections. In Section 3, it is shown that
if X and Y are uniformly homeomorphic, then their corresponding Haus-
dorff hyperspaces C(X) and C(Y ) are so. Section 4 presents the sufficient
conditions for the subspaces of C(X) to be Atsuji. In this regard, an open
problem for the existence of maximal Atsuji subspace of C(X) is also placed.
Applying the obtained results, in Section 5, we acquire fixed point results
for continuous maps on Atsuji spaces.

2. Preliminaries

Given a subset A in a metric space X, we denote the set of all limit points
of A by A′, and the complement of A in X by Ac (or X \A). An open ball
in X, centered at x ∈ X with radius ǫ > 0 is denoted by B(x, ǫ). The set
⋃

x∈A

B(x, ǫ) is called the ǫ-neighborhood of A and is denoted by Nǫ(A).

Definition 2.1. The Hausdorff distance, H, of two nonempty subsets A,B
of a metric space (X, d) is defined asH(A,B) = max{sup

x∈A
d(x,B), sup

x∈B
d(x,A)},

where d(x,A) = inf
y∈A

d(x, y).

Definition 2.2. A metric space X is said to be an Atsuji space if the set of
limit points X ′, and for each ǫ > 0, the set [Nǫ(X

′)]c is uniformly discrete.

Theorem 2.3. [8] Let (X, d) be a metric space. The completion (X̂, d) is

an Atsuji space if and only if every sequence {xn} in X with lim
n→∞

I(xn) = 0

has a Cauchy subsequence, where I(x) = d(x,X \ {x}), x ∈ X.

A topological vector space X is said to be locally convex if there is a local
base B at 0 (the zero vector) whose members are convex.

Theorem 2.4 (Tychonoff’s Fixed Point Theorem). [10] Let A be a compact

convex subset of a locally convex topological vector space. If f : A → A is a

continuous map, then f has a fixed point.

3. Induced Map on Hyperspaces

Consider a map f : X → Y . Let P (X) denote the collection of all
nonempty subsets of X. Then, the induced map F : P (X) → P (Y ) is
defined as A 7→ {f(x) : x ∈ A}, A ∈ P (X). In this article, for conve-
nience, the induced map, generated by a given map f , will be denoted by
the corresponding capital letter F .

The induced map plays some roles in fixed point theory. In this article we
use this map to find a fixed point for its inducing map. The induced map
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has been used by Nadler in [12], to discuss the fixed point property of some
hyperspaces of certain continua.

For metric spaces (X, d), (Y, d′), we denote their corresponding Hausdorff
hyperspaces of nonempty closed subsets by (C(X),H), (C(Y ), H ′), respec-
tively; where H and H ′ are Hausdorff distances induced by the metrics d
and d′, respectively.

A uniform homeomorphism f from a metric space X to a metric space Y
is a bijective map such that f and f−1 are uniformly continuous.

The following result provides a sufficient condition for the hyperspace
C(X) of a metric space X to be uniformly homeomorphic to a hyperspace
C(Y ), as well as is used to derive a fixed point result in Section 5.

Theorem 3.1. Let X,Y be metric spaces. Then, f is a uniform homeo-

morphism from X to Y if and only if the induced map F , defined on the

hyperspace C(X), is a uniform homeomorphism from C(X) to the hyper-

space C(Y ).

Proof. By continuity of f−1, we have F (A) is closed in Y for each A ∈ C(X).
We show that F is uniformly continuous. By uniform continuity of f , for

each ǫ > 0 there is a δ > 0 such that d′(f(x), f(y)) < ǫ whenever d(x, y) < δ
for all x, y ∈ X. Consider H(A,B) < δ for some A,B ∈ C(X). This
implies, B(a, δ) ∩ B 6= ∅ for all a ∈ A. And therefore, d′(f(a), f(y)) <
ǫ, ∀y ∈ B(a, δ) ∩ B, ∀a ∈ A; which implies inf

y∈B(a,δ)∩B
d′(f(a), f(y)) <

ǫ, ∀a ∈ A. And hence, sup
a∈A

inf
y∈B

d′(f(a), f(y)) ≤ ǫ. Similarly, we can prove,

sup
b∈B

inf
y∈A

d′(f(b), f(y)) ≤ ǫ. Thus we proved, for each ǫ > 0 there is a δ > 0

such that H ′(F (A), F (B)) ≤ ǫ whenever H(A,B) < δ, ∀A,B ∈ C(X).
By continuity and surjectivity of f , for each P ∈ C(Y ) there is a set

S := {x ∈ X : f(x) ∈ P} which is nonempty and closed in X. Thus, F−1

exists. Using the uniform continuity of f−1, we can show, as above, that
F−1 is uniformly continuous.

