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Abstract: Ordinal regression methods of Multiple Criteria Decision Aiding (MCDA)

take into account one, several, or all value functions compatible with the indirect pref-

erence information provided by the Decision Maker (DM). When dealing with multiple

criteria ranking problems, typically, this information is a series of holistic and certain

judgments having the form of pairwise comparisons of some reference alternatives, in-

dicating that alternative a is certainly either preferred to or indifferent with alternative

b. In some decision situations, it might be useful, however, to additionally account for

uncertain pairwise comparisons interpreted in the following way: although the preference

of a over b is not certain, it is more credible than preference of b over a. To handle certain

and uncertain preference information, we propose a new approach that builds a proba-

bility distribution over the space of all value functions compatible with the DM’s certain

holistic judgments. This distribution is parametrized to reflect different credibility levels

of the supplied preferences. A didactic example shows the applicability of the proposed

approach.
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1. Introduction

Procedures designed to support choice, ranking, or sorting decisions concerning a set of alterna-

tives in the presence of conflicting points of view, technically called criteria, is the domain of Multiple

Criteria Decision Aiding (MCDA) (for a collection of state-of-the-art surveys, see [16]). We observe a

growing demand for these procedures in various real-world decision problems, ranging from regional

planning to finance. Within MCDA, three main approaches have been proposed:

• Multiple Attribute Value Theory [34], which assigns to each alternative a score representing its

preferability;

• outranking approach [6, 17], which builds a crisp or fuzzy preference relation whose semantics

is “alternative a is at least as good as alternative b”;

• decision rule approach [21, 30], which represents preferences of the Decision Maker (DM) by

means of “if . . ., then . . .” rules specifying conditions leading to some recommendation.

All these approaches require elicitation of preferences by the DM, in the form corresponding to the

underlying preference model. From the viewpoint of preference elicitation, we can distinguish the

following main types of preference model construction paradigms implemented in MCDA:

a) direct elicitation: the DM specifies directly values of parameters of the decision model at hand;

for a long time, in many applications, this was the only way of fixing parameters of a decision

model, e.g., weights of criteria used in a weighted sum model have been specified directly by

the DM;

b) indirect elicitation based on Ordinal Regression (OR) [13, 25, 26, 42]: the DM supplies a set

of decision examples, e.g., pairwise preference comparisons of some (real or fictitious) reference

alternatives, and from this information a set of compatible preference model parameters is

inferred;
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c) robust indirect elicitation based on Robust Ordinal Regression (ROR) [10, 11, 22]: the DM

supplies, as in OR, a set of decision examples, but this information is used to construct the

whole family of sets of compatible preference model parameters, which are all employed to

build a recommendation for the DM; for an axiomatic characterization of the ROR, see [19];

d) stochastic indirect elicitation based on Stochastic Ordinal Regression (SOR) [31, 32]: the DM

supplies a set of decision examples, as in OR and ROR, and all compatible sets of preference

model parameters are considered as in ROR (see [2] for a recent contribution where ROR and

SOR are applied to interacting criteria structured in a hierarchical way using the Choquet

integral). However, in this case, not only the extreme cases of preference are considered, i.e.,

being true for all compatible sets of preference model parameters (necessary preference), or

being true for at least one set of preference model parameters (possible preference), or holding

for the most and the least advantageous sets of parameters (extreme ranks [29]); instead,

a probability distribution P is considered over the family of all compatible sets of preference

model parameters, and P is used to measure the part of this family for which alternative a is

preferred to alternative b, or the part for which a is ranked in the k-th position.

In cases b)-d), the DM is asked to provide indirect preference information in which she compares

with certainty some reference alternatives. Therefore, when she claims that a is preferred to b or

that a and b are indifferent, she needs to be sure about the comparison of these two alternatives.

However, in decision aiding processes, the DM may be uncertain about the comparison between two

alternatives and, therefore, she may wish to express preferences with some degree of certainty or

level of credibility. For example, she can say that the preference of a over b is more credible than

the preference of b over a, or that the preference of a over b is more credible than the preference of c

over d, admitting in this way that, on one hand, the preference of a over b is not certain and, on the

other hand, that none of the two considered preferences is sure. For this reason, in general terms,

we can distinguish between two types of preference information that could be provided by the DM:

• certain preference information, for which the DM has no doubt, such that all sets of compatible

preference model parameters have to satisfy this type of preference information;
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• uncertain preference information, for which the DM has some doubt, such that not necessar-

ily all sets of compatible preference model parameters have to satisfy this type of preference

information.

The concepts of degree of preference, uncertain preference, or level of credibility are present in decision

analysis in different contexts. The notion of graded preferences has been introduced in [37]. The

DM can express her inclination to prefer one alternative over another, and one looks for a functional

representation permitting a DM to express preferences of this type. For this reason, one needs to

distinguish between a decisive DM, who is sure about the comparison of two alternatives, from an

indecisive one, not being able to supply such a certain comparison.

In our perspective, the DM is decisive when she is able to provide certain preference information,

and she is indecisive when she is willing to provide uncertain preference information. We allow our

DM to express both certain and uncertain preferences. Note that the concepts of indecisiveness or

incomplete preference have been also considered from an axiomatic point of view, e.g., in [14, 18].

As to the concept of uncertain or imprecise preference in MCDA, several contributions exist

in the literature from which we highlight the following three. First, in contrast to the classical

yes-no preference, the concept of fuzzy degree of preference has been introduced (for a survey, see

[12], while for some representative papers considering fuzzy preferences in multiple criteria decision

problems see [4, 15, 33]). Second, in [22], the authors allow the DM to express preferences that reflect

different levels of credibility. Third, the concept of confidence level assigned to the decision examples

provided by the DM is present in [38], and it is used within a procedure for identifying subsets of

holistic judgments inconsistent with an assumed preference model.

In this paper, we propose a new approach that permits to take into account not only certain

preference information that, is already considered in cases b)-d) discussed above, but also uncertain

preference information provided by the DM. Starting from the certain information given by the

DM, that should be always reproduced by the preference model at hand, we take into account the

DM’s uncertain preferences by constructing a probability distribution P over the space of models

compatible with the certain preference information. Since the probability distribution P that we

consider is based on the preference information supplied by the DM, we shall call the proposed
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procedure subjective stochastic indirect elicitation, and we will refer to the approach on which it

is based as Subjective Stochastic Ordinal Regression (SSOR). SSOR has to be distinguished from

the approach in which only certain preference information is taken into account and the probability

distribution P is not based on the uncertain DM’s preference information, that we shall call objective

stochastic indirect elicitation, referring to the methodology on which it is based as Objective Stochastic

Ordinal Regression (OSOR). Without loss of generality, we consider a set of additive value functions

as the DM’s preference model.

We are convinced that consideration of the uncertain preference information makes the preference

modeling more realistic and can be useful in any decision situation in which the DM wishes to express

uncertain preferences. In this way, the DM is not forced to choose between strict preference and

indifference, but she can also provide an intermediate level of preference. Moreover, we underline

that the proposed approach is an extension of SOR since in case the DM is not willing to provide

any uncertain preferences, it gives the same results as SOR.

The paper is organized as follows. In the next section, after recalling basic concepts of OR, ROR,

and OSOR, we present the new SSOR approach, for the case of preference representation by means of

additive value functions. In Section 3, we illustrate the use of SSOR by an application on a didactic

example. Section 4 contains conclusions and proposals for future developments. All the proofs are

provided in the Appendix.

