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Abstract. This paper presents a general procedure for inverse entailment which constructs inductive hypotheses
in inductive logic programming. Based on inverse entailment, not only unit clauses but also characteristic clauses
are deduced from a background theory together with the negation of positive examples. Such clauses can be
computed by a resolution method for consequence finding. Unlike previous work on inverse entailment, our
proposed method called CF-induction is sound and complete for finding hypotheses from full clausal theories,
and can be used for inducing not only definite clauses but also non-Horn clauses and integrity constraints. We
also show that CF-induction can be used to compute abductive explanations, and then compare induction and
abduction from the viewpoint of inverse entailment and consequence finding.
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1. Introduction

Both induction and abduction are ampliative reasoning, and agree with the logic to seek
hypotheses which account for given observations or examples. That is, given a background
theory B and observations (or positive examples) E , the task of induction and abduction is
common in finding a hypothesis H such that

B ∧ H |= E, (1)

where B ∧ H is consistent (Helft, 1989; Dimopoulos & Kakas, 1996; Grégoire & Saı̈s,
1996; Lachiche, 2000). While the logic is in common, they differ in the usage in applications.
According to Peirce (1932, Paragraph 777), abduction infers a cause of an observation, and
can infer something quite different from what is observed. On the other hand, induction
infers something to be true through generalization of a number of cases of which the same
thing is true. The relation, difference, similarity, and interaction between abduction and
induction are extensively studied by authors in Flach and Kakas (2000).

Compared with automated abduction, one of the major drawbacks of automated induc-
tion is that computation of inductive hypotheses requires a large amount of search that is
highly expensive. General mechanisms to construct hypotheses rely on refinement of current
hypotheses, which has a lot of alternative choices unless good heuristics is incorporated in
search. We thus need a logically principled way to compute inductive hypotheses. One such
a promising method to compute hypotheses H in (1) is based on inverse entailment, which
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transforms the Eq. (1) into

B ∧ ¬E |= ¬H. (2)

The Eq. (2) says that, given B and E , any hypothesis H deductively follows from B ∧ ¬E
in its negated form. For example, suppose that

B1 = human(s), E1 = mortal(s)

are given. Then,

H1 = ∀x (human(x) ⊃ mortal(x))

satisfies (1). In fact,

human(s) ∧ ¬mortal(s) |= ∃x (human(x) ∧ ¬mortal(x)),

that is, B1 ∧¬E1 |= ¬H1. The Eq. (2) is seen in literature, e.g., (Inoue, 1992) for abduction
and Muggleton (1995) for induction.

While the Eq. (2) is useful for computing abductive explanations of observations in
abduction, it is more difficult to apply it to compute inductive hypotheses. In abduction,
without loss of generality, E is written as a ground atom, and each H is usually assumed to
be a conjunction of literals. These conditions make abductive computation relatively easy,
and consequence finding algorithms (Inoue, 1992; del Val, 1999; Marquis, 2000) can be
directly applied.

In induction, however, E can be clauses and H is usually a general rule. Universally
quantified rules for H cannot be easily obtained from the negation of consequences of
B ∧ ¬E . Then, Muggleton (1995) introduced a “bridge” formula U between B ∧ ¬E and
¬H :

B ∧ ¬E |= U, U |= ¬H.

As such a bridge formula U , Muggleton considers the conjunction of all unit clauses that
are entailed by B ∧ ¬E . In this case, ¬U is a clause called the bottom clause ⊥(B, E).
A hypothesis H is then constructed by generalizing a sub-clause of ⊥(B, E), i.e., H |=
⊥(B, E).

