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In this article, we introduce the induced ordered weighted geometric (IOWG) operator and its
properties. This is a more general type of OWG operator, which is based on the induced ordered
weighted averaging (IOWA) operator. We provide some IOWG operators to aggregate multi-
plicative preference relations in group decision-making (GDM) problems. In particular, we
present the importance IOWG (I-IOWG) operator, which induces the ordering of the argument
values based on the importance of the information sources; the consistency IOWG (C-IOWG)
operator, which induces the ordering of the argument values based on the consistency of the
information sources; and the preference IOWG (P-IOWG) operator, which induces the ordering
of the argument values based on the relative preference values associated with each one of them.
We also provide a procedure to deal with “ties” regarding the ordering induced by the application
of one of these IOWG operators. This procedure consists of a sequential application of the
aforementioned IOWG operators. Finally, we analyze the reciprocity and consistency properties
of the collective multiplicative preference relations obtained using IOWG operators. © 2004
Wiley Periodicals, Inc.

1. INTRODUCTION

The aggregation of experts’ preferences consisting of combining the individ-
ual preferences into a collective one in such a way that all of the properties
contained in all the individual preferences are summarized or reflected, is a
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necessary and very important task to perform when we want to obtain a final
solution of multicriteria decision-making (MCDM) or group decision-making
(GDM) problems.1–3

Yager4 provided a family of averaging operators called the ordered weighted
averaging (OWA) operators, which are commutative, idempotent, continuous,
monotonic, neutral, compensative, and stable for positive linear transformations.5

The OWA operators have been implemented extensively in the last few years in the
resolution process of different problems (see Ref. [6] and more recent applica-
tions.7–15 They also have proved to be very important in solving GDM problems
because they allow the implementation of the concept of fuzzy majority, which is
fundamental when seeking a final solution of consensus.16,17

As shown in Refs. 18 and 19, the proper aggregation operator of ratio-scale
measurements is not the arithmetic mean but the geometric mean. However, this
operator does not allow the concept of fuzzy majority to be incorporated in the
decision-making processes. The OWA operator behaves in a similar way to the
arithmetic mean and, therefore, we can not use it in decision-making processes
with ratio-scale measurements. Chiclana et al.20 introduced the ordered weighted
geometric (OWG) operator based on the OWA operator and the geometric mean.
The OWG operator allows the implementation of the concept of fuzzy majority in
decision-making processes with ratio-scale assessments in a similar way as the
OWA operators. Its properties and applications in decision making under multi-
plicative preference relations are presented in Refs. 7 and 21 and a complete study
of its origin and uses in MCDM can be consulted in Ref. 22.

A fundamental aspect of the OWA and OWG operators is the reordering of
the arguments to be aggregated, based on the magnitude of their respective values,
which allows us to give importance to values in opposition to the weighted mean
(WM) operators that compute an aggregated value taking into account the reliabil-
ity of the sources of information. However, it is clear that a set of values can be
reordered in a different way to the one used by the OWA and OWG operators. To
do this, a criterion has to be defined to induce a specific ordering of the arguments
to be aggregated before a WM operator can be applied. This is the idea on which
Yager and Filev based the definition of the induced OWA (IOWA) operator.23

Thus, it is the reordering step of the arguments to be aggregated where the
difference between the OWA operator and the IOWA operator resides. The OWA
operators order the arguments by their value, whereas the IOWA operators induce
their ordering by using an additional variable or criterion called the order-inducing
variable. In fact, the OWA operator as well as the weighted averaging (WA)
operator are included in the more general class of IOWA operators.24

Based on this idea and the aforementioned fact that OWA operators are not
appropriate aggregation operators of ratio-scale measurements, we introduce the
induced ordered weighted geometric (IOWG) operators. These operators allow us
to take control of the aggregation stage of any MCDM or GDM problem in the
sense that importance can be given to the values to be aggregated as the OWG
operators do or to the information sources as the weighted geometric mean (WGM)
operators do. We provide some IOWG operators to aggregate multiplicative
preference relations in GDM problems with ratio-scale preference assessments. In
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particular, we present the importance IOWG (I-IOWG) operator, which induces the
ordering of the argument values based on the importance of the information
sources; the consistency IOWG (C-IOWG) operator, which induces the ordering of
the argument values based on the consistency of the information sources; and the
preference IOWG (P-IOWG) operator, which induces the ordering of the argument
values based on the relative preference values associated to each one of them. We
also provide a different procedure to deal with “ties” regarding the ordering
induced by the application of one of these IOWG operators. This procedure
consists of a conjunction and sequential application of the aforementioned IOWG
operators. Finally, we analyze the reciprocity and consistency properties of the
collective multiplicative preference relations obtained using IOWG operators in
aggregation processes.

To do this, this work is set out as follows. In Section 2, we summarize the
basic operators used in this study: the OWA, OWG, and IOWA operators. In
Section 3, we present the IOWG operator and its properties. In Section 4, we define
three particular cases of IOWG operators used to aggregate multiplicative prefer-
ence relations: the I-IOWG, C-IOWG, and P-IOWG operators. In Section 4, a
procedure is proposed to deal with “ties” that could appear in the ordering induced
by the application of one of the foregoing IOWG operators in the aggregation of
multiplicative preference relations. This procedure is different from the one pro-
posed by Yager and Filev.23 In Section 5, we show that, in general, IOWG
operators maintain the reciprocity property of multiplicative preference relations as
well as the consistency property. Finally, in Section 6 we draw our conclusions.

2. PRELIMINARIES: OWA, OWG, AND IOWA OPERATORS

We start this section by providing the definitions that are needed to justify the
introduction of the IOWG operator.