2. Subjective Stochastic Ordinal Regression (SSOR)

Let us suppose that a set of alternatives A = {a, b, . . .} is evaluated on a set of criteria G =

{g1, . . . , gm}. As a preference model, we consider a general monotonic additive value function:

U(a) = u1(g1(a)) + . . .+ um(gm(a)) for any a ∈ A.

In the indirect preference elicitation mode, given a subset of reference alternatives AR ⊆ A, relatively

well known to the DM, she is asked to provide a pairwise preference relation % on AR (� and ∼

represent the asymmetric and the symmetric part of %, respectively), where a % b iff a is at least as

good as b, and another preference relation %∗ on AR×AR (�∗ and ∼∗ represent the asymmetric and
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the symmetric part of %∗, respectively), where (a, b) %∗ (c, d) iff the intensity of preference of a over

b is at least as strong as the intensity of preference of c over d, with c % d, (a, b, c, d ∈ AR). This

preference information can be considered as certain, in the sense that the DM has no doubt about

the truth of supplied relations and, consequently, all value functions have to reproduce faithfully

these relations.

To check if there exists at least one value function compatible with these preferences, one has to

solve the following linear programming (LP) problem:

εcertain = max ε, subject to, (1)

U(a) ≥ U(b) + ε, if a � b, for a, b ∈ AR,

U(a) = U(b), if a ∼ b, for a, b ∈ AR,

U(a)− U(b) ≥ U(c)− U(d) + ε,

U(c)− U(d) ≥ ε,

 if (a, b) �∗ (c, d), for a, b, c, d ∈ AR,

U(a)− U(b) = U(c)− U(d),

U(c)− U(d) ≥ ε,

 if (a, b) ∼∗ (c, d), for a, b, c, d ∈ AR,



[CPIC]

m∑
j=1

uj(x
mj

j ) = 1, uj(x
1
j) = 0, for all j = 1, . . . ,m, [NC]

uj(x
k
j ) ≤ uj(x

k+1
j ), for all k = 1, . . . ,mj − 1, and j = 1, . . . ,m, [MC]



EAR

certain

where xkj , k = 1, . . . ,mj, are all different values got by the alternatives on criterion gj, with xkj

preferred to xk−1
j on criterion gj, k = 2, . . . ,mj; x

1
j and x

mj

j are the worst and the best values an

alternative can get on gj, [NC] and [MC] are normalization and monotonicity constraints, respectively,

and ε is an auxiliary variable used to transform the strict inequalities into weak inequalities. If

EAR

certain is feasible and εcertain > 0, then there exists at least one value function compatible with the

preferences of the DM expressed on AR.

While more than one value function could be compatible with the certain preference information

provided by the DM, each of them can potentially give different recommendation for the non-reference

alternatives in A \ AR. In this regard, ROR [10, 11, 22] takes into account all value functions
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compatible with the preference information provided by the DM, building a necessary (%N) and a

possible (%P ) preference relation that hold for a pair of alternatives (a, b) ∈ A×A if a is at least as

good as b for all or for at least one compatible value function, respectively. Given two alternatives a

and b (a, b ∈ A \AR), it is very likely that a is possibly preferred to b, and b is possibly preferred to

a but, generally, as observed in [31, 32], the share of compatible value functions for which a is not

worse than b is different from the share of compatible value functions for which b is not worse than

a.

Remark that apart from the provided certain preference information, the DM could wish to

express also uncertain preference information. For example, when comparing two alternatives a and

b (a, b ∈ AR), she may admit that a could be preferred to b, and b could be preferred to a but,

in her opinion, the preference of a over b is at least as credible as the preference of b over a. She

could also provide analogous preference information for quadruples of alternatives, stating that the

preference of a over b is at least as credible as the preference of c over d (a, b, c, d ∈ AR). We shall

write a %L b to indicate that the preference of a over b is at least as credible as the preference of

b over a; analogously, we shall write (a, b) %∗
L (c, d) to state that the preference of a over b is at

least as credible as the preference of c over d. To represent %L and %∗
L, we consider a probability

distribution π on the set U of value functions U compatible with the certain preference information

supplied by the DM, so that, for all a, b, c, d ∈ A

a %L b⇔ π({U ∈ U : U(a) > U(b)}) ≥ π({U ∈ U : U(b) > U(a)})

and

(a, b) %∗
L (c, d)⇔ π({U ∈ U : U(a) > U(b)}) ≥ π({U ∈ U : U(c) > U(d)}).

In order to induce the probability π from the preference information supplied by the DM, we

consider the following discrete approximation of the above model, proceeding in the following two

steps:

1. We sample sv value functions U1, U2, . . . , Usv in the set of compatible value functions U , that

is the set of value function satisfying monotonicity and normalization constraints, as well as

constraints representing certain preference information provided by the DM.
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2. We assign a non-negative weight w(U) to each value function U sampled in the first step,

such that w(U1) + . . .+ w(Usv) = 1, and the constraints representing the uncertain preference

information are satisfied.

As to the first step, since the constraints representing the certain preference information provided

by the DM, as well as the monotonicity and the normalization constraints define a convex set, the

value functions can be sampled with the Hit-And-Run method (HAR; [43]) – its application in MCDA

has been described in [44, 45].

The set of weights w(U) assigned to the sampled compatible value functions can be seen as

a probability distribution over the space of sampled functions, which permits to represent %L and

%∗
L as follows: for a, b, c, d ∈ AR,

a %L b⇔
∑

t: Ut(a)>Ut(b)

w(Ut) ≥
∑

t: Ut(b)>Ut(a)

w(Ut)

and

(a, b) %∗
L (c, d)⇔

∑
t: Ut(a)>Ut(b)

w(Ut) ≥
∑

t: Ut(c)>Ut(d)

w(Ut).

Let us observe that the interpretation of the two preference relations %∗ and %∗
L is completely

different. On one hand, by saying that (a, b) %∗ (c, d), the DM is sure about the preference of a over

b and of c over d, but the intensity of the first preference is not smaller than the intensity of the

other one. On the other hand, when the DM states that (a, b) %∗
L (c, d), she is not certain on the

preference of a over b and on the preference of c over d, since it is also possible that for some value

functions the two preferences are inverted. Here, the DM states only that the preference of a over b

is at least as credible as the preference of c over d.

Note 2.1. The uncertain preference information can be interpreted as in some well-known MCDA
methods, such as AHP [41] and MACBETH [5]. Assume that the DM states that a is strongly
preferred to b, c is preferred to d, and e is weakly preferred to f . Then, this preference information
can be represented by the following constraints:∑

t: Ut(a)>Ut(b)

w(Ut) >
∑

t: Ut(c)>Ut(d)

w(Ut) >
∑

t: Ut(e)>Ut(f)

w(Ut).

