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INDUCED REPRESENTATIONS
OF REDUCTIVE P-ADIC GROUPS. I

BY I. N. BERNSTEIN AND A. V. ZELEVINSKY

Introduction

Let G be a reductive group over a non-archimedean local field F. It follows from
works of Harish-Chandra and Jacquet that there are two main problems in the studying
of irreducible representations of the group G :

(a) The description of cuspidal irreducible representations of the group G.

(b) The studying of induced representations. More precisely, let P be a parabolic
subgroup in G, M its Levi subgroup, p a cuspidal irreducible representation of M. Let
n be the representation of G induced by p in a standard way (such representations will
be called the induced ones). The problem is to study the conditions of irreducibility
of TC, the decomposition of n in irreducible components and the connections between
different induced representations.

We will deal only with the second problem.

Let us formulate the main results of this paper. Let P and Q be parabolic subgroups
in G, M and N their Levi subgroups, p and p' irreducible cuspidal representations of M
and N; let n and TI' be the corresponding induced representations.

In paragraph 2 we prove the equivalence of the following conditions (Theorem 2.9):

(i) Pairs (M, p) and (N, p') are conjugate by some element of G.

(ii) Horn (7i, 7i') ^ 0.

(iii) n and n' have the same families of composition factors.

(iv) n and n' have a common composition factor.

One can prove the equivalence (i)-(iii) using the theory ofintertwiningo perators (see [II],
[14] and [15]). We use another method based on the study of the functor r

adjoint to the functor of inducing. For the representations of principal series this
method was used by Casselman in [6]. Such a method allows us to get some information
about subquotients of n and n'\ e. g. using it we prove the implication (iv) ==> (i). Fur-
thermore, we obtain an estimate for the length of n which depends only on G and M
(Th. 2.8). It refines the results of Howe [12].

In case G = G^ = GL (n, F), we obtain more precise results. The basic method
used here is that of the restriction of induced representations to the subgroup ?„ [this
subgroup consists of the matrices with the last row (0, 0, . . . , 0, 1)]. This is a method
of Gelfand and Kajdan ([8], [9]).
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In paragraph 3 we study in details representations of the group ?„. It turns out that
there is a one-to-one correspondence between irreducible representations of ?„ and such
of the family of groups G^, 0 ^ k < n (Cor. 3.5).

In paragraph 4 we describe the decomposition of the restriction to P» of any induced
representation of the group G^. Using this decomposition we get the main results of
the paper namely:

(a) Criterion of irreducibility of induced representations of the group Gn (Th. 4.2).
If pi, ..., pfc are irreducible cuspidal representations of the groups G^, . . . , G^ and
7t = pi x ... x p^ is the corresponding induced representation of the group G,,,

n == n^ + . . . +/2fc, then n is reducible iff for some /, j n^ = nj and py = j det |. p;.

(b) The existence of the Kirillov model for any irreducible non-degenerate representation
of G,, (Conjecture of Gelfand-Kajdan [8]), Theorem 4.9.

Note that in Theorem 4.2 we prove only sufficient conditions of irreducibility. The
necessity of these conditions will be proved in Part II of this paper.

Our proof of the Gelfand-Kajdan conjecture is based on Theorem 4.11, which describes
when an induced representation has a degenerate P^subrepresentation. This theorem
is of an independent interest.

Few words about methods. We use the theory of algebraic (= smooth in the sense of
Harish-Chandra) representations of locally compact totally disconnected groups (we
call them /-groups), see [1]. Our basic tools are the functors of inducing Iu,e? ^u.e
and the adjoint functor of "localisation" /*u,e? which connect the representations of
different /-groups. Some properties of these functors and the needed information about
representations of /-groups are collected in paragraph 1.

Proofs of the results of paragraphs 2, 4 are based on the geometrical Lemmas 2.12
and 4.13. Using these lemmas we obtain all our results by purely category-theoretical
arguments dealing only with connections between some functors. The geometrical
Lemmas describe the composition of the functors ry, ̂  and ;u, e m some special situations.
They are in fact the particular cases of Theorem 5.2 which describes such a composition
in a very general case. We prove this theorem in paragraph 5 and in paragraphs 6, 7
deduce from it the geometrical Lemmas.

The results of this paper are announced in [2].

Recently we have received the paper by W. Casselman introduction to the theory
of admissible representations of p-adic reductive groups" which contains the proof of

almost all results paragraph 2 and paragraph 6 of our paper and some more. Casselman's
results are based on the ideas of Harish-Chandra and Jacquet, and so are our results.
We are very obliged to W. Casselman for his paper.

1. Preliminaries

In this section we shall introduce some basic notions and notations. They will be
used throughout the whole paper. All proofs may be found in [1].

1.1. A Hausdorff topological group G is called an /-group, if any neighbourhood of
the identity contains an open compact subgroup.

46 SERIE - TOME 10 - 1977 - N° 4



INDUCED REPRESENTATIONS OF REDUCTIVE p-ADIC GROUPS. I 443

Example. — A p-adic Lie group is an /-group.

1.2. If n is a representation of an /-group G on a complex vector space E, we briefly
write n = (n, G, E); the space E is called a G-module. No topology on E is considered.

A representation (n, G, E) is called algebraic (1) if the stabilizer stab ^ of any vector
^ e E is an open subgroup of G. If (TT, G, E) is a representation let E^g be the subspace
of all vectors i; e E with an open stabilizer; the representation jr^g = (n [^ , G, E^i) is
said to be the algebraic part of TT.

Let G be an /-group. Denote by Alg G the abelian category of algebraic representations
of G. Let Irr G be the subcategory of Alg G, consisting of irreducible representations

and let Irr G be the set of equivalence classes of representations from Irr G.

If TC e Alg G, we call subquotient of n any representation of the form T^/TTi, where

Tti <= 71:2 <= TC. Let JH (7i) denote the subset of Irr G, consisting of equivalence classes
of irreducible subquotients of n. Let l(n) denote the length of n. If l(n) < oo, we
denote by JH° (n) the set of irreducible quotients of Jordan-Holder series of n [each
element co e JH (n) is contained in JH° (n) with some multiplicity].

1.3. A representation (n, G, E)eAlgG is called admissible, if the subspace of K-
invariant vectors ^ e E is finite-dimensional for any open subgroup K c: G.

1.4. Let (TT, G, E) e Alg G and E* the space of all linear forms on E. We define the
representation (TC*, G, E*) by

<7^*(g)^>=<^,7^(g-l)^>, geG, ^*eE*, ^eE.

Define the contragredient representation (TT, G, E) to TT by n = Or*)aig, E = (E*)^ . If

7i is admissible, so is n, and n = 71.

1.5. We call character of an /-group G any locally constant homomorphism 9 : G —> C^.
If (TT, G, E) e Alg G, then the representation (OTT, G, E) e Alg G is defined by

(671) (g) == 9 (g). n (g). We obtain the functor 6 : Alg G -> Alg G. Note that On = 9~1
 n.

1.6. Let Gi, G2 be /-groups and G = G^xG^. Using tensor products, one obtains
the bifunctor

® : Alg GI x Alg G^ -> Alg G ((pi, p,,) -> pi ® p^).

If p, e Alg G, (; = 1, 2) are admissible and irreducible, so is pi ® p^ e Alg G; conversely
any admissible p e Irr G has such a form, and the equivalence classes of p» are determined

by p. Note, that in this case pi ® p2 = Pi ® 9z-

1.7. Let M, N be /-groups and a : M —> N an isomorphism. Define the functor
a : Alg M —> Alg N. If (p, M, L) e Alg M then the representation (ap, N, L) e Alg N
is defined by

(ap)(^=p(c^-ln)^ neN, ^eL.

If T| is an inner automorphism of M, then the functors a, a o T| : Alg M —> Alg N
are isomorphic.

(1) It is smooth in the sense of Harish-Chandra.
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Let a be an automorphism of an /-group U. Denote by modu a the (topological)
module of CT. It is defined by the formula

/(o-'^^iC^moduCT. f(u)d[i(u),
Ju Ju

where [i is a Haar measure on U. If U is a closed subgroup of an /-group G and an
element g e G normalises U, then denote by mody (g) the module of the automorphism
u —f gug~

1; mody is a character of the normaliser of U in G. The character AQ = mod^1

is said to be the module of the group G.

If U' is a closed subgroup of an /-group U, and Ay = 1, Ay- = 1, then there exists an
invariant measure on the quotient space U'\U. Let a be an automorphism of U, such
that cr (V) = U'. One can define the module mody^u o-- The Fubini theorem implies
that mody^u = mody/mody.

All characters of the form mody are positive. So we shall frequently use the
following simple statement: any positive character of a compact /-group equals 1.

1.8. Now we describe some functors which play the fundamental role in this paper.

Let G be an /-group, M, U closed subgroups, such that M normalises U , M n U = { e }

and the subgroup P = MU <= G is closed; let 9 be a character of U normalised by M.
In such a situation we define the functors

^,0» i'u,e: Alg M ̂  Alg G,

ru,e: Alg G-> Alg M.

(a) Let (p, M, L) e Alg M. Denote by I (L) the space of functions/: G -^ L, satisfying
the following conditions :

(1) / (umg) = 6 (u) mod^2 (m) p (m) (/ (g)), u e U, m e M, g e G.

(2) There exists an open subgroup Ky c G such that

f(gk)=f(g) for geG, feeK^.

Define the representation (8, G, I (L)) e Alg G by (8 (g)f) ( g ' ) = f(g' g). We call 8
an induced representation and denote it by Iu,e(p) (or, more complete, Iu,e(G, M, p)).

Denote by ; (L) the subspace of I (L), consisting of all functions compactly supported
modulo the subgroup P = MU. The restriction of 8 on the space i (L) is called compactly
induced and is denoted by fy, e (p) (or /u, e (G? M^ P))-

(b) Let (7i, G, E) e Alg G. Denote by E (U, 9) c: E the subspace, spanned by the
vectors of the form

n(u)^-Q(u)^ ue\J, ^eE.

