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Breast cancer is the most common type of malignancy among women. Due to

the iron-dependent character of breast cancer cells, they are more sensitive to

ferroptosis compared to normal cells. It is possible to reverse tumor resistance

by inducing ferroptosis in breast cancer cells, thereby improving tumor

treatment outcomes. Ferroptosis is highly dependent on the balance of

oxidative and antioxidant status. When ferroptosis occurs, intracellular iron

levels are significantly increased, leading to increased membrane lipid

peroxidation and ultimately triggering ferroptosis. Ferroptotic death is a form

of autophagy-associated cell death. Synergistic use of nanoparticle-loaded

ferroptosis-inducer with radiotherapy and chemotherapy achieves more

significant tumor suppression and inhibits the growth of breast cancer by

targeting cancer tissues, enhancing the sensitivity of cells to drugs, reducing

the drug resistance of cancer cells and the toxicity of drugs. In this review, we

present the current status of breast cancer and the mechanisms of ferroptosis.

It is hopeful for us to realize effective treatment of breast cancer through

targeted ferroptosis.

KEYWORDS

ferroptosis, breast cancer, therapy resistance, autophagy, chemotherapy,
radiotherapy, nanoparticles
1 Introduction

Breat cancer is the most prevalent malignancy among women (1). The current status

of breast cancer treatment remains suboptimal, mainly using surgery, radiotherapy,

chemotherapy, and targeted therapy. Drug resistance remains a major obstacle for
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clinicians in the treatment of breast cancer (2). Ferroptosis was

first proposed by Dixon, S.J in 2012, is a novel form of cell death

induced by erastin and RSL3, distinct from apoptosis, autophagy

and necrosis, is an iron-dependent chain reaction of destructive

membrane lipid peroxidation, which leads to an imbalance of

intracellular redox state (3). Altered cellular redox status has an

intimate relationship with malignant transformation and

metastasis of cancer cells (4, 5).

Ferroptosis is associated with many cancer types, including

breast cancer (6), lung cancer (7)and pancreatic cancer (8).

Effective evasion of regulated cell death is one of the most

important features of cancer. It has been found that cancer

cells that have evaded other forms of cell death still maintain

sensitivity to ferroptosis. It seems that induction of ferroptosis in

breast cells has the potential to affect tumor drug resistance (9).

Tumor stem cells are highly iron-dependent and have an

important role in promoting tumor cell proliferation and

invasion, which are the main causes of tumor recurrence and

metastasis. These cells are insensitive to conventional anticancer

therapy, but can induce ferroptosis by modulating iron

metabolism to exert more effective antitumor effects (10).

Combined use of ferroptosis inducers during cancer

radiotherapy and chemotherapy can effectively promote the

sensitivity of cancer cells to ferroptosis and considerably

improve the effectiveness of tumor treatment (11, 12).

Induction of ferroptosis in breast cancer cells can

significantly inhibit tumor cell growth (13, 14). In breast

cancer cells, the expression of transferrin receptor1 (TFR1),

certain six transmembrane epithelial antigen of the prostate

(STEAP) family members and Hepcidin were upregulated,

while the expression of ferroportin (FPN) was downregulated.

This suggests that breast cancer cells are iron-dependent and

more sensitive to ferroptosis inducers (15). Long-chain acyl-

coenzyme A synthetase 4 (ACSL4) is participated in lipid

peroxidation formation and presents a high expression in a

subpopulation of triple-negative breast cancer (TNBC) cell lines.

The expression of ACSL4 positively correlates with breast cancer

cell ferroptosis sensitivity (16). Glutathione (GSH) deficiency is

associated with malignant transformation of breast cancer cells

(17). Thioredoxin reductase 1 protein (TXNRD1), glutathione

pathway and superoxide dismutase are predominantly and

commonly regulated in breast cancer. High thioredoxin

expression is strongly related to increased oxidative stress and

poor prognosis in breast cancer. Cells with TXNRD1

knockdown (KO)are more sensitive to ferroptosis (18). GTP

Cyclohydrolase (GCH) expression is associated with tumor

development as well as angiogenesis. Upregulation of GCH1

expression in breast cancer cells stimulates proliferation and

growth of cancer cells, results in poor prognosis of breast cancer.

The use of GCH1 inhibitors suppress tumor growth and induce

a switch in tumor immune response fromM2 to M1 polarization
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of tumor associated macrophages. M2 is associated with tumor

angiogenesis and metastasis (19, 20). Inhibition of GCH1

activity increases the susceptibility of drug-resistant cancer

cells to ferroptosis (20, 21). Nuclear factor erythroid 2-related

factor 2 (NRF2) exerts its antioxidant effects by upregulating the

expression of genes related to iron and ROS metabolism and

HO-1 to reduce ROS levels, increasing chemoresistance and

ferroptosis resistance in breast cancer cells. The upregulated

expression of heme oxygenase -1 (HO-1) in breast cancers has

an inhibitory effect on cancer cell proliferation and invasion, and

displays a dual role in ferroptotic cells, which depends on

intracellular oxidative stress levels (22–24).

Ferroptosis offers a new direction in the treatment of breast

cancer, but how to avoid its side effects is still an open question. In

the presents of ferroptosis activation carries with the risk of

inducing neurodegenerative disease and exacerbating ischemia-

reperfusion injury (25–28). Ferroptotic damage also includes

inflammatory reactions such as inflammatory bowel disease (29)

and acute pancreatitis (30). In-depth understanding of ferroptosis

metabolism in breast cancer is of utmost importance in searching

for new breast cancer therapeutic-agents.
2 Current status of breast cancer
and its treatment

Breast cancer is a major public health problem that threatens

women’s health and is the most prevalent malignancy among

women (1). Women in the 50-64 age group are at high risk of

breast cancer, and the prevalence is significantly higher in

women than in men, with only about 1% of breast cancers

occurring in men (31, 32). An epidemiological survey on breast

cancer shows that the development of breast cancer is mainly

affected by estrogen levels, with about 10% of breast cancers are

associated with genetic mutations (1). Long-term exposure to

estrogen, obesity, smoking, alcohol consumption, previous

history of radiation therapy to the chest, and increased breast

density can all increase the risk of breast cancer. Proper exercise

can reduce the risk of breast cancer (1). With the improvement

of medical technology as well as the early detection and

interventional treatment of breast cancer, the incidence and

effective cure rate of breast cancer have increased in recent years.