Indeed, the first inequality states that the preference of a over b is more credible than the preference
of c over d, while the other inequality states that the preference of c over d is more credible than the
preference of e over f .
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From a computational point of view, to check if on the set of sampled valued functions there

exists at least one probability distribution compatible with the uncertain preference information

provided by the DM (in the following, for brevity, we shall write a compatible probability distribution

to denote a vector of weights assigned to value functions sampled in the first step), one has to solve

the following linear programming problem:

ε∗L = max ε, subject to (2)

∑
t: Ut(a)>Ut(b)

w(Ut) ≥
∑

t: Ut(b)>Ut(a)

w(Ut) + ε, if a �L b, for a, b ∈ AR,

∑
t: Ut(a)>Ut(b)

w(Ut) ≥
∑

t: Ut(c)>Ut(d)

w(Ut) + ε, if (a, b) �∗
L (c, d), for a, b, c, d ∈ AR,

 [UPIC]

sv∑
t=1

w(Ut) = 1, [UNC]

w(Ut) ≥ 0, t = 1, . . . , sv. [UNNC]


EL

If EL is feasible and ε∗L > 0, then there exists at least one probability distribution w compatible with

the uncertain preference information provided by the DM.

Solving the optimization problem (2), one gets a single most discriminant probability distribution

but, in general, there exists more than one compatible probability distribution. In order to take into

account not only one but the whole set of compatible probability distributions, we propose to apply

again the HAR method to extract a representative sample from the space defined by constraints EL.

Using a sampled compatible probability distribution w, the typical indices of the Stochastic

Multiobjective Acceptability Analysis (SMAA) [35] can be computed:

• The rank acceptability index :

RAIw(a, r) =
∑

t: rank(a,Ut)=r

w(Ut)

where rank(a, Ut) denotes the position attained by alternative a in the ranking constructed

using the sampled value function Ut. It is the probability with which a is ranked on the r-th

position by this value function.
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• The pairwise winning index :

PWIw(a, b) =
∑

t: Ut(a)>Ut(b)

w(Ut)

giving the probability that alternative a is preferred to alternative b for the sampled value

function Ut.

For each sampled compatible probability distribution w, the preference relation %w
L , where a %w

L b

means that a is uncertainly preferred to b with respect to distribution w, can be defined as follows:

a %w
L b ⇔ PWIw(a, b) ≥ PWIw(b, a). (3)

Considering a sample of compatible probability distributions, as well as the totality of compatible

probability distributions, one can define three different preference relations, in the set of alternatives

A for all a, b ∈ A:

• a %R
L b (a is uncertainly preferred to b in a representative way) iff PWIw∗(a, b) ≥ PWIw∗(b, a),

where w∗ is the barycenter of all sampled compatible probability distributions obtained by

averaging all of them, component by component; it can be considered as a representative

compatible probability distribution;

• a %N
L b (a is probabilistically necessarily preferred to b) iff the preference of a over b is at least

as credible as the preference of b over a, for all compatible probability distributions;

• a %P
L b (a is probabilistically possibly preferred to b) iff the preference of a over b is at least as

credible as the preference of b over a for at least one compatible probability distribution.

It is meaningful to observe that, while the relation %R
L is based on a single compatible probability

distribution, the preference relations %N
L and %P

L are obtained taking into account simultaneously the

whole sample of value functions compatible with the certain preference information and all probability

distributions on the sampled valued functions compatible with the uncertain preference information

provided by the DM. From a computational point of view, given the two sets of constraints:∑
t: Ut(a)>Ut(b)

w(Ut) + ε ≤
∑

t: Ut(b)>Ut(a)

w(Ut),

EL

EN
L

∑
t: Ut(a)>Ut(b)

w(Ut) ≥
∑

t: Ut(b)>Ut(a)

w(Ut),

EL

EP
L
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the probabilistic necessary and the probabilistic possible preference relations are computed as follows:

• a %N
L b iff EN

L is infeasible or εNL ≤ 0, where εNL = max ε subject to EN
L ;

• a %P
L b iff EP

L is feasible and εPL > 0, where εPL = max ε subject to EP
L .

In the following proposition, we provide some important properties satisfied by the binary re-

lations considered above, and defined taking into account the certain and the uncertain preference

information provided by the DM.

Proposition 2.1.

1. For any compatible probability distribution w, %w
L is strongly complete, that is, for all a, b ∈ A,

a %w
L b or b %w

L a.

2. %N ⊆ %N
L ⊆ %R

L ⊆ %P
L ⊆ %P .

3. For all a, b ∈ A, a %N
L b or b %P

L a.

4. For all a, b, c ∈ A, if a %N b and b %N
L c, then a %N

L c.

5. For all a, b, c ∈ A, if a %N
L b and b %N c, then a %N

L c.

6. For all a, b, c ∈ A, if a %N b and b %P
L c, then a %P

L c.

7. For all a, b, c ∈ A, if a %P
L b and b %N c, then a %P

L c.

Proof. See Appendix.

Let us point out that if the DM is not able to provide any uncertain preference information, then

our methodology boils down to SOR. Indeed, applying the HAR method to sample a certain number of

probability distributions satisfying the non-negativity [UNNC] and normalization constraints [UNC]

only, and computing their barycenter, is equivalent to considering a uniform probability distribution

on the set of sampled value functions compatible with the certain preference information provided

by the DM. For this reason, we claim that SSOR is a generalization of SOR.

Let us summarize all steps of the proposed methodology (see Figure 1):
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Figure 1: Flow chart of the proposed methodology

Step 1 The DM is asked to provide certain preference information in form of pairwise comparisons

or statements concerning intensity of preference. Such preference information is translated to

the constraints [CPIC] in EAR

certain.

Step 2 The analyst verifies whether there exists at least one value function compatible with the

preference information provided by the DM by solving the LP problem (1). If so (i.e., if

εcertain > 0), one can pass to Step 3). Otherwise, the pieces of certain preference information

underlying the inconsistency have to be removed (Step 2.1) [39].
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Step 3 Since more than one value function could be compatible with the certain preference infor-

mation provided by the DM, we sample sv compatible value functions using the HAR method.

The use of HAR is justified since the constraints [CPIC] translating the DM’s certain prefer-

ence information combined with the monotonicity [MC] and normalization [NC] constraints

define a convex polyhedron.

Step 4 In order to get robust recommendations with respect to the problem at hand, one can

compute the “classical” necessary (%N) and possible (%P ) preference relations taking into

account the whole set of functions compatible with the certain preference information provided

by the DM.

Step 5 The DM is asked whether she wishes to provide some uncertain preference information. If

not, one can proceed to Step 5.1 where a uniform probability distribution on the sampled

value functions is considered (in this case, the same weight is assigned to all sampled value

functions), and then pass directly to Step 10. Otherwise, go to Step 6.

Step 6 The DM provides uncertain preference information expressing different degrees of credibility

on the preference of one alternative over another. This preference information is translated to

constraints [UPIC] in EL.

Step 7 The analyst verifies whether there exists some probability distribution on the value functions

sampled in Step 3 that would be compatible with the DM’s uncertain preference information

by solving the LP problem (2). If so (i.e., if ε∗L > 0), then one can proceed to Step 8.

Otherwise, the pieces of uncertain preference information underlying the incompatibility have

to be removed (Step 7.1) [39].

Step 8 Since more than one probability distribution defined on the sampled value functions could

be compatible with the uncertain preference information provided by the DM, we propose

to sample s
′

of them by using the HAR method. Again, this is possible since constraints

[UPIC] translating this preference information combined with the non-negativity [UNNC]

and normalization [UNC] constraints define a convex polyhedron.
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Step 9 A representative probability distribution w∗ is computed by averaging component by com-

ponent the probability distributions sampled in Step 8.