The quotient space E/E (U, 9) is called the 9-localisation of the space E and is denoted
by r^ g (E). Define the representation (8, M, ry, e (E)) by

8(m)(^+E(U, 9))=modu l /2(m).(7l(m)^+E(U, 9)), meM, ^eE;
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it is easily verified that 5 is well defined. Call the representation 8 the 9-localisation of
n and denote it by /\j, 9 (n) (or r^ g (M, G, n)).

If U = { e }, then the functors I, i turn into the ordinary inducing (without any factor)
and r turns into the restriction of the representations. If MU = G, then the representation
Iu, e (P) equals ^u, e (p) and it acts on the same space as p.

1.9. Describe the properties of functors I, i and r. We say that an /-group U is
a limit of compact subgroups if for any compact K c: U there exists a compact sub-
group U' c: U, containing K; in particular, in this case Ay = 1.

PROPOSITION. — (a) The functors ly^, fy^ are exact. If U is a limit of by compact

subgroups^ then r^g is exact.

(b) The functor r^e is left adjoint to Iu,e» i' e' for any p e Alg M, n e Alg G there is a
natural isomorphism

Hom(ru,e0r), p) = Hom(7i, lu.e(p))-

(c) Let N, V be subgroups ofM and 9' be a character ofN such that the functors

^.e'» ^v.e-; Alg N -> Alg M and r^e-: Alg M -> Alg N

are well defined. Define the character 6° of the group U° = UV by 9° (uv) = 9 (u) 9' (i;)
Then:

^u.e ° ̂ v.e' = iv°,Q°9 Iu,e ° IV,Q' == Iu°,e0? ^v.e' ° ̂ ,9 = ^u0^0-

(d) 7/'Au = 1 then there is a natural isomorphism

^G hj.eCp) = lu.e-^MP). peAlgM.

(e) Suppose that G is compact modulo P = MU. Then the functors 1̂  9 and fy, e coincide

and carry admissible representations into admissible ones.

(/) If % is a character ofG then:

X ° ̂ u,e = ^u,xe ° X» X ° Iu,e = lu.xe ° X» X ° ̂ ,9 = ̂ ^e ° X-

(g) The functors i^^ g and r^^ g commute with inductive limits; if H is an l-group and

T e Alg H then f^ e a/zrf r^ e commute with the functors ̂  h-> ̂  ® T a^fif ̂  i-> T ® ̂ .

Parts (/) and (g) can be directly verified. The other assertions are proved in ([1 ], chap. I);
since the definitions in [1] don't include the factor mod^2, in (b), (c) and (rf) one has
to verify that all such factors are compatible.

1.10. If ^ and ^ are abelian categories, then additive functors from ^ to ^ form an
abelian category. We will freely use such notions as an exact sequence of functors, a
subfunctor a. s. o. They all can be understood "locally with respect to j^", e. g. to set
a subfunctor 0 of the functor F one has to choose the subobject <D (p) c: F (p) for any
p e j^, such that for any morphism (p : p —> T the morphism F ((p) carries 0 (p) into O (r).

1.11. Let j2/ be an abelian category and C^, ..., C^ e ̂ . We say that the object D e ̂
is glued from Ci, ..., Q, if there is a filtration 0 = Do c: Di <= . . . c: D^ = D in D, such
that the set of quotients { D,/D,_i } is isomorphic after a permutation to the set { C; }.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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2. The induced representations of reductive groups

2.1. Let F be a locally compact nonarchimedean field. From now on by an algebraic
F-group we mean the group of F-points of some algebraic group, defined over F. In a
natural locally compact topology such groups are /-groups.

Let G be a connected (in an algebraic sense) reductive F-group. Fix from now on a
minimal parabolic subgroup Po c: G and a maximal split torus Ao <= Po.

Let P be a parabolic subgroup, containing Po, U the unipotent radical of P. There
exists a unique Levi subgroup in P containing Ao; denote it by M (it is a connected reduc-
tive F-group). It is known that P normalises U and has the Levi decomposition
P = MU, M n U = { 6? }. A group M, which can be obtained by such a construction,

is called a standard subgroup in G (the notation is M < G) and a triple (P, M, U) is
called a parabolic triple. Note that P and U are determined by M, since P == Po M.

In any standard subgroup M < G we fix the minimal parabolic subgroup Po n M and
the maximal split torus Ao. It is clear that N < M implies N < G.

2.2. Example. Let G = G^ = GL (n, F), Po be the group of upper triangular matrices
and Ao the group of diagonal matrices. The standard subgroups of G are numerated
by (ordered) partitions of n: to each partition a = (n^, . . . , n,) there corresponds the
subgroup G^ = G^ x ... x G^, embedded into G as the subgroup of cellular-diagonal
matrices. Furthermore, Gp < G^ iff P is a subpartition of a.

2.3. Let M < G and (P, M, U) be the corresponding parabolic triple. Define the functors

^G,]^ Alg M-)-Alg G and r^c: AlgG-^AIgM,

^ ^G.M = i\j, i, ^ M , G = r
v, i (

see L8)-

PROPOSITION. — (a) The functors IQ^ and FM,G ^^ exact.

(b) The functor r^G ^ ^ft adjoint to ;G,M-

(c)If^ < M < G then:

l
G, M ° ^M. N = l

G, N» ^N, M ° ̂ M, G = ^N, G-

00 IG, M (P) = IG, M (P), P <= Alg M.

(e) The functors IQ,M ^nd r^c carry admissible representations into admissibles ones.

Parts (d)~(d) and the first part of (e) follow from the corresponding points of the propo-
sition 1.9. We have only to use the following statements: U is a limit of compact
subgroups, G is compact modulo P and G is unimodular. It was proved by Jacquetthat

'M,G carries admissible representations into admissible ones. {See [7] and [1] for the
case G = GL (n, F)).

2.4. A representation n e Alg G is called quasicuspidal if r^ c 00 = 0 tor any standard
subgroup M ^ G. It follows from 2.3 (a\ that in this case all subquotients of n are
quasicuspidal.

A quasicuspidal admissible representation is called cuspidal.

4® SERIE — TOME 10 — 1977 — N° 4
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THEOREM. — (a) Any representation n e Alg G decomposes into n = n^ © TC^-, where n^

is quasicuspidal and n^ has no non-zero quasicuspidal subquotients.

(b) If n e Alg G is admissible and co e JH (n) is cuspidal, then n has a submodule (and

a facto rmodule), equivalent to co.

(c) Ifn is cuspidal then so is n.

(d) If M ^ G, p e Alg M and n = fe. M (?) then
 ^c = 0-

Parts (d)-(c) in the case G = GL(n, F) are proved in ([I], chap. II); in the general
case proofs are similar. Part (d) follows from 2.3 (b), since

Horn (Ti,., n) == Hom(rM,G(0. P) = °-

2.5. THEOREM. — Let co e Irr G. Then there exists a subgroup M < G and a cuspidal

representation p e Irr M such that co can be embedded into io, M (p)^' in particular, o is

admissible.

The proof can be found in [10]; for G = GL (n, F) see [1, chap. II].

2.6. The main purpose of this section is to clear up the relations between the repre-
sentations of G, induced from different standard subgroups. For this we study the action

of the Weyl group on standard subgroups.

Let W = We = NG (Ao)/Zo (Ao) be the Weyl group of the group G. For any we W
choose a representative w e NG (Ao) and define the map w :G—^Gby w (g) = w.g.w~

1
.

If M < G then M => ZQ (Ao) hence for any w e WM c: We its representative w belongs

to M.

Let M and N be standard subgroups of G. We set

W ( M , N ) = { w e W | w ( M ) = = N } ;

it is clear that WN.W(M, N).WM = W (M, N). The subgroups M and N are called
associated (the notation M - N) if W (M, N) + 0.

Any element w e W (M, N) determines the functor w : Alg M —> Alg N (see 1.7). The
representations p e Alg M, p' e Alg N are called associated, if p' w w (p) for some

w e W (M, N) (the notation p - p').

2.7. Example. - Let G = G^, a = (n^ . . . , n,) and P = (n^ . . . , n,) be partitions
of n, M = G^ < G, N = Go < G. Then the condition M ^ N means that r = s and
the family (n^, . . ., n,) is a permutation of (n[, . . . , n,). Such permutations correspond

to elements of W (M, N)/WM.

Let
p.eIrrG^, p^eIrrG^, p=®p,e!rrM, p '=®p;e!r rN.

Then p - p' iff the sets (pi, . . . , pr) and (p^, . . . , p;) are equal up to a permutation.

2.8. Now we state main theorems about induced representations.

Let M be a standard subgroup of G, p e Irr M be a cuspidal representation and

7t = '̂G, M (P)- Set

W(M,*)= U W ( M , N ) = { w e W | u ; ( M ) < G } ,
N < G

ANNALES SCIENTIFIQUES DE I/ECOLE NORMALE SUPERIEURE
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and denote by /(M) the cardinality of the set W(M,^)/WM. For example, if
M = G^ x . . . x G^ < G = G», then / (M) = r\

THEOREM. — The length l(n) of the representation n is finite; moreover l(n) ^ /(M).

2.9. In conditions of 2.8 let N be a standard subgroup of G, p 'eIrrN a cuspidal
representation and n' = f^ N (P')-

THEOREM. — (a) The following conditions are equivalent:

(i) M ^ N and p ^ p';

(ii) Horn (n, K ' ) ^ 0.

(iii) JH°(TI;) =JH°(0;

(iv) JH (TC) n JH (TI') ^ 0.

(b) Set

W(p, p') = {weW(M, N)|u;(p) w p'}.
Then :

dim Horn (TT, TT') ^ |W(p, P')/WM|.

2.10. Remark. — If in theorems 2.8 and 2.9 we give up the assumption that p and p'
are cuspidal, then the estimate / (M) ^ | W [ in 2.8 and the implications (i) => (ii), (i) ==> (iii)
in 2.9 remain valid, while the estimate l(n) ^ /(M) in 2.8 and implications (ii) => (i),
(iv) ==> (i) in 2.9 may fail.

2.11. Proofs of theorems 2.8 and 2.9 are based on the following two lemmas, which
will be proved in paragraph 6.

Let M, N be standard subgroups in G. Set

W^ N = { weW | w(M n Po) c: Po, w~1 (N n Po) c: Po }.