The U.S. Preventive Services Task Force recommends that

women aged 50-74 have a mammogram every two years to

improve breast cancer screening rates (1, 31). Breast cancer has a

distinct tumor heterogeneity, with multiple subtypes and

differences in incidence, treatment options and prognosis for

each subtype (33). Breast cancer can be classified into four

molecular subtypes based on the expression of Estrogen

receptor (ER), Progesterone receptor (PR) and human

epidermal growth factor receptor type 2 (HER-2) with the use
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of immunohistochemistry: luminal A, luminal B, HER-2 and

TNBC (34). Current treatments for breast cancer mainly use

surgery, radiotherapy, chemotherapy and targeted therapy, but a

single treatment method does not achieve the expected

therapeutic effect, and a combination of surgery-based

treatment with other means is usually adopted (34). Breast

cancer, with its many subtypes, is mainly treated with surgery

and chemotherapy, supplemented by treatments based on the

specificity of each subtype of receptor. Such as endocrine therapy

for ER and PR receptor-positive breast cancer patients and anti-

HER-2+ therapy for HER-2 positive breast cancer patients. As

the most refractory type of breast cancer (33, 34), TNBC can be

divided into four subtypes base on the heterogeneity of

molecular characteristics, metabolomics and tumor

microenvironment (35–38), which including mesenchymal-like

(MES), luminal androgen receptor (LAR), basal-like and

immune-activated (BLIA), basal-like and immune-suppressed

(BLIS) subtypes (39, 40). Most of the current clinical trials focus

on LAR in TNBC, applying an AR antagonist alone (41, 42) or in

combination with a phosphatidylinositol 3-kinase (PI3K)

inhibitor (43, 44), or combining immunotherapy to achieve

AR inhibition with immune checkpoint blockade (45). The use

of CDK4/6 inhibitors and hormone therapy in luminal B

patients provides a strategy for the treatment of breast cancer

without chemotherapy (46). The combination of PI3K inhibitors

with aromatase inhibitors can produce positive effects, but their

toxic effects are not negligible (47). HER-2-positive breast cancer

patients will benefit from the dual inhibitory effect of

trastuzumab and lapatinib on HER-2 (48). Estrogen receptor-

positive breast cancer cells are highly susceptible to PI3K

mutations, making the combination of letrozole and taselisib

more effective (49). Nanoparticle albumin-bound paclitaxel

(nab-Paclitaxel) in luminal A reduced the toxicity and

increased the antitumor activity of paclitaxel (50). We have

summarized the molecular subtype-based emerging clinical

trials for breast cancer in Table 1. LAR tumors have higher

fatty acid metabolic activity, ROS levels and overexpression of

lipoxygenase than the other three subtypes of TNBC, all of which
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are evidence that LAR tumors are more vulnerable to ferroptosis

(40, 51). High expression of CD44 in mesenchymal state tumor

cells activates iron metabolic pathways, resulting in increased

cellular susceptibility to ferroptosis (52). BLIA and BLIS were

less correlated with ferroptosis (40). The combination of GPX4

inhibitors with immune checkpoint inhibitors for ferroptosis

induction and enhanced immunosuppression has great potential

for LAR tumor therapy (40). Discovering and developing safer

and more effective drugs are warranted.

Breast cancer patients have a high rate of drug toxicity, drug

resistance and recurrence during treatment (2). Tumor cell

genomic instability is the main cause of tumor heterogeneity,

which drives the evolution of cancer cells, affects their sensitivity

to therapeutic agents, and ultimately promotes tumor drug

resistance (53–55). Tumor drug resistance is also associated

with the available concentration of drugs in the tumor as

well as the tumor microenvironment (54). The tumor

microenvironment involves complex interactions between

cancer cells and stromal cells. Alterations in the tumor

microenvironment can lead to changes in the properties of

stromal cells and their secretion of soluble small molecules,

which can lead to microenvironmental mediating tumor drug

resistance (56). Ferroptosis exerts anti-tumor effects by engaging

complicated crosstalk between tumor cells and immune cells to

mediate tumor immunity (57, 58). KRAS is the key to

macrophage polarization and its alteration leads to tumor

associated macrophages formation and M2-like pro-tumor

phenotype (59). A tumor-associated macrophage type is

associated with immunosuppression (19). CD8+ T cells

promote tumor cell ferroptosis and induce radiosensitization

via IFN (60).
3 Mechanism of ferroptosis

Catalyzed by iron and iron-dependent enzymes, cells

produce functional oxidative metabolites and promote labile
TABLE 1 Emerging therapies for breast cancer based on molecular subtypes.

Molecular subtypes Drugs Phase Target

HER-2 + trastuzumab and lapatinib II HER2 blockade (48)

Luminal A Etrozole and taselisib II ER and PI3K (49)

Nanoparticle albumin-bound paclitaxel II B tubulin (50)

Luminal B Ribociclib and letrozole II CDK4/6 and hormone receptor (46)

Buparlisib and capecitabine I PI3K and aromatase (47)

TNBC abiraterone acetate and prednisone II AR and PI3K (43)

Bicalutamide II AR (41)

Enzalutamide IB/II AR and PI3K (44)

GT0918 I AR (42)

Pembrolizumab and Enobosarm II AR and programmed death receptor (PD-1) (45)
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iron pool (LIP) formation, while inevitably leading to the

accumulation of some undesirable oxidative byproducts (61–

63). When they accumulate to a lethal level can cause severe

cellular damage and even lead to cell death. Therefore,

antioxidant mechanisms have evolved in cells to remove these

metabolic wastes in a timely manner, such as the glutathione

peroxidase-4-GSH (GPX4-GSH) system, Coenzyme Q10

(CoQ10) (64).