Step 10 The following robust recommendations for the problem at hand are derived:

• For each alternative a and for each rank r, r = 1, . . . , |A|, the rank acceptability index

RAIw∗(a, r) is computed by considering the representative probability distribution w∗;

• For each pair of alternatives (a, b) ∈ A × A, the pairwise winning index PWIw∗(a, b) is

computed by considering the representative probability distribution w∗;

• The truth of the probabilistic necessary and possible preference relations %N
L and %P

L is

verified for all pairs of alternatives.

Let us emphasize that some modifications in the described methodology can be considered. For

example, in Step 9, instead of the representative probability distribution w∗ one can take into

account another compatible probability distribution. Analogously, in Step 10, one can compute

(as we shall show in the didactic example) the rank acceptability indices and the pairwise winning

indices considering a uniform probability distribution on the sampled value functions.

3. Illustrative example

3.1. Problem statement and results

In this subsection, we illustrate the proposed approach using the example borrowed from [22].

The problem statement is the following. 15 sales managers are evaluated on three criteria: sales

management experience (g1), international experience (g2), and human qualities (g3). Only 6 of the

15 managers are non-dominated and their performances are shown in Table 1. Let us suppose that

the owner of the firm provided the following certain preference information (Step 1):

[Varlot � Petron] and [(Varlot, Petron) �∗ (Ferret, Calvet)].

After verifying that there exists at least one value function compatible with the DM’s preferences

(Step 2), we sampled 10,000 value functions satisfying the monotonicity [MC] and normalization

[NC] constraints, as well as the two certain pieces of preference information provided by the owner
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Table 1: Performances of the sales managers on the three criteria.

Sales manager g1 g2 g3

Bassama (B) 28 18 28

Calvet (C) 26 40 44

Ferret (F) 35 62 25

Frechet (R) 9 62 88

Petron (P) 6 15 100

Varlot (V) 62 43 0

(Step 3). Let us also suppose that the owner provides two pieces of uncertain preference information

(Step 5):

[Calvet �L Frechet] and [(Varlot, Ferret) �∗
L (Calvet, Frechet)].

By solving the LP problem (2), we get ε∗L > 0 (Step 6). This means that there exists at least one

probability distribution on the set of sampled value functions restoring the uncertain preferences

provided by the owner. After sampling 10,000 compatible probability distributions (Step 7), we

computed the representative compatible probability distribution w∗ (Step 8), and derived RAIs

and PWIs shown in Tables 2 and 3, respectively (Step 9).

In Table 2, we present both RAIs obtained for the representative probability distribution com-

patible with the DM’s uncertain preferences, and for the uniform probability distribution on the set

of sampled value functions (in brackets). Taking into account RAIs for the first rank, and comparing

the two types of results, we can observe that Varlot is the best among the six sales managers when

considering the DM’s uncertain preferences (first case), while Ferret is the best when considering

only certain preference information under the hypothesis of a uniform probability distribution of the

sampled value functions (second case). Moreover, while Ferret and Frechet are the second and the

third in the first case, Varlot and Frechet are the second and the third in the other case. Observe

also that Bassama and Petron are the worst sales managers in both cases.

Analogously to what has been observed for RAIs, some PWIs in Table 3 do differ when consid-

ering the two sampling procedures. For example, given the uncertain preferences of the DM, when

using the representative probability distribution, Varlot is preferred to Ferret with a probability of
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Table 2: Rank acceptability indices for the representative probability distribution w∗ compatible with DM’s uncertain

preferences. In brackets, there are rank acceptability indices for a uniform probability distribution on the sampled

value functions.

RAIw∗(a, 1) RAIw∗(a, 2) RAIw∗(a, 3) RAIw∗(a, 4) RAIw∗(a, 5) RAIw∗(a, 6)

B 0.0102 (0.0073) 0.0189 (0.0197) 0.1862 (0.1079) 0.2137 (0.1915) 0.4750 (0.5403) 0.0960 (0.1333)

C 0.00 (0.00) 0.0152 (0.0250) 0.3775 (0.1954) 0.4717 (0.5580) 0.1289 (0.2109) 0.0066 (0.0107)

F 0.2695 (0.4513) 0.6436 (0.4277) 0.0829 (0.1139) 0.0038 (0.0066) 0.0002 (0.0005) 0.00 (0.00)

R 0.1587 (0.2675) 0.1155 (0.1907) 0.1974 (0.3322) 0.2306 (0.1174) 0.2827 (0.0894) 0.0150 (0.0028)

P 0.00 (0.00) 0.0027 (0.0009) 0.0078 (0.0041) 0.0156 (0.0189) 0.0915 (0.1229) 0.8823 (0.8532)

V 0.5616 (0.2739) 0.2041 (0.3360) 0.1482 (0.2465) 0.0645 (0.1076) 0.0215 (0.0360) 0.00 (0.00)

0.6042 while, when considering the certain preferences only and, therefore, a uniform probability

distribution on the sampled value functions, Varlot is preferred to Ferret with a probability of only

0.3374. This means that, on average, Varlot is preferred to Ferret if we considered the uncertain

preferences of the DM, while Ferret is preferred to Varlot if we considered certain preferences only.

Table 3: Pairwise winning indices for the representative probability distribution w∗ compatible with DM’s preferences.

In brackets, there are pairwise winning indices for a uniform probability distribution on the sampled value functions.

B C F R P V

B 0.00 (0.00) 0.2949 (0.2600) 0.0217 (0.0148) 0.3300 (0.1558) 0.8974 (0.8630) 0.0434 (0.0628)

C 0.7051 (0.7341) 0.00 (0.00) 0.00 (0.00) 0.5002 (0.1629) 0.9725 (0.9694) 0.0879 (0.1467)

F 0.9783 (0.9852) 1.00 (1.00) 0.00 (0.00) 0.8085 (0.6789) 0.9957 (0.9960) 0.3958 (0.6626)

R 0.6700 (0.8442) 0.4998 (0.8371) 0.1915 (0.3211) 0.00 (0.00) 0.9773 (0.9950) 0.2530 (0.4237)

P 0.1026 (0.1370) 0.0275 (0.0306) 0.0043 (0.4000) 0.0227 (0.0050) 0.00 (0.00) 0.00 (0.00)

V 0.9566 (0.9372) 0.9121 (0.8533) 0.6042 (0.3374) 0.7470 (0.5763) 1.00 (1.00) 0.00 (0.00)

In Tables 4(a) and 4(b), we present the probabilistic necessary and possible preference relations.

For six pairs of sales managers, the probabilistic necessary preference relation holds; e.g., Ferret %N
L

Frechet. This means that the probability of the preference of Ferret over Frechet is not lower than

the probability of the preference of Frechet over Ferret, independently of the sampled compatible

probability distribution.

These results underline the usefulness of taking into account not only the certain preferences
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provided by the DM but also the uncertain ones. Indeed, considering the uncertain preferences

brings to conclusions both on the ranking of the considered alternatives and on the pairwise compar-

isons between them, which are different from the conclusions drawn taking into account the certain

preferences only.

Table 4: Probabilistic preference relations.

(a) Probabilistic necessary

preference relation %N
L .

B C F R P V

B 1 0 0 0 0 0

C 0 1 0 1 0 0

F 0 1 1 1 0 0

R 0 0 0 1 0 0

P 0 0 0 0 1 0

V 0 1 1 0 1 1

(b) Probabilistic possible

preference relation %P
L .