LEMMA. — (a) In each double coset WN\W/WM there exists a unique element of W^1' N .

(b) If w e W^ N
 then M n w~

1 (N) < M and w (M) n N < N.

2.12. Let M, N < G. The following lemma describes the composition of functors
r^, G ̂ d ?G,M ? l t plays the main role in proofs of theorems 2.8 and 2.9.

For any w e W^ N define the functor

F^: AlgM->AlgN by F^ == IN.N'^^M-.M^

where M' == M n w~1 (N), N' = w (M) n N (M' < M and N' < N according to 2.11).

GEOMETRICAL LEMMA. — The functor F = r^ N ° ^G, M : A.lg M —> Alg N is glued from

functors F^, w e W^ N
 (see 1.10, 1.11).

In other words, there exists a numeration w^ ..., w^ of elements of W1^1'1^ satisfying
the following condition: for any p e Alg M F (p) has a filtration 0 = TQ <= TI <= ... <= T^ = F (p)
and a system of isomorphisms C, : Tf/Tf-i —> Fy^ (p), functorially depending on p.

4° SERIE — TOME 10 — 1977 — N° 4
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2.13. COROLLARY. — Let M, N < G, p e Alg M be quasicuspidal, and^ = FN, o0 ^G, M (p)-
Then:

(a) 7/'N has no standard subgroups associated to M in G, then T = 0.

(b) If M is not associated to N, then T to no non-zero quasicuspidal subquotients.

(c) If M ~ N, ^/z T ^ g/M^/ /row representations w (p) w/^r^ w e W (M, N)/WM/ ^
particular, T ^ quasicuspidal.

Proof. — Part (^) follows directly from 2.12, since ^M', M (p) = 0 ̂ r any M' ^ M; to
prove (c) one has to note that

W(M, IsDnW^ = WN\W(M, N)/WM = W(M, N)/WM.

Part (b) follows from 2.4 (rf), (a).

2.14. Proof of the Theorem 2 . 8 . — (1) First of all we shall find some restrictive conditions
on subquotients of n. If KQ e Alg G, KQ ^ 0, then in accordance to 2.3 (c) there exists
such a subgroup L < G, that r^ o (^o) ls quasicuspidal and non-zero.

We claim that if KQ is a subquotient of TT, then L ~ M; moreover, if (D e JH (r^, o (^o))?
then CD ~ p. Indeed, exactness of the functor r^ o implies that ® e JH (TL, o (7r)) an(l9
since 0 is cuspidal, our statement follows from 2.13 (6), (c).

(2) Now we prove the Theorem 2.8. Define the function /' on Alg G by

r(T)= S ^L,GW),
L ~ M

where / is the length of a representation. It follows from the exactness of r^ o, that /' is
additive, i. e. if n^ <= n^, then //

 (n^) +/' (^2/^1) = /' (^i)' According to (1) /' (no) > 0 for
any non-zero subquotient Tio of 71; hence, for such subquotients /Oio) ^ ^'(^o)- I11

particular, / (n) ^ /' (7t) = ^ | W (M, L)/WM | = / (M) [^2.13 (c)].
L~M

2.15. Proof of the Theorem 2.9. — (1) Implications (ii) => (iv) and (iii) => (iv) are trivial.
Implication (iv) => (i) follows from the step (1) in 2.14, since any element of JH (n) allows
us to construct a pair (L, ®) associated to (M, p).

(2) (i) ==> (ii). According to 2.3 (b)

Hom(7T, 0 = Hom^N^of^ ^(p), p') = Hom(F(p), p').

If p ^ p\ then p' eJH(F(p)), so 2.4 (b) implies that F(p) has a factormodule, iso-
morphic to p'. Hence, Horn (TT, K ' ) == Horn (F (p), p') ^ 0.

(3) Note that dim Horn (n, n') = dim Horn (F (p), p') is no more than the multiplicity
of p' in JH° (F (p)). But according to 2.13 (c) this multiplicity equals | W (p, P')/WM |.
This implies Part (b) of the Theorem 2.9.

2.16. The implication (i) ==> (iii) in 2.9 is proved in two steps.

(1) Suppose that / (M) = 2.

Fix non-zero morphisms A : n —> n\ A' : n —> n (see 2.15). We have /' (n) = /' (TC') = 2
(see 2.14). If n is irreducible, then A is an embedding and, since

r(7i7A7t)=r(o-roT)=o,
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A is an isomorphism. So we may assume that n and TT' have proper submodules HQ and KQ .
It is clear that /' (no) == //

 (n/no) = /' (no) = /' (rc'/^o) = 1; in particular all these four
representations are irreducible.

In what follows we do not consider the case M = N, p w p' when n w 71'. Then

/' (Tio) = 1 and Horn (TT(), 71) = Horn (r^, G (^o)? P) ^ 0 imply that

Horn (71:0, TI;') = Horn (r^, o (^o). P') =0? so A (TT()) = 0.

In particular it follows that TC() is the unique proper submodule in n (otherwise A (n) == 0).
Analogously A' (n^) == 0 and UQ is the unique proper submodule in TT'.

Hence, K/KQ w HQ and Tr'/^o w ^o? so

JHO (7l)==JHO (7T / )={7Co,7^o}.

(2) Let M, N < G, w e W (M, N). We call the map w : M —> N elementary, if there
exists a subgroup L < G such that M, N < L, w e WL and / (M) = 2 inside L. It follows
from the preceding step and 2.3 (c), (a) that in this case the condition (iii) of 2.9 is valid
for p' = w (p). Thus the implication (i) => (iii) follows from the following Lemma.

2.17. LEMMA. — Let M, N < G, N = w(M). Then there exists a chain of standard

subgroups No = M, NI, N3, ..., N^ = N of G and elementary maps w^ : N,-.1 —> N,
such that w = w^ ° w^-i ° ... ° w^.

This Lemma will be proved in paragraph 6.

In the case when G = GL (n, F) and M, N are the groups of cellular-diagonal matrices
an elementary map is just a transposition of two neighbour cells and the lemma means
that any permutation of cells is a composition of such transpositions.

3. Representations of the group ?„

3.1. Later on we shall study the representations of the group G = G^ = GL(n, F).
Our main method is to study the restriction of representations of G^ to the subgroup
P = P^ c: G,,; P is by definition the subgroup of matrices with the last row (0, 0, ..., 0, 1).
In this section we classify irreducible representations of the group P.

From now on assume that the group G,,-i (and also Pn-i)
 ls embedded into ?„ in a

standard way; denote by V = ¥„ the unipotent radical of P^:

V={(gi,)eP|g,,=8,, for j < n } .

It is clear that G/,-i normalises V, G^-i n V = { e } and G^-i .V = P.

Fix a non-trivial additive character v|/ of the field F and define the character 9 of the
group ¥„ by 6 ((v^)) = \[/(i^-^). It is clear that Pn-i normalises 9.

3.2. The main role in our study of representations of the group ?„ is played by the
functors

^F-: AlgP^AIgG,^, y: AlgG^-^AlgP,,

0-: AlgP^AlgP«.i, O^O 4 - : AlgP^^AlgP^,
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defined by

^P-^V,!, 0"=rv,e, x
y

+
=iy^, ^+ = iy^ ^+=Iv.e.

(5-̂  1.8). Note that these functors differ from the ones. defined in [1] by the "twisting"
with the character mod^2.

Now we describe a "multiplication table" of these functors.

PROPOSITION. ~ (a) All the functors ̂  ^F4", CD", ^+, O4- are exact.

(b) y is left adjoint to ̂
+

 and ^+
 is left adjoint to <D~.

y\.

(c) <D~ ^ fe/i? adjoint to O4'.

(rf) O-o^4- =0, ^F- oO4- ==0.

00 Z^

f : e^er-^id, r : id^o'o4', j : id^^y"
and /: ^F-^^Id,

be the adjunction maps from (V) (see [13]). Then V a n d ] ' are isomorphisms, and i and j
form the exact sequence

0 ̂  0-^ ^)- -> Id ~> y4^ y" -^ 0.

(/) Let us consider the morphisms of functors

Id-^arO^O-O^Id,

where i
9
 is defined in (e), I is an adjunction map from (c) and k is the morphism, induced by

the natural embedding O4' -^ O4'. Then i\ k, I are isomorphisms and I o k o f is an identical
morphism.

Proof. - Parts (a), (c) and the first part of (b) follow from 1.9. The second part
of (b), (d) and (e) are proved in ([I], § 5).

In the proof of the proposition 5.12 in [1] we have shown that the morphism / o k is
an isomorphism. Moreover, the morphism f by definition equals (I o k ) "

1
, hence

/ o k o i ' == id. Since O4' is left adjoint to <3>~ and 0~ is left adjoint to ^+, we conclude

that <D~ oc^ is left adjoint to 0~ o O4" and the morphism k ^ i ' \ id—x^'O4 ' corres-
ponds to the morphism / o f e : < D - O'^'—^id. Since /o k is isomorphism so is k o i\ Hence /
and k are isomorphisms.

3.3. Remarks. — (a) It follows from 3.2 that O4' establishes an equivalence of the
category AlgP^_i, with the complete subcategory ImO4' in AlgP,, consisting of repre-
sentations 7t, such that y" (Ti) = 0. Since the functor ̂ ~ is exact, Im O4' is closed with
respect to subobjects. It follows that for any T e Alg P^^i the functor O4' determines an
isomorphism of the lattice of submodules of T with the lattice of submodules of
O4' (r) (analogously for Y4'). In particular, O4' and y4" carry irreducible representations
into irreducible ones.
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(b) It follows from 3.2 (W), (e) that for reAlgP^ 0~ (r) = 0 iff T |y is a trivial
representation. In particular it follows from 3.2 (/) that for any p e Alg ?„ -1 the group V

acts trivially on O4' (p)/04' (p). Using the explicit constructions from ([I], § 5), one can
describe the appropriate representation of the group G«-i.

3.4 PROPOSITION. - (a) TypeAlgG^-i then Ap^PTp) w ̂
+ (p).

(b) If T e Alg P^-i ̂  Ap O4' (r) w O4- (A^r).

