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Inducing Humoral and Cellular Responses to Multiple Sporozoite and
Liver-Stage Malaria Antigens Using Exogenous Plasmid DNA

B. Ferraro,a K. T. Talbott,a A. Balakrishnan,a N. Cisper,a M. P. Morrow,c N. A. Hutnick,a D. J. Myles,a D. J. Shedlock,a N. Obeng-Adjei,a

J. Yan,c A. K. K. Kayatani,d N. Richie,d W. Cabrera,d R. Shiver,a A. S. Khan,c A. S. Brown,c M. Yang,c U. Wille-Reece,b A. J. Birkett,b

N. Y. Sardesai,c D. B. Weinera

University of Pennsylvania School of Medicine, Department of Pathology and Laboratory Medicine, Philadelphia, Pennsylvania, USAa; PATH Malaria Vaccine Initiative,

Washington, DC, USAb; Inovio Pharmaceuticals, Inc., Blue Bell, Pennsylvania, USAc; U.S. Military Malaria Vaccine Program, Division of Malaria Vaccine Branch, Walter Reed

Army Institute of Research, Silver Spring, Maryland, USAd

A vaccine candidate that elicits humoral and cellular responses to multiple sporozoite and liver-stage antigens may be able to confer

protection against Plasmodium falciparum malaria; however, a technology for formulating and delivering such a vaccine has remained

elusive. Here, we report the preclinical assessment of an optimized DNA vaccine approach that targets four P. falciparum antigens:

circumsporozoite protein (CSP), liver stage antigen 1 (LSA1), thrombospondin-related anonymous protein (TRAP), and cell-traversal

protein for ookinetes and sporozoites (CelTOS). Synthetic DNA sequences were designed for each antigen with modifications to im-

prove expression and were delivered using in vivo electroporation (EP). Immunogenicity was evaluated in mice and nonhuman pri-

mates (NHPs) and assessed by enzyme-linked immunosorbent assay (ELISA), gamma interferon (IFN-�) enzyme-linked immunosor-

bent spot (ELISpot) assay, and flow cytometry. In mice, DNA with EP delivery induced antigen-specific IFN-� production, as measured

by ELISpot assay and IgG seroconversion against all antigens. Sustained production of IFN-�, interleukin-2, and tumor necrosis factor

alpha was elicited in both the CD4� and CD8� T cell compartments. Furthermore, hepatic CD8� lymphocytes produced LSA1-specific

IFN-�. The immune responses conferred to mice by this approach translated to the NHP model, which showed cellular responses by

ELISpot assay and intracellular cytokine staining. Notably, antigen-specific CD8� granzyme B� T cells were observed in NHPs. Collec-

tively, the data demonstrate that delivery of gene sequences by DNA/EP encoding malaria parasite antigens is immunogenic in animal

models and can harness both the humoral and cellular arms of the immune system.

Malaria is a mosquito-borne disease caused by Plasmodium
parasites that poses a significant global health burden. The

World Health Organization estimated that in 2010 there were ap-
proximately 216 million cases of malaria and 655,000 deaths due
to malaria parasite infection, the majority of which are in young
children in Africa (1). There are multiple species of Plasmodium
but only five that can cause malaria in humans. Of these five,
Plasmodium falciparum is the predominant pathogenic species for
severe disease and death. Preventive measures and treatment op-
tions can reduce the risk and severity of infection. However, the
increasing resistance to antimalarial drugs by Plasmodium species
further complicates successful treatment of malaria. Thus, the de-
velopment of a vaccine to prevent malaria infection and subse-
quent clinical disease remains an important global goal.

The form of the Plasmodium parasite that is transmitted to
humans, the sporozoite, is delivered to the skin by the bite of an
infected female Anopheles mosquito. The sporozoites that do not
remain in the skin can enter the bloodstream and migrate to the
liver. In the liver, they invade hepatocytes, undergo replication,
and are released as merozoites that then invade red blood cells
(RBCs). Many current malaria vaccine strategies target sporozoite
and/or liver stages (preerythrocytic stage [PE]) of infection in an
effort to prevent progression to the blood stages, which are asso-
ciated with the clinical manifestation of the disease and continued
transmission.

High levels of protection from parasite infection in humans has
been achieved through repeated bites of P. falciparum-infected
mosquitoes while undergoing a prophylactic regimen of chloro-
quine (2, 3) and by vaccination with RTS,S, an adjuvanted recom-
binant protein. RTS,S targets the circumsporozoite protein (CSP).

In phase III RTS,S clinical trials, 1-year follow-up data from chil-
dren who were 5 to 17 months old at first vaccination reported
55.8% efficacy (97.5% confidence interval [CI], 50.6 to 60.4)
against clinical malaria and 47.3% efficacy (95% CI, 22.4 to 64.2)
against severe malaria incidence compared to the control group
(4). Sporozoite-based approaches have provided a gold standard
for malaria vaccine development, because they confer protection
in animal models and humans and have served as an important
tool to gain insight into the immune mechanisms underlying pro-
tection (3). Unfortunately, widespread use of attenuated and irra-
diated sporozoites may be hindered by practical and logistical
considerations. For example, a recent clinical trial investigated the
protective efficacy of cryopreserved, irradiated sporozoites deliv-
ered via intradermal or subcutaneous injection (5). This approach
demonstrated less than 5% efficacy in malaria naive adults.

In general, targeting multiple antigens to broaden cellular and
humoral anti-P. falciparum immune responses appears to be im-
portant in the development of malaria vaccines (6). Protection
conferred by sporozoite-based approaches is thought to be pri-
marily T-cell mediated and dependent on multiple proteins ex-
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pressed during the early stages of invasion of the liver (7, 8). Nat-
urally acquired immunity, which residents of areas in which
malaria is endemic acquire after repeated infection, has been as-
sociated with antibodies to several different P. falciparum proteins
(9). Thus, there is evidence that both arms of the immune system
contribute to protection. DNA vaccines are an attractive approach
for targeting multiple antigens in a single formulation and can
generate both humoral and cellular responses, including cytotoxic
T lymphocytes (CTLs) (10, 11). DNA vaccines offer several signif-
icant advantages over viral vector-based vaccines, including long-
term stability, the potential for fewer cold chain requirements
than conventional vaccines (10, 12), and no concern for vector
serology inhibiting immune boosting with subsequent applica-
tions of the same vaccine. Early DNA-based vaccine studies failed
to elicit reliable or robust immune responses in humans (13, 14)
but were safe and well tolerated. Since these early studies, signifi-
cant technological advancement has been made to enhance the
immune potency of the DNA platform (15). Among these ad-
vancements are improved physical methods of delivery, such as in
vivo electroporation (EP), which increases the uptake of the vac-
cine plasmids by cells, and optimization of vaccine vectors and
encoded antigens. In addition to augmenting DNA vaccine im-
munogenicity in multiple animal models, including nonhuman
primates (NHPs) (16–18), delivery of DNA plasmids with EP has
also been employed in clinical trials (11).