B C F R P V

B 1 1 1 1 1 1

C 1 1 0 1 1 0

F 1 1 1 1 1 0

R 1 0 0 1 1 1

P 1 1 1 1 1 0

V 1 1 1 1 1 1

3.2. Discussion of results in view of properties of the preference relations

In this section, we discuss in detail the results of our illustrative example in the context of

Proposition 2.1. For clarity of presentation, we also show how the LP problems and the indices

described in Section 2 are formulated and computed, respectively. Referring to the pairwise winning

indices shown in Table 3 and remembering that a %∗
L b iff PWIw∗(a, b) ≥ PWIw∗(b, a) (see (3)), we

can compute the preference relation %w∗
L shown in Table 5.

1. For any compatible probability distribution w, %w
L is strongly complete, that is, for all a, b ∈ A,

a %w
L b or b %w

L a.

For each pair of sales managers a, b ∈ A, it is evident that a %w∗
L b or b %w∗

L a holds. For

example, C %w∗
L B but not(B %w∗

L C) or, analogously, V %w∗
L P but not(P %w∗

L V ). Let us

observe that there is no pair of managers for which a %w∗
L b and b %w∗

L a, i.e., there is no pair

of managers for which the probability of a is preferred to b is the same as the probability of b

is preferred to a.
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Table 5: Preference relation %w∗

L computed considering the representative probability distribution w∗ compatible with

the uncertain preferences provided by the DM.

B C F R P V

B 0 0 0 0 1 0

C 1 0 0 1 1 0

F 1 1 0 1 1 0

R 1 0 0 0 1 0

P 0 0 0 0 0 0

V 1 1 1 1 1 0

2. %N ⊆ %N
L ⊆ %R

L ⊆ %P
L ⊆ %P .

To illustrate this proposition, in Tables 6(a) and 6(b) we present the “classical” necessary and

possible preference relations (i.e., for certain preference information only). Analyzing Tables

Table 6: Necessary and possible preference relations

(a) Necessary preference rela-

tion %N .

B C F R P V

B 1 0 0 0 0 0

C 0 1 0 0 0 0

F 0 1 1 0 0 0

R 0 0 0 1 0 0

P 0 0 0 0 1 0

V 0 0 0 0 1 1

(b) Possible preference relation

%P .

B C F R P V

B 1 1 1 1 1 1

C 1 1 0 1 1 1

F 1 1 1 1 1 1

R 1 1 1 1 1 1

P 1 1 1 1 1 0

V 1 1 1 1 1 1

4, 5 and 6, and considering, e.g., pair of managers (F,C), it is easy to observe that all the

inclusions from point 2 hold. Indeed, F %N C, F %N
L C, F %R

L C, F %P
L C and F %P C. Of

course, the opposite inclusions do not hold. For example, C %P V but not(C %P
L V ); B %P

L F

but not(B %R
L F ); C %R

L P but not(C %N
L P ). Finally, V %N

L C but not(V %N C).

3. For all a, b ∈ A, a %N
L b or b %P

L a.

For example, given pair (V,C), V %N
L C but not(C %P

L V ), while for (C,B) we have C %P
L B
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but not(B %N
L C).

4. For all a, b, c ∈ A, if a %N b and b %N
L c, then a %N

L c.

For example, considering F , C and R, we have that F %N C, C %N
L R and, consequently,

F %N
L R.

5. For all a, b, c ∈ A, if a %N
L b and b %N c, then a %N

L c.

For example, considering V , F and C, we have that V %N
L F , F %N C and, consequently,

V %N
L C.

6. For all a, b, c ∈ A, if a %N b and b %P
L c, then a %P

L c.

For example, considering V , P and F , we have that V %N P , P %P
L F and, consequently,

V %P
L F .

7. For all a, b, c ∈ A, if a %P
L b and b %N c, then a %P

L c.

For example, considering B, F and C, we have that B %P
L F , F %N C and, consequently,

B %P
L C.

3.3. Discussion of computational details.

To discuss computational details concerning calculation of necessary and possible preference rela-

tions, both in the case of only certain preference information, and in the case of certain and uncertain

preference information, as well as RAI and PWI indices of the stochastic ordinal regression, we shall

present our procedure using a small set of compatible value functions and a small set of compatible

probability distributions on the sample of compatible value functions.

To check if there exists at least one value function compatible with the certain preference infor-

mation provided by the DM, we have to solve the LP problem (1). Observe that all three criteria

are of gain type (i.e., the greater the evaluation on such a criterion, the better) and, consequently,

the corresponding marginal value functions are non-decreasing with respect to performances. The

variables of this LP problem are the marginal values for all different performances of the 6 sales

managers on the 3 considered criteria, as shown in Table 7.

Using the variables shown in Table 7 and considering the certain preference information provided
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Table 7: The variables of the LP problem (1), corresponding to marginal values for all different performances of

considered alternatives on criteria g1, g2, g3.

u1 u2 u3

u1(6) u2(15) u3(0)

u1(9) u2(18) u3(25)

u1(26) u2(40) u3(28)

u1(28) u2(43) u3(44)

u1(35) u2(62) u3(88)

u1(62) u3(100)

by the DM, the LP problem (1) can be formulated in the following way:

εcertain = max ε, subject to, (4)

u1(62) + u2(43) + u3(0) ≥ u1(6) + u2(15) + u3(100) + ε, V � P,

u1(62) + u2(43) + u3(0)− u1(6)− u2(15)− u3(100) ≥

≥ u1(35) + u2(62) + u3(25)− u1(26)− u2(40)− u3(44) + ε,

u1(35) + u2(62) + u3(25) ≥ u1(26) + u2(40) + u3(44) + ε,


[(V, P ) �∗ (F,C)],


[CPIC]

u1(62) + u2(62) + u3(100) = 1, u1(6) = u2(15) = u3(0) = 0, [NC]

u1(6) ≤ u1(9) ≤ u1(26) ≤ u1(28) ≤ u1(35) ≤ u1(62),

u2(15) ≤ u2(18) ≤ u2(40) ≤ u2(43) ≤ u2(62),

u3(0) ≤ u3(25) ≤ u3(28) ≤ u3(44) ≤ u3(88) ≤ u3(100).

[MC]


Since εcertain > 0, we conclude that the polyhedron of compatible value functions is not empty.

Therefore, it is meaningful to compute necessary and possible preference relations %N and %P .

These relations were already calculated and shown in Table 6. To explain these calculations, let

us consider the pair of sales managers Calvet and Petron (C,P ). To check if Calvet is possibly

preferred to Petron, i.e., C %P P , we have to solve the LP problem obtained from LP (4) by adding

the constraint U(C) ≥ U(P ), i.e.:

u1(26) + u2(40) + u3(44) ≥ u1(6) + u2(15) + u3(100). (5)
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Since εP = max ε > 0, there exists a compatible value function U , such that U(C) ≥ U(P ), which

permits to conclude that C %P P . Then, to check if Calvet is necessarily preferred to Petron,

i.e., C %N P , we have to solve the LP problem obtained from LP (4) by adding the constraint

U(P ) ≥ U(C) + ε, i.e.:

u1(6) + u2(15) + u3(100) ≥ u1(26) + u2(40) + u3(44) + ε. (6)

Since εN = max ε > 0, there exists a compatible value function U , such that U(P ) > U(C), which

implies that it is not true that U(C) ≥ U(P ) for all compatible value functions, i.e., not(C %N P ).

