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Abstract

There are many free sources of energy around the globe. By investing in them, the
world can reduce its dependence on fossil fuels and improve the quality of the
environment. Waste heat is considered a hidden energy source and waste heat recovery
creates a green energy source with low cost. In addition, natural thermal energy, such
as geothermal and solar energy, is a low-cost sustainable heat source with large
amounts emitted and produced annually. The stationary cylindrical split channel
(where the cylinder is sliced in half along the axis and the two c-shaped halves are
translated laterally), commonly used to induce a fire-whirl in the laboratory, is one
device that can utilise these heat sources. This research investigates inducing swirl
flow within a stationary cylindrical split channel with two identical slots (without using
moving parts) using a hot air flow inlet at its base. The objectives of this research are:
Firstly, to examine the generation of swirl flow in the split channel when the used heat
source is a hot air flow inlet instead of fire. Secondly, to study the effect of possible
design parameters on specific variables, including the conversion efficiency of thermal
energy to kinetic energy, to determine some possible applications of the new,
naturally-induced swirl generator.

This research was divided into experimental and computational components to
accomplish the above objectives. First, a preliminary experiment using a fog machine
was conducted to visualise the swirl smoke. This was followed by measurements of
the generation of the swirl flow using a two-dimensional Particle Image Velocimetry
system (2D PIV system). Olive oil particles were used as seeds and to collect the
required measurements of velocity components for subsequent validation of the
computational fluid dynamics (CFD) results. The scaling analysis was conducted to
present the experimental and computational results in normalized form, and to
investigate the scaling effect on the turbulence of the swirl flow. Moreover,
thermocouples were used to measure the instantaneous temperatures. Second, the
computational study was used to solve the continuity, momentum and energy
equations in a steady-state condition, using the ANSYS 13.0-CFX software. The Shear
Stress Transport model was used for the turbulence. Thermal radiation and heat
transfer to the channel walls were ignored. The channel walls and the base of the
domain were assumed to be smooth and non-slippery walls. All sides of the cubic
domain, representing the surrounding air (with the exception of the bottom), were
assumed to be open with an initial wind speed of zero. The ambient temperature was
constant. The pressure boundary condition on the sides and top of the cubic domain
was set to atmospheric pressure, which decreases with the height. The thermal
properties of air changed with temperature and the transport properties were also
functions of temperature, using the Sutherland formulas.

To prove the existence of swirl flow, both fog machine visualization and 2D PIV
visualisation and measurements were used. The cylindrical split channel used
throughout the experimental investigation had a height of 0.25 m and an internal
diameter of 0.095 m. Furthermore, the diameter of the inlet at the base of the split
channel was 0.03 m, the width of gap (the translation distance along the split) was
0.0115 m, and the depth of gap (the translation distance normal to the split, creating
an overlap) was 0.01 m. The PIV measurements were taken for tangential and radial
velocities at three different heights within the channel (33.5mm, 125 mm and
240 mm), while the axial velocity component was measured for a plane including the
centreline of the channel.

Safia R. Al Atresh i



A three-dimensional CFD model of the swirl flow produced within the current
experimental work was validated by the current PIV measurements. A parametric
study was then conducted where design parameters such as the inlet temperature and
pressure, all geometric quantities (all the sizes of the channel, holes and gaps) and the
number of gaps were varied. The effects of these variations on the normalized
centreline axial velocity, normalized centreline temperature, normalized centreline
axial vorticity, normalized inlet and exit axial velocities, normalized inlet mass flow
rate, entrainment ratio and conversion efficiency of thermal energy at the inlet to
kinetic energy along the split channel were investigated. This parametric study was
conducted on a cylindrical split channel having dimensions similar to Kuwana’s
channel (Kuwana, Morishita, Dobashi, Chuah & Saito, 2011, Proceedings of the
Combustion Institute, vol. 33, pp. 2425-2432). In this study, when one parameter was
varied, the remainder were maintained constant.

The results from the smoke and PIV visualisation showed that a swirl flow was
generated within the cylindrical split channel. The validation of the CFD showed that
average relative deviations were 17.7% and 55.3% for the tangential and radial
velocities at a height of 32 mm, while it was 49.56% for the axial velocity. The shapes
of the profiles for each velocity component were reproduced by the CFD, but the large
relative error in the radial velocity is due to its small magnitude, while the error in the
axial velocity is due to an inability to predict the large increase and rapid decrease
immediately downstream of the inlet. The scaling analysis produced 16 dimensionless
groups representing the characteristic of the generated swirl flow. The parametric
study for the channel similar to Kuwana’s channel showed that several reported
variables affected the conversion efficiency of thermal energy to kinetic energy ().
The inlet temperature, pressure and diameter, the size of the gap (in both directions)
and number of gaps are the major variables for designing a split channel for power
production because n increases with their increase. In addition, many variables affect
the entrainment ratio and inlet mass flow rate, and high values of inlet temperature,
gap width and using two gaps (instead of one) are the major variables for building a
split chimney for dilution purposes. The inlet temperature, pressure and diameter, the
size of the gap (in both directions) and number of gaps are the major variables for the
design of a split channel as a fuel saver for an automobile.
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