2.1. The OWA Operator

Chiclana et al.’s25 GDM problems were considered in which the information
about the alternatives was represented using fuzzy preference relations and a fuzzy
majority-guided choice scheme was designed, which follows two steps to reach a
final decision from the synthesis of performance degrees of the majority of experts:
(i) aggregation and (ii) exploitation. This choice scheme is based on the OWA
operator.4

DEFINITION 1. An OWA operator of dimension n is a function � : �n3 �, which
has associated a set of weights or weighting vector W � (w1, . . . , wn) to it, so that
wi � [0, 1] and ¥i�1

n wi � 1 and is defined to aggregate a list of values {p1, . . . ,
pn} according to the following expression:

��p1, . . . , pn� � �
i�1

n

wi � p��i�
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being � : {1, . . . , n}3 {1, . . . , n} a permutation such that p�(i) � p�(i�1), @i �
1, . . . , n � 1, i.e., p�(i) is the ith highest value in the set {p1, . . . , pn}.

A normal question in the definition of the OWA operator is how to obtain the
associated weighting vector. In Ref. 4, Yager proposed two ways to obtain it. The
first approach is to use some kind of learning mechanism using some sample data;
the second approach is to try to give some semantics or meaning to the weights.
The latter allowed multiple applications on areas of fuzzy and multivalued logic,
evidence theory, design of fuzzy controllers, and the quantifier-guided aggrega-
tions.

In the case of quantifier-guided aggregations, the OWA operator has been
used to implement the concept of fuzzy majority in the aggregation phase by means
of the fuzzy quantifiers,26 which are used to calculate its weights, which in the case
of a nondecreasing relative quantifier Q is expressed as follows4:

wi � Q� i

n� � Q� i � 1

n � , i � 1, . . . , n

When a fuzzy quantifier Q is used to compute the weights of the OWA operator
�, then it is symbolized by �Q.

Example 1. Suppose three experts provide the following fuzzy preference rela-
tions on a set of three alternatives

P1 � � 0.5 0.75 0.87
0.25 0.5 0.66
0.13 0.34 0.5

�; P2 � � 0.5 0.66 0.94
0.34 0.5 0.87
0.06 0.13 0.5

�; P3 � � 0.5 0.66 0.75
0.34 0.5 0.66
0.25 0.34 0.5

�
Following the choice scheme defined in Ref. 25, if we aggregate them by using an
OWA operator guided by the fuzzy linguistic quantifier “most of,” i.e., using its
corresponding weighting vector (1/15, 10/15, 4/15), then we have the following
collective preference relation:

Pc � �most�P1, P2, P3� � � 0.5 0.67 0.84
0.32 0.5 0.67
0.12 0.28 0.5

�
in which its elements can be interpreted as the preference degree of one alternative
over another for most of the experts.

2.2. The OWG Operator

The decision problem when the experts express their preferences using
multiplicative preference relations has been solved by Saaty using the decision
analytic hierarchical process (AHP), which obtains the set of solution alternatives
by means of the eigenvector method.27 However, this decision process is not
guided by the concept of fuzzy majority. Chiclana et al.7 obtained the transforma-
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tion function between multiplicative and fuzzy preference relations, which is given
in the following result.

PROPOSITION 1. Suppose that we have a set of alternatives X � {x1, . . . , xn} and
associated with it, a multiplicative reciprocal preference relation A � (aij), with
aij � [1/9, 9] and aij � aji � 1, @i, j. Then the corresponding fuzzy reciprocal
preference relation P � (pij), associated with A, with pij � [0, 1] and pij � pji �
1, @i, j is given as follows: pij � f(aij) � 1

2
(1 � log9aij).

The foregoing transformation function is bijective and, therefore, allows us to
transpose concepts that have been defined for fuzzy preference relations to mul-
tiplicative preference relations. Based on this, Chiclana et al.7,21 considered GDM
problems where the information about the alternatives is represented using multi-
plicative preference relations and designed a fuzzy majority–guided choice scheme
based on the quantifier-guided OWG operator.20,22

DEFINITION 2. An OWG operator of dimension n is a function �G : �n 3 �, to
which a set of weights or weighting vectors is associated, W � (w1, . . . , wn), such
that wi � [0, 1] and ¥i wi � 1, and it is defined to aggregate a list of values
{a1, . . . , an} according to the following expression:

�G�a1, . . . , an� � �
i�1

n

�a��i��
wi

where � : {1, . . . , n} 3 {1, . . . , n} is a permutation such that a�(i) � a�(i�1),
@i � 1, . . . , n � 1, i.e., a�(i) is the ith highest value in the set {a1, . . . , an}.

The OWG operators are continuous, compensative, commutative, and idem-
potent and are comprised between the maximum and the minimum.20,22,28

Because the OWG operator is based on the OWA operator, it is clear that the
weighting vector W can be obtained by the same method used in the case of the
OWA operator, i.e., the vector may be obtained using a fuzzy quantifier Q
representing the concept of fuzzy majority. When a fuzzy quantifier Q is used to
compute the weights of the OWG operator �G, this is symbolized by �Q

G. In this
way, the concept of fuzzy majority can be implemented in the decision process by
using appropriate fuzzy linguistic quantifiers to calculate the weighting vectors of
the OWG operator to be used in the aggregation stages of the decision process.

Example 2. Suppose a set of three experts provide the following multiplicative
preference relations on a set of three alternatives:

A1 � � 1 3 5
1/3 1 2
1/5 1/2 1

�; A2 � � 1 2 7
1/2 1 5
1/7 1/5 1

�; A3 � � 1 2 3
1/2 1 2
1/3 1/2 1

�
Following the choice scheme defined in Refs. 20 and 22, the collective multipli-
cative preference relation obtained by using an OWG operator guided by the same
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linguistic quantifier “most of” is

Ac � �most
G �A1, A2, A3� � � 1 1.48 3.21

0.35 1 2.17
0.41 0.28 1

�
in which its elements can be interpreted as the preference intensity measured in
[1/9, 9]27 of one alternative over another for most of the experts.