The necessary and possible preference relations for other pairs of sales managers have been calculated

analogously.

Table 8: Marginal values of U1, U2, U3, U4 for all different performances of alternatives on criteria g1, g2, g3.

U1 U2 U3 U4 U1 U2 U3 U4 U1 U2 U3 U4

u·,1(6) 0 0 0 0 u·,2(15) 0 0 0 0 u·,3(0) 0 0 0 0

u·,1(9) 0.1348 0.0885 0.1119 0.0015 u·,2(18) 0.0103 0.0193 0.1074 0.0664 u·,3(25) 0.1157 0.0192 0.0024 0.0214

u·,1(26) 0.2259 0.1281 0.2085 0.1697 u·,2(40) 0.0725 0.3192 0.2299 0.2554 u·,3(28) 0.2206 0.0623 0.0126 0.0412

u·,1(28) 0.2951 0.1322 0.3052 0.2330 u·,2(43) 0.1160 0.4371 0.2303 0.3702 u·,3(44) 0.2412 0.1806 0.0662 0.1877

u·,1(35) 0.3613 0.1699 0.4036 0.2522 u·,2(62) 0.1515 0.4400 0.2649 0.3877 u·,3(88) 0.2736 0.2122 0.1058 0.2202

u·,1(62) 0.5529 0.2257 0.4322 0.3422 u·,3(100) 0.2956 0.3343 0.3029 0.2701

Now, we should define a probability distribution on U compatible with the uncertain preference

information provided by the DM. Remember that U is the set of value functions U compatible with

the certain preference information provided by the DM. Unless U is empty, it is an infinite set,

in general. Thus, we approximate the probability distribution on U by considering instead of U a

well-distributed sample of value functions in U , denoted by Û . To present this procedure in simple

terms, we are considering Û composed of only four value functions U1, U2, U3, U4 computed using

the HAR method. They are shown in Table 8. Using the marginal values from Table 8, one can

compute the comprehensive values of U1, U2, U3, U4 for each considered sales manager. These values

are presented in Table 9. Analyzing the pairs of alternatives involved in the pieces of uncertain

preference information (i.e., C �L R and (V, F ) �∗
L (C,R)), one can observe that:

• C is preferred to R for U3 and U4, while R is preferred to C for U1 and U2;
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• V is preferred to F for U1, U2 and U4, but not for U3.

Table 9: Comprehensive values assigned to the six sales managers and respective rankings obtained with U1, U2, U3, U4.

(a) Comprehensive values

U1 U2 U3 U4

B 0.5259 0.2137 0.4252 0.3405

C 0.5395 0.6279 0.5045 0.6128

F 0.6285 0.6290 0.6708 0.6613

R 0.5599 0.7405 0.3825 0.6094

P 0.2955 0.3343 0.3029 0.2701

V 0.6689 0.6628 0.6624 0.7123

(b) Complete rankings

U1 U2 U3 U4

V (0.6689) R (0.7405) F (0.6708) V (0.7123)

F (0.6285) V (0.6628) V (0.6624) F (0.6613)

R (0.5599) F (0.6290) C (0.5045) C (0.6128)

C (0.5395) C (0.6279) B (0.4252) R (0.6094)

B (0.5259) P (0.3343) R (0.3825) B (0.3405)

P (0.2955) B (0.2137) P (0.3029) P (0.2701)

To check if there exists a probability distribution on the set of value functions U1, U2, U3, U4, we

have to solve the LP problem (2). A probability distribution on the set of sampled value functions

is, in this case, a vector of four non-negative probabilities (w(U1), w(U2), w(U3), w(U4)), such that

w(U1)+w(U2)+w(U3)+w(U4) = 1. The LP problem (2) that should be solved to verify the existence

of a probability distribution compatible with the uncertain preference information provided by the

DM is the following:

ε∗L = max ε, subject to (7)

w(U3) + w(U4) ≥ w(U1) + w(U2) + ε, C �L R,

w(U1) + w(U2) + w(U4) ≥ w(U3) + ε, (V, F ) �∗
L (C,R),

 [UPIC]

w(U1) + w(U2) + w(U3) + w(U4) = 1, [UNC]

w(U1) ≥ 0, w(U2) ≥ 0, w(U3) ≥ 0, w(U4) ≥ 0. [UNNC]


EL

Since for the optimal solution of problem (7) ε∗L > 0, then the polyhedron of the probability distri-

butions on the set of value functions U1, U2, U3, U4 compatible with the certain preference of the DM

is not empty. Thus, one can sample a set of probability distributions compatible with the uncertain

preferences of the DM. Let the sample be composed of five probability distributions w1, . . . ,w5 shown

in Table 10.
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Table 10: Five sampled probability distributions w1, . . . ,w5, compatible with the uncertain preference information

provided by the DM, and the representative probability distribution w∗.

w(U1) w(U2) w(U3) w(U4)

w1 0.1794 0.2233 0.0135 0.5836

w2 0.2094 0.1944 0.2121 0.3840

w3 0.3761 0.0489 0.1045 0.4702

w4 0.2023 0.0011 0.1814 0.6151

w5 0.3390 0.0728 0.1723 0.4157

w∗ 0.2612 0.1081 0.1368 0.4937

Table 11: Rank acceptability indices of the six sales managers in the considered example.

a RAIw∗(a, 1) RAIw∗(a, 2) RAIw∗(a, 3) RAIw∗(a, 4) RAIw∗(a, 5) RAIw∗(a, 6)

B 0 0 0 0.1368 0.7550 0.1081

C 0 0 0.6305 0.3694 0 0

F 0.1368 0.7550 0.1081 0 0 0

R 0.1081 0 0.2612 0.4937 0.1368 0

P 0 0 0 0 0.1081 0.8918

V 0.7550 0.2449 0 0 0 0

Table 12: Pairwise winning indices PWIw∗ for the sales managers in the considered example.

B C F R P V

B 0 0 0 0.1368 0.8918 0

C 1.00 0 0 0.6305 1.00 0

F 1.00 1.00 0 0.8918 1.00 0.1368

R 0.8631 0.3694 0.1081 0 1.00 0.1081

P 0.1081 0 0 0 0 0

V 1.00 1.00 0.8631 0.8918 1.00 0

Now, let us explain how RAIs and PWIs presented in Tables 11 and 12, respectively, are

computed. Let us consider the rank acceptability index of Varlot for the first position. In Ta-

ble 11, we note that RAIw∗(V, 1) = 0.755. This means that the sum of probabilities assigned
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to the sampled value functions for which Varlot attains the first rank is equal to 0.755%. In-

deed, looking at Table 9(b), one can observe that Varlot attains the first rank for value func-

tions U1 and U4. Consequently, RAIw∗(V, 1) = w∗(U1) + w∗(U4) = 0.2612 + 0.4937 = 0.755.