Ferroptosis is an iron-dependent form of regulated cell death

(3), characterized by massive accumulation of disruptive

membrane lipid peroxidation (65). There are three main

features of ferroptosis including imbalance of iron metabolism,

massive production of lipid peroxides, and collapse of the GPX4-

GSH system (58). Morphologically, ferroptotic cells show

significant changes in mitochondrial morphology, with

mitochondrial contraction, rupture of the outer mitochondrial

membrane (OMM), and enlarged mitochondrial cristae. In the

absence of swelling or contraction of cells in necrosis and

apoptosis , neither nuclear changes nor chromatin

condensation (3, 66, 67).

Lipid peroxidation due to massive accumulation of the iron

positively regulate ferroptosis, while GSH depletion due to

system xc- and GPX4 inactivation negatively regulate

ferroptosis (61–63). Apart from the classical GPX4-GSH axis,

there are other antioxidant mechanisms involved in the negative

regulation of ferroptosis in breast cancer cells, such as the

ferroptosis suppressor protein 1-NADH-CoQ10 (FSP1-
Frontiers in Immunology 04
NADH-CoQ10) axis (68) and the GCH1 -Tetrahydrobiopterin

(GCH1-BH4) axis through the involvement of COQ10 (69), and

the regulation of some antioxidant transcription factors, such as

NRF2 (70). A mutant of p53 can promote ferroptosis (71, 72).

Here, we summarized and mapped the ferroptosis mechanism in

Figure 1. FINs in breast cancer are summarized in Table 2.
FIGURE 1

Mechanism of ferroptosis. The massive accumulation of PUFA on the cell membrane leads to excessive production of PUFA-OOH. GPX4 uses
GSH as a reducing agent to reduce PUFA-OOH to PUFA-OH, reducing the production of lipid peroxides. GSH can be formed from cystine
transported into the cell via system XC- or via the TXN pathway. The accumulation of intracellular ROS promotes lipid peroxidation.
Mitochondrial GLS2 promotes glutamine catabolism to facilitate ROS production leading to the accumulation of lipid peroxides. Large
accumulation of intracellular ferrous ions leads to overproduction of ROS. CoQ10 acts as an antioxidant to inhibit ROS production, and the MVA
pathway and GCH1-BH4 are associated with the production of CoQ10.
TABLE 2 FINS in breast cancer.

Target Drugs

Increased iron Sulfasalazine

Lapatinib+siramsine

Neratinib

Artemisinin

Mitochondrial disorders RF-A

Nitroxide

Reduced iNOS activity GA

Inactivation of GPX4 DT

Metformin

Simvastatin

Curcumin

Inhibition of GSH synthesis Metformin

Sulfasalazine

BSO+AUR

Inhibition of CoQ10 synthesis FIN56
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3.1 Intracellular iron metabolism and its
redox reactions

Iron is one of the most important trace elements in the

human body and essential for the vital activities of the body,

participating in the formation and regulation of the activity of

Reactive Oxygen Species (ROS)-producing enzymes, such as

Lipid oxidases (LOXs) (3). Iron homeostasis plays a key role in

controlling the balance between ROS production and ROS

scavenging as well as cellular redox and potential oxidative

damage (73, 74). Elevated iron levels in mitochondria may

lead to excessive production of ROS (65). High iron diet

causes ferroptosis in mouse cardiomyocytes (75). Iron levels

are significantly elevated in ferroptosis cells, suggesting that the

accumulation of intracellular iron is a prerequisite for cells to

undergo ferroptosis. Deferoxamine (DFO) inhibits erastin-

induced cell death by chelating intracellular iron and reducing

iron overload (3). Transferrin (TF) and TFR1 regulate

ferroptosis by mediating cellular uptake of iron (26). Nuclear

receptor coactivator 4 (NCOA4) regulates ferroptosis by

mediating ferritinophagy to control iron homeostasis (76).

Ferritin consists of ferritin heavy chain (FTH) and ferritin

light chain (FTL), of which FTH1 has iron oxidase activity and

oxidizes ferrous ion to ferric ion (77). Knockdown or inhibition

of FTH1 both promote ferroptotic death (76, 78).

Sulfasalazine targeting Transferrin receptor (TFRC) and its

ferroptosis-inducing effect is reduced in ER-positive breast cancer

(14). The combination of lapatinib and siramsine induces

ferroptosis in breast cancer cells rather their individual treatment.

Promoting the expression of transferrin and degradation of FPN,

causing a time-dependent increase in intracellular iron levels and

ROS levels, ultimately leading to cellular ferroptosis and autophagy

at different time (79). Neratinib causes iron imbalance by regulating

the expression of proteins related to the iron transport system,

ultimately inducing ferroptosis (80). Artemisinin mediates the

degradation of ferritin, which is an elevated level of intracellular

ferrous iron, leading to cellular ferroptosis (81).

Ferric ions from foods bind to TF in blood and attach to

TFR1 on the cell membrane, transporting ferric ions into the cell,

where STEAP3 in acidic nuclear endosome reduces ferric ions to

ferrous ions. Ferrous ions are transferred via divalent mental

transporter 1 (DMT1) to LIP. Binding to ferritin is the storage

form of intracellular free irons, and NCOA4 is involved in the

degradation of ferritin, releasing ferrous ions (76).