While this method with ⊥(B, E) is adopted in Progol (Muggleton, 1995), it is incomplete
for finding hypotheses satisfying (1) (Yamamoto, 1997). Then, several improvements have
been reported to make inverse entailment complete (Muggleton, 1998; Furukawa, 1998;
Yamamoto & Fronhöfer, 2000) or to characterize inverse entailment precisely
(Yamamoto, 1997, 2000; Furukawa, 1997; Muggleton & Bryant, 2000). However, such
improved inductive procedures are not very simple when compared with abductive com-
putation. More seriously, some improved procedures are unsound even though they are
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complete. Another difficulty in most previous inductive methods lies in the facts: (i) each
constructed hypothesis in H is usually assumed to be a Horn clause, (ii) the example E is
given as a single Horn clause, and (iii) the background theory B is a set of Horn clauses.
Finding full clausal hypotheses from full clausal theories has not been received much at-
tention so far.

In this paper, we propose a simple, yet powerful method to handle inverse entailment
(2) for computing inductive hypotheses. Unlike previous methods based on the bottom
clause, we do not restrict the consequences of B ∧ ¬E to literals, but consider the charac-
teristic clauses of B ∧ ¬E , which were originally proposed for AI applications (including
abduction) of consequence finding (Inoue, 1992). Using our method, sound and complete
hypothesis finding from full clausal theories can be realized, and not only definite clauses
but also non-Horn clauses and integrity constraints can be constructed as H . In this way, in-
ductive algorithms can be designed with deductive procedures, which reduce search space as
much as possible like in computing abduction. In this paper, we also clarify the relationship
and difference between abductive and inductive computation.

This paper is an extended version of Inoue (2001), and contains a variety of new material
including complete proofs of all theorems, extensive discussion on inverse entailment, im-
plementation issues, and comparison with related work. This paper is organized as follows.
Section 2 introduces the theoretical background in this paper. Section 3 reviews previous
approaches to inverse entailment, in which abduction is characterized as a consequence
finding method. Section 4 provides the basic idea called CF-induction to construct induc-
tive hypotheses using a consequence finding method. Section 5 compares induction with
abduction in the context of consequence finding. Section 6 discusses related work, and
Section 7 is the conclusion. The proof of the main theorem is given in the appendix.

2. Background

2.1. Inductive logic programming

Here, we review the terminology of inductive logic programming (ILP). A clause is a dis-
junction of literals, and is often denoted by the set of its disjuncts.
A clause {A1, . . . , Am, ¬B1, . . . ,¬Bn}, where each Ai , B j is an atom, is also written as
B1 ∧ · · · ∧ Bn ⊃ A1 ∨ · · · ∨ Am . Any variable in a clause is assumed to be universally
quantified at the front. A definite clause is a clause which contains only one positive literal.
A positive (negative) clause is a clause whose disjuncts are all positive (negative) literals.
A negative clause is often called an integrity constraint. A Horn clause is a definite clause
or negative clause; otherwise it is non-Horn. The length of a clause is the number of literals
it contains. A unit clause is a clause with the length 1, i.e., a literal. A clausal theory � is
a finite set of clauses. A clausal theory is full if it contains non-Horn clauses. On the other
hand, a Horn program is a clausal theory containing Horn clauses only.

A (universal) conjunctive normal form (CNF) formula is a conjunction of clauses, and a
disjunctive normal form (DNF) formula is a disjunction of conjunctions of literals. A clausal
theory � is identified with the CNF formula that is the conjunction of all clauses in �. We
define the complement of a clausal theory, � = C1 ∧ · · · ∧ Ck where each Ci is a clause, as
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the DNF formula ¬C1σ1 ∨ · · · ∨ ¬Ckσk , where ¬Ci = B1 ∧ · · · ∧ Bn ∧ ¬A1 ∧ · · · ∧ ¬Am

for Ci = (B1 ∧ · · · ∧ Bn ⊃ A1 ∨ · · · ∨ Am), and σi is a substitution which replaces each
variable x in Ci with a Skolem constant skx . This replacement of variables reflects the fact
that each variable in ¬Ci is existentially quantified at the front. Since there is no ambiguity,
we write the complement of � as ¬�.

Let C and D be two clauses. C subsumes D if there is a substitution θ such that Cθ ⊆ D.
C properly subsumes D if C subsumes D but D does not subsume C . For a clausal theory
�, µ� denotes the set of clauses in � not properly subsumed by any clause in �.