Here, we describe immune responses induced by an optimized
DNA-based multiple immunogen approach, delivered by EP, tar-
geting four P. falciparum PE antigens: CSP, thrombospondin-re-
lated anonymous protein (TRAP), cell-traversal protein for oo-
kinetes and sporozoites (CelTOS), and liver-stage antigen 1
(LSA1). Of the four antigens incorporated into the multivalent
vaccine approach described here, CSP has been the most exten-
sively studied in the clinic as the antigen targeted by RTS,S (19).
TRAP and LSA1 have also been evaluated in clinical trials. The
viral-vectored ME-TRAP, a string of multiple PE antigen epitopes
fused to the full-length TRAP antigen, demonstrated partial pro-
tection in efficacy trials (20, 21), while an adjuvanted recombinant
LSA1 vaccine (FMP-011) did not protect against P. falciparum
challenge (22). However, the latter did not drive CD8� T cell
responses. CelTOS, which is currently undergoing evaluation in
the clinic (NCT01540474), has shown promise in preclinical stud-
ies. In mice, an adjuvanted P. falciparum CelTOS recombinant
protein vaccine protected animals challenged with Plasmodium
berghei (23).

In this study, the constructs conferred antigen-specific IgG se-
roconversion when delivered individually or as multiantigen
cocktails. Further, all antigens induced cellular immune re-
sponses, as evidenced by production of antigen-specific gamma
interferon (IFN-�) by enzyme-linked immunosorbent spot
(ELISpot) assay and IFN-�, tumor necrosis factor alpha (TNF-�),
and interleukin-2 (IL-2) production in both the CD4� and CD8�

T cell compartments by flow cytometry. In addition, we demon-
strate that immunization in the periphery drives antigen-specific
IFN-� production by liver-resident CD8� T cells in mice. The
immunogenicity of this approach was also evaluated in rhesus
macaques. In NHPs, the multivalent immunogens elicited high
antibody titers and cellular immune responses in both the CD4�

and CD8� T cell compartments. Furthermore, a large portion of
antigen-specific CD8� T cells also produced granzyme B (GrzB),
indicating the potential of this population to act as CTLs. Collec-

tively, the data show that this approach is highly immunogenic in
animal models and can harness both the humoral and cellular
arms of the immune system. Further study of these immunogens
in future malaria vaccine studies may be informative.

MATERIALS AND METHODS

Plasmids. TRAP and CSP consensus immunogens were designed from
the available full-length sequences in the GenBank database with previ-
ously described modifications (24). The LSA1 antigen was designed based
on the P. falciparum NF54 strain (accession number CAA39663) (http:
//www.ncbi.nlm.nih.gov/protein) and contains 8 of the 86.5 central re-
peats. The P. falciparum 3D7 sequence was used for the CelTOS antigen
(accession number BAD97684.1) (http://www.ncbi.nlm.nih.gov/protein). A
human influenza virus hemagglutinin (HA) tag was included at the C
terminus of all antigen sequences for detection of expression. The antigen
sequences were optimized for mRNA stability and codon usage in hu-
mans. All gene sequences were synthesized by GenScript and were sub-
cloned into the BamHI and XhoI sites of a modified pVAX1 vector.

Western blotting. RD cells (human muscle) (CCL-136; ATCC) were
transfected with the pVAX1 (negative control), CSP, LSA1, TRAP, or
CelTOS plasmid using Lipofectamine (Invitrogen) according to the man-
ufacturer’s instructions. SDS-PAGE of whole-cell lysate was completed,
and the antigens were visualized with an anti-HA polyclonal antibody
(Covance) followed by anti-rabbit horseradish peroxidase (HRP)-conju-
gated IgG (Cell Signaling). Bands were visualized using ECL Western
blotting substrate (Pierce).

Immunofluorescence. RD cells were transfected with 1 �g of the plas-
mid DNA (pDNA) constructs using TurboFect (Thermo Scientific) ac-
cording to the manufacturer’s instructions. The cells were fixed with 2%
paraformaldehyde 48 h after transfection and then permeabilized. Anti-
gen expression was detected with a polyclonal rabbit anti-HA antibody
(Invitrogen) and DyLight-488-labeled anti-rabbit conjugated secondary
antibody (Thermo Scientific). 4=,6-Diamidino-2-phenylindole (DAPI)
staining was used to visualize the nucleus.

Animals. (i) Mice. Female 4- to 6-week-old BALB/c mice were pur-
chased from Jackson Laboratories. All animals were housed in a temper-
ature-controlled, light-cycled facility at the University of Pennsylvania.
Animal care was carried out according to the guidelines of the National
Institutes of Health and the University of Pennsylvania Institutional Care
and Use Committee.

(ii) Nonhuman primates. Five Indian-origin rhesus macaques were
housed at BIOQUAL (Rockville, MD) according to the standards of the
Institutional Animal Care and Use Committee and the American Associ-
ation for Accreditation of Laboratory Animal Care.

Immunizations. (i) Mice. Mice were immunized with 30 �g plasmid
(120 �g total DNA for the multiantigen formulation) by intramuscular
(i.m.) injection into the tibialis anterior muscle followed by in vivo elec-
troporation using the CELLECTRA adaptive constant current electropo-
ration device (Inovio Pharmaceuticals). Square-wave pulses at a 0.1-A
constant current were delivered as previously described (25). Each pulse
was 52 ms in length with a 1-s delay between pulses. The mice received a
total of 3 immunizations that were administered 3 weeks apart.

(ii) NHPs. A 1.0-mg volume of each plasmid (4.0 mg DNA total) DNA
was delivered i.m. to a single site in the quadriceps, followed by in vivo
electroporation with the CELLECTRA adaptive constant current electro-
poration device. Three square-wave pulses at a 0.5-A constant current
were delivered as previously described (17). Each pulse was 52 ms in
length with a 1-s delay between pulses.

