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Abstract The release of products from microbial cells is an
essential process for industrial scale production of bio-based
chemicals. However, traditional methods of cell lysis, e.g.,
mechanical disruption, chemical solvent extraction, and
immobilized enzyme degradation, account for a large share
of the total production cost. Thus, an efficient cell lysis
system is required to lower the cost. This review has focused
on our current knowledge of two cell lysis systems, bacteri-
ophage holin–endolysin system, and lipid enzyme hydroly-
sis system. These systems are controlled by conditionally
inducible regulatory apparatus and applied in microbial pro-
duction of fatty acids and polyhydroxyalkanoates. Moreover,
toxin–antitoxin system is also suggested as alternative for its
potential applications in cell lysis. Compared with traditional
methods of cell disruption, the inducible cell lysis systems
are more economically feasible and easier to control and
show a promising perspective in industrial production of
bio-based chemicals.

Keywords Cell lysis systems . Inducible regulatory
apparatus . Holin–endolysin system . Lipid enzyme system .

Toxin–antitoxin system

Introduction

Metabolic pathway engineering has driven the development
of commercially viable processes for production of bio-
based chemicals (Millard et al. 1996). So far, a variety of
bio-based chemicals including aromatic compounds, carbo-
hydrates, organic acids, alcohols, and other secondary me-
tabolites has been produced bymicrobial fermentation. Of all
these bio-products, some are easy to be released from the host
cells, such as amino acids (Berry 1996; Ikeda and Katsumata
1999; Ito et al. 1990), succinic acid (Millard et al. 1996), lactic
acid (Zeikus 1980), ethanol (Moniruzzaman and Ingram
1998), glycerol (Albertyn et al. 1994; Ben-Amotz and Avron
1979; Steinbüchel and Müller 1986), and 1,3-propanediol
(Biebl et al. 1992). However, others like fatty acids and
polyhydroxyalkanoates (PHAs) cannot be released from
the cell.

Fatty acids are important precursors for biodiesel synthe-
sis and can be converted to biodiesel by esterification with
methanol or ethanol. For fatty acid production on a large
scale, the most efficient way is to cultivate and extract fatty
acids from oil-rich cyanobacteria and microalgae which can
directly convert solar energy and CO2 into fuels (Peralta-
Yahya and Keasling 2010). PHAs are a family of structurally
diverse polyesters accumulated by many bacteria and can be
applied in the fields of bioplastics, fine chemicals, implant
biomaterials, medicines, and biofuels (Chen 2009). To ex-
tract fatty acids and PHAs from their hosts, cell disruption is
often a necessary step (Mendes-Pinto et al. 2001). The me-
chanical methods for cell disruption, like high-speed agitator
bead mill and high-pressure homogenizers, are popular for
industrial production due to their convenience without chem-
ical interaction between cells and media (Zhang et al. 1999).
Ultrasonication is one of the favorite physical methods
employed for cell disruption especially at a laboratory scale
(Feliu et al. 1998; Ho et al. 2006). It can lyse a wide range of
bacteria cells according to the power of acoustic waves and
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the physical strength of the cell walls (Choonia and Lele
2011). Iida et al. (2008) combined ultrasonication and me-
chanical homogenization for baker's yeast cell disruption and
obtained a better protein release than either of them. Of all
these physical methods, grinding in liquid nitrogen is the
quickest method that only needs 2 min to process 500 ml
microalgae cells for the lipids release (Zheng et al. 2011).
There are also some other physical methods of cell disruption
such as bead-beater pulsed electric field and laser treatment
in oil extraction from microalgae (McMillan et al. 2013;
Sheng et al. 2011). However, low energy efficiency owing
to the dissipation by generating high temperature is the most
obvious disadvantage of these methods.