Excess Ferrous ions generate large amounts of hydroxyl radicals

through Fenton and Haberweth reactions, which alter the

intracellular redox state. Due to their high instability and

reactivity, hydroxyl radicals can cause severe damage to lipids and

proteins and intense oxidative damage to DNA (82, 83). In

ferroptotic cells, hydroxyl radicals are able to attack

polyunsaturated fatty acids (PUFAs) on membranes, triggering

membrane lipid peroxidation (9).
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3.2 Mitochondrial involvement in reactive
superoxide formation

Mitochondria is important for maintaining normal cellular

function, energy supply and redox homeostasis, and is a major

site for intracellular ROS production. The Tricarboxylic Acid

(TCA) cycle and electron transport chain (ETC) action are

necessary for mitochondria to produce sufficient ROS via

oxidative phosphorylation (OXPHOS) (84, 85). Ferroptotic

cells undergo significant changes in mitochondrial morphology

with mitochondrial contraction, rupture of the OMM, and

enlarged mitochondrial cristae (3, 67). Robustaflavone A (RF-

A) promotes Voltage-dependent anion-selective channel protein

2 (VDAC2) expression and ubiquitinated degradation, inducing

the breakdown of mitochondrial functional systems, lipid

peroxidation and ROS production, ultimately leading to

ferroptosis in breast cancer cells. Blocking mitochondrial

function contributes to ferroptosis inhibition independent of

GPX4 activity (86). Nitroxide targets mitochondria as a ROS

scavenger and inhibits lipid peroxidation of mitochondrial

membranes thereby inhibiting ferroptosis (87). BAY87-2243

induces ferroptosis in melanoma cells through inhibition of

mitochondrial respiratory chain complex 1 and induction of

mitochondrial membrane potential depolarization (88). In

cysteine-starved cells , mitochondrial metabolism is

significantly enhanced, promoting GSH depletion, ROS

production and ferroptosis. Mitochondrial GLS2 promotes

glutamine catabolism to glutamate, which is then converted to

a-KG via glutamine dehydrogenase into the TCA cycle, driving

ETC and leading to mitochondrial membrane hyperpolarization

and lipid peroxide accumulation, eventually ferroptosis is

triggered (26, 85).
3.3 Accumulation of lipid peroxides

PUFAs are major components of membrane lipids, which are

highly susceptible to oxidation and play an important role in

maintaining membrane integrity and participating in trans-

plasma membrane transport activity (89). Increased production

of lipid peroxides occurs in both erastin- and RSL-induced

ferroptosis (90). Extensive production of ROS attack PUFAs on

the membrane, triggering membrane lipid peroxidation, leading

to a massive accumulation of lipid peroxides and ferroptosis (9).

The presence of more and longer PUFAs exacerbates ferroptosis

(91). Glycyrrhetinic acid (GA) generates ROS and Reactive

nitrogen species (RNS) by upregulating NADPH oxidase and

iNOS activity in TNBC cells, which exacerbates intracellular

oxidative stress level, leads to lipid peroxidation and ferroptosis

(92). Inhibition of peroxidation of PUFAs with antioxidants

inhibits ferroptoisis (3). Acyl coenzyme A (CoA) synthase

ACSL4 and lysophosphatidylcholine acyltransferase 3 (LPCAT3)
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are involved in the synthesis of lipid ROS and their deletion

contributes to ferroptosis resistance (93). ACSL4 is engaged in the

production and activation of the long-chain polyunsaturated fatty

acids arachidonic acid (AA) and adrenalic acid (AdA), acylating

PUFA to form PUFA-CoA (16), LPCAT3 inserts PUFA-CoA into

membrane phospholipids (PL) and catalyzes the production of

PUFA-PL (94). Finally, PUFAs are oxidized by iron and iron-

dependent oxidase LOXs to produce PUFA-PL-OOH, which

initiates ferroptosis (95).Oxidized PUFAs accumulate on the

membrane, causing membrane thinning and bending to

increase the accessibility of oxidants. Oxidants react with

PUFAs in the membrane, forming a positive feedback loop,

which further accelerates membrane instability and ultimately

leads to irreversible damage to membrane integrity and promotes

cellular ferroptosis (96).
3.4 XC-/GPX4-GSH system

GSH is vital in normal embryonic growth and development

as well as an essential reducer. GPX4 catalyzes the reduction of

harmful lipid peroxides to harmless lipid alcohols, thus

protecting cell membranes from peroxidative damage by

PUFA-OOH (17, 97, 98). Cystine-starved cells with reduced

GSH synthesis are more sensitive to ferroptosis inducers (FINs)

(26). Overexpression of SLC3A1 enhances tumor progression in

breast cancer cells, while blocking SLC3A1 with specific siRNA

or SLC3A1-specific inhibitor sulfasaliazine inhibits tumor

growth (99). Erastin acts on system xc- to inhibit cystine

uptake, and intracellular GSH synthesis is depressed (3). RSL

inactivates GPX4 by binding to selenocysteine, with massive

accumulation of lipid peroxides (100). When GPX4 is inhibited

or knocked down, intracellular antioxidant activity is

significantly diminished and lipid peroxides accumulate

excessively, eventually leading to ferroptosis (101, 102).

Sulfasaliazine induces ferroptosis in breast cancer cells by

functioning on system xc- which is currently in a type II

clinical trial. Dihydroisotanshinone I (DT) induces cellular

ferroptosis and inhibits tumor growth without adverse effects

through down-regulation of GPX4 expression (103). Metformin

enhanced ferroptosis in breast cancer cells by altering the

stability of SLC7A11, downregulating GPX4 activity and

inhibiting the autophagy induced by H19. This effect is more

sensitive in estrogen receptor-positive breast cancer cells. In

addition, the combination of metformin with sulfasazine

enhanced its ferroptosis induction and exerted more effective

anti-cancer effects (104–106). MVA pathway and the activity of

GPX4 is inhibited in ferroptotic death breast cancer cells

induced by Simvastatin (107). Curcumin induces ferroptosis in

breast cancer cells by upregulating the expression of redox target

genes such as HO-1 and downregulating antioxidants such as

GPX4, an effect that is more pronounced than in normal human

breast epithelial cells (108). Moreover, high expression of
Frontiers in Immunology 06
Glycogen synthase kinase-3b (GSK-3b) was able to increase

the sensitivity of erastin-induced ferroptosis by enhancing the

inhibition of GPX4 (109).