Immunohistochemistry. Proteins were overexpressed in the liver by
hydrodynamic tail vein injection of 50 �g of each plasmid (200 �g total
DNA) in 2.0 ml PBS. Mice were sacrificed 24 h postinjection, livers were
collected and fixed in 10% buffered formalin solution for 24 h, and the
samples were stored in 70% ethanol prior to embedding, sectioning, and
staining with sera (1:500) from mice immunized with the individual
pDNAs.
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ELISA. Enzyme-linked immunosorbent assay (ELISA) was used to
determine antigen-specific serum IgG titers. Ninety-six-well Nunc-Im-
muno MaxiSorp plates (Fisher Scientific) were coated overnight at 4°C
with 1 to 5 �g/ml of protein. Full-length P. falciparum CSP was kindly
provided by the PATH Malaria Vaccine Initiative (Washington, DC) and
Gennova Biopharmaceuticals Ltd. (Pune, India). Full-length LSA1 was
kindly provided by David Lanar (WRAIR, Silver Spring, MD). The TRAP
and CelTOS proteins were synthesized by GenScript using baculovirus
and bacterial systems, respectively. Plates were washed with PBS, 0.05%
Tween 20 (PBST), blocked for 1 h at room temperature with 10% bovine
serum albumin (BSA)-PBST, and incubated with serial dilutions of se-
rum, which were 3-fold dilutions beginning with 1:50, from immunized
or naive animals for 1 h at room temperature. Plates were then washed 3
times with PBST. For mouse assays, HRP-conjugated goat anti-mouse
IgG (Santa Cruz Biotechnologies) was added at a dilution of 1:5,000 in
PBST. For monkey assays, HRP-conjugated mouse anti-monkey IgG
(Southern Biotech) was added at a 1:5,000 dilution in PBST. Bound en-
zyme was detected by SigmaFAST O-phenylenediamine dihydrochloride
(OPD; Sigma-Aldrich), and the optical density was determined at 450 nm
(OD450). Titers are reported as the reciprocal dilution at which the OD450

was 1.0. A nonlinear regression sigmoidal dose-response curve was used
to estimate the values where OD was 1.0 (Prism 5; GraphPad Software).
Any detectable background levels at baseline (week 0) were subtracted
from IgG levels detected after immunizations.

IFA. The sporozoite slides were prepared from NF54 mosquitoes. The
mosquitoes were dissected by cutting the thorax at the scutum. The heads
and the anterior portions of the scutum were kept, while the remaining
portions of the thorax and abdomen were discarded. The sporozoites were
isolated using Osaki tubes and then purified using a DEAE column
(Whatman). Sporozoites were counted using a hemocytometer, and a
sporozoite suspension of 5,000 sporozoites/well was added to each well.
Slides were dried overnight and then wrapped in aluminum foil and
placed in a desiccator at �20°C. For the immunofluorescence assay (IFA),
the negative control was obtained from a pool of normal rhesus sera and
was diluted to 1:50 in PBS plus 1% BSA (Fisher Scientific). The positive
control was obtained from a subject immunized with R32NS181 and also
diluted to 1:50 in PBS plus 1% BSA. Slides were thawed for 20 min at room
temperature and then blocked with 16 �l of PBS plus 1% BSA. Fifteen �l
of each sample then was added to each well and incubated for 1 h in a
humidity chamber at room temperature. The slides were washed 3 times for 2
min each in 1� PBS. Sixteen �l of the secondary antibody, goat anti-rhesus
IgG (H�L) fluorescein isothiocyanate (FITC; SouthernBiotech) diluted to
1:2,000 in PBS plus 1% BSA, was added to each well. The slides were
incubated for 1 h at room temperature in the dark and then were washed
3 times for 2 min in 1� PBS. Finally, 1 �l of Vectashield with DAPI
(Vector laboratories) was added to each well, and the slide was covered
with a coverslip. The slide was covered with aluminum foil until read.
Slides were read using an Olympus Provis UV microscope with a 40�

objective, exposure time of 1/3.5 s, an isotropic signal of 400, and a reso-
lution of 1,360 by 1,024. The well was first scanned, and then a represen-
tative photograph was taken. Images then were analyzed using Image-Pro
Plus (Media Cybernetics) utilizing a software macro designed such that
sporozoites were identified based on size and dimensions while ignoring
luminous artifacts. Sporozoites were manually selected until all sporozo-
ites were analyzed (a minimum of three). The luminosity for each parasite
was automatically averaged and reported, maintaining a percent coeffi-
cient of variance of less than 20%. Titer cutoffs were determined based on
the last dilution that gave a positive luminosity, defined as the mean lu-
minosity 2 standard deviations above the mean of that of parasites incu-
bated with the negative control.

Lymphocyte isolation. (i) Splenocyte isolation. Splenocytes were
aseptically isolated and placed in 5 ml of R10 media (RPMI medium 1640
supplemented with 10% fetal bovine serum, 1% antibiotic-antimycotic,
and 0.1% 2-mercaptoethanol). Splenocytes were isolated by mechanical
disruption of the spleen using a Stomacher machine (Seward Laboratory

Systems Inc.), and the resulting product was filtered using a 40-�m cell
strainer (BD Falcon). The resulting product was centrifuged and the pellet
was treated for 5 min with ACK lysis buffer (Lonza) for lysis of RBCs. The
splenocytes were centrifuged, washed in PBS, and then resuspended in
R10 media.

(ii) Hepatic lymphocyte isolation. The livers of mice were perfused in

vivo with 5 ml cold PBS through the right ventricle of the heart. The portal
vein was then cut and the liver perfused again with 5 ml cold PBS. The
gallbladder was removed and discarded. The liver was then removed and
placed into 5 ml of R10 media. The lymphocytes were isolated by mechan-
ical disruption using a Stomacher machine (Seward Laboratory Systems
Inc.), and the resulting product was filtered using a 60-�m mesh screen
(Sigma-Aldrich). Lymphocytes were resuspended in 8 ml of 40% Percoll
(GE Healthcare) containing 100 U/ml heparin (Fisher) and layered onto 3
ml 70% Percoll. The lymphocyte layer was isolated after centrifugation,
washed in PBS, and treated with ACK lysis buffer for 2 to 3 min. The
lymphocytes were then centrifuged, washed in PBS, and resuspended in
R10 media.