Chemical methods including organic solvent extraction,
alkali or detergent treatment of cells, also have been widely
applied for intracellular substances extraction (Numanoğlu
and Sungur 2004). For instance, chloroform was usually
used to extract PHAs from dry biomass. Combined with
acetone pretreatment and ethanol precipitation, chloroform
extraction recovered poly(β-hydroxybutyrate) (PHB) with a
purity of 95 % from lyophilized Cupriavidus necator cells
(Ramsay et al. 1994). For large-scale production of poly(3-
hydroxyoctanoate) (PHO), the precipitation solvent contain-
ing 70 % (v/v) methanol and ethanol with a ratio of 1:1 was
employed and led to 94 % recovery and 99 % purity of PHO
(Elbahloul and Steinbuchel 2009). Organic solvent extrac-
tion is also used to isolate lipids from cyanobacteria and
microalgae; furthermore, cell membrane electroporation
can improve the penetration of organic solvent through cell
barrier and extracting efficiency (Hamilton and Sale 1967;
Weaver and Chizmadzhev 1996). Besides mechanical and
chemical methods, enzyme digestion is another useful way
to disrupt the bacterial cells, but it is rather expensive when
dealing with large amount of samples (Fu et al. 2010).

The product recovery from bacterial cells using traditional
methods has been claimed to contribute to 20–30 % of the
total production cost (Gudin and Thepenier 1986). Com-
pared with bacteria, the cost of microalgae downstream
processes is even higher and accounts for 70–80 % of the
total production cost because the cell walls containing hemi-
cellulose and saccharides are much thicker than that of
bacteria (Molina Grima et al. 2003). To cut down the pro-
duction cost, strains secreting the fermentation products
automatically were designed and constructed by genetic
modification. When tesA gene encoding thioesterase from
Escherichia coli was introduced to Synechocystis sp. PCC
60803, the cellular acyl-acyl carrier proteins (ACPs) were
converted into free fatty acids, relieving the inhibition of
fatty acid synthesis by long-chain acyl-ACP and resulting
in overproduction of cellular free fatty acids which promoted
the fatty acid secretion to culture medium (Liu et al. 2011b;
Fell 1997). Furthermore, weakened cell walls had a syner-
gistic effect on fatty acid secretion (Liu et al. 2011b). In

addition, the production of extracellular fatty acids had also
been achieved in E. coli by TesA overexpression and delet-
ing fadL gene to inhibit the β-oxidation pathway or re-
absorbance of extracellular fatty acids (Liu et al. 2012). But
the fatty acid-secreting strains still had some disadvantages,
such as low growth rate and increased cell fragility which
even caused cell damage at low cell density (Liu et al.
2011b). Simplified PHA extraction process based on osmotic
lysis in the presence of alkali/detergent was performed using
a novel moderately halophilic bacteria strain Halomonas sp.
SK5 which could grow and accumulate PHA granules only
in high-salinity environment (Rathi et al. 2013). In the pres-
ence of distilled water, the osmotic pressure difference be-
tween inside and outside cell will cause cell rupture and PHA
release. This method resulted in approximately 90–100 %
recovery of PHA with purity as high as 90 %; however, the
use of high-salinity medium and alkali/detergent brought
some economic and environmental issues. Thus, current
work has focused on developing economically feasible
mechanisms to release valuable bio-products by lysing host
cells in a genetically-regulated manner.

Up to now, two strategies using bacteriophage holin–
endolysin and lipid enzyme, respectively, have been tested for
controllable cell lysis. The cell lysis systems were controlled by
conditionally inducible regulatory apparatus and could be
expressed with the presence of specific inducer or environmen-
tal condition, such as isopropyl β-D-thiogalactoside (IPTG),
arabinose, xylose, and CO2 depletion. Moreover, toxin–anti-
toxin system is also suggested as alternative for its potential
applications in cell lysis.

