
Inducing Probabilistic Grammars by
Bayesian Model Merging

Andreas Stolcke, Stephen Omohundro

Proceedings of the Second International ICGI Colloqium on Grammatical Inference and

Applications, volume 862, Lecture Notes on Artificial Intelligence, Berlin, September 1994

Inducing Probabilistic Grammars by Bayesian Model Merging – p. 1/1

Roadmap

Problem Statement

What makes this problem important (and interesting)?

Solutions proposed earlier

Bayesian Model Merging

Experimental Results

Critique

Inducing Probabilistic Grammars by Bayesian Model Merging – p. 2/1

Problem Statement

A deterministic grammar consists of a set of rules, that
define a language.

A stochastic grammar, in addition, consists of a set of
probabilities.

It describes how likely a string is, in a language.

Given a set of samples from a distribution, can we
construct a stochastic grammar for the distribution?

Inducing Probabilistic Grammars by Bayesian Model Merging – p. 3/1

What makes this problem important?

Speech Recognition

Handwriting Recognition

Natural Language Processing

Biological Sequence Processing

and so on ...

What makes this problem interesting?
Given the structure, the parameters can be learned
using standard techniques (e.g., Maximum Likelihood
Estimation). Learning the structure is much harder.

Inducing Probabilistic Grammars by Bayesian Model Merging – p. 4/1

Solutions Proposed Earlier

Successive State Splitting (HMMs)

1. Bell, Timothy C., John G. Cleary, Ian H. Whitten.
Text Compression. Englewood Cliffs, N.J., Prentice
Hall, 1990.

2. Ron, Dana, Yoram Singer, Naftali Tishbi. The power
of amnesia. Advances of Neural Information
Processing Systems, 6, Morgan Kauffman, San
Mateo, CA, 1994.

Stochastic Context Free Grammars

1. Cook, Craig M., Azriel Rosenfeld, Alan R. Aronson.
Grammatical inference by hill climbing. Information
Sciences, volume 10, pages 59 – 80, 1976.

Inducing Probabilistic Grammars by Bayesian Model Merging – p. 5/1

Bayesian Model Merging

A model building process that learns the structure.

Two state process:

1. Data Incorporation. Begin with a model that
generates only the training set.

2. Model Merging. Progessively merge states in that
model, moving towards models that are more
general and compact.

Inducing Probabilistic Grammars by Bayesian Model Merging – p. 6/1

Example: Hidden Markov Model

Language: L = (ab)+.

Training set: X = {ab, abab}.

Step 1: Data Incorporation

S → aS1, S1 → bS2, S2 → F

S → aS3, S3 → bS4, S4 → aS5, S5 → bS6, S6 → F

Inducing Probabilistic Grammars by Bayesian Model Merging – p. 7/1

Example: Hidden Markov Model

Step2: Merging
Merge S1, S3:

S → aS1, S1 → bS2, S2 → F

S1 → bS4, S4 → aS5, S5 → bS6, S6 → F

Merge S2, S4:

S → aS1, S1 → bS2, S2 → F

S2 → aS5, S5 → bS6, S6 → F

Inducing Probabilistic Grammars by Bayesian Model Merging – p. 8/1

Example: Hidden Markov Model

Merge S6, S2:

S → aS1, S1 → bS2, S2 → F

S2 → aS5, S5 → bS2

Merge S1, S5:

S → aS1, S1 → bS2, S2 → F

S2 → aS1

Inducing Probabilistic Grammars by Bayesian Model Merging – p. 9/1

Which States should I Merge?

Merging aims at maximizing the probability of the
model, given the data.

According to Bayes Rule:

P (model|data) =
P (data|model)P (model)

P (data)

Use standard optimization techniques (Breadth First
Search, Beam Search, etc.) to optimize P (model|data)

Inducing Probabilistic Grammars by Bayesian Model Merging – p. 10/1

Example: Context Free Grammar

Language: L = {anbn|n > 0}
Training set: X = {ab, aabb, aaabbb}
Step 1: Data Incorporation

S → AB|AABB|AAABBB

A → a

B → b

Step 2: Chunk (AB) → X:

S → X|AXB|AAXBB

X → B

Inducing Probabilistic Grammars by Bayesian Model Merging – p. 11/1

Example: Context Free Grammar

Step 3: Chunk (AXB) → Y :

S → X|Y |AY B

X → AB

Y → AXB

Step 4: Merge S, Y :

S → X|ASB

X → AB

Step 5: Merge S,X:

S → AB

S → ASB Inducing Probabilistic Grammars by Bayesian Model Merging – p. 12/1

Experimental Results

Hidden Markov Models. BMM was compared to the
Baum-Welch algorithm.

1. For formal regular languages, BMM did better.
Baum-Welch was strongly dependant on the initial
parameter settings. It failed to generate the target
grammar in more than half of the trials. BMM did not
require any initial parameter settings and performed
much better.

2. For real-life data, phonetic pronunciation models
from the TIMIT database was used. BMM models
were slightly better than Baum-Welch models. But
Baum-Welch models required twice as many
transitions.

Inducing Probabilistic Grammars by Bayesian Model Merging – p. 13/1

Experimental Results

Context Free Grammars. BMM was compared to
Cook’s algorithm.

1. All grammars that Cook’s algorithm could generate
could also be generated using BMM.

2. BMM could generate the grammar for the language
of palindromes, L = {wwR|w ∈ {a, b}∗}, which Cook’s
algorithm can not.

Inducing Probabilistic Grammars by Bayesian Model Merging – p. 14/1

Critique

Strengths:

1. The algorithm always attempts to find more compact
models: follows Occam’s razor.

2. Outperforms previously known algorithms for
learning both HMMs and CFGs.

Weaknesses:

1. Search methods used are computationally
expensive. Could heuristic search procedures be
used?

2. Experimental setup needs to be explained in greater
detail, for reproducibility. Stolcke’s thesis gives the
setup in greater detail.

3. Many implementation details are skipped. Again, for
reproducing the results, one must read the thesis.

Inducing Probabilistic Grammars by Bayesian Model Merging – p. 15/1

Thank You

Inducing Probabilistic Grammars by Bayesian Model Merging – p. 16/1