(iii) PBMC isolation. Twenty ml of blood was collected in K2-EDTA
tubes at the indicated time points. Peripheral blood mononuclear cells
(PBMCs) were isolated using standard Ficoll-Hypaque (GE Healthcare)
procedures with Accuspin tubes (Sigma-Aldrich). PBMCs were treated
with ACK buffer for 2 to 3 min, washed in PBS, and resuspended in R10
media.

IFN-� ELISpot assay. Splenocytes (mice) or PBMCs (NHPs) were
used at a concentration of 2 � 105 cells/well. Antigen-specific peptides
were 15-mer peptides spanning the entire length of the consensus im-
munogen, not including the HA tag or leader sequence, overlapping by 11
amino acids and were synthesized by GenScript. The final concentration
of each peptide used in the ELISpot assays was approximately 2.5 �g/ml.
ELISpot data are expressed in spot-forming units (SFU), which is the
number of antigen-specific T cells producing IFN-� per 106 splenocytes
(mice) or 106 PBMCs (NHPs).

(i) Mice. Mouse IFN-� capture antibody (R&D Systems) was used to
coat flat-bottom Immobilon-P plates (Millipore) overnight at 4°C.
Splenocytes were stimulated overnight (approximately 18 h) at 37°C, 5%
CO2, in the presence of R10 (negative control), concanavalin A (positive
control) (Sigma-Aldrich), or antigen-specific peptide pools. Plates were
then washed in PBS, and mouse IFN-� detection antibody (R&D Systems)
was added to the plates overnight at 4°C. Streptavidin-alkaline phospha-
tase (ALP) (MabTech) was added to the plates for 2 h, and antigen-specific
spots were visualized with 5-bromo-4-chloro-3-indolylphosphate-ni-
troblue tetrazolium (BCIP-NBT) substrate (MabTech).

NHPs. IFN-� ELISpot assay was carried out with the ELISpotPRO for
monkey IFN-� (MabTech) according to the manufacturer’s instructions.
PBMCs were stimulated overnight (approximately 18 h) at 37°C, 5% CO2

in the presence of R10 (negative control), anti-CD3 monoclonal antibody
(positive control), or antigen-specific peptide pools. Plates were washed
and spots detected using ALP-conjugated antibody and BCIP-NBT sub-
strate.

Intracellular cytokine staining. Intracellular cytokine staining was
completed using the CytoFix/CytoPerm kit per the manufacturer’s in-
structions (BD Biosciences). Mouse splenocytes, mouse hepatic lympho-
cytes, or NHP PBMCs were washed with PBS and resuspended in R10 and
counted. Cells (1 � 106 to 2 � 106) were seeded in 96-well round-bottom
plates in a volume of R10 media (negative control), media containing
antigen-specific peptides pools at the same concentration used for
ELISpot assay, or media containing 10 ng/ml phorbol myristate acetate
(Sigma-Aldrich). Ionomycin (250 ng/ml; Sigma-Aldrich) (positive con-
trol) was added, and plates were incubated at 37°C, 5% CO2 for 6 h (mice)
or overnight (8 to 10 h; NHPs). All stimulation media contained 1 �g/�l
each of GolgiPlug (BD Biosciences) and GolgiStop (BD Biosciences). At
the end of the incubation period, plates were spun down and washed twice
with PBS. Cells were stained as described below, given a final wash with
PBS, and resuspended in 1% paraformaldehyde (Tousimis). Cells were
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analyzed on a modified BD LSR II, and data were analyzed with FlowJo
9.2.5 (Tree Star, Inc.). For the analysis of antigen-specific responses,
CD4� CD8� and CD8� CD4� cells were identified within the live CD3�

population.
Mice. Cells were stained externally with a violet dye for viability

(LIVE/DEAD violet viability dye; Invitrogen), CD4-peridinin chlorophyll
protein (PerCP)-Cy5.5 (BD Biosciences), and CD8-antigen-presenting
cells (APC) (BD Biosciences) at 4°C for 30 min, washed twice in PBS, and
then fixed and permeabilized for 30 min at 4°C in Cytofix/Cytoperm
solution. Cells were washed twice in Perm/Wash buffer and then stained
intracellularly in Perm/Wash buffer with the following antibodies: CD3-
phycoerythrin (PE)-Cy5 (BD Biosciences), IL-2-PE (BD Biosciences),
IFN-�-Alexa Fluor-700 (BD Biosciences), and TNF-�-FITC (BD Biosci-
ences) for 30 min at 4°C.

NHPs. Cells were stained externally with a violet dye for viability
(LIVE/DEAD violet viability dye; Invitrogen) for 5 min at room temper-
ature and surface stained for 30 min at room temperature with the follow-
ing antibodies: CD4-PE-Cy5.5 (Biolegend), CD14-Pacific Blue (BD
Biosciences), CD16-Pacific Blue (BD Biosciences), CD45RA-Q605 (Invit-
rogen), and CD28-PE-Cy5 (Beckman Coulter). Cells were washed twice
with PBS, resuspended in Cytofix/Cytoperm solution, and fixed for 15
min at room temperature. Cells were washed twice in Perm/Wash buffer
and then stained intracellularly in Perm/Wash buffer for 1 h at room
temperature with CD3-APC-Cy7 (BD Biosciences), IFN-�-PE-Cy7 (BD
Biosciences), IL-2-PE (BD Biosciences), TNF-�-Alexa Fluor-700 (BD
Biosciences), and granzyme B-PE-Texas Red (Invitrogen).

Statistics. Statistical analysis was performed using PASWS Statistics
18 (IBM Corporation). Analysis between mouse groups was performed
using a Student’s t test or analysis of variance (ANOVA) as appropriate.
Analyses of NHP data were carried out using a related-samples Wilcoxon
signed rank test. All data are expressed as the means � standard errors of
the means (SEM) unless otherwise noted. A P value of less than 0.05 was
considered statistically significant.