Conversely, from the uniform continuities of F and F−1, it follows that f
and f−1 are uniformly continuous. �

We note that, if f is a homeomorphism, then the induced map F need
not be a homeomorphism. For instance,

Example 3.2. Consider X = (−1, 1) and Y = R, both endowed with the
usual metric of R. The map f : (−1, 1) → R, defined by f(x) = x/(1−|x|), is
a homeomorphism, but the induced map F : C(X) → C(Y ) is not. Indeed,
the sequence of closed intervals {[−n/(n + 1), n/(n + 1)]} is convergent to
(−1, 1) in C(X), while the sequence {F ([−n/(n + 1), n/(n + 1)])} is not
convergent to F ((−1, 1)).

The above theorem also deduces a necessary and sufficient condition for
two Hausdorff metrics to be uniformly equivalent.
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Corollary 3.3. Let (X, d) be a metric space, and d′ be another compatible

metric. Then, d and d′ are uniformly equivalent if and only if the Hausdorff

distances H and H ′ are uniformly equivalent on C(X).

A similar result was mentioned by Beer (see [4], Theorem 3.3.2).

4. Atsuji Hyperspaces

In this section we explore the conditions under which a subspace of a
hyperspace C(X) is an Atsuji space.

The following lemma is a useful tool to derive some of our results in this
section.

Lemma 4.1. Let two metric spaces be uniformly homeomorphic. If one of

the spaces is Atsuji, then other is so.

Proof. Let f : (X, d) → (Y, d′) be a uniform homeomorphism, and X be an
Atsuji space. Clearly, Y ′ is compact in Y . Denote the subset Nǫ(Y

′) ⊂ Y
by S. If possible, suppose Sc in Y is not uniformly discrete. Then, there are
xn, yn in Sc such that d′(xn, yn) → 0. Since f−1(S) is open in X, and con-
tains the compact set X ′, so there is ǫ1 > 0 such that Nǫ1(X

′) ⊂ f−1(S). By
the uniform continuity of f−1, d′(xn, yn) → 0 implies d(f−1(xn), f

−1(yn)) →
0, and therefore [Nǫ1(X

′)]c in X is not uniformly discrete, a contradic-
tion. �

The above lemma also implies that uniformly equivalent metrics on a set
X generate the same Atsuji subspaces of X.

It is to be noted that Atsujiness is not preserved by homeomorphisms.
For instance:

Example 4.2. Consider the set of natural numbers N and the set M :=
{1/n : n ∈ N}, both endowed with the usual metric d of R. The map
f : (N, d) → (M,d), defined as f(n) = 1/n, is a homeomorphism. The space
N is an Atsuji space while M is not.

A subset C in a hyperspace C(X) is said to be point-finite if each point
x ∈ X belongs to at most finite number of elements of C. It is known
that a star-finite collection and a locally finite collection of subsets both are
point-finite.

We denote a point-finite subset of C(X) by Cf (X), a point-finite subset
of C(X) containing all the singletons {x}, x ∈ X, by Cfs(X), and a subset
of C(X) containing all the singletons {x}, x ∈ X, by Cs(X).

Given a subset S in a hyperspace C(X), let us denote the ǫ-neighborhood
of S,

⋃

A∈S

{B ∈ C(X) : H(A,B) < ǫ}, by Nǫ(S). Then, the space C(X) is

an Atsuji space if the set of limit points [C(X)]′ is compact, and for each
ǫ > 0,

[

Nǫ([C(X)]′)
]c

is uniformly discrete.
For metric spaces X and their hyperspaces C(X), Gerald Beer [2] proved

that the following are equivalent:
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(1) X is either compact or uniformly discrete;
(2) The set [C(X)]′ is compact, and for each ǫ > 0,

[

Nǫ([C(X)]′)
]c

is
uniformly discrete.