The same reasoning can be applied when computing the pairwise winning index for Calvet and

Frechet. In Table 12, we note that PWIw∗(C,R) = 0.6305 and PWIw∗(R,C) = 0.3694. In-

deed, remembering that PWIw∗(a, b) is the probability with which a is preferred to b, based on

Table 9(b), one can check that C is preferred to R for U3 and U4, while R is preferred to C for

U1 and U2. Consequently, PWIw∗(C,R) = w∗(U3) + w∗(U4) = 0.1368 + 0.4937 = 0.6305, while

PWIw∗(R,C) = w∗(U1) + w∗(U2) = 0.2612 + 0.1081 = 0.3694.

To end this example, where only four value functions U1, . . . , U4 were sampled in the space of all

value functions compatible with the certain preference information, let us compute the probabilistic

necessary and possible preference relations %N
L and %P

L .

In order to check if, for example, V is probabilistically possibly preferred to R, which is denoted

by V %P
L R, we have to verify if there exists at least one probability distribution over value functions

U1, . . . , U4, compatible with the uncertain preferences of the DM, such that the probability of the

preference of V over R is no lower than the probability of the preference of R over V . For this, we

have to solve the LP problem (7) with an additional constraint expressing the requirement that the

probability of the value functions for which V is preferred to R, i.e., U1, U3, U4, is not smaller than

the probability of the value function for which R is preferred to V , i.e., U2:

w(U1) + w(U3) + w(U4) ≥ w(U2). (8)

We conclude that V %P
L R if the set of constraints is feasible and εPL > 0, where εPL = max ε, subject

to the constraints EL and (8). Since εPL = 1 (for w1 = w2 = w3 = 0, w4 = 1), we have V %P
L R.

To check if V is probabilistically necessarily preferred to R, which is denoted by V %N
L R, we

have to verify in turn if the probability of the preference of V over R is no lower than the probability

of the preference of R over V . This is equivalent to say that there is no probability distribution for

which the probability assigned to the value function preferring R over V (i.e., U2) is greater than the

probability assigned to the value functions preferring V over R (i.e., U1, U3, U4). For this, we have
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to solve the LP problem (7) with an additional constraint expressing the above requirement :

w(U2) ≥ w(U1) + w(U3) + w(U4) + ε. (9)

We conclude that V %N
L R if the set of constraints is not feasible or εNL ≤ 0, where εNL = max ε,

subject to the constraints EL and (9). Since εNL = 0 (for w1 = w4 = 0, w2 = w4 = 0.5), we have

V %N
L R.

Analogously, one can compute the probabilistic necessary and possible preference relations %N
L

and %P
L for all the pairs of sales managers. The results are shown in Table 13.

To conclude the example, let us remind that computation of probability distributions w, their

barycenter w∗, RAIw∗ , PWIw∗ , as well as %P
L and %N

L , have been performed taking into account

a small sample of compatible value functions and a small number of probability distributions on

this sample. This was done for the sake of a didactic presentation, however, in order to get a

reasonable approximation of the analogous results on the whole set of compatible value functions

U and probability distribution on U , it is necessary to consider much larger samples of compatible

value functions and probability distributions, for example, 10,000 for both of them, as in Subsection

3.1.

Table 13: Probabilistic preference relations in the space of probability distributions for U1, . . . , U4.

(a) Probabilistic necessary

preference relation %N
L .

B C F R P V

B 1 0 0 0 1 0

C 1 1 0 1 1 0

F 1 1 1 1 1 0

R 1 0 0 1 1 0

P 0 0 0 0 1 0

V 1 1 1 1 1 1

(b) Probabilistic possible

preference relation %P
L .

B C F R P V

B 1 0 0 1 1 0

C 1 1 0 1 1 0

F 1 1 1 1 1 1

R 1 0 0 1 1 0

P 0 0 0 0 1 0

V 1 1 1 1 1 1
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4. Conclusions

In this paper, we introduced Subjective Stochastic Ordinal Regression (SSOR). SSOR is a gener-

alization of the existing ordinal regression approaches, which are:

• Ordinal Regression, representing the preference information of the DM by means of a single

compatible additive value function;

• Robust Ordinal Regression, representing the preference information of the DM by means of the

whole set of compatible additive value functions;

• Stochastic Ordinal Regression, considering a probability distribution exogenously given (very

often a uniform distribution) on the space of compatible additive value functions.

Differently from all these methods taking into account only certain preference information, in SSOR

uncertain preference information supplied by the DM is also taken into account. Indeed, in real

world applications, the DM could wish to provide not only the certain preferences, but also some

uncertain ones, stating, e.g., that the preference of alternative a over alternative b is more credible

than the preference of b over a. The uncertain preference information permits to build a probability

distribution over the set of preference models compatible with the certain preference information

provided by the DM.

Although we implemented SSOR for the case of preference modeling by an additive value func-

tions, this approach can be applied to other preference models already considered within OR and

ROR, such as outranking relation used in ELECTRE or PROMETHEE methods [6, 9, 17, 29, 40],

or models incorporating interactions between criteria [1, 3, 7, 20, 24]. Moreover, SSOR is also ap-

plicable to multiple criteria sorting methods where alternatives have to be assigned to pre-defined

and preferentially ordered classes [8, 23, 27, 36] as well as to group decision problems. Finally, the

concept of uncertain preference information can be used to enrich the explanations of the obtained

recommendation [28].
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interval type-2 fuzzy sets. Knowledge-Based Systems, 59:48–57, 2014.

[34] R.L. Keeney and H. Raiffa. Decisions with multiple objectives: Preferences and value tradeoffs.

J. Wiley, New York, 1993.

[35] R. Lahdelma, J. Hokkanen, and P. Salminen. SMAA - stochastic multiobjective acceptability

analysis. European Journal of Operational Research, 106(1):137–143, 1998.

[36] J. Liu, X. Liao, and J. Yang. A group decision-making approach based on evidential reasoning for

multiple criteria sorting problem with uncertainty. European Journal of Operational Research,

246(3):858 – 873, 2015.

[37] S. Minardi and A. Savochkin. Preference with grades of indecisiveness. Journal of Economic

Theory, 155:300–331, 2015.

[38] V. Mousseau, L.C. Dias, and J.R. Figueira. Dealing with inconsistent judgments in multiple

criteria sorting models. 4OR, 4(2):145–158, 2006.

[39] V. Mousseau, J. Figueira, L. Dias, C. Gomes da Silva, and J. Climaco. Resolving inconsistencies

among constraints on the parameters of an MCDA model. European Journal of Operational

Research, 147(1):72–93, 2003.

[40] B. Roy. The outranking approach and the foundations of ELECTRE methods. Theory and

Decision, 31:49–73, 1991.

[41] T.L Saaty. How to make a decision: the Analytic Hierarchy Process. European Journal of

Operational Research, 48(1):9–26, 1990.

29



[42] Y. Siskos and E. Grigoroudis. New Trends in Aggregation-Disaggregation Approaches. In

C. Zopounidis and P. Pardalos, editors, Handbook of Multicriteria Analysis, pages 189–214,

2010.

[43] R.L. Smith. Efficient Monte Carlo procedures for generating points uniformly distributed over

bounded regions. Operations Research, 32:1296–1308, 1984.

[44] T. Tervonen, G. Van Valkenhoef, N. Bastürk, and D. Postmus. Hit-And-Run enables efficient

weight generation for simulation-based multiple criteria decision analysis. European Journal of

Operational Research, 224:552–559, 2013.