RESULTS

Design of plasmids and in vitro antigen expression. The CSP and
TRAP consensus immunogens were designed as previously de-
scribed (24), with modifications based on all available full-length
sequences in the GenBank database (67 and 28 sequences, respec-
tively). Because CelTOS is highly conserved among Plasmodium
species (23, 26), the sequence for the 3D7 strain of P. falciparum
was used as the antigen sequence. The LSA1 antigen was designed
based on the P. falciparum NF54 strain and contains 8 of the 86.5
central repeats. Synthetic engineering of the antigen-coding se-
quences also allowed for the inclusion of other optimization ap-
proaches, such as incorporation of a highly efficient leader se-
quence, improved mRNA stability, and codon optimization in the
context of a highly efficient promoter. Together, these enhance
transcription and translation, thereby improving expression for
greater antigen production (27, 28). The antigens were inserted
into a modified pVAX1 backbone using the BamHI and XhoI
restriction enzyme sites. Prior to in vivo immunogenicity studies,
Western blotting and immunofluorescence were used to confirm
expression of the antigens by the vectors. Protein bands of the
expected molecular sizes were detected by Western blotting (Fig.
1A), and all antigens were visualized by immunofluorescence
(Fig. 1B).

Humoral immunogenicity in mice. To evaluate if these anti-
gens were eliciting humoral responses, mice were immunized with
the individual CSP, LSA1, TRAP, or CelTOS pDNA (n � 5/group)
or the multiantigen formulation containing all 4 constructs
(MAV4). To formulate MAV4, the same dose of each plasmid
used to evaluate immune responses to the individual antigens was

combined and delivered in a single injection site. Antibody levels
in the sera were evaluated both 1 and 10 weeks after the last im-
munization. CSP and TRAP IgG levels (Fig. 2B and D) were not
significantly different when the pDNAs were given individually
compared to combined delivery. Combined delivery did decrease
LSA1- and CelTOS-specific IgG levels (P 	 0.05) (Fig. 2C and E).
Antibody responses were still detectable 10 weeks after mice re-
ceived the last immunization with MAV4 but were lower than the
levels found 1 week after the 3rd immunization (P 	 0.05 for all
antigens) (Fig. 2F).

The data shown in Fig. 2A to F demonstrate that the antibodies
elicited by these immunogens bind to linear epitopes. It was next
examined if the antibodies can also recognize contextual antigen
in vivo. The proteins were overexpressed in the liver of mice via a
single hydrodynamic tail vein injection containing all four antigen
constructs. The antigen proteins were detected by immunohisto-
chemistry (Fig. 2G), and all antibodies effectively recognized their
respective antigens in the liver.

Cellular immunogenicity in mice. Cellular immune responses
play a pivotal role in conferring protection from P. falciparum
infection at the PE stage (29–33). Prior to combining the CSP,
LSA1, TRAP, and CelTOS plasmids into the single-dose MAV4
formulation, cellular immunogenicity induced by the individual
pDNAs was assessed by IFN-� ELISpot assay (Fig. 3A). Responses
were evaluated 1 week after the last immunization and demon-
strated that the constructs elicited antigen-specific cellular re-
sponses in the spleen. Specifically, average numbers were the fol-
lowing: CSP, 1,607 SFU; LSA1, 1,908 SFU; TRAP, 929 SFU; and
CelTOS, 477 SFU.

After confirming induction of cellular immune responses in-
dividually, the immunogenicity of MAV4 was evaluated by IFN-�
ELISpot assay and flow cytometry. Antigen-specific IFN-� pro-
duction was determined by ELISpot assay at both peak (1 week
after the last immunization) (n � 8) and memory (10 weeks after
the last immunization) (n � 9) time points (Fig. 3B). Following
the third immunization, high levels of antigen-specific IFN-� re-
sponses were detected (3,172 SFU). LSA1-specific IFN-� produc-
tion (2,188 SFU) comprised 69% of the total IFN-� response.
CSP-, TRAP-, and CelTOS-specific IFN-� production comprised
11% (336 SFU), 16% (502 SFU), and 5% (145 SFU), respectively.
IFN-� production 10 weeks after the 3rd immunization was still
robust (1,280 SFU) but decreased significantly (P � 0.01) from
the response observed at the peak time point. The relative contri-

FIG 1 In vitro expression of antigens. Antigen constructs were transfected into
RD cells to confirm expression of the antigen proteins. (A) Visualization of the
antigen proteins by Western blotting. Bands of the expected protein sizes were
detected by Western blotting: CSP, 43 kDa; LSA1, 66 kDa; TRAP, 65 kDa; and
CelTOS, 24 kDa. Expression of CSP and LSA1 was analyzed on a separate blot
from expression of LSA1 and CelTOS. Vertical black lines indicate splicing of
gel images. (B) All antigen proteins detected via immunofluorescence by prob-
ing for the C-terminal HA tag.
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bution of each antigen response to the total IFN-� response was
similar at both time points.

The individual CSP pDNA (Fig. 3A) induced higher levels of
IFN-� production than MAV4 (Fig. 3B). Others have previously
reported that combining a CSP pDNA construct with pDNAs en-
coding different P. falciparum antigens decreased CSP-specific an-
tibody titers and IFN-� production (34, 35). In this study, CSP
titers did not decrease with MAV4 but IFN-� production did de-
crease. We sought to determine if the decrease in the CSP-specific
IFN-� elicited by MAV4 resulted from Th2 skewing. In mice, the
IgG1 isotype is associated with Th2 responses while IgG2a is asso-
ciated with Th1 responses (36). Levels of IgG2a (Fig. 3C) and IgG1
(Fig. 3D) induced by CSP alone or MAV4 were similar, indicating
the change in IFN-� production levels was not due to immune
polarization toward Th2 responses.

Production of antigen-specific IFN-�, IL-2, and TNF-� in both
the CD4� and CD8� T cell compartments was evaluated in mice
at the peak and memory time points by flow cytometry. CSP- and
LSA1-specific CD4� T cells comprised the majority of the peak
antigen-specific CD4� T cell response, 0.56 and 0.44%, respec-
tively (Fig. 4A). The magnitude of the CD4� T cell response de-
creased slightly from the peak (1.52%) to the memory (1.01%)
time point, but this decrease was not statistically significant (P �

0.346). Interestingly, the relative contribution of each antigen to
the total CD4� T cell response was more balanced at the memory
time point. The majority of the peak CD4� T cell response was
composed of monofunctional cells producing either IL-2 or
TNF-� (Fig. 4B). Interestingly, at the memory time point the lev-
els of single cytokine-producing cells decreased concurrently with
a trend toward increased levels of polyfunctional CD4� T cells
(Fig. 4C).