The class of Atsuji spaces contains compact metric spaces as well as uni-
formly discrete spaces. Replacing compactness and uniform discreteness of
X in Beer’s result with the Atsujiness of X, the set of limit points [C(X)]′

of the hyperspace C(X) may fail to be compact. This is evident from the
following example.

Example 4.3. The subset P = {em/n : m,n ∈ N} ∪ {0} of the normed
space (l2, ‖ · ‖2) is an Atsuji subspace of X. The sequence {{0, en}}

∞
n=1 is in

[C(P )]′ with no convergent subsequence.

However, the set
[

Nǫ([C(X)]′)
]c

in C(X) remains uniformly discrete for all
ǫ > 0, as follows:

Theorem 4.4. Let X be an Atsuji space. Then, for each space Cs(X) and
ǫ > 0, the set

[

Nǫ([C
s(X)]′)

]c
is uniformly discrete.

Proof. If possible, suppose for some ǫ > 0,
[

Nǫ([C
s(X)]′)

]c
in Cs(X) is not

uniformly discrete. So, for each n ∈ N, there are Pn, Qn ∈
[

Nǫ([C
s(X)]′)

]c

such that H(Pn, Qn) < 1/n. Since Pn ∈
[

Nǫ([C
s(X)]′)

]c
, so H(Pn, {l}) ≥

ǫ > ǫ − δ, ∀l ∈ X ′, and for some δ with ǫ > δ > 0. This implies, there
exists a sequence {pn} with pn ∈ Pn ∩ [Nǫ′(X

′)]c, where ǫ′ = ǫ − δ. Since
H(Pn, Qn) < 1/n, so for the sequence {pn}, there is a sequence {qn} with
qn ∈ Qn such that d(pn, qn) < 1/n → 0. For the sequence {qn}, two cases
arise: infinitely many points of {qn}, say {qnj

}∞j=1, are either in X ′ or in

[X ′]c. If {qnj
}∞j=1 is in X ′, then by the compactness of X ′, {qnj

} has a

limit point in X ′. So, the sequence {pn} will have the same limit point as
well, in [Nǫ′(X

′)]c; and hence [Nǫ′(X
′)]c is not uniformly discrete, which is

a contradiction. If {qnj
}∞j=1 is in [X ′]c and it has no limit point, then by the

compactness of X ′ there is a δ′ > 0 such that {qnj
}∞j=1 ⊂ [Nδ′(X

′)]c. Indeed,

if {qnj
}∞j=1 6⊂ [Nδ′(X

′)]c, then for each k ∈ N, there is x′k ∈ X ′ such that

B(x′k, 1/k) ∩ {qnj
}∞j=1 6= ∅, and since {x′k} has a convergent subsequence, so

{qnj
}∞j=1 will have a limit point. Hence, choosing ǫ1 = min{ǫ′, δ′}, we get

the subsequences {qnj
}∞j=1 and {pnj

}∞j=1 are in [Nǫ1(X
′)]c, and so [Nǫ1(X

′)]c

is not uniformly discrete, a contradiction. �

Although, in case of Atsuji space X, there is a class of subsets of C(X),
such that the set of limit points of each subset from this class is compact.

Theorem 4.5. If X is a metric space for which X ′ is complete, then for

each subset Cf (X) ⊂ C(X), the set [Cf (X)]′ is complete.

Proof. For a C ∈
[

Cf (X)
]′
, there is a sequence of distinct terms {Cn} in

Cf (X) satisfying: for each n ∈ N, ∃ Zn ∈ N such that H(Cr, C) < 1/n ∀r ≥
Zn. This implies, C ⊂ N1/n(CZn) for all n ∈ N, and so for all c ∈ C, for all
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n ∈ N, ∃ cn ∈ CZn such that d(cn, c) < 1/n. Since the collection Cf (X) is
point-finite, so at most finitely many cn’s can be equal. Thus c ∈ X ′, and so

C ∈ C(X ′). Hence
[

Cf (X)
]′
⊂ C(X ′). We know that, for a complete metric

space W , the Hausdorff hyperspace C(W ) is complete ([4], Theorem 3.2.4).
Since X ′ is complete, the set C(X ′) is complete in C(X). And, because the

set [Cf (X)]′ is a closed subset in C(X), therefore
[

Cf (X)
]′
is complete. �

A similar proof gives the following.