2.3. The IOWA Operator

Yager and Filev23 introduced a more general type of OWA operator, which
they named the IOWA operator.

DEFINITION 3. An IOWA operator of dimension n is a function �W : (� � �)n3 �,
to which a set of weights or weighting vector is associated, W � (w1, . . . , wn), such
that wi � [0, 1] and ¥i wi � 1, and it is defined to aggregate the set of second
arguments of a list of n two tuples {	u1, p1
, . . . , 	un, pn
} according to the following
expression:

�W�	u1, p1
, . . . , 	un, pn
� � �
i�1

n

wi � p��i�

with � : {1, . . . , n} 3 {1, . . . , n} being a permutation such that u�(i) � u�(i�1),
@i � 1, . . . , n � 1, i.e. 	u�(i), p�(i)
 is the two tuple with u�(i) the ith highest value
in the set {u1, . . . , un}.

In the foregoing definition, the reordering of the set of values to be aggre-
gated, { p1, . . . , pn}, is induced by the reordering of the set of values {u1, . . . ,
un} associated with them, which is based on their magnitude. Because of this use
of the set of values {u1, . . . , un}, Yager and Filev called them the values of an
order-inducing variable and { p1, . . . , pn} the values of the argument vari-
able.23,24 As we have already mentioned, the main difference between the OWA
operator and the IOWA operator resides in the reordering step of the argument
variable. In the case of the OWA operator, this reordering is based on the
magnitude of the values to be aggregated, and in the case of IOWA operator, an
order-inducing variable has to be defined as the criterion to induce that reordering.

An immediate consequence of this definition is that when the order-inducing
variable is the argument variable, the IOWA operator is reduced to the OWA
operator. For a detailed list of properties and uses of the IOWA operators, the
reader should consult Refs. 23, 24 and 29–32.

Remark 1. In this study, we will focus on the aggregation of numerical prefer-
ences, which is why we are assuming that the nature of the first argument of the
IOWA operators also is numeric, although it could be of a linguistic nature.23,24,30,32
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Example 3. If we again take the same three experts as in Example 1 and if each
expert had a value associated with them, then it is clear that these values could be
used as the order-inducing values throughout the aggregation process, and we
could build an IOWA operator based on these values.

Suppose that the values associated with the three experts are b � (0.65, 0.13,
0.22). If we use these values to induce the ordering of the fuzzy preference values
to be aggregated and the same fuzzy linguistic quantifier “most of,” then we obtain
the following collective fuzzy preference relation:

Pc � �most�	0.65, P1
, 	0.13, P2
, 	0.22, P3
� � � 0.5 0.67 0.81
0.33 0.5 0.72
0.19 0.28 0.5

�
For example, the values p13

c and p31
c are obtained as follows:

p13
c � �most�	0.65, 0.87
, 	0.13, 0.94
, 	0.22, 0.75
�

�
1
15

� 0.87 �
10
15

� 0.75 �
4
15

� 0.94 �
12.13

15
� 0.81

p31
c � �most�	0.65, 0.13
, 	0.13, 0.06
, 	0.22, 0.25
�

�
1
15

� 0.13 �
10
15

� 0.25 �
4
15

� 0.06 �
2.87
15

� 0.19

Remark 2. The results obtained using this type of induced ordered aggregation
are different from the ones obtained in Example 1, where we used the simple OWA
operator. Furthermore, in this case, we observe that the collective preference
relation verifies the additive reciprocity property pij

c � pji
c � 1, @i, j.

3. THE IOWG OPERATOR AND ITS PROPERTIES

In this section, we introduce the IOWG operator and study its properties.

3.1. IOWG Operator

Suppose that we want to aggregate a set of two tuples {	u1, a1
, . . . , 	un,
an
}, where {u1, . . . , un} is the set of order-inducing values associated with the
set of argument values {a1, . . . , an} given on the basis of a positive ratio scale.
We can use the IOWA operator not on the set of two-tuple {	u1, a1
, . . . , 	un,
an
} but on the set {	u1, p1
, . . . , 	un, pn
}, where the argument values
{ p1, . . . , pn} are obtained using the foregoing transformation function f of
Proposition 1, i.e., pi � f(ai) � 1

2
(1 � log9ai). Thus, we obtain

p � �W�	u1, p1
, . . . , 	un, pn
� � �
i�1

n

wi � p��i�

where 	u�(i), p�(i)
 is the two tuple with u�(i) the i-th highest value in the set
{u1, . . . , un}.
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The set of two tuples {	u1, a1
, . . . , 	un, an
} and {	u1, p1
, . . . , 	un, pn
}
have the same set of order-inducing values, which implies that the induced
orderings of the arguments {a1, . . . , an} and { p1, . . . , pn} are the same, and,
hence,

p � �
i�1

n

wi �
1

2
�1 � log9a��i�� �

1

2 ��
i�1

n

wi � �
i�1

n

wi � log9a��i��
�

1

2 �1 � �
i�1

n

log9�a��i��
wi� �

1

2 �1 � log9 �
i�1

n

�a��i��
wi�

This last expression justifies the definition of the IOWG operator as follows:

DEFINITION 4. An IOWG operator of dimension n is a function �W
G : (� � ��)n

3 ��, to which a set of weights or a weighting vector is associated, W �
(w1, . . . , wn), such that wi � [0, 1] and ¥i wi � 1, and it is defined to aggregate
the set of second arguments of a list of n two-tuples {	u1, a1
, . . . , 	un, an
}, given
on the basis of a positive ratio scale, according to the following expression:

�W
G �	u1, a1
, . . . , 	un, an
� � �

i�1

n

�a��i��
wi

being � : {1, . . . , n}3 {1, . . . , n}, a permutation such that u�(i) � u�(i�1), @i �
1, . . . , n � 1, i.e., 	u�(i), a�(i)
 is the two tuple with u�(i) the ith highest value in the
set {u1, . . . , un}.