Peak CD8� T cell responses were predominantly directed to-
ward the CSP (0.97%) and LSA1 (1.23%) antigens. The magni-
tude of the CD8� T cell response did not significantly decrease
(P � 0.646) from the peak (2.86%) to the memory (2.51%) time
point (Fig. 4D). The peak CD8� T cell response was predomi-
nantly composed of single cytokine-producing cells (Fig. 4E).
Similar to the CD4� T cell response, there was an increase in the
percentage of polyfunctional CD8� T cells at the memory time
point (Fig. 4F). Notably, the population of CD8� IFN-��

TNF-�� cells increased from 0.24 to 0.85%, a phenotype that has
been associated with protection from malaria and other parasitic
diseases in the mouse model (37–39).

The liver stage of the P. falciparum life cycle, which lasts 5 to 7
days, is the time period when the parasite is most vulnerable to
immune recognition and elimination by CD8� T cells. Liver res-
ident effector memory CD8� T cells likely are essential for rapid
elimination of liver-stage parasites because of this short window of
vulnerability (29). LSA1 was used as a model antigen to evaluate
hepatic antigen-specific responses, because expression of LSA1 is
specific to the liver stage of infection and its levels increase as the
stage progresses (40). Accordingly, LSA1-specific hepatic CD8� T
cell responses were evaluated by flow cytometry 1 and 10 weeks
after the 3rd immunization with MAV4. The majority of the
LSA1-specific response was composed of CD8� IFN-�� T cells at
both time points (Fig. 5B and C). Importantly, the magnitude of
the LSA1-specific CD8� T cell response did not significantly de-
crease (P � 0.285) for at least 10 weeks following the last immu-
nization (Fig. 5A).

Immunogenicity in nonhuman primates. The immunogenic-
ity of MAV4 was further explored in the NHP model. Indian-
origin rhesus macaques (n � 5) received 4 immunizations with 1.0

FIG 2 Humoral responses in mice. Antibody titers were measured by ELISA 1 week following the 3rd immunization and are expressed as the reciprocal dilution
of the titer where the OD was 1.0. (A) Titration curves for the individual vaccines. (B) CSP, (C) LSA1, (D) TRAP, and (E) CelTOS IgG endpoint titers induced
by the immunogens alone or combined in a single dose 1 week following the last immunization (n � 5/group) are shown. (F) Memory antibody responses
induced by the multiple immunogen vaccine 10 weeks following the 3rd immunization. (G) Antigen proteins were overexpressed in the liver by a single
hydrodynamic tail vein injection. Livers were harvested and sections stained with sera (1:500) from mice vaccinated with the individual immunogens. Images are
representative of 2 independent experiments. *, P 	 0.05.
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mg of each antigen construct (4.0 mg total plasmid) at weeks 0, 6,
12, and 25. pDNA-induced antigen-specific responses were dem-
onstrated to continuously boost for at least 4 immunizations in
previous studies in our laboratory (41). For this reason, a similar
study design was used to evaluate the immunogenicity of MAV4 in
NHPs. Antibody responses were evaluated by IFA and ELISA. IFA
titers were determined at baseline, 2 weeks after the 3rd and 4th
immunizations (weeks 14 and 27, respectively), and 8 weeks after
the final immunization (week 33) (Fig. 6A). The IFA method de-
termined that MAV4 induced antibodies that recognize and bind
sporozoite coat proteins but does not allow for identification of
antigen-specific titers. Antigen-specific antibody titers were deter-
mined by ELISA at week 0 and 2 weeks following each immuniza-
tion (weeks 2, 8, 14, and 27). Memory antibody responses were
assessed 8 weeks following the 3rd immunization (week 20) as well
as 8 (week 33) and 12 (week 37) weeks after the 4th immunization
(Fig. 6B to E). Humoral responses to LSA1, TRAP, and CelTOS
were similar through week 27, while CSP-specific IgG levels re-
mained lower throughout the study. Overall, antibody responses
against all antigens were boostable and were detectable for at least
12 weeks after the 4th immunization.

Cellular immunogenicity was evaluated by IFN-� ELISpot as-
say and flow cytometry in PBMCs at the time points indicated in
Fig. 7. The magnitude of IFN-� production was boosted by each
immunization, and in general, IFN-� was produced in response to
the individual immunogens and boosted with each immunization
(Fig. 7A). Antigen-specific CD4� T cells were detected 2 weeks
following the 2nd immunization (week 8) and increased with the
3rd immunization (week 14). While the overall percentage of an-

tigen-specific cytokine-producing CD4� T cells did not increase
with the 4th immunization (week 27) (Fig. 7B), the phenotype of
the response shifted to include a higher percentage of IFN-�� cells
and fewer IL-2� cells (Fig. 7C). At all time points, with the excep-
tion of week 14, the majority of the CD4� T cell response was
attributed to IFN-�� or TNF-�� cells.

Cytokine production in the CD8� T cell compartment was
detectable 2 weeks following the 2nd immunization (week 8) (Fig.
7D). The percentage of antigen-specific CD8� T cells did not in-
crease following the 3rd immunization but did significantly in-
crease following the 4th immunization (P � 0.043). The increase
in the response after the 4th immunization was attributed primar-
ily to an increase in IFN-� production (Fig. 7E). The percentage of
antigen-specific CD8� T cells did not significantly decrease for at
least 12 weeks after the 4th immunization (P � 0.225). We next
examined assays relevant for gaining insight into killing function.
Antigen-specific CD8� GrzB� T cells were detected after the 2nd
immunization (week 8) (Fig. 7F). Similar to the overall percentage
of CD8� T cells, the CD8� GrzB� population increased from
week 8 to week 27 (P � 0.042) and did not decrease for at least 12
weeks after the 4th immunization (P � 0.345) (Fig. 7F). Notably,
the majority of antigen-specific CD8� T cells were also GrzB� at
all time points, suggesting the potential for cytotoxic function
(Fig. 7E and F).