Theorem 4.6. If X is a metric space for which X ′ is compact, then for

each subset Cf (X) ⊂ C(X), the set [Cf (X)]′ is compact.

A subset A in a metric space X is said to be totally bounded if for each
ǫ > 0, there are finitely many points x1, x2, ..., xn in X such that A ⊂
n
⋃

i=1
B(xi, ǫ).

The following lemma is immediate.

Lemma 4.7. A subset A in a metric space X is totally bounded if and only

if for each ǫ > 0, there are finitely many points a1, a2, ..., an in A such that

A ⊂
n
⋃

i=1
B(ai, ǫ).

Theorem 4.8. If X is an Atsuji space, then a completion of each subspace

Cfs(X) of C(X) is Atsuji.

Proof. Let Cfs(X) denote the closure of Cfs(X) in C(X). Since C(X)

is complete, the space Cfs(X) is a completion of Cfs(X). By the proof
of Theorem 4.5, we have [Cfs(X)]′ ⊂ C(X ′). Since X ′ is totally bounded,
C(X ′) is totally bounded ([4], Theorem 3.2.4). Hence, by Lemma 4.7, the set
[Cfs(X)]′ is totally bounded in the space Cfs(X), which implies [Cfs(X)]′ is

compact. And, by Theorem 4.4, the set Cfs(X)\Nǫ([Cfs(X)]′) is uniformly

discrete. Thus we proved, Cfs(X) is an Atsuji space. Since any two com-
pletions of a metric space are isometric, so by Lemma 4.1, each completion
of Cfs(X) is Atsuji. �

Theorem 4.9. If some Cfs(X) is an Atsuji space, then X is Atsuji.

Proof. Since the space Cfs(X) is Atsuji, and the set S(X) := {{x} : x ∈ X}
is a closed subset in Cfs(X), so S(X) is an Atsuji subspace of Cfs(X).
Because the space X is uniformly homeomorphic to S(X), using Lemma
4.1, X is an Atsuji space. �

Remark 4.10. For a metric space X with compact X ′, the collection A(X)
of nonempty Atsuji subsets of X need not be a point-finite collection. For,
if the set X ′ is compact and the collection A(X) is point-finite, then by
Corollary 4.6, [A(X)]′ is compact. Since A(X) is dense in C(X) (see [2], p.
657), so [C(X)]′ is compact, which is not true in general by Example 4.3.
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Theorem 4.8 gives rise to a question: What are the maximal Atsuji sub-
spaces in C(X), provided X is Atsuji? We elaborate the question as follows:

Open Problem: For a given Atsuji space X, consider the collection F
of the closures of all subsets Cfs(X) of C(X). We endow F with a partial
order relation ‘≤’ as follows: For A,B ∈ F , A ≤ B if and only if A ⊂ B.
Does the partially ordered set (F ,≤) have a maximal element? If yes, can
one explicitly find the maximal element?

Theorem 4.11. Let (X, d) be an Atsuji space. If d′ is another compatible

Atsuji metric on X, then the hyperspaces (C(X),H) and (C(X),H ′) have

the same Atsuji subsets.

Proof. By Theorem 2.2 in [5], we get τH = τH′ , where τH is the topology
generated by H. This implies, the metrics d, d′ are uniformly equivalent.
Then using Corollary 3.3, we get the metrics H,H ′ are uniformly equivalent.
And, so by Lemma 4.1, the hyperspaces (C(X),H) and (C(X),H ′) have the
same Atsuji subsets. �

5. Fixed Point Results

Here, we discuss the fixed point results for continuous mappings of Atsuji
spaces.

For a metric space X, let the set P (X) be endowed with the Hausdorff
distance H. Then, (P (X),H) is an extended-real valued pseudo metric
space.

Lemma 5.1. Let {xn} be a sequence converging to x in a metric space X.

If a sequence {An} converges to A in P (X), then the sequence {d(xn, An)}
converges to d(x,A).