Proof. - Part (^) and the equality ApO4" (r) w O4' (ApT) follow from 1.9 (d\ where

^+ = Iv,e-i differs from <D4' by replacement 9 to 9~1. So we have only to prove that

functors ^+ and O4' are isomorphic.

Let h = (hij) e P be the diagonal matrix with / ! „=—! (i < n), /!„„=!; let h be the
— — y\

inner automorphism, corresponding to h. It is clear, that ^+
 = h-^ ^

+
 o h~

1
. Since

the functor h : Alg P,,_i —> Alg Pn-i is identical, and h : Alg ?„ —> Alg ?„ is isomorphic to

identical one, O'1' w O'1".

3.5. Let T e Alg ?„. We define the representations T^ e Alg G^ (^ = 1, ..., n) by (2)
^(fc) = xp- ^ (^>-)fc-i (i;). we call T(fc) the A:-th derivative of T. If T^ ^ 0 and T^ = 0

for m > k, then T^ is called the highest derivative of r.

It follows from the proposition 3.2, that T is glued from the representations
^+^k-i ^ xp+ (r^), i. e. there exists a natural filtration 0 c: ̂  <= ... c: T^ = T, such that

T,/T^ i = (O^^1 o ̂ + (T^) (here T, = (<S>+)k-l ̂ -)k-l (r))

In particular, if T e Irr ?„, then exactly one of the representations T^ is non-zero, and we
obtain the following.

COROLLARY. — Any representation T e Irr ?„ is equivalent to a representation of the

form (O4')^^'"1 y*' (p), where 1 ̂  k ^ n and p e Irr G^-j^; moreover the number k and the

class of equivalence of p are uniquely determined by T.

3.6. All irreducible representations of reductive groups are admissible, hence the contra-
gredient representations are also irreducible. This doesn't remain true for the group P :
if T e Irr P, then T is not admissible as a rule and JH (?) has the cardinality of a continuum.
It appears, however, that ? has a certain structure. It is convenient to describe this struc-
ture in terms of pairings of representations of the group P.

DEFINITION. — Let G be an /-group, % be a character of G, and

(7^G,E,)eAlgG(f=l,2).

By a /-pairing of n^ and n^ we mean a bilinear form B on E^ x E^, satisfying the
condition

Xfe).B(7^l(g)^,^(g)^)=B(^,^), geG, ^eE^, ^eE,.

(2) By (<D~)'" we mean the composition of functors Alg Pn -* Alg Pn-i -*• ... -* Alg Pn-m.
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It is clear, that the space of all ^-pairings of n^ and n^ is isomorphic to

Horn (Tii, ^2) = Horn (n^ X^i).

We say, that B is non-degenerate w. r. t. n^, if the corresponding morphism n^ —> %n^ is
an embedding; the non-degeneracy of B w. r. t. 71:2 is defined analogously.

Usually we shall be interested in A-pairings, where A = AQ is the module of G. The
space of such pairings is denoted by Bil (rci, TC^).

3.7. PROPOSITION. - Let p, p'eAlgG^-i, T, T'eAlgP^-i. Then

W BilCF-^^p'^BiKp.p').

(V) Bil^T.^-'-O »Bil(T,0.

(c) BilCF^O'-T) =0.

Moreover^ isomorphisms in (a) and (b) preserve the non-degeneracy of pairings.

Proof. - (b) We have

BiKO^O'-T')

= HomO^ T', A^T) = Hom^ T', O4
' (A^c))

w Hom(0~ ̂ + T', Vr) = Hom(T',^T) = Bil(r, T'),

[see 3.4 (&), 3.2 (c), (^)]. The preserving of non-degeneracy means that the isomorphism

Horn (O4- T', 64- (Vr)) w Horn (^- O4- T', Vc)

carries embeddings into embeddings. It follows from 3.3 (a) and the fact that this iso-
morphism functorially depends on T'.

Parts (a) and (c) can be proved analogously (but simpler).

3.8. PROPOSITION. — Let T, TceAlgP^. Suppose that there exists a non-degenerate

w. r. t. T ^-pairing B o/ T a^rf TC. Let T^ te ̂  highest derivative of T (.ŝ  3.5). Then

there exists an 1-pairing O/T^ andu^, which is non-degenerate w. r. t. T^.

Proof. - If A; = 1, then T = ^+ (r^). According to 3.7 (c) B is trivial on ̂ + 0~ (71),
i. e. it determines a A-pairing of T and ̂  ^P" (7r) = x

¥
+
 (n^); so our statement follows

from 3.7 (a). Let k > 1. Set T^ = 0-^ 0- (r), n^ = O4- <D- (71). We claim that B
induces a non-degenerate w. r. t. TI pairing ofr^ and TCi. This is the corollary of the fact,
that, according to 3.7 (c) and 3.3 (a), any submodule of TI has only zero A-pairing with
Tc/Tii = ^F+ ^- (ji;). Set T' = 0" (r), TC' = 0" (71); then 3.7 (6) implies that there exists
a non-degenerate w. r. t. T' A-pairing ofr' and TC'. Since T^ = (T')^"^, TC^ = (Ti;')^"1^
induction up to k proves our statement.
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3.9. COROLLARY. - Let n = (^
+
)

k
~

l X
S

/+ (p), where p e Irr G^-^, ^rfjc = Ap n. 77^
TT Ac^ wz irreducible submodule n^

 = (O'^"1
 (^~)

k
~

l (7c) c: TC (.y^ 3.5), isomorphic to

(0+)k~l y+ (p) and any non-zero submodule of n contains n^

To prove the statement it is sufficient to apply 3.8 to representations T and TT, where T
is an arbitrary submodule in TC.

4. The restriction of induced representations to the group P

4.1. Now we begin to study induced representations of the group G = G^. Fix the
subgroups PQ and Ao in G as in 2.2. Let P = (n^ ..., n^ be a partition of the number n
and p,eAlgG^O"= 1, ..., r).

Denote by pi x ... x py e Alg G the representation ^ M (Pi ® • • • ® Pr)? where
M = G ^ x . . . x G ^ is a standard subgroup of G, corresponding to P (see 2.2);
pi x ... x py is called the product of pi, ..., p,..

It is convenient to reformulate in these terms the results of paragraph 2. Let co e Irr G.
Then there exists a partition P = (n^ ..., n^) ofn and cuspidal representations p, eirr G^,
such that (o e JH (pi x ... x p^). The set (pi, . . . , p,.) is determined by co uniquely up to
a permutation; we call it the support of co (the notation is (pi, ..., p,.) = supp co). One
can choose such an ordering (p^, . . . ,p^) in supp®, that co can be embedded into
p,, x ... x p^ (see 2.5, 2.7 and 2.9).

4.2. Further we shall denote by v the character of G^ defined by v (g) = \ det g [, where
[ | is a standard norm of the field F. It is easy to prove that Ap = v ~1 |p.

THEOREM (Criterion of irreducibility). — Let p, e Irr G^ be cuspidal representations

(i== 1, ..., r). Suppose that pj W vp^for any i,j. Then the representation n = pi x ... x p,.
is irreducible.

Remarks. — (1) Of course the condition py w vp; means in particular that nj = n^

If m > 0, and p e Irr G^ then p ^ vp since p and vp differ, when restricted to the center
of the group G^.

(2) In fact, the inverse theorem is true too; if py w vp, for some i,j\ then the representation
pi x ... x p,. is reducible. It will be proved in Part II of this paper.

4.3. We shall prove the Theorem 4.2 by studying the restriction of representation from
G to P. If n e Alg G, denote by n |p the restriction of n to P. If n e Alg G^ then deri-
vatives Tt^ e Alg G^-fc (k==0, 1, ..., n) are defined by TC^^TI, TI^^TI jp^ (&=!, . . . , n)

(see 3.5). If TI^ ^ 0 and TT^ = 0 for m > k, then we call TI^ the highest derivative of TT.

4.4. The following theorem by I. M. Gelfand and D. A. Kajdan, describes the deriva-
tives of cuspidal representations.

THEOREM. — Let n e Alg G, be quasicuspidal. Then TI^ = 0 for 0 < k < n. If K is

cuspidal and irreducible^ then TC^ = 1 is a one-dimensional representation.

For the proof, see ([1 ], chap. III). Note that the inverse assertion is true too: if TI^ = 0
when 0 < k < n, then n is quasicuspidal; moreover if in this case TC^ = 1, then TT is
irreducible.
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4.5. Now we describe the derivatives of a product of two representations.

LEMMA. — Let

peAIgG^, coeAlgGf, n = pxoeAIgG^.

Then for each k the representation n^ is glued from p0^ x co^"i), where i = 0, 1, ..., fe.

A more transparent formulation can be given in terms of a representation ring of
groups G,,. Let ̂  be the Grothendieck group of the category of algebraic G^-modules
of a finite length and ^ = © ̂  (n = 0, 1, ...). For any algebraic G^-module n of a
finite length we denote by the same symbol n its image in ̂ , so in ^ we have n = 2ko,
co e JH° (7t). The multiplication (n^ n^) —^iX^ turns ̂  into a graded ring; we call it
the representation ring of the groups G^. If n e Alg G^ has a finite length, set

^T^S^e^^O, 1, . . . ,n).

Let us extend the map n i-> ̂  n to the Z-linear operator Q! \9l—>0t. Then our lemma
implies, that 0) is a homomorphism of rings.

Lemma 4.5 is proved in 4.14.

4.6. COROLLARY. - If n = pi x ... x p,., then Qn = ^pi x .. .^p,..

4.7. The representation T e Alg €„ (or T e Alg ?„) is called non-degenerate (resp. degene-
rate), if T^ ^ 0 (resp. T^ = 0). We deduce the Theorem 4.2 from the following

LEMMA. — Let p, e Irr G^ be cuspidal (i = 1, ..., r ) and n = pi x ... x p,.. TA^z;

(a) If ae JH (TI^) (w = 0, 1, ..., w), then supp CT c: (p^, ..., p^) ̂  4.1).