System xc- is a glutamate-cystine transporter located on the

plasma membrane, consisting of the heavy chain subunit

SLC3A2/CD98hc and the light chain subunit xCT/SLC7A11,

responsible for cellular uptake of cystine and transport of

glutamate (110). Cystine is reduced to cysteine upon entry

into the cell, then glutamate-cysteine ligase (Gcl) and

glutathione synthetase (Gss) catalyze the production of GSH

(111, 112). GSH is the most abundant and common antioxidant

in cells, maintaining intracellular redox homeostasis. GPX4 is

one of the glutathione peroxidases, selenocysteine is an

important component of the GPX4 active center (113).

Mevalonate is involved in the synthesis of selenoprotein in the

GPX4 active center (114). GPX4 uses GSH as an essential

reducing agent to catalyze the reduction of harmful lipid

peroxides to harmless lipid alcohols, thereby protecting cell

membranes from peroxidative damage by PUFAs. When the

function of system xc- is inhibited, TXN pathway can be an

alternative GSH synthesis pathway. TXNRD1 KO cell survival is

highly dependent on intracellular GSH levels (115). Buthionine

sulfoximine (BSO) can induce cell death in TXNRD1 KO cell

(116). Forced expression of xCT in cells which are completely

deficient in GSH production, TXN pathway increases cellular

cystine uptake to rescue GSH deficiency. Overexpression of xCT

in TXNRD1 KO cells not only exacerbates but also accelerates

BSO-induced cell death (117). Expression of TXNRD1 are

higher in Gclm(-/-) mice compared to WT mice (118). Thus,

the TXN pathway is another major antioxidant approach that

has been shown to support cell survival after system xc-

inhibition, TXN and system xc- synergistically control

intracellular GSH level (119). Due to the presence of the TXN

pathway and the essential role of GPX4 in the embryo, directly

targeting of GPX4 is more effective than inhibiting the activity of

SLC7A11 when inducing ferroptosis (98, 120). BSO can induce

ferroptosis by inhibiting GCL and thus decreasing GSH

synthesis (121). However, inhibition of GSH by BSO alone can

only elevate ROS at the tumor initiation stage and cannot affect

established tumor growth (17). Auranofin (AUR) is an FDA-

approved thioredoxin reductase inhibitor for the suppression of

TNBC tumor growth (122). Combining BSO with AUR can

significantly increase the mortality of breast cancer cells through

combined inhibition of GSH synthesis and TXN pathway (17).
3.5 COQ10 as an endogenous
membrane antioxidant
inhibits ferroptosis

CoQ10 is involved in respiratory chain activities in the

mitochondrial membrane and is critical for electron translocation.

The non-mitochondrial CoQ10 acts as a free radical trapping
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antioxidant (RTA) and prevents plasma membrane lipid damage.

MVA pathway is engaged in CoQ10 skeleton generation (114, 123).

A significant decrease in CoQ10 level occurs in ferroptotic cells

(124). The MVA pathway is involved in CoQ10 backbone

formation, and FIN56 induces ferroptosis by reducing CoQ10

production via the MVA pathway (125). Inhibition of CoQ10

synthesis by inhibiting CoQ10 synthase CoQ2 increases RLS-

induced lipid ROS and exacerbates ferroptosis (126). CoQ10 is

involved in ferroptosis resistance through the FSP1-NADH-CoQ10

axis and the GCH1-BH4 axis.

3.5.1 FSP1-NADH-CoQ10
FSP1 is the key component of the antioxidant system in

ferroptotic death independent of the GPX4-GSH axis (68). FSP1

expression positively correlates with cancer cell resistance to

ferroptosis induced by GSH depletion or GPX4 inhibition (98,

123). FSP1 KO leads to increased cellular phospholipid

oxidation and increased sensitivity to ferroptosis inducers.

NAD(P)H-quinone oxidoreductase-1 (NQO1) is a CoQ

oxidoreductase that may be involved in CoQ10 reduction in

synergy with FSP1 to regulate ferroptosis (123). NQO1

knockdown cells showed increased sensitivity to erastin- and

sorafenib-induced ferroptosis (78). Elevated NADH/NADPH

ratio indicates a weakened intracellular antioxidant capacity

and a greater susceptibility to cellular ferroptosis (127). FSP1

targets the plasma membrane and converts oxidized CoQ10

(ubiquitinone) to reduced CoQ10 (ubiquitinol), NAD(P)H acts

as a reducing co-substrate to provide hydrogen ions for this

reaction, which inhibits lipid peroxidation and ferroptosis

(68, 123).

3.5.2 GCH1-BH4-phospholipid axis
The GCH1-BH4-phospholipid axis links to ferroptosis

resistance. GTP Cyclohydrolase 1 (GCH1) is the key enzyme

that catalyzes the production of tetrahydrobiopterin (BH4) (69).

The expression level of GCH1 determines the BH4 availability,

which influence the redox balance in cancer cell. Intracellular

levels of BH4 are negatively correlated with oxidized GSH and

NADP (128). An increase in BH4 can lead to an increase in

CoQ10 levels. Inhibition of GCH1 activity results in the

sensitivity of drug-resistant cancer cells to ferroptosis.

Conversely, overexpression of GCH1 effectively prevents cell

death induced by deletion of RSL3, IKE and GPX4, and inhibits

lipid peroxidation (69). BH4 can act directly as an antioxidant or

indirectly by synthesizing CoQ10 to inhibit lipid peroxidation

and attenuate oxidative damage in the presence of FSP1,

protecting cells from ferroptosis (69, 128).
3.6 NRF2 involved Redox homeostasis

NRF2 is a major antioxidant transcription factor in vivo. NRF2

increases cellular resistance to ferroptosis, by upregulating the

expression of iron, HO-1, and ROS metabolism-related gene. The
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expression of NRF2 was upregulated in ferroptosis, while

knockdown or pharmacological inhibition of NRF2 revealed the

phenomena of GSH depletion, increased iron level and lipid ROS

production in erastin- and sorafenib-induced cells, promoting

cellular ferroptosis and enhancing the anticancer activity (70).