Example 4. If we again take the same three experts as in Example 2 that have the
following values b � (0.65, 0.13, 0.22) associated to them, the collective multi-
plicative preference relation obtained using these values to induce the ordering and
the same fuzzy linguistic quantifier “most of” is

Ac � �most
G �	0.65, A1
, 	0.13, A2
, 	0.22, A3
� � � 1 1.08 3.89

1/1.08 1 2.55
1/3.89 1/2.55 1

�
For example, the values a12

c and a21
c are obtained as follows:

a12
c � �most

G �	0.65, 3
, 	0.13, 2
, 	0.22, 2
� � 31/15 � 210/15 � 24/15 �
15�3 � 214 � 1.08

a21
c � �most

G ��0.65,
1

3
�, �0.13,

1

2
�, �0.22,

1

2
��

� �1

3�
1/15

� �1

2�
10/15

� �1

2�
4/15

�
1

15�3 � 214
�

1

1.08
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Remark 3. The collective multiplicative preference values obtained here are
different from the ones obtained by applying the usual OWG operator, and, again,
the multiplicative reciprocal property aij

c � aji
c � 1, @i, j is verified.

3.2. Properties of the IOWG Operators

In this section, we look at the properties associated with these IOWG oper-
ators �W

G .

3.2.1. IOWG Operators Are Commutative

Suppose that (	u�1(1), a�1(1)
, . . . , 	u�1(n), a�1(n)
) is a reordering of the set
of two tuples (	u1, a1
, . . . , 	un, an
), �1 being a permutation of the set {1, . . . ,
n}. We have to prove that

�W
G �	u�1�1�, a�1�1�
, . . . , 	u�1�n�, a�1�n�
� � �W

G �	u1, a1
, . . . , 	un, an
�

Because the sets of order-inducing values (u1, . . . , un) and (u�1(1), . . . , u�1(n))
have the same elements, the ordering of them from highest to lowest is unique, and,
thus, {u�(1), . . . , u�(n)} and {u�2(�1(1)), . . . , u�2(�1(n))}, � and �2 being two
permutations such that u�(i) � u�(i) and u�2(�1(i)) � u�2(�1(i�1)), @i � 1, . . . ,
n � 1, respectively, are the same sets, i.e., � � �2 � �1 and, hence,

�W
G �	u�1�1�, a�1�1�
, . . . , 	u�1�n�, a�1�n�
� � �

i�1

n

�a�2��1�i���
wi

� �
i�1

n

�a��i��
wi � �W

G �	u1, a1
, . . . , 	un, an
�

3.2.2. IOWG Operators Are or/and Operators; i.e., They Are Located Between
the Minimum and the Maximum of the Arguments to be Aggregated

Suppose that we want to aggregate the set of two tuples (	u1, a1
, . . . , 	un,
an
) and that � is the permutation such that u�(i) the ith highest value in the set
{u1, . . . , un}. If we denote am � mini{ai} and aM � maxi{ai}, then as ai � 0,
@i � {1, . . . , n} we have

0 � am � a��i� � aM, @i � �1, . . . , n


Applying the elemental properties

0 � a � b f 0 � ac � bc @c � 0 and

0 � a � b ∧ 0 � c � df 0 � a � c � b � d

we have
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0 � �am�wi � �a��i��
wi � �aM�wi, @i � �1, . . . , n
, wi � 0, �

i�1

n

wi � 1

and

0 � �
i�1

n

�am�wi � �
i�1

n

�a��i��
wi � �

i�1

n

�aM�wi, @wi � 0, �
i�1

n

wi � 1

which implies

min
i

�ai
 � �W
G �	u1, a1
, . . . , 	un, an
� � max

i

�ai


3.2.3. IOWG Operators Are Idempotent with Respect to the Argument Variable

In fact, this is a consequence of the foregoing property, because if ai � a @i,
then mini{ai} � maxi{ai} � a and, therefore, �W

G (	u1, a
, . . . , 	un, a
) � a.

3.2.4. IOWG Operators Are Increasingly Monotonous with
Respect to the Argument Variable

Suppose two sets of two tuples (	u1, a1
, . . . , 	un, an
) and (	u1, b1
, . . . ,
	un, bn
) such that ai � bi @i. Because the order-inducing values are the same for
both sets, then a�(i) � b�(i) @i, and, hence,

�W
G �	u1, a1
, . . . , 	un, an
� � �W

G �	u1, b1
, . . . , 	un, bn
�

The proof of the monotonicity property is based on the assumption that the
order-inducing values are unchanged. If this is not the case, then monotonicity does
not necessarily hold.

3.2.5. The IOWG Operator Is Reduced to the Geometric Mean (GM) Operator
When wi � 1/n, @i

In fact, if W � (1/n, . . . , 1/n), we have

�W
G �	u1, a1
, . . . , 	un, an
� � �

i�1

n

�a��i��
wi � �

i�1

n

�a��i��
wi

� �
i�1

n

�a��i��
1/n � �

i�1

n

�ai�
1/n � GM�a1, . . . , an�
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3.2.6. The IOWG Operator Is Reduced to the WGM Operator When the Two
Tuples Have the Following Expression 	f(n � i � 1), ai
,

f Being an Increasing Function

If ui � f(n � i � 1) and f is an increasing function, then �(i) � i; thus,

�W
G �	f�n�, a1
, . . . , 	f�1�, an
� � �

i�1

n

�a��i��
wi � �

i�1

n

�ai�
wi � WGM�a1, . . . , an�

3.2.7. The IOWG Operator Is Reduced to the OWG Operator When the Two
Tuples Have the Following Expression 	f(ai), ai
,

f Being an Increasing Function

If ui � f(ai), f being an increasing function, then the ith highest value of
(u1, . . . , un) is u�(i) if and only if a�(i) is the ith highest value of (a1, . . . , an),
i.e.,

�W
G �	f�a1�, a1
, . . . , 	f�an�, an
� � �

i�1

n

�a��i��
wi � �W

G �a1, . . . , an�

Additionally, we have the two following cases:

● If W* � (1, 0, . . . , 0), the IOWG operator is reduced to the maximum operator.