(6) If co ^ a? non-zero P-submodule of 71, co^ ^A^ highest derivative of co a^rf 0" aw f/rc-
ducible submodule q/*co(k) ^w v. supp a c: (p^, ..., p^).

Let us show how Theorem 4.2 follows from this Lemma. It follows from 4.4 and 4.6,
that n^ == 1. Since TI^ = Sco^ (® e JH° Or)) exactly one of the elements of JH° (n) is
non-degenerate. Hence if n is reducible then there exists a degenerate subquotient co in
JH° (7t). Permuting pi, ..., p,. in a certain way, we can suppose, that co c: n (see 4.1); the
conditions of the Theorem 4.2 remain valid. Let a/^ be the highest derivative of (D and a
an irreducible submodule ofo)^. Since co is degenerate, k <n\ hence supp o" ^ 0. Let
p e supp a. Then Lemma 4.7 implies that p e (pi, ..., p,.) and vp e (pi, ..., p,.). This
contradicts the condition of the Theorem 4.2.

4.8. Proof of the lemma 4.7. — Part (a) follows immediately from 4.4 and 4.6.

(b) Set n = vn; according to 2.3 (d) and 1.9 (/),

n = pi x ... x p,., where p, = v p,.

The natural 1-pairing of n and n induces a v~ ̂ pairing of n and TC. Restricting to the
group P, we obtain the non-degenerate A-pairing B of n \p and n |p; restricting B to co, we
see that there exists a non-degenerate w. r. t. o A-pairing of o and n [p. It follows from 3.8
that there exists a non-degenerate w. r. t. ©^ 1-pairing ofo/^ and n^. From the existence
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of non-zero pairing of CT and n^ it follows that 5 e JH (n^) (since a is irreducible) Accor-
ding to 2.4 (c) and 1.9 (/) the representations p; are cuspidal. Hence (a) implies that
supp a c: (pi, ..., p,.). It obviously follows, that

supp. a c: (pi, ..., p,) = (v"1 pi, ..., v~1 p,)

so the Lemma is proved.

4.9. The remaining part of this section is devoted to the proof of the following.

THEOREM. -- Let G) e Irr €„ be non-degenerate. Then CD has no non-zero degenerate

P-submodules.

4.10. Remark. — Let © e Alg G^ and G/70 = 1. Then the condition, that co has no non-
zero degenerate P-submodules means that co has a Kirillov model (see [I], chap. III). So
the Theorem 4.9 means, that any non-degenerate irreducible representation of the group G^
has a Kirillov model (it is the conjecture by Gelfand-Kajdan [8]).

4.11. THEOREM. — Let pi e Irr G .̂ be cuspidal (i = 1, ..., r ). Suppose that pj ^ vp, for

any i,j such that i < j. Then the representation n = pi x ... x py has no non-zero degene-

rate P-submodules.

Let us deduce the Theorem 4.9 from this Theorem. Let supp ® = (pi, ..., p,.). We
order the p, so that pj ^ vp, when i < j, and set n = pi x ... x py. Let a be an irredu-
cible submodule of TT. Theorem 4.11 implies that a has no non-zero degenerate P-submo-
dules; in particular a is non-degenerate. Since only one element of JH° (n) is
non-degenerate (see 4.7), co w a and the Theorem 4.9 is done.

Remark. — The conditions of Theorem 4.11 are necessary and sufficient. In fact,
suppose pj w vpi for some i < j we'll show that n has a non-zero degenerate G-submodule.
If one permutes two factors p^ and pj^+i in p i X . . . x p , . with p^+i ^v^ p^
then due to 2.9 and Theorem 4.2 the product comes into the isomorphic one. So,
one may assume j = i+1.

In virtue of Remark 2 to Theorem 4.2 P » X V P ( is reducible hence it containes a irre-
ducible degenerate subquotient G). Due to Theorem 4.11 co could not be embedded in
vp, x p,, so it could be embedded in p, x vp; = p, x p;+i. Hence, n containes a degenerate
submodule pi x ... x p^i xcox p i+^x ... x py.

4.12. For the proof of the Theorem 4.11, we define the multiplication of representations
of the groups Gj, and P^. Let k, m be integers and n = k+m. We define the

product functor Alg Mi x Alg M^ -^ Alg G ((p, r) h-» p x r) in the following three situations :

(I) Mi=G, , M,=G,, G=G^;

(II) Mi=G,, M2=P,, G=P,;

(III) Mi=P,, M,=G,, G=P^.
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The scheme of the definition in all three cases is the following:

(1) The product factors in the form

Alg Mi x Alg M^ -^ Alg M -^ Alg G, (M = Mi x M^).

(2) The group M is embedded in a certain way into G. The functor i has the form
; == f^ ^ o e, where £ is a character of M, and U is a subgroup of G.

Let us show, how Mi x M^ is embedded into G and what are U and s in our three cases:

|iiil
M,

(I)

m 0
^ 6=1

6=1

(III)

k 0
^

I

III'
Ml

—1/2
6 (m^m^) = ^> (m^F

1 0 0 1
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More precisely, introduce some notations:

(a) l{l^k^l^n,then

Gkfl
=

:
{s= (gij) e G,, [ g^. = 8^., outside the square k ̂  ij ̂  I } ;

it is clear that G^
l
 c^ G^+i.

(b) I f l ^ f e < n , t h e n :

uk == {§ = (8ij)eGn | gij = 8y, for i > fe, and for j ̂  fe}.

Then Mi, M^ and U are as follows :

(I) M^G1^, M^G^1*", \J=V\

(
u
) M^G

1
^, M^G^^nP, U=lA

(III) M^G^-^U^nU"-1), M^G^"-1, U = U^1 nG1-"-1.

Note that the definition (I) coincides with the one given in 4.1.

4.13. We describe how the functors ^¥~, ̂ +, <T, O-1- and the restriction to P act on
the products.

PROPOSITION. - Let p e Alg G^, CT e Alg G^, T e Alg P^.

(ar) //? AlgP^+^ there exists an exact sequence

0 -> (p |p) x or -> (p x CT) [p -> p x (<j |p) -^ 0.

(6) yQ is one of functors ̂  y4-, 0-, 0+, ^^ pxQ(r) ^ Q(pXT).

(c) y" (r x p) ^ y- (r) x p awrf ^^r^ CT^^ an exact sequence

O^O-COxp^O-^xp^^-^xCpIp)--^.

(rf ) Suppose that k > 0. Then for any non-zero P-submodule co <= T x p we have ̂  ~ (©) ̂  0-

Allmorphisms in (a), (b), (c) are functoriaL We assume that Po = 0 ̂ rf p |p^ = 0.
This proposition will be proved in paragraph 7.

4.14. COROLLARY. - (a) Iff ̂  1, ̂  (pXT/0 == px^0.

(b) Ifi ̂  1 then (r x p)<1) ̂  glued from ̂  x p< l-•7> (y = 1, 2, .... Q.

(c) Tjfj ^ 0, then (p x c)0^ ̂  glued from p°'> x CT< l~• /) (y = 0, 1, ..., f).

proo/ - Part (a) follows from 4.13 (b); (b) from (a) and 4.13 (c); (c) from (a)
(6) and 4.13 (a). /9

Note, that (c) coincides with 4.5.

4.15. Proof of Theorem 4.11. - We use induction over r. If r == 1, our statement
follows from 4.4. Let r > 1; then n = pi x 7c° where 7t° = p^ x ... x p,. Suppose that TC
has a degenerate P-submodule co ^ 0; one can assume that co is irreducible. It follows
from 4.13 (a) that either ® c c = (p, |p) x 71°, or o) c: 71/0 = pi x (71° (p). Consider the
two cases.
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CASE 1. - co <= cr = (pi |p) x 71°. It follows from 4.13 (c) and 4.4 that

(O-y(a) = ((D-y(p, |p) x n° (i < n,); (<l>-r1 (a) == 71° |p,

and

a^p^XTc^OCKni).

So o^0 = 0 for i < n^ and 3.5 implies that (O")"1"1 (co) ^ 0. Since

(O-r1-1^) c: (O-)"1"1^) = (OT1"^! |p)x7r°,

it follows from 4.13 (d) that (O-)"1 (co) ^ 0.

Hence o/ = (e^")"1 (co) is a non-zero degenerate submodule in (O")"1^) = n
0 |p; it

contradicts the induction hypothesis.

CASE 2. — co c: TI/CT = pi x (71° |p). Let 0/'0 be the highest derivative of co and co' be an
irreducible submodule of co^. Then co' <= (Tc/cr)^ = pi x (Tt0)^ ̂  4.14 (a)]. Hence,
pi e supp ©/. According to Lemma 4.7 (6) there exists^' such that pj ^ vpi. It contradicts
the condition of Theorem 4.11.

Theorem 4.11 is proved.

5. Composition of functors r and i

In this section we prove one general theorem about the composition of functors r and i
(Th. 5.2).

5.1. Let G be an /-group, P, M, U and Q, N, V be closed subgroups, 6 be a character
of U and \|/ be a character of V. Suppose that

(1) MU = P , N V = Q , M n U = N n V = { 6 ? } , M normalises U and 9, N normalises
V and \|/.

According to 1.8, there are defined functors

fu ,e : AlgM->AlgG and ry^: AlgG-^AlgN.

We want to compute the functor

F = r v , ^ o i u . e ^ AlgM-^AlgN.

It requires some complementary conditions. Suppose that

(2) The group G is countable in infinity, and U, V are limits of compact subgroups
(see 1.9).

Consider the space X = P\G with its quotient-topology and the action 8 of G on
X defined by

5(g)(P/0=Pftg" l(g,^eG,P/leX).

Suppose that
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(3) The subgroup Q has a finite number of orbits on X. According to ([I], 1.5), one can
choose a numbering Zi, ..., Z^ of the Q-orbits on X such that all sets

Yi=Zi, Y^ZiuZ^, . . . ,Y fe=Z iU. . .uZ fc=X

are open in X. In particular, all Q-orbits on X are locally closed.