Moreover, there is a p62-Keap1-NRF2 pathway to regulate

intracellular NRF2 levels. P62 expression positively correlates with

NRF2 levels, while Keap1 negatively regulates NRF2 and mediates

its degradation (78). Kelch-like ECH-associated protein 1 (Keap1)

binds to Cul3 and Rbx1 to form a functional E3 ubiquitin ligase

complex that ubiquitinates NRF2 for degradation. This process can

be inhibited by the NRF2-dependent transcriptional

chemoattractants Sulforaphane and quinone (tBHQ)-induced

oxidative stress, mainly because they enable a redox-dependent

alteration of multiple cysteine residues in Keap1, and NRF2

separates from Keap1 and enters the nucleus (129, 130). In

nucleus, NRF2 forms a heterodimer with sMaf (131) and binds to

ARE (132), protecting cancer cells from GPX4 inhibition and

promoting the transcription of antioxidant enzymes, such as

HMOX1, NOQ1, and GSTS (108, 133–135), reducing ROS levels,

forming resistance to ferroptosis (78).

HO-1 has been shown to have anti-proliferative, antioxidant

and anti-inflammatory effects. Upregulated HO-1 expression in

breast cancer cells has an inhibitory effect on cancer cell

proliferation and invasion (23, 136). HO-1 degrades heme to

CO, ferrous ions as well as bilirubin and can induce upregulation

of ferritin expression. Ferritin binds to free intracellular iron and

inhibits the Fenton reaction, thereby reducing ROS production

and exerting its antioxidant activity (24). HO-1 acts as an

antioxidant, and HO-1 expression is upregulated in erastin-

and sorafenib-induced ferroptosis. Meanwhile, inhibition of

HO-1 expression or the occurrence of HO-1 deficiency

exacerbates intracellular ferroptosis (22, 78). However, HO-1,

a major source of intracellular iron. Under high oxidative stress,

a significant rise in intracellular concentration of ferrous ions,

which increases ROS levels to promote lipid peroxidation and

thus lead to ferroptosis (108, 137, 138). HO-1 is important for

maintaining redox homeostasis and its dual role in ferroptosis

may be related to intracellular levels of oxidative stress and

cellular stress. In response to induction of cellular stress, HO-1

expression is moderate upregulated and acts as an antioxidant

defense mechanism to mitigate ferroptosis. In contrast, when

excessive intracellular oxidative stress occurs, HOs are

overactivated and overexpressed, which acts as pro-oxidant to

accelerate cellular ferroptosis (22, 137). The role of HO-1 in

ferroptosis remains controversial, and the mechanism

underlying its role in ferroptosis remains to be identified.

3.7 P53-mediated GSH synthesis
and depletion

P53 is the most frequent and susceptible gene to mutation in

breast cancer. In previous studies, it has been shown that mutant
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p53 has a higher mortality rate and worse prognosis than wild-

type p53 (139–141). Induced restoration of the wild-type

properties of mutant p53 offers a new idea for the treatment of

breast cancer, and PRIMA-1MET(APR-246, Aprea AB) may be

able to achieve this goal (71, 72). PRIMA-1MET increased

intracellular GSH depletion and induced ROS production.

Synergy with BSO increased the sensitivity of cells to PRIMA-

1METm (142, 143). PRIMA-1MET can induce ferroptosis in

AML cells (144). In addition, a novel ferroptosis inducer,

MMRI62, with dual targeting of FTH1 and mutant p53, which

induces ferroptosis in pancreatic cancer cells by inducing

lysosomal degradation of FTH1 and NCOA4 as well as

proteasomal degradation of mutant p53 to improve

chemoresistance and control metastasis of cancer cells (145).

A P533KR (K117R + K161R + K162R) mutant, which fails to

induce cell cycle arrest, senescence and apoptosis, but presence

of inhibitory properties on SLC7A11 expression renders the cell

incapable of cystine uptake, reduction in GSH synthesis, more

susceptible to ferroptosis and can be inhibited by Fer-1. While

overexpression of SLC7A11 in P533KR mutant rescues its

ferroptosis. Suggesting that P53 triggers ferroptosis by

mediating transcriptional repression of SLC7A11 (146).

P534KR (K98R + K117R + K161R + K162R) mutant, with

complete depletion of acetylation capacity compared to

p533KR resulted in loss of ferroptosis induction, suggesting

p53-mediated acetylation capacity plays an important role in

ferroptosis induction (147). In addition, p533KR retains the

transcriptional activity of glutaminase 2 (GLS2), which induces

ferroptosis by promoting glutaminolysis (26, 147). P53

upregulates the expression of spermidine/spermine N1-

acetyltransferase 1 (SAT1) and promotes ALOX15 activity,

leading to lipid peroxidation (148). Mutant p53 also increases

ferroptosis sensitivity of pancreatic cancer cells by

downregulating the expression of FTH1 and NCOA4 (145).On

the other hand, P53 inhibits ferroptosis by upregulating the

expression of cell cycle protein-dependent kinase inhibitor 1A

(CDKN1A/p21) (149) and GLS2 (26, 150), which also inhibit the

formation of DPP4-NOX1 complex (151) by altering the

localization and activity of DPP4 in CRC cells.
4 Correlation between autophagy
and ferroptosis

Ferroptosis has an autophagic correlation (59, 76, 152, 153).

Autophagy (Macroautophagy) is a form of cell death that exists

within normal cells to maintain a state of intracellular

homeostasis. It is a lysosomal degradation process that cells

engulf cytoplasmic material to form autophagosomes, which

then bind to lysosomes to form autolysosomes (154).

Autophagic lysosomes can degrade protein, lipid and damaged

mitochondria, etc. (152, 155, 156).
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Elevated autophagic activity occurred in erastin-induced

ferroptosis cells, whereas the use of the lysosomal inhibitors

Bafa1 and CQ blocked ferroptotic death cells (76, 153), and this

inhibition was time-differentiated, with a more pronounced

inhibition effect at 12h than 24h. Autophagy genes (ATGs)

were found to be involved in the positive regulation of

ferroptosis by RNAi screening (76). Knockdown of ATGs or

pharmacological inhibition both achieved the blocking effect of

ferroptosis (76, 157).