�W*
G �	f�a1�, a1
, . . . , 	f�an�, an
� � �

i�1

n

�a��i��
wi � a��1� � maxi�ai


● If W* � (0, . . . , 0, 1), the IOWG operator is reduced to the minimum operator.

�W�

G �	f�a1�, a1
, . . . , 	f�an�, an
� � �
i�1

n

�a��i��
wi � a��n� � mini�ai


4. AGGREGATION OF MULTIPLICATIVE PREFERENCE
RELATIONS BY MEANS OF IOWG OPERATORS

The result obtained in the aggregation using a WGM operator summarizes the
aggregated values of the information sources taking into account the reliability of
these sources. However, the OWG operator combines the information giving
weights to the values in relation to their ordering position, diminishing the
importance of extreme values by increasing the importance of central ones.
Because both the WGM and the OWG operators are special types of IOWG
operator, by using an IOWG operator, the type of aggregation method to be
implemented can be chosen.

In this section, we present three special cases of IOWG operators for GDM
with multiplicative preference relations (i.e., ratio-scale preference assessments).
These IOWG operators allow the introduction of some semantics or meaning in the
aggregation, and, therefore, allow for better control over the aggregation stage
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developed in the resolution process. The first two act as the WGM operator because
the aggregation is based on the reliability of the information sources, and the third
case acts as the OWG operator because the ordering of the argument values is
based on a relative magnitude associated with each one of them.

We will suppose that we have a group of experts E � {e1, . . . , em}, which
provides preferences about a set of alternatives X � { x1, . . . , xn} by means of
multiplicative preference relations {A1, . . . , Am}, which are reciprocal aij

k � aji
k �

1, @i, j, k.27

4.1. The Importance IOWG Operator

In many cases, each expert ek � E has an importance degree associated with
them. This importance degree can be interpreted as a fuzzy subset, �I : E 3 [0,
1], in such a way that �I(ek) � [0, 1] denotes the importance degree of the
opinion provided by the expert ek. When this is the case, we call this a heteroge-
neous GDM problem.33,34

Assuming that in our context each value �I(ek) is a weight indicating the
importance of the expert ek, the general procedure for its inclusion in the aggre-
gation process involves the transformation of the preference value aij

k under the
importance degree to generate a new value a� ij

k . This activity is performed by means
of a transformation function

a� ij
k � g�aij

k, �I�ek��

Examples of functions g used in these cases include the minimum operator,35 the
exponential function g( x, y) � xy,36 or, generally, a t-norm operator.37

In our case, we can implement this importance degree variable in our GDM
problem as the order-inducing variable to induce the ordering of the argument
values before their aggregation. We call this importance degree–based IOWG
operator the importance IOWG (I-IOWG) operator and denote it as �W

I�G.

DEFINITION 5. If a set of experts (or criteria) E � {e1, . . . , em} provides
preferences about a set of alternatives X � {x1, . . . , xn} by means of multiplicative
preference relations {A1, . . . , Am}, and each expert has an importance degree
�I(ek) � [0, 1] associated with them, then an I-IOWG operator of dimension
n �W

I�G is an IOWG operator in which its order-inducing values is the set of
importance degrees.

Example 5. Suppose that we have a set of three experts E � {e1, e2, e3} and a
set of four alternatives X � { x1, x2, x3, x4}, and suppose that the importance
pairwise comparisons of these three experts are given in the following reciprocal
multiplicative preference relation

I � � 1 6 4
1/6 1 3
1/4 1/3 2

�
These numbers have the following meaning:
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1 Equally important
3 Weakly more important
5 Strongly more important
7 Demonstrably or very strongly more important
9 Absolutely more important
2, 4, 6, and 8 Compromise between slightly differing judgments

According to Saaty, the next step would be the computation of a vector of
priorities, in our case of importance, from the given matrix, for which the principal
eigenvector is computed and normalized. The vector of importance for this matrix
is given by I � (0.701, 0.193, 0.106).

Suppose that these experts provide the following reciprocal multiplicative
preference relations on the set of alternatives:

A1 � 	
1 6 6 3

1/6 1 4 3
1/6 1/4 1 1/2
1/3 1/3 2 1


; A2 � 	
1 6 6 8

1/6 1 2 3
1/6 1/2 1 1/2
1/8 1/3 2 1


; A3 � 	
1 1/5 1/3 1
5 1 4 1/5
3 1/4 1 1/4
1 1/5 4 1



Using the fuzzy linguistic quantifier “most of,” the collective multiplicative pref-
erence relation that we obtain is

Ac � �most
I�G�	0.701, A1
, 	0.193, A2
, 	0.106, A3
� � 	

1 2.42 3.65 4.3
0.41 1 2.52 1.46
0.27 0.4 1 0.42
0.23 0.68 2.38 1



in which its elements can be considered as the preference of one alternative over
another for most of the more important experts.

4.2. The Consistency IOWG Operator

When the experts have equal importance, i.e., in a homogeneous GDM
problem, the application of the I-IOWG operator is reduced to the GM operator.
Thus, in this case, the application of the I-IOWG operator does not introduce any
new meaning and its application is not advisable. However, in a homogeneous
situation, each expert always can have a consistency index (CI) value associated
with them. This CI value responds to its multiplicative preference relation and will
be used as a substitute for the previous importance degree value. Saaty27 defined
the CI value of a multiplicative preference relation as

CIk �
	max

k � n

n � 1

where 	max
k is the maximum or principal eigenvalue of Ak.