Holin–endolysin system

The lysis process of E. coli phage λ has been regarded as the
model to study the holin–endolysin lysis system (Fig. 1)
(São-José et al. 2007). When separated from antiholin which
has an inhibitory effect on the function of holin (Young
2002), the hydrophobic domain of holin monomer will insert
into cell membrane and then oligomerize to form higher-
order assembled holins (Grundling et al. 2000), developing
into a hole large enough for about 500-kDa proteins to get
though the cell membrane (Savva et al. 2008; Wang et al.
2003). Then accumulated endolysin in cytoplasm can be
released into the periplasm, degrading the peptidoglycan in
the cell wall (Loessner 2005). Four enzyme activities are
associated with the endolysin: the glucosaminidase hy-
drolyzing the glycosyl–oxygen bond (Drulis-Kawa et al.
2012), the transglycosylase attacking the same bond but
forming a muramic acid product (Blackburn and Clarke
2000), the amidase hydrolyzing the amide bond in the
oligopeptide cross-linking chains (Low et al. 2005), and
the endopeptidase attacking the cross-linking peptide
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bonds (Donovan et al. 2006). In addition, Rz/Rz1 complex of
phage λ can promote the fusion of inner membrane (IM) and
outer membrane (OM), thus pushing the OM away from the
murein layer and eliminating the last barrier (Young 1992;
Berry et al. 2010; Berry et al. 2008).

To reduce the cost of PHB recovery from engineered
E. coli strain, an autolysis system was developed using the
lysis cassette of phage λ and the promoter of Salmonella
typhimurium magnesium transporter gene mgtB (PmgtB),
which is activated only in the Mg2+-depletion condition
(Zhang et al. 2009). During fermentation, magnesium sulfate
was added into the culture medium to inhibit the expression
of lysis genes and promote the PHB accumulation. When the
cells were harvested and resuspended in water or low ionic
strength buffer, the promoter PmgtB was activated and started
the expression of phage λ lysis genes, resulting in immediate
cell lysis (Zhang et al. 2009). Additionally, Resch et al.
(1998) integrated the lysis gene E of bacteriophage ΦX174
downstream of the phage λ PR promoter into the plasmid
pSH2, controlled by the thermosensitive repressor CI857
encoded by the same plasmid. The protein E can comple-
ment phage λ S and R dysfunction for host cell lysis (Roof
and Young 1993) and can introduce a transmembrane tunnel
in the cell envelope complex with a diameter of 40–200 nm
(Witte and Lubitz 1989; Witte et al. 1990). When the growth
temperature was upshifted from 28 to 42 °C, the gene E was
expressed with inactivation of CI857 repressor, leading to
the collapse of cell membrane and the release of PHB
granules.

Inducible holin–endolysin lysis system to release PHA
was also achieved in other hosts. For example, the holin
and endolysin genes of Bacillus amyloliquefaciens phage

were inserted into the amyE locus of chromosomal DNA of
Bacillus megaterium, a PHB-producing strain (Hori et al.
2002). The expression of holin–endolysin system was con-
trolled by the regulatory system PxylA-XylR, which is in-
duced by xylose but inhibited by glucose (Rygus et al.
1991; Dahl et al. 1995). For PHB accumulation, the recom-
binant strain was grown in a medium containing glucose as
carbon source in the presence of xylose. When the glucose in
culture medium was exhausted, cell disruption was sponta-
neously induced, releasing intracellular PHB into culture
broth (Hori et al. 2002). To construct a self-disruptive strain
of medium-chain-length PHAs producer Pseudomonas
putida KT2440, two strategies were applied simultaneously:
the holin gene ejh and endolysin gene ejl from the pneumo-
coccal bacteriophage EJ-1 (Díaz et al. 1996) integrated into
the bacterial chromosome DNA and the tolB gene mutant
exhibiting outer membrane integrity defect and lysis hyper-
sensitivity. The expression of genes ejh and ejl was under the
control of Pm-XylS monocopy expression system, and 3-
methylbenzoate was used as inducer molecule to promote
cell lysis (Martinez et al. 2011).