Ferritinophagy is a NCOA4-mediated ferritin degradation

exists in ferroptotic death cells, which is an elevation of ferrous

ions thereby promoting the accumulation of lipid ROS, while

independent of GSH depletion (76, 153). Autophagic

degradation of FTH1 is also found in erastin-induced cells

(76). Lipophagy promotes ferroptosis by mediating the

selective autophagic degradation of lipid droplet (LD). The

accumulation of neutral LD protects cells from ferroptosis by

suppressing lipid peroxidation (157). LDs are involved in the

redistribution of PUFAs. PUFAs are transferred from the

phospholipid membrane to the core of LDs. Where PUFAs are

less susceptible to ROS attack, thus inhibiting lipid peroxidation

(158). Mitophagy is a process of selective autophagic

degradation of damaged or redundant mitochondria to

maintain intracellular mitochondrial homeostasis (155). There

is a mitochondrial autophagy-associated ferroptosis in BAY87-

2243-induced human melanoma cells, which exerts an

inhibitory effect on tumor growth (88). Chaperone-mediated

autophagy (CMA) is a cellular autophagic degradation pathway

that recognizes soluble cytoplasmic proteins containing specific

KEFRQ motifs through heat shock-associated proteins (HSP)

and targets them directly to the lysosome for degradation (155).

HSP90 upregulates the level of lysosome-associated membrane

protein type 2a (Lamp-2a), promotes chaperone-mediated

autophagic degradation of GPX4, and thus participates in the

regulation of ferroptosis (159, 160). A graphical representation

of the relationship between ferroptosis and autophagy is shown

in Figure 2.

Perhaps induction of cellular autophagy could be an effective

way to activate ferroptosis (76).
5 Effective ways to enhance
ferroptosis

In the process of breast cancer chemotherapy and

radiotherapy, it is difficult to distinguish between normal cells

and cancer cells. Thus it is hard to target breast cancer cells,

which will inevitably cause damage to normal tissues and lead to

high toxicity and adverse effects (2). The discovery of ferroptosis

emerges a new ray of light for cancer treatment. However, the

poor water solubility and rapid metabolism of therapeutic drugs

lead to their low bioavailability in vivo. Nanoparticles have the
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characteristics of small size and low toxicity, ferroptosis-

inducers (FINs) can be loaded on these particles, which can

help us solve these problems. Nano-FINs in breast cancer cells

are summarized in Table 3. More importantly nanoparticles can

target drug transport to tumor cells, reducing the toxic damage

effect of drugs on normal cells. The application of Nanoparticle-

loaded ferroptosis-inducer-targeted transport technology can

greatly enhance the tumor suppressive effect of the drugs

(161). Drug resistance of cancer cells is also a thorny issue in

current cancer treatment. FINs can be used as chemotherapy

and radiotherapy sensitizers enhance ferroptosis of cancer cells,

achieving effective improvement in drug resistance during

treatment and prolong patients’ survival (11, 12).
5.1 Nanomaterial-based
therapeutic drugs

TA-Fe/ART@ZIF, a ferrous nanocarrier encapsulated with

ART enhanced the ferroptosis-inducing effect of ART in TNBC

cells and exhibited stronger tumor suppression compared to

ART alone (162). A novel nanomedicine Fe3O4@PCBMA-SIM

can slow down the metabolism of the drug and increase the

accumulation and duration of action at the tumor site to exert

better cancer suppressive effects (107). A newly discovered folate

(FA)-exosome-encapsulated erastin can help us address the low

water solubility and nephrotoxicity of erastin and target erastin
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delivery to FA receptor overexpressing TNBC cells. This

erastin@FA-exo induced ferroptosis by inhibiting the

expression of GPX4, upregulating the expression of cysteine

dioxygenase (CDO1), and increasing the depletion of GSH is

intracellular production of excess ROS, which greatly enhanced

the antitumor effect of erastin (163). A heparanase (HPSE)-

driven sequential released nanoparticles, NLC/H(D + F + S)

NPs, induces ferroptosis characterized by excessive ROS

production and GSH depletion in mouse breast cancer cells,

significantly inhibits the metastatic growth of tumors and

improves anti-cancer efficiency (164).
5.2 Ferroptosis inducers as sensitizers
for chemotherapy

A new nanomedicine DFHHP can inhibit tumor growth by

inducing apoptosis and ferroptosis in tumor cells to overcome

tumor chemoresistance. DFHHP is an integration of Fe (VI)

species and Doxorubicin (DOX) into HMS nanomaterials. DOX,

a common chemotherapeutic agent in tumor therapy, generates

a large amount of reactive superoxide radicals by promoting

tumor cell reoxidation. DFHHP provides exogenous iron,

generating highly reactive ROS by Fenton reaction, leading to

the depletion of GSH and exacerbating ferroptosis of tumor cells

(11). HMCM nanocomposites have photothermal properties
FIGURE 2

Correlation between ferroptosis and autophagy Ferritin, lipid droplets and impaired mitochondria can act as autophagic substrates for
ferritinophagy, lipophagy, and mitophagy, forming autolysosomes in cells. GPX4 can act as autophagic substrates for CMA-mediated autophagy,
forming lysosomes in cells. Facilitating the production of intracellular lipid ROS, leading to ferroptosis.
TABLE 3 Nano-FINS in breast cancer.

Nanomedicines Composition Cell

TA-Fe/ART@ZIF artemisinin +tannic acid+Fe(II)+zeolitic imidazolate framework-8 MDA-MB-231

Fe3O4@PCBMA simvastatin+Fe3O4+zwitterionic polymer coated magnetic nanoparticles MDA-MB-231+MCF-7

erastin@FA‐exo Folate+Erastin+Exosome MDA-MB-231

HMCM MnO2+HMCu2-xS+Nanoparticles MCF-7

DFTA Doxorubicin+FeCl3+tannic acid MCF7
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that enable PT, and the nanodrug also incorporates the

autophagy promoter Rapa, which enhances the sensitivity of

breast cancer cells to ferroptosis and effectively controls tumor

growth (165).