The closer CIk is to 0 the more consistent is the information provided by the
expert ek, and, thus, more importance should be placed on that information. In
other words, we could use these values to define the ordering of the argument
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values to be aggregated, in which case we would be implementing the concept of
consistency in the aggregation process of our decision making. This kind of
aggregation process defines an IOWG operator that we call consistency IOWG
(C-IOWG) operator and it is denoted as �W

C�G.

DEFINITION 6. If a set of experts E � {e1, . . . , em} provides preferences about a
set of alternatives, X � {x1, . . . , xn} by means of multiplicative preference
relations {A1, . . . , Am}, then a C-IOWG operator of dimension n �W

C�G is an
IOWG operator in which its set of order-inducing values is the set of CI values
{�CI1, . . . , �CIm} associated with the set of experts.

Example 6. If we take the same data as in Example 2, the CIs associated with
these experts are CI � (0.002, 0.007, 0.005), and the collective multiplicative
preference relation obtained by using a C-IOWG operator guided by the same
linguistic quantifier “most of” is

Ac � �most
C�G�	�0.002, A1
, 	�0.007, A2
, 	�0.005, A3
� � � 1 1.08 3.89

0.93 1 2.55
0.26 0.39 1

�
in which its elements can be interpreted as the preference intensity, measured in
[1/9, 9],27 of one alternative over another for most of the more consistent experts.

4.3. The Preference IOWG Operator

When a preference pairwise comparison of a set of alternatives { x1, . . . , xn}
is given in a fuzzy preference relation P � ( pij), the total sum of the elements of
each row i, p� i � ¥r pir, can be interpreted as the total preference of the alternative
xi. The resulting value obtained by dividing an element of that row pij by p� i, p� ij �
pij/¥r pir can be interpreted as the relative preference contribution of that partic-
ular element to the total preference of the alternative xi. In this case, the total sum
of all the relative preferences of each row i is 1.

In the case of a multiplicative preference relation A � (aij), a value can be
associated with each element of a row in a way that the product of all of them
equals 1. To do this, for each row, the GM of its elements a� i � �n�r air and for each
element of that row, its ratio to this GM value a� i, a� ij � aij/a� i � aij/�n�r air, are
calculated. The values a� i and a� ij can be interpreted as the multiplicative preference
of the alternative xi and the multiplicative relative preference contribution of the
element aij to the total multiplicative preference of the alternative xi.

These multiplicative relative preference values can be used as the order-
inducing values of an IOWG operator to aggregate a set of multiplicative prefer-
ence relations. We call this a preference IOWG (P-IOWG) operator and denote it
as �W

P�G.

DEFINITION 7. If a set of experts (or criteria) E � {e1, . . . , em} provides
preferences about a set of alternatives X � {x1, . . . , xn} by means of multiplicative
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preference relations {A1, . . . , Am}, then a P-IOWG operator of dimension
n �W

P�G is an IOWG operator in which its set of order-inducing values is the set
of multiplicative relative preference matrices {A� k � (a� ij

k); k � 1, . . . , m}.

The general expression of this type of P-IOWG operator is the following:

�W
P�G�	uij

1 , aij
1
, . . . , 	uij

m, aij
m
�; uij

k � fi�ai1
k , . . . , ain

k �

In our case, we use the particular expression uij
k � a� ij

k � fi(ai1
k , . . . , ain

k ) �
aij

k /�n�r�1
n air

k .
In the following, we will show that it does not matter which set of the

foregoing relative preference values { p� ij
1 , . . . , p� ij

m}, with p� ij
k � aij

k /¥k�1
n air

k , or
{a� ij

1 , . . . , a� ij
m}, with a� ij

k � aij
k /�n�r�1

n air
k , are used to induce the ordering of the

ratio-scale argument values {aij
1 , . . . , aij

m}.

PROPOSITION 2. If {A1, . . . , An} and {B1, . . . , Bn} are two sets of values such that
¥k wk � Ak � ¥k wk � Bk, then ¥k wk � f(Ak) � ¥k wk � f(Bk) for any function f such
that f�(x) � 0, @x.

Proof. First, any pair of values (Ai, Bi) such that Ai � Bi can be eliminated from
both sides of the inequality ¥k wk � Ak � ¥k wk � Bk. Consequently, we have (Ai,
Bi) � (0, 0) @i.

If we suppose the contrary, i.e.,

�
k

wk � f�Bk� 
 �
k

wk � f�Ak�

then, we have

�
k

wk � �f�Bk� � f�Ak�� 
 0

and, hence,

�
k

wk � �Bk � Ak� �
f�Bk� � f�Ak�

Bk � Ak

 0

By the mean theorem value there exists a value Ck such that

f�Bk� � f�Ak�

Bk � Ak
� f��Ck�

and min{Ak, Bk} � Ck � max{Ak, Bk}. Let f�(C) � mink{ f�(Ck)}; thus,

f��C� � �
k

wk � �Bk � Ak� � �
k

wk � �Bk � Ak� � f��C�

� �
k

wk � �Bk � Ak� � f��Ck� � �
k

wk � �f�Bk� � f�Ak�� 
 0
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Because of f differentiable and f�(C) � 0; then, ¥k wk � (Bk � Ak) � 0,
which is equivalent to

�
k

wk � Bk 
 �
k

wk � Ak

which contradicts our initial assumption. ■

A consequence of this property is the following.

COROLLARY 3. If ¥k wk � Ak � ¥k wk � Bk, then �k (Ak)
wk � �k (Bk)

wk.