The holin–endolysin system was also used in microbial
fatty acid production. A series of Synechocystis sp. PCC
6803 strains containing controllable lysis systems were
designed and constructed in three strategies (Fig. 2) (Liu
and Curtiss 2009). In strategy 1, the lysis genes from Salmo-
nella phage P22 (13 15 19) and phage λ (S R Rz), respec-
tively, were inserted into the chromosome of Synechocystis
PCC 6803 downstream of the promoter PnrsB, which is
activated by addition of Ni2+. The P22 lysis cassette could
lyse the strains much faster after induction of Ni2+ than that
of phage λ. In strategy 2, the P22 endolysin and the auxiliary

Fig. 1 The cell lysis process of phage λ holin–endolysin system. 1
Transcription: the genes of holin, endolysin, and Rz/Rz1 transcribe into
corresponding messenger RNA (mRNA); 2 translation: the holin and
antiholin is co-expression, forming holin–antiholin complex; 3 the
antiholins are degraded by specific proteinase, and functional holins
are released; 4 holins accumulate in the cell membrane, forming the

hole for 500-kDa protein to get through; 5 the endolysin and Rz and Rz1
are released into periplasm and Rz and Rz1 are located to the IM and
OM, respectively; 6 enzymolysis: the endolysin hydrolyzes the pepti-
doglycan, degrading the cell wall; and 7 the Rz and Rz1 proteins link
the IM and OM, transmitting mechanical stress from IM and forcing the
disruption of OM
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lysis factor genes 19 and 15 were overexpressed under a
constitutive promoter PpsbAII, while expression of the holin
gene 13 was regulated by PnrsB. Before Ni2+ induction, the
lysis enzymes were accumulated in the cytosol. When Ni2+

was added into the culture, the holin protein was synthesized,
thus helping the accumulated lysis enzymes to cross the
cytoplasmic membrane and collapse the cell wall. As
expected, strain SD123 constructed using strategy 2
exhibited a significantly faster lysis rate than strain SD121
in strategy 1. Strategy 3 was to incorporate the lysis genes
from λ with P22 lysis genes. The endolysin and the auxiliary
lysis factor genes, P22 19 15, and λ R Rz, were inserted
downstream of the promoter PpsbAII. At the same time, the
holin genes, P22 13, and λ S, were controlled by the PnrsB
promoter. The strategy 3 strain SD127 performed successful
inducible cell lysis; however, its growth rate was slower than
strain SD123. Due to the fact that all strains constructed
using three strategies grew much slower than the wild-type
strain, which might be caused by the basal transcription of
PnrsB promoter before Ni2+ induction (López-Maury et al.

2002), further studies should focus on screening for a strain
with both higher growth rate and faster lysis rate.

Lipid enzyme system

As been well known, the cell membrane is generally com-
prised of proteins and membrane lipids, such as glycerides,
phospholipids, and glycolipids, and the lipolytic enzymes can
hydrolyze the carboxylic ester bonds to release fatty acids
from acylglycerols. For example, galactolipase catalyzes the
hydrolysis of galactolipids by removing one or two fatty acids
(Helmsing 1969), and phospholipase B presenting both activ-
ities of phospholipase A1 and phospholipase A2 cleaves acyl
chains from both the sn-1 and sn-2 positions of a phospholipid
(Kohler et al. 2006). So cell lysis could be achieved using
some proper lipid enzyme genes.

In cyanobacterium Synechocystis sp. PCC 6803 strain,
Green Recovery strategy utilizing lipolytic enzymes was
employed to convert membrane lipids into fatty acids and

Fig. 2 The strategies used in Green Recovery process of Synechocystis
sp. PCC 6803. The lysis cassette (shaded area) was inserted down-
stream of PnrsB by two-step double crossover homologous exchanges,
deleting the nrsB and nrsA fragments in the chromosome at the same
time. nrsR and nrsS, nickel-sensing and -responding genes; nrsA, nrsB,
nrsC, and nrsD, nickel-resistance genes; PpsbAII, a constitutive promoter