Fix a Q-orbit Z <= X. Choose w e G such that Pw~
1
 e Z and denote by w the corres-

ponding inner automorphism of G : w (g) = wgw~
1
. Call a subgroup H c: G decompo-

sable with respect to the pair (M, U), if H n (MU) = (H n M).(H n U). Suppose that

(4) The groups u?(P), w(M) and w(U) are decomposable with respect to (N, V); the
groups w~

1 (Q), w~
1 (N) and w~

1 (V) are decomposable with respect to (M, U).

If the conditions (1)-(4) hold, we define the functor Oz : Alg M —> Alg N. Consider the
condition

(^) The characters w (9) and \|/ coincide when restricted to the subgroup w (U) n V.

If (^) does not hold, set Oz = 0. If (^) holds then define the functor Oz in the following
way.

Set

M' = M n w~
1 (N), N' = w(M') = w(M) n N,

V = Mnw-^V), \|/' = w-^vl/)^, U= N n w (U), 9' = w(9)|u'.

It is clear that the following functors are defined

yv.^: AlgM-->AlgM',

w: AlgM'^AIgN', iu-,9^ AlgN'-^AIgN,

(see 1.7, 1.8). Let 81 = mod^2. mody^-1 (Q) be a character of M',

82 = mod^.modv^p)

be a character of N' and s = e^.w~
1 (83) be a character of M'. We define Oz by

<DZ = tu,^0^0 8 0^.^ : AlgM->AlgN

(here 8 is considered as a functor, ̂ ^ 1.5). In a more symmetric form

^z = ^ir, e' ° ̂ 2 °
 w ° e! ° ̂ v, ̂  ?

5.2. THEOREM. - £W6?r ^ conditions (1)-(4) from 5.1 the functor F = = / v , ^ ° f u , e ^
Alg M —> Alg N is glued from the functors Oz wA^r^ Z n^y through all Q-orbits on X. Mor^
precisely, if orbits Zi, .. .,7.^are numerated so that all sets Y, = Z^ u ... u Z, (f = 1, . . . ,
A:) a?r^ 07?^ ^ X rt^^z there exists a filtration 0 = Fo c: F^ c: ... c: F^ = F such that

F,/F,_i ^ $^.

The remaining part of this Section is devoted to the proof of this Theorem.
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5.3. By an /-space we mean a Hausdorff topological space X such that compact open
subsets form a base of the topology of X. Denote by C°° (X) the ring of all locally constant
complex-valued functions on X and by S (X) the subring of all functions with a compact
support.

In the situation of 5.1 the space X = P\G is an /-space (see [I], 1.4). Let Y be a
Q-invariant open subset of X. We shall define the subfunctor Fy c: F. Let

(p,M,L)eAlgM.

The representation fy, e (P) acts on the ^ace i (L) (see 1.8). Denote by iy (L) c: ; (L) the
subspace consisting of functions which are equal to 0 outside the set

PY={geG|PgeY}.

Let T and Ty be the representations of the group Q on the spaces i (L) and fy (L). Put

FY (?) = ''V. ^ C^v) e Alg N. Since /-y, v l s exact (see 1.9), Fy (p) <= F (p) = ry, ^ (r), hence
FY is a subfunctor of F.

PROPOSITION.

FY nY- = FynFy-, FYUY' = FY+FY-, F0 =0, Fx = F.

Proof. — Since ry, ^ is exact, it is sufficient to prove similar formulae forTy. The only
non-trivial one is the equality Tynv' = TY n ^'y due to the fact that for any compact
set K <= Y n Y' there exist (p e S (Y), (p' e S (Y') such that ((p +(p') JK = 1 (see [!],!. 3).

5.4. For any Q-invariant locally closed set Z c: X we define the functor

Fz: Alg M-> Alg N.

For this choose a Q-invariant open Y c: X such that Y n Z = 0 and Y u Z is open in X

(one can take Y = X\Z), and put Fz = Fyuz/Fy. It follows from 5.3 that all such Fz
constructed by different Y, are canonically isomorphic.

Let Zi, ..., Z^ be Q-orbits on X, numerated as in the Theorem 5.2. Then by definitions
F has the filtration 0 c: Fy^ <= Fy^ <= ... c: Fy^ = F and F^/Fy^^ = Fz,. Hence, to
prove the Theorem 5.2 we only have to prove that Fz ^ Oz for any Q-orbit Z <= X.

5.5. Remarks — (a) From now on we fix a Q-orbit Z c: X and begin to prove that
Fz ^ <l>z. The condition (3) from 5.1 is not necessary for this; we need only conditions
(1), (2) and (4) (for our Z).

(b) The isomorphism A : Fz-^^z? which will be constructed, is not canonical. It

depends on the choise of a Haar measure [i on the quotient-space V n w (P)\V. We

give the explicit expression for A.

Let

(p,M,L)eAlgM, L-^yv^L) and p : L->L+
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be the canonical projection. Let i (L) be the space of the representation fy e (P) (see 1.8).
Consider the subspaces

E={/ef(L) | /(PZ\PZ)=0},

E '={/ef (L) | / (PZ)=0} in i(L).

By definition, Fz (p) acts on the space ry ^ (E/E') and 0>z (p) acts on the space i (L'1'). So

to define A : Fz -» C>z we have to construct an operator A : E -> i (I^) such that

_ A(E')=0 and A(E(V, v|/)) = 0.
Define A by

^fW=^~l(v)p(f(w~lvn))dvi(v), /eE, neN, i;e(Vnu;(P))\V.

One can easily verify that if the condition (^) from 5.1 holds then A is well defined and
determines a morphism A : Fz (p) —> ̂  (p).

5.6. Let us make in 5.1 the following replacements:

P=w(P), M=w(M), U=w(U), Q=w(Q), w = e.

It is clear that

Fz (w p) == Fz (p), €>z (w p) = Oz (P) for all p e Alg M.

Hence further on we can assume that w = e (so w is an identical automorphism). We
have

M ' = N ' = M n N , U ' = U n N , V ' = V n M , 9 '==9|u ' , v|/ = |v-

5.7. Consider the diagram

\
I PnQ IV^ ̂ , ^ /

MnQ-^^MnQ H NnP^^^^-NnP

VnM< YUnN

MnN

Here points correspond to categories and arrows to functors in the following way. A
group H in the diagram means the category Alg H, an arrow H^ means the functor i^ e, an
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8

arrow ̂  means the functor r^ ^ and an arrow ̂  means the functor 8 (see 1.5). Note that
the arrow G ••••> Q in the diagram does not correspond to any functor; but there is deter-
mined the functor corresponding to the composition P —> G ••••> Q.

By definition the composition of functors along the highest path of the diagram is Fz;
if the condition (-if) from 5.1 holds, then the composition along the lowest path is <]>z-
So it suffices to prove that the diagram above is commutative if (^) holds and its highest
path is 0 otherwise. For this we shall check this statement for parts I, II, III, IV of our
diagram. It is clear that each of these parts is a particular case of the whole diagram. So
it suffices to prove the equality Fz = <]>z in the following four cases:

I . P = G , V = { < ? } ; I I . P = G = Q ;

III. U = V = { ( ? } ; IV. U = { e } , Q=G.

Note that in cases I, II, IV, PQ = G hence Z = X. So in these cases we shall write F
and 0 instead of Fz and <Dz.

5.8. CASE I. - P = G , V = { e } . Let(p,M,L)eAlgM,7c = F(p) ,cr= 0(p). By
definitions n and a act on the same space L, and we have

n(u)=a(u)=Q(u).l for M e U n N ,

a (m) = £1 (m). mod^ ̂  (m) P (m) = mod^2 (m) p (m) = n (m) for m e M'.

Hence n = cr.

5.9. CASE II. — P = G = Q. In notations of 5.8 the representation n acts on the space

ry, ̂  (L) = yy, ̂  (ru n v.xk (L))

{see 1.8, 1.9 (c)]. It 0 |unv ^ ^ l u n v [it means that 5.1 (^) does not hold] then
^ n v.<i/ (L) = 0 hence n = 0. Suppose that 9 |u ^ y = ^ |u n v Then n and a act on the
same space ry. ^ (L) = L/L (V, \|/) (see 1.8). For u e U n N we have

n(u)=a(u)=Q(u).l

and for m e M' = M n N, i;' = i; mod L (V, \|/) we have

n (m) ̂  = [(mod^2. mody1/2) (m). p (m) ̂ ] mod L (V, \]/),

cr(m)^ = [(modv^.mod^m^pCm^modLCV', \[/).

Since mody = mod^.modunv? mo<
iv == mody'.modu^v? 11: follows that 71 = cr.

5.10. In cases III, IV we use the notion of an /-sheaf, defined in [1]. Let us collect the
basic definitions and results about /-sheaves (in a form somewhat different xrom [I], chap.I).

DEFINITION. — Let X be an /-space (see 5.3),^ the constant sheaf with the fiber C on X
(meaning that the space F ( ,̂ Y) of sections is C°° (Y) for any open Y c: X). By an
/-sheaf on X we mean an arbitrary sheaf of modules over the sheaf of rings %'. Denote by
Sh (X) the category of /-sheaves on X.
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If ^ e Sh (X) denote by ^ (X) the space of sections of ^ over X and by ̂  (X) the
subspace of sections with a compact support. It is clear that ^ (X) and ̂  (X) are
modules over the ring C°° (X) and hence over S (X) (see 5.3).

PROPOSITION (see [I], 1.14). — The functor ^ \-> ̂  (X) is an equivalence of the category

Sh (X) with the category of all S (X) -modules M satisfying the condition S (X).M = M.

5.11. Let q : Y —> X be a continuous map of /-spaces, ̂  e Sh (X). Define the /-sheaf
q*^ on Y as corresponding to the S (Y) -module S (Y) ®s(x) ^c (X). If q is an
embedding of a locally closed subset Y c X into X then we write resy (^) instead of q* ^

and ̂  (Y) instead of (resy W)c (Y).

If Y c: X is open we have natural maps ^\ (Y) —> ̂ \ (X) (extension by 0) and
^ (X) -> ̂  (X\Y) (restriction).

PROPOSITION (see [I], 1.16). - The sequence 0 -> ̂  (Y) -» ̂  (X) -> ̂  (X\Y) ~> 0
is exact.