Proof. Taking function f( x) � log9x and applying Proposition 2, we have

�
k

wk � log9Ak � �
k

wk � log9Bk

�
�
k

log9�Ak�
wk � �

k

log9�Bk�
wk

�
log9 �

k

�Ak�
wk � log9 �

k

�Bk�
wk

�
�

k

�Ak�
wk � �

k

�Bk�
wk �

The following property establishes that the collective preference relations
obtained by applying a P-IOWG operator to a set of multiplicative preference ones,
using order-inducing values a� ij

k � aij
k /a� i

k � aij
k /�n�r�1

n air
k and p� ij

k � aij
k /p� i

k �
aij

k /¥r�1
n air

k are the same.

COROLLARY 4. If {A1, . . . , Am} is a set of multiplicative preference relations, then

�W
P�G�	a� ij

1 , aij
1
, . . . , 	a� ij

m, aij
m
� � �W

P�G�	p� ij
1 , aij

1
, . . . , 	p� ij
m, aij

m
�

with

a� ij
k �

aij
k

�n�r�1
n air

k and p� ij
k �

aij
k

¥r�1
n air

k

Proof. Suppose that � : {1, . . . , n} 3 {1, . . . , n} is a permutation such that

p� ij
��k� � p� ij

��k�1�, @k � 1, . . . , n � 1

Multiplying both sides of the foregoing inequality by p� i
�(k) � p� i

�(k�1), we have
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aij
��k� � p� i

��k�1� � aij
��k�1� � p� i

��k�

If we denote C � aij
�(k), D � aij

�(k�1), wr � 1
n

, Ar � C � air
�(k�1), and Br �

D � air
�(k), then the foregoing inequality can be rewritten as

�
r�1

n

wr � Ar � �
r�1

n

wr � Br

Applying Corollary 3, we obtain

�
r

�Ar�
wr � �

r

�Br�
wr

which is equivalent to

n��
k

(C�air
�(k�1))� n��

k

(D�air
�(k))

Rearranging both sides of this inequality we have

C

�n�k air
��k�

�
D

�n�k air
��k�1�

i.e.,

a� ij
��k� � a� ij

��k�1�, @k � 1, . . . , n � 1

which means that the orderings of the sets {a� ij
1 , . . . , a� ij

m} and { p� ij
1 , . . . , p� ij

m},
based on their magnitude, are the same, and, hence,

�W
P�G�	a� ij

1 , aij
1
, . . . , 	a� ij

m, aij
m
� � �W

P�G�	p� ij
1 , aij

1
, . . . , 	p� ij
m, aij

m
� �

The previous IOWG operators, the I-IOWG and the C-IOWG operators, act
as the WGM operator because the aggregation is based on the reliability of the
information sources, and the P-IOWG operator acts as the OWG operators because
the ordering of the argument values is based on a relative magnitude associated
with each one of them.

Example 7. Taking the same data as in Example 2,

A1 � � 1 3 5
1/3 1 2
1/5 1/2 1

�; A2 � � 1 2 7
1/2 1 5
1/7 1/5 1

�; A3 � � 1 2 3
1/2 1 2
1/3 1/2 1

�
The multiplicative relative preference matrices A� k � (a� ij

k ) being a� ij
k �

aijk/�n�r air
k , associated with these multiplicative preference relations are
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A� 1 � �0.42 1.22 2.03
0.38 1.14 2.29
0.43 1.08 2.15

�; A� 2 � �0.41 0.83 2.9
0.37 0.74 3.68
0.47 0.65 3.27

�;

A� 3 � �0.55 1.1 1.65
0.5 1 2

0.61 0.91 1.82
�

The collective multiplicative preference relation obtained by using the P-
IOWG operator guided by the same linguistic quantifier “most of” is

Ac � �most
P�G�A1, A2, A3� � � 1 2.05 4.46

0.61 1 2.13
0.19 0.39 1

�
The collective preference relation obtained by the application of the P-IOWG

operator does not verify the reciprocity property. This is because of the fact that
this P-IOWG operator behaves as an OWG operator, which normally does not
maintain the reciprocity property.22

4.4. A Procedure to Deal with Ties Using IOWG Operators

As we said before, when using IOWG operators, ties could appear and the
aggregated values can be different according to the procedure applied, in contrast
to the OWG operators, where ties do not affect the aggregated values. In the case
of aggregating multiplicative preference relations, when using an IOWG operator,
we propose a sequential procedure different from the one proposed by Yager and
Filev,23 which is applied in three steps, as follows:

1. If the GDM problem is heterogeneous, then the I-IOWG operator is applied and if not,
the C-IOWG operator is applied.

2. If an I-IOWG operator has been applied in one, then the ordering of the equally
important information is induced based on their respective CI values. If a C-IOWG
operator has been applied in one, then the ordering of the equally consistent informa-
tion is induced based on their respective multiplicative relative preference values.

3. Finally, if ties are still present, then their ordering is induced based on their respective
magnitude, i.e., applying the usual OWG operator.

Example 8. Suppose a school has to be selected from a set of three {A, B, C},
for which six independent criteria are used: L, learning; F, friends; S, school life;
V, vocational training; P, college preparation; and M, music classes.27 Suppose that
the relative importance degrees of these six criteria are expressed in the following
matrix:

I � 	
1 4 3 1 3 4

1/4 1 7 3 1/5 1
1/3 1/7 1 1/5 1/5 1/6
1 1/3 5 1 1 1/3

1/3 5 5 1 1 3
1/4 1 6 3 1/3 1
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The vector of importance for this matrix is given by I � (0.32, 0.14, 0.03,
0.13, 0.24, 0.14).

When using these importance values to induce the ordering of the preference
values, we observe that there is a tie between the criteria F and M. In this case, we
induce their ordering using their respective CI values. The CI values associated
with AF and AM are CIF � 0 and CIM � 0.025, respectively, resulting in the
following final induced ordering of the six criteria {L, P, F, M, V, S}. We call this
aggregation operator the importance consistency–IOWG (IC-OWG) operator.