DISCUSSION

Previous studies investigating DNA-based vaccine approaches
targeting P. falciparum failed to induce potent immune responses
in animal models and humans (13, 20, 34, 35, 42). For example, in

FIG 3 Antigen-specific IFN-� production in mice. Antigen-specific IFN-� responses induced by the immunogens individually (A) and when combined by
IFN-� ELISpot assay (B). For the multivalent immunogen vaccine, antigen-specific IFN-� production was measured at 1 (n � 8) and 10 (n � 9) weeks after the
3rd immunization. It was evaluated if a change in the ratio of CSP-specific Th1/Th2 responses contributed to the decrease in CSP-specific responses with MAV4.
CSP-specific IgG2a (C) and IgG1 (D) titers were used as surrogate markers of Th1 and Th2 responses, respectively.
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a study conducted by Sedegah et al. (34) in the mouse model,
IFN-� production against P. falciparum CSP, TRAP, and LSA1 did
not exceed 200 SFU when pDNAs were given individually. In a
separate study (35), inclusion of the molecular adjuvant granulo-
cyte-macrophage colony-stimulating factor (GM-CSF) in a five-
antigen DNA-based approach did significantly increase CSP (266
SFU)-, LSA1 (459 SFU)-, and TRAP (216 SFU)-specific IFN-�
responses. While the responses described above cannot be com-
pared directly to the data obtained in the current study, it is note-
worthy that the IFN-� responses induced by the GM-CSF-adju-
vanted formulation (35) did not exceed those of unadjuvanted
MAV4, which delivered 3.5-fold less DNA. Specifically, CSP-,
LSA1-, and TRAP-specific IFN-� responses in the current study
induced by MAV4 were 365, 2,188, and 502 SFU, respectively
(Fig. 3B).

The ability of this DNA-based approach to confer immune
responses to multiple P. falciparum antigens most likely is due to
the substantial optimization of the antigen coding sequences as
well as EP delivery (11, 43, 44). Synthetic engineering of the anti-
gen-coding sequences allowed for the inclusion of optimization
approaches, such as incorporation of a highly efficient leader se-

quence, improved mRNA stability, and codon optimization. De-
livery with EP increases the uptake of DNA plasmids by cells in the
target tissue, resulting in an increase in antigen production (45)
and immunogenicity (16–18). Thus, the optimization of antigens
and antigen delivery greatly improved the immune responses in-
duced by the DNA platform.

There have been previous reports that mixing of pDNA encod-
ing different P. falciparum antigens decreases the immune re-
sponses to some of the individual antigens in the mixture. Specif-
ically, these studies reported lower LSA1- and CSP-specific
antibody titers and CSP-specific IFN-� production as a result of
combining plasmids into a multiantigen formulation (34, 35). In
this study, using DNA immunogens delivered with EP, there was
not a significant difference in CSP antibody titers (Fig. 2) or LSA1-
specific IFN-� production (Fig. 3) conferred by MAV4 compared
to responses elicited by the immunogens individually. In agree-
ment with prior studies (34, 35), the magnitude of CSP-specific
IFN-� production was lower when the CSP antigen was combined
with the LSA1, TRAP, and CelTOS antigens (Fig. 3A and B). The
decreased magnitude of CSP-specific IFN-� production was not
due to MAV4 skewing CSP responses toward Th2 (Fig. 3C and D).

FIG 4 Characterization of CD4� and CD8� T cell responses in mice. Antigen-specific CD4� (A to C) and CD8� (D to F) T cell responses elicited by the
multivalent immunogen were characterized in splenocytes by flow cytometry 1 (n � 8) and 10 (n � 9) weeks after the 3rd immunization. (A) The total magnitude
of the CD4� T cell response. Polyfunctionality of the CD4� T cell response 1 (B) and 10 (C) weeks after the 3rd immunization. (D) The magnitude of the CD8�

T cell response. Polyfunctionality of the CD8� T cell response 1 (E) and 10 (F) weeks after the 3rd immunization.
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Studies investigating the mechanism underlying reduced re-
sponses to CSP when it is codelivered with other pDNAs and
exploring adjuvants to enhance CSP immune responses would be
of value for moving multiple-antigen approaches forward.

A malaria vaccine that elicits high-titer and high-affinity anti-
body responses could be important to reduce the number of
sporozoites that successfully infect hepatocytes and undergo rep-
lication, thereby lessening or eliminating progression to the blood
stage of P. falciparum infection, which is associated with clinical
malaria symptoms. Previous studies in both animals and humans
demonstrated the ability of antibodies to confer protection at the
PE stages of P. falciparum infection (46–49). Thus, successful in-
duction of high antibody titers to relevant target antigens is likely

a key component of a highly efficacious vaccine. In this study, in
both mice and NHPs, MAV4 induced antibodies to all antigens
(Fig. 2 and 7). The IFA approach determined that MAV4 induces
antibodies that recognize and bind to proteins on the sporozoite
surface (Fig. 6A). Of the four antigens evaluated in this study, roles
for CSP and CelTOS antibodies in protection from malaria have
been studied.

There is clear evidence that antibodies targeting CSP can con-
fer protection from malaria infection in humans. Higher levels of
CSP-specific antibodies are likely to inhibit the migration of
sporozoites from the skin to the liver (50) and have been corre-
lated with protection in RTS,S phase II clinical trials (51). Shott
et al. compared immune responses induced by full-length CSP

FIG 5 LSA1-specific CD8� T cell responses in the liver. Hepatic lymphocytes were isolated from mice vaccinated with the multivalent immunogens 1 (n � 8)
or 10 (n � 9) weeks after the 3rd vaccination. (A) Magnitude of the LSA1-specific CD8� T cell immune response at the acute and memory time points.
Polyfunctionality of the CD8� T cell responses at 1 (B) and 10 (C) weeks after the 3rd immunization.

FIG 6 Humoral responses in NHPs. (A) IFA titers at weeks 0, 14, 27, and 33. CSP (B)-, LSA1 (C)-, TRAP (D)-, and CelTOS (E)-specific seroconversion in NHPs
was measured by ELISA at the indicated time points. Arrows indicate vaccination time points at weeks 0, 6, 12, and 25. Seroconversion levels are expressed as the
dilution of sera at which an OD value of 1 was obtained. Arrows indicate immunization time points (n � 5).
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delivered via the Ad5, Ad35 vectors, and RTS,S/AS01B in the
mouse model (52). Mean CSP IgG titers were reported (at a geo-
metric mean titer [GMT] OD of 1) of 933, 1,105, and 2,529 in-
duced by Ad5, Ad35, and RTS,S/AS01B, respectively. Mean CSP
titers generated by the single antigen (12,191) and MAV4 (6,456)
exceeded those reported for the viral platforms and RTS,S in mice.
In NHPs, RTS,S/AS01B CSP titers (at a GMT OD of 1) peaked at
approximately 1,500 (53), which exceeded that of MAV4, which
peaked at 587 at week 27 (Fig. 6B). In both the mouse and NHP
models, assay differences do not allow for a direct comparison of
MAV4 CSP titers. In this study, full-length CSP was used to quan-
titate IgG binding titers, while the other studies used peptides
encoding the central repeat region. Future studies could investi-
gate a MAV4 CSP protein prime-boost approach to increase CSP
titers.