[45] G. Van Valkenhoef, T. Tervonen, and D. Postmus. Notes on “Hit-And-Run enables efficient

weight generation for simulation-based multiple criteria decision analysis”. European Journal of

Operational Research, 239:865–867, 2014.

Appendix

Proof of Proposition 2.1

1. Let a, b ∈ A such that not(a %w
L b). This means that for the considered compatible probability

distribution w,
∑

t: Ut(a)>Ut(b)

w(Ut) <
∑

t: Ut(b)>Ut(a)

w(Ut); therefore b %w
L a.

2.1 Let a, b ∈ A such that a %N b. Then, for all Ut, t = 1, . . . , sv, Ut(a) ≥ Ut(b). Consequently, for

all compatible probability distributions,
∑

t: Ut(b)>Ut(a)

w(Ut) = 0 because {t : Ut(b) > Ut(a)} = ∅.

Therefore, being w(·) ≥ 0, we have the thesis
∑

t: Ut(a)>Ut(b)

w(Ut) ≥
∑

t: Ut(b)>Ut(a)

w(Ut) = 0.

2.2 It is obvious that a %N
L b implies a %R

L b. In fact, if the preference of a over b is more credible

than the preference of b over a for all compatible probability distributions, then it is true for

whichever of them.

2.3 Analogously, it is obvious that a %R
L b implies a %P

L b for the definition of the binary relation

%P
L .
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2.4 Let a, b ∈ A such that a %P
L b and let us suppose, for contradiction, that not(a %P b).

This means that for all Ut, t = 1, . . . , sv, Ut(b) > Ut(a). Consequently, for all compatible

probability distributions, we would have
∑

t: Ut(a)>Ut(b)

w(Ut) = 0 and
∑

t: Ut(b)>Ut(a)

w(Ut) = 1 being

in contradiction with the hypothesis that a %P
L b, that is

∑
t: Ut(a)>Ut(b)

w(Ut) ≥
∑

t: Ut(b)>Ut(a)

w(Ut).

3 Let a, b ∈ A such that not(a %N
L b). This means that there exists at least one compatible

probability distribution for which
∑

t: Ut(a)>Ut(b)

w(Ut) <
∑

t: Ut(b)>Ut(a)

w(Ut). As a consequence,

b %P
L a.

4 Let a, b, c ∈ A such that a %N b and b %N
L c. Since a %N b, we have Ut(a) ≥ Ut(b) for

all Ut, t = 1, . . . , sv, so that {t : Ut(b) > Ut(c)} ⊆ {t : Ut(a) > Ut(c)} and, therefore, for all

compatible probability distributions
∑

t: Ut(a)>Ut(c)

w(Ut) ≥
∑

t: Ut(b)>Ut(c)

w(Ut), all w(·) being non-

negative. For the same reason, {t : Ut(c) > Ut(a)} ⊆ {t : Ut(c) > Ut(b)} and, consequently, for

all compatible probability distributions w,
∑

t: Ut(c)>Ut(b)

w(Ut) ≥
∑

t: Ut(c)>Ut(a)

w(Ut). Therefore, for

all compatible probability distributions,

∑
t: Ut(a)>Ut(c)

w(Ut) ≥
∑

t: Ut(b)>Ut(c)

w(Ut) ≥
∑

t: Ut(c)>Ut(b)

w(Ut) ≥
∑

t: Ut(c)>Ut(a)

w(Ut)

and, consequently,
∑

t: Ut(a)>Ut(c)

w(Ut) ≥
∑

t: Ut(c)>Ut(a)

w(Ut) being the thesis.

5 Let a, b ∈ A such that a %N
L b and b %N c. Since b %N c, we have Ut(b) ≥ Ut(c) for all Ut, t =

1, . . . , sv, so that {t : Ut(a) > Ut(b)} ⊆ {t : Ut(a) > Ut(c)} and, consequently, for all compatible

probability distributions w,
∑

t: Ut(a)>Ut(c)

w(Ut) ≥
∑

t: Ut(a)>Ut(b)

w(Ut) because all w(·) are non-

negative. For the same reason, {t : Ut(c) > Ut(a)} ⊆ {t : Ut(b) > Ut(a)} and, consequently, for

all compatible probability distributions w,
∑

t: Ut(b)>Ut(a)

w(Ut) ≥
∑

t: Ut(c)>Ut(a)

w(Ut). Therefore,

for all compatible probability distributions,

∑
t: Ut(a)>Ut(c)

w(Ut) ≥
∑

t: Ut(a)>Ut(b)

w(Ut) ≥
∑

t: Ut(b)>Ut(a)

w(Ut) ≥
∑

t: Ut(c)>Ut(a)

w(Ut)

and, consequently,
∑

t: Ut(a)>Ut(c)

w(Ut) ≥
∑

t: Ut(c)>Ut(a)

w(Ut) being the thesis.
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6 Let a, b, c ∈ A such that a %N b and b %P
L c. Since a %N b we have Ut(a) ≥ Ut(b) for all Ut, t =

1, . . . , sv, so that {t : Ut(b) > Ut(c)} ⊆ {t : Ut(a) > Ut(c)} and, therefore, for all compatible

probability distributions w,
∑

t: Ut(a)>Ut(c)

w(Ut) ≥
∑

t: Ut(b)>Ut(c)

w(Ut) because all w(·) are non-

negative. For the same reason, {t : Ut(c) > Ut(a)} ⊆ {t : Ut(c) > Ut(b)} and, consequently, for

all compatible probability distributions
∑

t: Ut(c)>Ut(b)

w(Ut) ≥
∑

t: Ut(c)>Ut(a)

w(Ut). Therefore, for

the compatible probability distribution for which b %P
L c we have,

∑
t: Ut(a)>Ut(c)

w(Ut) ≥
∑

t: Ut(b)>Ut(c)

w(Ut) ≥
∑

t: Ut(c)>Ut(b)

w(Ut) ≥
∑

t: Ut(c)>Ut(a)

w(Ut)

and, consequently, for this compatible probability distribution
∑

t: Ut(a)>Ut(c)

w(Ut) ≥
∑

t: Ut(c)>Ut(a)

w(Ut)

being the thesis.

7 Let a, b ∈ A such that a %P
L b and b %N c. Since b %N c, we have Ut(b) ≥ Ut(c) for all Ut, t =

1, . . . , sv, so that {t : Ut(a) > Ut(b)} ⊆ {t : Ut(a) > Ut(c)} and, consequently,
∑

t: Ut(a)>Ut(c)

w(Ut) ≥∑
t: Ut(a)>Ut(b)

w(Ut) because all w(·) are non-negative. For the same reason, {t : Ut(c) > Ut(a)} ⊆

{t : Ut(b) > Ut(a)} and, consequently,
∑

t: Ut(b)>Ut(a)

w(Ut) ≥
∑

t: Ut(c)>Ut(a)

w(Ut). Therefore, for the

compatible probability distribution for which a %P
L b we have,

∑
t: Ut(a)>Ut(c)

w(Ut) ≥
∑

t: Ut(a)>Ut(b)

w(Ut) ≥
∑

t: Ut(b)>Ut(a)

w(Ut) ≥
∑

t: Ut(c)>Ut(a)

w(Ut)

and, consequently, for this compatible probability distribution
∑

t: Ut(a)>Ut(c)

w(Ut) ≥
∑

t: Ut(c)>Ut(a)

w(Ut)

being the thesis.
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