Proof. The proof follows from the continuity of the functional d(·,K1) : X →
R, and the inequality d(x,K1) ≤ d(x,K2) + H(K1,K2), where K1,K2 ∈
P (X). �

Given a multivalued map f from a metric space X to P (X), a point x ∈ X
is said to be almost fixed point of f , if inf{d(x, y) : y ∈ f(x)} = 0.

Let X be a complete metric space. Consider that f : X → P (X) is
a continuous map such that for each ǫ > 0, there is an x ∈ X satisfying
d(x, f(x)) < ǫ; then f does not have an almost fixed point, in general.
Although, in case of Atsuji space X, we have the following.

Theorem 5.2. Let X be an Atsuji space, and f : X → P (X) be a continuous

map such that for each ǫ > 0, there is an x ∈ X satisfying d(x, f(x)) < ǫ.
Then f has an almost fixed point.

Proof. Given hypothesis implies, for each n ∈ N, there is xn ∈ X such
that d(xn, f(xn)) < 1/n. If for some n0, d(xn0

, f(xn0
)) = 0, then f has

an almost fixed point. Otherwise, for each n ∈ N, there is yn ∈ f(xn)
such that 0 < d(xn, yn) < 1/n + 1/n. Since X is an Atsuji space, the
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sequence {xn} has a convergent subsequence {xni
}∞i=1 converging to some x

in X. Then, by continuity of f , f(xni
) → f(x). Using Lemma 5.1, we have

d(xni
, f(xni

)) → d(x, f(x)). This implies d(x, f(x)) = 0. �

In [3], Gerald Beer proved that: If X is an Atsuji space and f : X → X is
a continuous map such that for some x ∈ X, lim inf

n→∞
d(fn(x), fn+1(x)) = 0,

then f has a fixed point. The following corollary to Theorem 5.2 provides a
generalization of his result.

Corollary 5.3. Let X be an Atsuji space, and f : X → C(X) be a continu-

ous map such that for each ǫ > 0, there is an x ∈ X satisfying d(x, f(x)) < ǫ.
Then f has a fixed point.

Theorem 5.4. Let X be an Atsuji space; and for a Cfs(X) ⊂ C(X), f :

X → Cfs(X) be a map such that for each ǫ > 0, there is an x ∈ X satisfying

H({x}, f(x)) < ǫ. If f−1 exists and is continuous, then f has a fixed point.

Proof. Since X is an Atsuji space, so by Theorem 4.8, Cfs(X) is an Atsuji
space. By the given hypothesis we have, for each n ∈ N, there is an xn ∈ X
such that H({xn}, f(xn)) < 1/n. If for some n0 ∈ N, H({xn0

}, f(xn0
)) = 0,

then xn0
is a fixed point for f . Otherwise, due to Atsujiness of Cfs(X), the

sequence {f(xn)} has some convergent subsequence {f(xni
)}∞i=1 converging

to some A in Cfs(X). Then, by continuity of f−1, the sequence {xni
}∞i=1 ⊂

X is convergent to x := f−1(A). Using Lemma 5.1, we have d(x,A) = 0,
which implies x ∈ A = f(x). �

For a given subset X in a normed space, we denote the hyperspace of all
nonempty closed convex subsets of X by Cc(X).

Theorem 5.5. Let X be a compact subspace of a normed space. If f : X →
X is a continuous map which maps a convex set to a convex set and for each

ǫ > 0 there is A ∈ Cc(X) satisfying H(A,F (A)) < ǫ for F on Cc(X), then
f has a fixed point.

Proof. Since f maps convex sets to convex sets, by the proof of Theorem
3.1, the induced map F : Cc(X) → Cc(X) is continuous. It is known that,
if a sequence {An} of nonempty closed convex subsets of a normed space is
Wijsman convergent to a nonempty closed subset A, then A is convex ([4],
p. 43). Thus Cc(X) is closed in C(X), and so compact. Then by Corollary
5.3, F has a fixed point, say P . This implies, the restricted map f |P is
continuous from P to P . And hence, by Tychonoff’s Theorem f has a fixed
point. �

We note that, the domain of f taken in Theorem 5.5 is more general than
the domain taken in Schauder’s fixed point theorem [10]: If A is a compact
convex subset of a Banach space and f is a continuous map from A into A,
then f has a fixed point.
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