of Synechocystis gene psbAII; PnrsB, the nickel inducible promoter; 13
holin, 19 endolysin, and 15 auxiliary lysis enzyme are the cell lysis
genes from Salmonella phage P22; S holin, R endolysin, and Rz auxil-
iary lysis enzyme are the lysis genes from E. coli phage λ; TT tran-
scriptional terminator from cyanophage Pf-WMP4
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destroy the cell (Liu et al. 2011a). As CO2 is the rawmaterial of
photosynthesis, CO2-containing air was used to bubble the
culture medium and the concentration of CO2 is controlled
exactly. To induce the expression of lipid enzymes efficiently
and economically after fatty acid accumulation, the promoter
Pcmp activated by CO2 limitation (McGinn et al. 2003) was
selected to control the lipid enzyme genes. When lowering the
CO2 concentration in the culture medium to near zero level by
aeration with CO2-free air for 30 min, the lipolytic enzyme
genes started to express, increasing cell membrane permeabil-
ity and releasing fatty acids. Three lipolytic enzymes were
tested for their ability to hydrolyze membrane lipids, including
the bacterial lipase from Staphylococcus hyicus (Shl)
(Rosenstein and Gotz 2000), the modified fungal phospholi-
pase from Fusarium oxysporum (Fol) (Rapp 1995), and the
guinea pig lipase (Gpl) from the digestive juice of guinea pig
(Andersson et al. 1996). Although Gpl was reported to show
the highest galactolipase activity (Andersson et al. 1996), three
strains carrying various lipid enzymes produced fatty acids at a
similar level, and the Gpl resulted in a membrane damage rate
much lower than Shl and Fol (Liu et al. 2011a). Green Recov-
ery strategy is clearly an efficient and effectivemethod for lipid
recovery from biomass; however, there is still a problem in this
system. The lipase synthesis requires adequate light to provide
the energy while the concentrated cultures create a self-shading
environment, making that Green Recovery had to be applied
on unconcentrated cultures, which lowers efficiency. To solve
this problem, thermorecovery system was developed, in which
genes encoding thermophilic lipases were inserted into
Synechocystis chromosome under the control of both the
CO2-depletion-inducible promoter Pcmp and the constitutive
promoter Ptrc (Liu and Curtiss 2012). During growth in an
unconcentrated culture with plenty of light at ambient temper-
ature, the thermophilic lipase was synthesized and accumulated
due to the basal activity of promoter Ptrc without affecting cell
growth. Then the CO2 limitation pretreatment boosted the
synthesis of thermophilic lipase, which was activated by the
subsequent temperature elevation of concentrated culture. In
this study, the lipase Fnl from Fervidobacterium modosum
Rt17-B1 (Yu et al. 2010) released the most fatty acids. Com-
pared with Green Recovery, the biomass volume to be
processed in thermorecovery was significantly reduced be-
cause of light-independence, resulting in the cost-decrease. It
is expected that the efficiency of thermorecovery could be
further improved by introducing additional thermophilic li-
pases with different substrate specificities to recover a greater
fraction of the total membrane lipids.

Toxin–antitoxin system

For the possible applications in cell lysis, toxin–antitoxin
system is suggested as an alternative to construct a self-

disruption strain. Comparing with the holin–endolysin
and lipid enzyme systems, toxin–antitoxin systems show
a quite different mechanism of cell lysis, that can kill the
host cells or cause apoptosis by inhibiting the replication
of DNA, digesting mRNA, restraining the synthesis of
proteins and so on (Chang et al. 1989; Sandvig and van
Deurs 1992). In the cell death process, one key event is
increasing of cell membrane permeability (Tsujimoto and
Shimizu 2007), which will contribute to the release of
intracellular substrates.

Genes encoding toxins and antitoxins are widespread in
most prokaryotic chromosomes (Hayes 2003). The toxin–
antitoxin system is generally comprised of two components:
a comparable stable toxin protein targeting different cellular
processes and inducing cell growth arrest or death and a
labile antitoxin counteracting the action of toxin protein.
The antitoxin protein is usually degraded by a specific intra-
cellular protease such as Lon or ClpPA (Buts et al. 2005;
Short et al. 2012; van Melderen et al. 1996). To construct an
inducible cell lysis system, a conditionally inducible regula-
tory device is needed to prevent the expression of antitoxin or
to elevate the toxin level in the cell.