5.12. Let x e X. For any open compact neighbourhood Y of x the map/i-> ̂ y.fis a
projection of ^c 00 mto ^e subspace ̂  (Y) c: ^\ (X). In particular the fiber ̂
equals lim^CD = I^XY-^C TO where the inductive limit is taken over all compact

open neighbourhoods Y 9 x. It follows that ̂  is canonically isomorphic to ^
!r
c({

x
})'

5.13. Let X, Y be l-spaces, ^eSh(X), ^eSh(Y). By an isomorphism of (X, ̂ )
with (Y, <f) we mean a pair consisting of a homeomorphism y : X —> Y and an isomor-
phism ^ with y* (0.

We call action of an /-group G on a pair (X, ̂ ) a homomorphism

y: G-^Aut(X,^)

such that the action of G on X is continuous and the representation of G on ̂  W

is an algebraic one. Fix a continuous action yo °^(J on X- Let us define the category
Sh (X, G) of G-sheaves on X. An object of Sh (X, G) is an /-sheaf ^ e Sh (X) with an
action y of G on (X, ^r) such that the restriction of y on X is yo. By morphisms in
Sh (X, G) we mean G-equivariant morphisms of sheaves on X.

For example Sh (X, { e }) = Sh (X), Sh ({ x }, G) = Alg G.

The correspondence ^ \-> ̂  c (X) determines the functor

Sec: Sh(X,G)^AlgG.

If Q is a closed subgroup of G and Z is a locally closed Q-invariant subset of X then the
correspondence ^ —> resz (^r) determines the functor res : Sh (X, G) —> Sh (Z, Q).
In particular if Z = { x ] is a point then res ̂  e Sh ({ x }, Q) = Alg Q is the represen-
tation of Q on the fiber ̂  of .̂

5.14. The most important case for us is when the action yo of G on X is transitive.
If the group G is countable at infinity then X is homeomorphic to the quotient-space P\G
where P is a stabilizer of some point x e X (see [I], 1.5). In this case we shall define the
functor ind : Alg P —> Sh (X, G) which is inverse to the functor

res : Sh(X, G)-> Sh({x}, P) = AlgP.
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Let (p, P, L) e Alg P. Consider the space i (L) of the representation i (p) == ^}, i (p)
(see 1.8). It has a natural structure of an S (X)-module and so according to 5.10 deter-
mines the /-sheaf ind (p) on X. The representation i (p) and the action Yo of G on X
determine a structure of a G-sheaf on ind (p). We have by definitions

Secoind = i{e},i ^ AlgP-^AlgG.

PROPOSITION (see [I], 2.23). - If X = P\G then the functors

res : Sh (X, G) -> Alg P and ind : Alg P -^ Sh (X, G),

are inverse to each other and determine an equivalence of categories (i. e. res o ind ^ Id,
ind o res ^ Id).

5.15. Let us return to our Theorem. Let us describe the functor Fz in terms of /-sheaves.
For any Q-invariant locally closed subset Z c X the functor Fz decomposes into a compo-
sition of functors

AlgM^AlgP^Sh(X, G)^Sh(Z, (^AlgQ^AIgN

[for open Z it is a definition of Fz (see 5.3, 5.4) and for others follows from 5.4, 5.11
and the exactness of ry ̂ ]. Now consider the following.

CASE III. - U = V = { e }, i. e. M = P, N = Q. It is clear that Z ^ P n Q\Q
(here Z is the Q-orbit of the point e == P e e X). Let p e Alg P and f (p) e Sh (Z, Q)
be the restriction of the sheaf ind (p) to Z. It suffices to prove that f (p) is isomorphic
to the sheaf

ind(p')eSh(Z,Q), where p' == r^, i (PnQ, P, p).

It follows from 5.13 since for both sheaves the representation of the group P n Q
on the fiber over the point e equals p.

5.16. CASE IV. - U = { e }, G = Q. Divide this case into two cases IVi and IV;,

using the diagram

CASE IVi. - U = { e }, G = Q, V c: M = P. Let

(p, M, L) e Alg M, ^ == ind (p) e Sh (X, Q).
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Since in this case the group V acts trivially on X = M\G. the space 7*y ^ (^ (X)) becomes
an S (X)-module and so, according to 5.10, it corresponds to some /-sheaf € on X. The
representation F (p) of the group N on this space determines on the pair (X, <f) the struc-
ture of an N-sheaf. Since N transitively acts on X, using 5.14 we have only to check
that the representation of the group M n N on the fiber <^ of the sheaf ^ equals r^ ^ (p).
In other words we have to prove that ̂  = ry ^ C^)- Since the functor ry y commutes
with inductive limits [see 1.9(g)], using 5.11 we have

<^=limXY-<^(X)

= Hm XY '•V, ̂  (^c (X)) = ry^ ^ (lim %Y ̂ c (X)) = ry. ̂  (̂ )-

5.17. CASE IV^. - U == { e }, G = Q, N <= M. In this case

X=Nr\NV^V / \V, where V ' = = V n M .

Choose a Haar measure ^ on V'\V (see 1.7). Let

(p,M,L)eAlgM, L
+
=ry.^(L) and p : L->L

4
',

be a natural projection. Let i(L) be the space of the representation T = ^e}.i(P)*

Define the map A : i (L) —> L"
1
' by

A/==f ^~\v)p(f(y))d^(v).
Jv'\v

It is easily seen that this definition is correct and that

A(T(i;,/)=vKi;)A(/) for i;eV,

i. e. A determines the map A : ry ^ (i (L)) —^ L^. We prove that A e Horn (n, o), where

^=^^(^)=F(P). ^=S2-yV^(p)=^(P)-
We have

A(7c(n)/) = mod^W^nWf)

= mody172^). f ^~l(v)p(f(vn)) d^v) (neN).
Jv'\v

Use in this integral the replacement v = n~
1
 vn; according to 1.7 it equals

Since

modv^vOO- ^ \^P(f(n'S))d\Ji(5).
Jv'\v

f(nv) = p(n)/(?), p(/(n?)) = mod^2 (n). e,-1 (n). a (n) (?(/(?))),

substituting this expression into the latter integral, we obtain that A n (n) == a (n) A.

Therefore we have constructed a morphism of functors A : F —>• 0. We have only
to check that A is an isomorphism. We can suppose that N == { e }, M = V; replacing p
by \|/~1 p, we can suppose that \|/ = 1.
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Assume first that p = f^ ^ (V', {e} , 1) is the regular representation of V
on the space S (V'). Thenr = i ( e } , i ( p )

 ls Ae regular representation of the group V
[see 1.9 (c)]. The uniqueness of a Haar measure on V and V implies that the spaces
^r, i (S (V7)) and /"v, i (S (V)), are one-dimensional; it is clear that in this case A ^ 0.
Hence if p is the regular representation then A is an isomorphism. According to 1.9 (g) A
is an isomorphism for any free representation p (it means that p is a direct sum of regular
representations). It is easy to prove that any representation p e Alg V is a quotient
of some free representation hence p has a free resolution. Therefore exactness of F
and C> implies that A : F (p) —> 0 (p) is an isomorphism for any p.

Theorem 5.2 is proved.

6. Proof of lemmas of paragraph 2

6.1. Let us formulate some statements about subgroups of the reductive group G.
All of them are proved in [4].

Let G, Po, Ao be the groups defined in 2.1. Denote by A the lattice of rational cha-
racters K : Ao —> F*; we write the group operation in A additively. Let S7 e A be the
set of roots of G relative to Ao and S the reduced part of S' (£ consists of non-divisible
roots of £'). To each y s S there corresponds the subgroup Uy <= G; it is the maximal
unipotent subgroup, normalised by A°, in which Ao has weights y and 2 y. The Weyl
group W = No (Ao)/Zo (Ao) (see 2.6) acts on Ao, hence on A. This action allows us
to identify W with the Weyl group of the system I (see [4], 5.3). Put

S^YeSlU^Po}-

it is a system if positive roots, corresponding to Po; denote by II the corresponding
set of simple roots. We shall sometimes write y > 0 (y < 0) instead of y e S4' (ye —S'1').

Let S be a subset of S. We call S closed if (S +S) n £ <= S and convex if S is an inter-
section of £ with some convex cone in A ® Q. A closed subset S c: £ is called symmetric
if S = —S; in this case S is a root system and we denote by W§ <= W its Weyl group. A
closed subset S c: £ is called unipotent if S c: w(£4') for some weW.

For any closed S <= £ denote by G (S) the algebraic subgroup in G, generated by sub-
groups ZG (Ao) and U y , y e S . If S is unipotent denote by U (S) the algebraic subgroup
in G, generated by all Uy, yeS. Using the results of [4], one can prove that G(S)
(resp. U (S)) is generated by ZQ (Ao) and U^ (resp. by Uy) as an abstract group.

PROPOSITION. (See [4], 3.22). - Let S, T be closed subsets of £.

(a) If S and T are convex then G (S) n G (T) = G (S n T) (3).

(b) If T is unipotent then G (S) n U (T) = U (S n T).

(3) In ([4], 3.22) there is required only the convexity of S n T. But in this form the statement is not true.
Counterexample: G is a split group of the type €2, S == { ± a, ± (a + 2 P) }, T == { ± P, ± (2 a + 3 P) },
where a is a long simple root and P is a short one. The proof in [4] is based on the false statement
Ws n WT = WgnT. For convex S and T it is true (and follows from [16], Append., (36)) therefore in
this case the proof from [4] is correct.
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6.2. We call a closed subset ̂  c: £ parabolic if^^S4 ' . In this case M = ̂  n (~^)
is called a standard subset of 2 (the notation is M < I) and the triple (^,^, ̂  = y\M)

is called a parabolic triple.

PROPOSITION (see [4], 5.12-5.18). - Let T be a subset of H. Denote by^ ,M the closed

subsets generated by ^
+
 u (-F) and T u (-F) respectively. Then (^, M, ̂  = ̂ \.0

is a parabolic triple and (P = G (^), M = G (^), U = U (^)) is a parabolic triple of

subgroups in G (see 2.1). Any parabolic triple ( ,̂ ̂ , ^) and parabolic triple of subgroups

(P, M, U) Afi^ .sw/z a form; moreover T is uniquely determined by ( ,̂ M^ W) and by

(P, M, U).