A drug-organics-inorganics self-assembled nanosystem

(DFTA) effectively inhibits the progression of ER+ breast

cancer by using a chemotherapeutic agent DOX, a ferroptosis

inducer ferric chloride (FeCl3) and a activator of superoxide

dismutase (SOD) tannic acid (TA), which activates a cascade

reaction generated by intracellular ROS and significantly reduces

GSH levels. In addition the combination with photothermal

therapy (PT) can greatly increase the efficiency of ROS

production. It is expected to achieve the combination of

chemotherapy, PT, and ferroptosis against ER+ breast

cancer (166).
5.3 Ferroptosis inducers as sensitizers
for radiotherapy

Radiotherapy mainly uses targeted delivery of ionizing

radiation (IR) to cause cell death. Hypoxia is the main

mechanism leading to radiotherapy resistance in tumor cells,

while hypoxia-induced ROS production and massive activation

of the hypoxia-inducible factors result in the induction of

ferroptosis (12, 167). The use of FINs may overcome hypoxia-

induced resistance to radiotherapy by promoting ferroptosis in

tumor cells. Conversely, inhibition of ferroptosis leads to

resistance to radiotherapy (12).

Tumor cells treated with radiotherapy showed typical

ferroptotic features, with mitochondrial atrophy and its

increased membrane density, enhanced lipid peroxidation, as

well as increased expression of the ferroptosis marker gene

prostaglandin-endoperoxide synthase-2 (PTGS2) (12). IR can

promote the production of PUFA-PLs by upregulating the

expression of ACSL4, while stimulating cells to produce large

amounts of ROS, leading to lipid peroxidation and inducing

ferroptosis in cancer cells (12, 168). Meanwhile IR may inhibit

ferroptosis by inducing the expression of SLC7A11 and GPX4 as

a negative feedback regulatory pathway to induce radiotherapy

resistance in cancer cells. The combination of sulfasalazine, an

ferroptosis inducer targeting SLC7A11, and IR enhanced the

sensitivity of cancer cells to radiotherapy, synergistically induced

ferroptosis, and significantly inhibited tumor growth (120, 169).

Another study found that IR also antagonized the upregulation

of SLC7A11 expression by activating P53, making cancer cells

more sensitive to ferroptosis. The combination of FINs and

radiation therapy is more effective in the treatment of P53-

mutated cancers (170). CD8+ T cells promote tumor cell

ferroptosis and induce radiosensit izat ion via IFN.

Immunotherapy-activated CD8+T cells induce tumor cell

ferroptotic death by producing IFN in concert with
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radiotherapy -activated ATM targeting SLC7A11 to inhibit

cystine uptake (60). Immunotherapy enhances the efficacy of

radiotherapy, radiation and immunotherapy synergistically

induce ferroptosis in tumor cells (60, 171).
6 Discussion

Ferroptosis is an iron-dependent form of lipid peroxidative

cell death. With GSH as a reducing agent and CoQ10 as an

endogenous membrane antioxidant to inhibit lipid peroxidation

and ferroptosis (28, 69). Mitochondria are involved in

ferroptosis by promoting glutaminolysis (26, 85). NRF2 and

P53 have dual roles in ferroptotic cells. Whether CoQ10 could be

a new target for ferroptosis? What is the role of HO-1 in

ferroptosis and how does it work? Nevertheless, in-depth

studies are required to clarify the mechanism of ferroptosis.

However, it is clear that induction of ferroptosis in breast cancer

cells inhibits tumor growth (13, 14). Given the positive role of

autophagy in facilitating ferroptosis, perhaps autophagy

activation can be used as a target to induce cellular ferroptosis

(76, 153). FINs can be used as sensitizers for radiotherapy and

chemotherapy to enhance tumor efficacy (11, 12). We are

expected to realize the combination of nano-ferroptosis-

inducers with chemotherapy and radiotherapy. It can not only

enhance the targeting effect of drugs, but also solve the problem

of drug resistance and greatly promote the tumor suppression

effect. However, the toxic side effects associated with this

treatment modality are elusive and require further

investigation. It is imperative to develop new ferroptosis-

inducing drugs that are highly effective and less toxic. In

summary, induction of ferroptosis has the potential to

surmount treatment resistance in breast cancer.
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ACSL4 Long-chain acyl-coenzyme A synthetase
Frontiers in Immunol
ATG Autophagy genes
AUR Auranofin
BH4 Tetrahydrobiopterin
BLIA Basal-like and immune-activated
BLIS Basal-like and immune-suppressed
BSO Buthionine sulfoximine
CoA Acyl coenzyme A
CoQ10 Coenzyme Q10
DOX Doxorubicin
ER Estrogen receptor
ETC Electron transport chain
FINs Ferroptosis inducers
FPN Ferroportin
FSP1 Ferroptosis suppressor protein 1
FTH Ferritin heavy chain
GA Glycyrrhetinic acid
GCH1 GTP Cyclohydrolase 1
Gcl Glutamate-cysteine ligase
GPX4 Glutathione peroxidase-4
GSH Glutathione
HER-2 Human epidermal growth factor receptor
type 2
IR Ionizing radiation
ogy 16
Keap1 Kelch-like ECH-associated protein 1
KO Knockdown
LAR Luminal androgen receptor
LD Lipid droplet
LIP Labile iron pool
LOX Lipid oxidase
LPCAT3 Lysophosphatidylcholine acyltransferase 3
NCOA4 Nuclear receptor coactivator 4
NRF2 Nuclear factor erythroid 2-related factor 2
OMM Outer mitochondrial membrane
PI3K Phosphatidylinositol 3-kinase
PL Phospholipids
PR Progesterone receptor
PUFAs Polyunsaturated fatty acids
RF-A Robustaflavone A
ROS Reactive Oxygen Species
STEAP Six-transmembrane epithelial antigen of
prostate 3
TCA Cycle Tricarboxylic Acid Cycle
TF Transferrin
TFRC Transferrin receptor
TFR1 Transferrin receptor1
TNBC Triple-negative breast cancer
TXNRD1 Thioredoxin reductase 1 protein.
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