Suppose that the pairwise comparison matrices of these three schools with
respect to this set of six criteria are

AL � �1 1/3 1/2
3 1 3
2 1/3 1

�; AF � �1 1 1
1 1 1
1 1 1

�; AS � � 1 5 1
1/5 1 1/5
1 5 1

�
AV � � 1 9 7

1/9 1 1/5
1/7 5 1

�; AP � �1 1/2 1
2 1 2
1 1/2 1

�; AM � � 1 6 4
1/6 1 1/3
1/4 3 1

�
The collective multiplicative preference relation obtained using the linguistic

quantifier “most of” with the corresponding weighting vector W � (0, 1/15, 1/3,
1/3, 4/15, 0) is

Ac � �most
IC�G�AL, AF, AS, AV, AP, AM� � � 1 3.12 2.67

0.32 1 0.45
0.37 2.22 1

�
Remark 4. The collective multiplicative preference relation we have obtained in
this example, following our tie procedure coincides with the one we would have
obtained following Yager and Filev’s procedure of replacing the arguments of the
tied criteria AF and AM by their (geometric) average because the same weight is
associated with AF and AM by the linguistic quantifier “most of” in the aggregation
process. It is clear that when the weights associated with AF and AM are different,
the procedure we propose gives different results to that of Yager and Filev’s
procedure.

5. RECIPROCITY AND CONSISTENCY PROPERTIES OF THE
COLLECTIVE MULTIPLICATIVE PREFERENCE RELATION

In GDM models with ratio-scale preference assessments, it usually is assumed
that the multiplicative preference relations to express the judgements are recipro-
cal. However, it is well known that reciprocity generally is not maintained after
aggregation is performed in the selection process.22 In Example 5, the collective
multiplicative preference relation obtained, using an I-IOWG operator, was recip-
rocal, and the one obtained in Example 6, using the C-IOWG operator, also was
reciprocal. However, the one obtained by applying the P-IOWG operator was not
reciprocal.
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In the following, we will show that IOWG operators acting as WGM opera-
tors maintain both the reciprocity and the consistency properties. On the other
hand, the IOWG operators acting as OWG operators generally do not maintain
these properties.

5.1. Reciprocity Property

If a group of experts E � {e1, . . . , em} provides preferences about the
alternatives X � { x1, . . . , xn} by means of multiplicative preference relations
{A1, . . . , Am}, which are reciprocal, aij

k � aji
k � 1, @i, j, k, and if {u1, . . . , um}

is a set of order-inducing (importance or consistency) values associated with the set
of experts, then the collective multiplicative preference relation Ac � (aij

c ),
obtained by using an IOWG operator �Q

I�G, guided by a linguistic quantifier Q is
also reciprocal.

In fact,

aij
c � �W

G �	u1, aij
1
, . . . , 	un, aij

m
� � �
k�1

m

�aij
��k��wk

being � : {1, . . . , n} 3 {1, . . . , n} a permutation such that u�(k) � u�(k�1),
@k � 1, . . . , n � 1.

It is clear that

aji
c � �W

G �	u1, aji
1
, . . . , 	un, aji

m
� � �
k�1

m

�aji
��k��wk � �

k�1

m � 1

aij
��k��wk

�
1

�k�1
m �aij

��k��wk
�

1

aij
c

i.e., Ac verifies reciprocity property.

5.2. Consistency Property

If the set of multiplicative preference relations are consistent,27 i.e.,

aij
r � ajk

r � aik
r , @i, j, k, r

in Ref. 22 we have shown that the ordering among the alternatives provided by
Saaty’s eigenvector method and the multiplicative choice degrees defined in Refs.
7, 20, and 21 are the same. Therefore, knowing how to maintain the consistency
property in the aggregation process could be of great interest to a decision maker.

If Ac � �W
G (	u1, A1
, . . . , 	un, Am
), then

aij
c � �

r�1

m

�aij
��r��wr; ajk

c � �
r�1

m

�ajk
��r��wr; aik

c � �
r�1

m

�aik
��r��wr

with u�(r) the rth highest value in the set {u1, . . . , um}. Thus, we obtain
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aij
c � ajk

c � �
r�1

m

�aij
��r��wr � �

r�1

m

�ajk
��r��wr � �

r�1

m

�aij
��r� � ajk

��r��wr � �
r�1

m

�aik
��r��wr � aik

c

which proves the consistency of Ac.

Remark 5. The proof of the reciprocity and consistency of the collective multi-
plicative preference relation is based on the assumption that the order-inducing
values are unchanged. If this is not the case, then the reciprocity and consistency
do not necessarily hold. In fact, for the subclass of the OWG operators, we have
shown in Ref. 22 that reciprocity is not maintained in the aggregation process and
that there exists OWG operators that although maintain reciprocity do not maintain
consistency.

6. CONCLUDING REMARKS

In this study we have introduced the IOWG operators and have studied their
properties. We have shown that the WGM and OWG operators are subclasses of
the IOWG. We have given examples of the use of IOWG operators in the
aggregation of multiplicative preference relations. We have defined three IOWG
operators that implement a semantic meaning in the aggregation process: the
I-IOWG operator, which induces the ordering of the argument values based on the
importance of the information sources; the C-IOWG operator, which induces the
ordering of the argument values based on the consistency of the information
sources; and the P-IOWG operator, which induces the ordering of the arguments
based on the relative preference associated with each one of them. We also have
given a sequential procedure to deal with ties in respect to the ordering induced by
the application of one of these IOWG operators, different from the one proposed
by Yager and Filev, consisting in a sequential application of the foregoing IOWG
operators. The application of this sequential procedure induces an ordering of the
arguments to be aggregated without ties or, in the extreme case of their presence,
these do not affect the aggregated result. Finally, we have shown that the collective
multiplicative preference relation verifies the reciprocity and consistency proper-
ties under the assumption that the order-inducing values remain unchanged.
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