It follows, in particular^ that in a parabolic triple (^, M^ W) the subsets ^, M and ^

are convex.

6.3. We begin to prove our Lemmas. Denote by ^, ̂ , ^<, ^, ./T, ̂ , the subsets
of Z, corresponding to the groups, P, M, U, Q, N, V; put

^^.^nS4', ^ ^^nS4'.

It is clear that

WM=W^, W^=W^.

Furthermore it follows from 6.1-6.2 that

W^ = W-^ = { w e W J w^'1') <= S-', w"
1
^) c: 24- }.

Let weW^'< Then ^nw"1^) => ^+ is a parabolic subset of M\ therefore

(JSr n w~1 (J2), ̂  n w~1 (^T), ̂  n w~
1
 (i^))

is a parabolic triple in M. It follows from 6.1-6.2 that

(M n w~
1 (Q), M n w~1 (N), M n w"

1 (V))

is a parabolic triple of subgroups in M. Similarly (N n w (P), N n w (M,) N n w (U))
is a parabolic triple in N. In particular, it proves 2.11 (6).

We shall often use the following statements (see [16; Append., I, II]) :

(1) If weW^ then wCS-1^^) <= S-'V^4-.

(2) The length / (w) of an element w e W is equal to a number of roots y > 0 such
that w (y) < 0.

(3) If w e W and y e n then the conditions w (y) > 0 and / (w Oy) > / (w) are equi-
valent (here Oy is the reflection corresponding to the root y).

It follows from (3) that W^*^ = { w e W |/(wo-y) >/ (w) for any yennj r ,
/ (w~

1 Oy) > / (w~1) for any y e n n ̂  }. Therefore the statement 2.11 (a) follows
from [5; chap. IV, § 1, exer. 3].

6.4. Proof of the Lemma 2.12. — Use the Bruhat decomposition. It implies that the
map W~^G(wh^w~ 1 ) determines a bijection W^\W/WM •2> P\G/Q (see [4], 5.15,
5.20). In particular for any Q-orbit Z c: X = P\G there exists a unique point of the
form P w~

1
 (w e W^^, belonging to Z (see 2.11); denote the orbit Z 9 P w~~

1 by Z (w).
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For the computation of the functor F from 2.12 use the theorem 5.2. Conditions
(1)-(4) from 5.1 follow directly from 6.1 and the condition (^) holds since 9 = 1, v|/ = 1.
We conclude that F is glued from the functors <Dz ̂ , w e W^'N. It follows easily from 6.3
that Oz ̂  differs from the functor F«, describing in 2.12 by only a character e. There-
fore we have only to prove that e = 1.

It is easily seen that for any automorphism a of an F-group H we have

modH(o) = mod^ (a).

where ̂  is the Lie algebra of H (it follows e. g. from [4], 3.11).

Therefore if F is a finite extension of the field F and H = H (F) is a group of F-points

of H then modg (cr) = mod^ (o) where k = [F : F]. Extending in such a way all our
groups (G, M, U etc.) we replace s by 2 = e^; since e is positive, it suffices to prove that 2=1.

One can choose F such that G splits over F. It follows that in proving the equality 8 = 1
we may assume that G is split. In particular assume that Ao is a maximal torus in G
hence Zo (Ao) = Ao.

Since 8 is positive, 8 |u<^+) = 1 (see 1.7). Therefore if follows from the Bruhat
decomposition

M' = U^^.NM^.UC^ )

and from the finiteness of N^. (A^)/Ao that 8 is determined by its restriction to Ao.
Since Ao is a maximal torus, ior any unipotent subset S c= £ we have mody ̂  L = mods
where

mods(fl)= n|r00|. aeAo,
Y 6 S

Cs-^[4], 3.11). It follows that 8^ = modu.mod^^-i (Q) = mods where

S=^\(^nw~ l(J2))=^n(£\w" l(J2))=^nw~ l(--<r).
Similarly

8J = mod^(_^) ̂  = mod^(s),
hence

82 = 8^.M?~ l(8j) = mods.mod-s == 1.

6.5. Proof of the lemma 2.17. - (1) Put

W(^, ̂ 0 = W(^T, ̂ ) n W ;̂

W (^, ̂ ) is a system of representatives of double cosets W \̂W (^, ̂ )/W^. It

is clear that w e W (^, jV) iff w (n n ̂ ) = n n ̂ . For any standard subset JSf < £
denote by s^eW^ such an element that

5.̂ ^-J^

(hence s^(Jl n o$f) = -(n n J$f); the existence and uniqueness of s^ follow from
[16], Append. (24)).
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(2) Let ̂ <£, r=n c\M, w e W be such an element that w(F)> 0 and w'^w.w.s
We prove that

(a) l(w/)=l(w)+\Jy+ |

(b) If w (r) <= n then for any y e I\jy the roots w (y) and w' (y) have the same sign.

Since ^(S^.^) = ̂
+
\Jy

+
, we have

|{Y6£+\^+|u;(Y)<0}|=|{YeZ+\^+[w'(y)<0}|.

Since w (^+) > 0, w' (^+) < 0, / (w') = / (u;) +1 ̂ + | ̂  6.3 (2)]. Now let w (T) c: n.
Then ̂  = w (.0 < S and it is easily verified that

wW^.MT^W^ and ws^w"1 == Sjy.

If y e £\^, then w (y) e E\^, hence w' (y) = TO^ (y) = s^w (y) has the same sign
as y ̂  6.3. [1]).

(3) Let M < JSf < £, r = n n ̂ . Suppose that P = J^ n n has the form
r' == r u { a }. Then there are precisely two elements w e W^ such that w (T) c: n.
Actually, if w (a) > 0 then w (P) > 0 hence w = 1. If w (a) < 0 and u?' = M; ̂  then (2)
implies that w'(r') < 0 hence w' = s^ and w = ̂ ^ = s^.s^. Therefore in this
case the element w = s^ s^ determines an elementary (in the sense of 2.16) map
w :^-^w(^<).

(4) We want to prove the Lemma 2.17. In terms of subsets in £ it states that for any^,
jf < £, w (.0 = ^V the element w is a composition of elements w such as constructed

in (3). One may assume that weW(^r,^), i.e. w(r)c:n, where F = M n n.
Use the induction on / (w\ Let a e n\r be such a root that w (a) < 0 (if such a does
not exist then w = 1). Consider the standard subset J^f generated by P == r u { a }
and put

w
=s^s^, M'=w{Jf) and M/=M?.uT1 .

Then

^'<S, u/eW(.T,JO and w: M-> M'

is an elementary map according to (3). So it suffices to prove that / («/) < / (w\

Put w" = w.s^; then w' = w" s^. According to (2), l(w") = l(w)+\^
+
\ and

w" (F7) < 0. Therefore

w
f
(^)=w

ff
(s^(^))>0,

hence (2) implies that

l(w
1
) = ((u/')-!^ | = ;(w)+| ̂ + l-l^ | < l(w).

Lemma 2.17 follows.

7. Proof of the proposition 4.13

We shall use the notations of 4.12-4.13.
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7.1. Proof 0/4.13 (a). - Let M = G^ x G^ be embedded into G = G^ as in 4.12. (I).
By definition (p x o") [p = F (p ® o), where the functor F is defined as in 5.1 in the following
situation:

\J=V\ 9=1 , N=P^ , V={^} .

To compute F we apply the Theorem 5.2. Conditions (1), (2) and (^) from 5.1 hold
trivially. It is easily seen that there are two Q-orbits on X = P\G: the closed orbit Z
of the point P e e X and the open orbit Y of the point P w~

1
 e X, where w is the matrix

of the cyclic permutation (k\->n\->n— 1 h-> ... i-> fe+1 »-> fc); it follows e. g. from the
Bruhat decomposition. Condition (4) from 5.1 can be checked directly or by using 6.1.
The character e from 5.1 is computed as in 6.5. After all it turns out that

^ Y ( P ® c O = p | p X ^ <&z(p8)^)= px^ |p

and 4.13 (a) follows.

7.2. Proof of 4 A3 (b), (c). - If ft is one of the functors O4' and ̂  then 4.13 (b)

follows directly from 1.9(c). Inthecasesft = O", ft = Y" in 4.13 (b) and for the proof
of 4.13 (c) one has to use the theorem 5.2. We leave the details to the reader and
describe only the situations and orbits.

STATEMENT 4.13 (b). - We have G = ?„; M, U are defined in 4.12. (II).

In the case ft = ^" we have

N=G».i, V=V^, Q=G,

hence there is only one Q-orbit.

In the case ft = <D~ we have N = P»-i, V = V,,. There are two orbits—the closed
orbit Z of the point P e e X and the open orbit Y of the point P Wo

1 where WQ is the matrix
corresponding to the cyclic permutation (kh->n—1 ̂  »—2 -> . . . -> k). Note that
<]>Y = 0 since for Y the condition (^) from 5.1 does not hold; therefore F = <Dz.

STATEMENT 4.13 (c). - G = ?„; M, U are defined in 4.12. (III).

For ^~, we have N = G^_i, V = ¥„; there is only one orbit.

For 0 ~ , N = P ^ _ i , V = V ^ ; there are two orbits — the closed one of the point P e

and the open one of the point P WQ
 1, where WQ corresponds to the permutation

((m—l)i—>n--lt->n—2h-> ... ̂ m—1).

7.3. Proof 0/4.13 (rf). - If 0" (o) = 0 then the restriction of o) to ¥„ is trivial
[see 3.3]. Let / be a non-zero element of ®. By the definition of T x p, / is a vector
function on the group ?„ [see 4.12. (Ill) and 1.8). Denote by T its support:

T={^ePj/(g)^0}.

One may assume that e e T. Since ¥„ acts trivially, ¥„ c: T. Furthermore by the
definition of ;'u, i the set T is compact modulo MU, where M and U are defined in 4.12. (III).
But it is easily seen that any set K => ¥„ cannot be compact modulo MU. Actually,
it follows from the fact that MU\MU\^, ^ F^ in not compact. We obtain the contra-
diction which proves 4.13 (d).
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