Inducible regulatory apparatus

Due to the fact that the lysis systems above can cause growth
inhibition or cell death, the expression of the cell lysis systems
must be controlled by conditionally inducible regulatory
apparatus strictly. We can choose the suitable promoter
according to the different host cells and end products. Besides
the conditionally inducible regulatory apparatus discussed
above, some other regulatory devices were also used to control
the cell lysis systems (Table 1). In cheese fermentation strain
Lactococcus lactis, the promoter PnisA induced by antimicro-
bial peptide nisin, was employed to control the expression of
the lytic genes lytA (lysin) and lytH (holin) from lactococcal
bacteriophage ΦUS3. The nisin-induced cell lysis led to re-
leasing of intracellular proteolytic and esterolytic enzymes,
accelerating cheese ripening and contributing to the flavor
development (de Ruyter et al. 1997). The regulatory systems
having been used to control the cell lysis process also include
PBAD-AraC system sensing L-arabinose (Guzman et al. 1995;
Lim et al. 2012), Plac-LacI system responsible to lactose and its
derivative IPTG (Lubitz et al. 1981; Henrich et al. 1982 ), and
chloride-inducible system Pgad-GadR (Sanders et al. 1997). In
addition, some tight regulatory systems, like tetracycline-
inducible system PtetA-TetR (Skerra 1994; Wirtz et al. 1999),
are also the alternatives to control the cell lysis.

However, there are still some problems in the currently
used regulatory devices. First, the addition of inducers is
mandatory and brings some economic and environmental
concerns. IPTG is relatively expensive and has toxic effect
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on cell growth (Baneyx 1999), and the use of nickel in-
creases production cost and causes environmental pollution
as well as the high-salinity medium to activate the promoter
Pgad. So the cell lysis systems need to be regulated econom-
ically and environment-friendly. In this issue, the CO2-lim-
itation-inducible promoter in fatty acids recovery and the
Mg2+-depletion sensing promoter in PHA production are
the best choices for regulation of the cell lysis systems.
Second, some chemical induction systems cause rapid accu-
mulation of target proteins within a short period (van den
Berg et al. 1999), resulting in the inclusion bodies without
native biological activities. Therefore, the appropriate ex-
pression intensity is another criterion for selecting the regu-
latory apparatus.

Differently from that the cell lysis systems are controlled
by inducible regulatory devices in most cases, automatic cell
lysis also can be realized by downstream operation or chem-
ical reagent. Yu et al. (2000) constitutively expressed the
phage λ lysis genes with an S amber mutation (S-RRz) in a
recombinant E. coli strain producing PHB. By introduction
of the S amber mutation, the encoding of the S gene was
unable to damage the cell membrane, and the endolysin R
and auxiliary lysis factor Rz were synthesized and accumu-
lated in the cytoplasm without restraining the growth of the
host strain. At the end of fermentation, both EDTA and high-
temperature treatment could cause the cell membrane dam-
age, releasing R Rz to the periplasm and resulting in the cell
wall degradation (Yu et al. 2000; Yu et al. 2003).

Conclusion

Conditionally inducible cell lysis system is an efficient and
economical strategy to simplify the downstream purification
and extraction process of some bio-based chemicals that fail
to release from the cells. At present, the holin–endolysin
system and the lipid enzyme system have been successfully
used to release fatty acids and PHAs from their host cells.
Another system, the toxin–antitoxin system, is discussed
about its potential use in cell lysis. It is believed that more
lysis systems with different mechanisms and suitable regu-
latory apparatus will be used in this field in the future.
Currently, the usage of conditionally inducible lysis systems
is still restricted on the laboratory pilot scale. The principle
task is to exploit the applications of conditionally inducible
cell lysis systems in industrial production of bio-based
chemicals for cost reduction.
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