There is also evidence for anti-CelTOS antibody-mediated
protection in mice, but studies have not been completed in higher
animal species or humans. The sera from mice immunized with
recombinant P. falciparum CelTOS protein adjuvanted with
Montanide ISA 720 contained CelTOS-specific IgG that was
found to bind sporozoites and inhibit the invasion of hepatocytes
in vitro. Immunization also protected approximately 60% of mice
against a heterologous challenge with Plasmodium berghei sporo-
zoites. Minimal cellular immune responses were reported (IFN-�

SFU of 	100), suggesting that the observed CelTOS-mediated
protection is primarily antibody mediated. In this study, pDNA
CelTOS drives antibody responses in both the mouse (Fig. 2E and
F) and NHP (Fig. 6E) model. The mouse anti-CelTOS IgG titers
reported here are not directly comparable to those reported by
Bergmann-Leitner et al. because of assay differences (23). This is
the first report of CelTOS-specific IgG in NHPs. It would be in-
teresting to explore if pDNA CelTOS and MAV4 can confer pro-
tection from heterologous challenge with Plasmodium berghei
sporozoites in the mouse model. The protective efficacy of Cel-
TOS has not yet been confirmed in humans, and the role of anti-
CelTOS antibodies in protection still needs to be clarified.

Cellular immune responses, including CD4� and CD8� T
cells, are important for conferring protection from P. falciparum
infection at the PE stage. Of the four antigens investigated in this
study, the role of CSP-specific CD4� T cells has been the best
characterized. CSP-specific CD4� T cells are important for both
naturally acquired (54) and immunization-mediated protection
(51). In this study, in mice, approximately one-third of the peak
CD4� T cell response was CSP specific (0.60%) (Fig. 4A to C). In
NHPs, following the 2nd and 3rd vaccinations, the CD4� T cell
response was primarily composed of TNF-��- and IL-2�-pro-
ducing cells, which are immune responses believed to be asso-
ciated with protection from P. falciparum infection (Fig. 7B

FIG 7 Cellular immune responses in NHPs. Antigen-specific T cell responses were assessed by IFN-� ELISpot assay (A) and flow cytometry (B to F). Arrows in
panel A indicate immunization time points. IFN-� responses were boosted with each immunization. (B) Total percentage of CD4� T cell responses to each
antigen. (C) The majority of antigen-specific CD4� T cells produced IFN-�, IL-2, or TNF-�. (D) Total percentage of CD8� T cell responses to each antigen. (E)
The majority of antigen-specific CD8� T cells produced IFN-�, IL-2, or TNF-�, but an IFN-�� and IL-2� or TNF-�� population was observed following the 2nd
immunization and was maintained for at least 12 weeks following the 4th immunization. (F) CD8� T cell antigen-specific production of granzyme B was
observed following the 2nd immunization, and the percentage of CD8� GrB� T cells increased with the 4th immunization. (n � 5). *, P 	 0.05.
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and C). Specifically, in phase IIa RTS,S trials, central memory
and effector CD4� T cells producing IL-2 and TNF-� were
associated with a higher rate of protection from P. falciparum

challenge (39).
The protective effects of CD8� T cell-mediated immunity has

been established in animal models (32, 33, 39, 46, 55), but the
vaccine that has shown the most efficacy in humans, RTS,S, does
not confer appreciable levels of CD8� T cell responses (53, 56). In
addition to immune responses directed at the whole sporozoite,
CD8� T cells targeting CSP can mediate protection in mice (57,
58). Thus, there remains a need for the development of a vaccine
approach that can confer CD8� T cell immune responses to P.

falciparum antigens, particularly directed at CSP. MAV4 elicited
CD8� T cell responses to all antigens in both mice and NHPs.
CD8� T cells produced high levels of IFN-� and TNF-� to all
antigens, including CSP, which mimics the immune responses
believed to be required for mediated protection (32, 33, 39, 46).
Importantly, sustained IFN-� production by hepatic CD8� T
cells, which has been correlated with long-term protection (55),
was detected in the mouse model at both peak and memory time
points (Fig. 5). In NHPs, the majority of the antigen-specific
CD8� T cells were also GrzB�, indicating this population has the
potential to function as cytotoxic T cells. Further studies will be
required to determine if CD8� GrzB� T cells can effectively target
and kill P. falciparum-infected hepatocytes.

In general, polyfunctional lymphocytes are thought to be op-
timized for effector function. An increase in the level of multifunc-
tional T cells has been associated with protection from some dis-
eases, including malaria. Specifically, some data suggest induction
of polyfunctional CD8� T cells to PE-stage antigens decreases
progression to clinical disease in preclinical (39) and clinical mod-
els (2, 3). Increased CD8� T cell production of IFN-� alone or
concurrently with TNF-� (IFN-�� TNF-��) correlated with in-
creased protection from Plasmodium berghei challenge in mice.
Also, in a model of malaria infection in humans, which received
immunizations of live sporozoites while undergoing prophylactic
chloroquine, it was demonstrated that sporozoite vaccination in-
duces and maintains polyfunctional peak memory T cell re-
sponses (IFN-�� IL-2�) (3). MAV4 effectively induced polyfunc-
tional T cells in the CD4� and CD8� compartments in both mice
(Fig. 4) and NHPs (Fig. 7). In mice, the higher levels of polyfunc-
tional T cells were observed at the memory time point (Fig. 4C and
F). There was a notable increase in CD8� IFN-�� TNF-�� T cells,
a phenotype that was demonstrated to correlate with protection
from P. berghei and other parasitic organisms (37–39). Impor-
tantly, the phenotype of the cellular immune responses observed
in mice translated to the NHP model (Fig. 7) (23).

In summary, MAV4, an optimized DNA-based multiantigen
P. falciparum vaccine approach, can effectively drive robust hu-
moral and cellular immune responses. The responses induced
mimic the immune responses believed to be associated with pro-
tection from P. falciparum infection in both the mouse (39) and
NHP (59) models, as well as in humans (3). Importantly, in mice,
administering MAV4 in the periphery effectively drove CD8� T
cell responses in the liver. Further studies of this multiple-im-
munogen approach will explore heterologous prime-boost ap-
proaches and incorporation of cytokine adjuvants to further en-
hance immune responses.
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