Let B, E , and H be clausal theories, representing a background theory, (positive) exam-
ples, and a hypothesis, respectively. The most popular formalization of concept-learning is
learning from entailment (or explanatory induction), in which the task is: given B and E ,
find H such that B ∧ H |= E and B ∧ H is consistent. Note here that negative examples
do not appear in this definition. We will consider negative examples in Section 4.5. On
the other hand, in the case of abduction, E and H are usually called observations and an
explanation, respectively, for the same task as induction. Precise definitions for abduction
and induction are given in Section 3.

2.2. Consequence finding

For a clausal theory �, a consequence of � is a clause entailed by �. We denote by T h(�) the
set of all consequences of �. The consequence finding problem was first addressed by Lee
(1967) in the context of the resolution principle. Lee proved that, for any non-tautological
consequence D of �, the resolution principle can derive a clause C from � such that C
entails D. In this sense, the resolution principle is said to be complete for consequence
finding. In Lee’s theorem, “C entails D” can be replaced with “C subsumes D”. Hence,
the consequences of � that are derived by the resolution principle includes µT h(�), and
are equivalent under subsumption to the clauses of µT h(�). The notion of consequence
finding is used as the theoretical background for discussing the completeness of ILP systems
(Nienhuys-Cheng & de Wolf, 1997). In ILP, the completeness result of consequence finding
is often called the subsumption theorem (Nienhuys-Cheng & de Wolf, 1997).

By extending the notion of consequence finding, Inoue (1992) defined characteristic
clauses to represent “interesting” clauses for a given problem. Each characteristic clause
is constructed over a sub-vocabulary of the representation language called a “production
field”. Formally, a production field P is a pair, 〈 L, Cond 〉, where L is a set of literals closed
under instantiation, and Cond is a certain condition to be satisfied, e.g., the maximum length
of clauses, the maximum depth of terms, etc. When Cond is not specified, P = 〈 L, ∅ 〉 is
simply denoted as L. A clause C belongs to P = 〈 L, Cond 〉 if every literal in C belongs
to L and C satisfies Cond. For a set � of clauses, the set of logical consequence of �

belonging to P is denoted as T hP (�). Then, the characteristic clauses of � with respect
to P are defined as:

Carc(�,P) = µ ThP (�) . (3)

Here, we do not include any tautology ¬L ∨ L (≡ True) in Carc(�,P) even when both L
and ¬L belong to P . Note that the empty clause is the unique clause in Carc(�,P) if and
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only if � is unsatisfiable and P is a stable production field.1 This means that proof finding
is a special case of consequence finding.

The use of characteristic clauses enables us to characterize various reasoning problems of
interest to AI, such as nonmonotonic reasoning, diagnosis, and knowledge compilation as
well as abduction (Inoue, 1992, 2002). In the propositional case, each characteristic clause
of � is a prime implicate of �.

When a new clause C is added to a clausal theory �, some consequences are newly
derived with this new information. Such a new and “interesting” clause is called a “new”
characteristic clause. Formally, the new characteristic clauses of C with respect to � and
P are:

NewCarc(�, C,P) = µ [ T hP (� ∧ C) − T h(�) ]. (4)

It is shown in Inoue (1992, Proposition 2.7) that the definition (4) is equivalent to

NewCarc(�, C,P) = Carc(� ∧ C,P) − Carc(�,P).

Example 2.1. The axioms � of an associative system with a left inverse and a left identity
are given as (Lee, 1967):

¬p(x, y, u) ∨ ¬p(y, z, v) ∨ ¬p(x, v, w) ∨ p(u, z, w),

¬p(x, y, u) ∨ ¬p(y, z, v) ∨ ¬p(u, z, w) ∨ p(x, v, w),

p(e, x, x),

p(i(x), x, e).

By putting the production field as

P = 〈 {p( , , )}+, length ≤ 1 and term-depth ≤ 1 〉,

where {p( , , )}+ is the set of all positive literals whose predicate symbol is p. If we
choose C1 as the first clause of �, then we obtain the new characteristic clauses N =
NewCarc(� − {C1}, C1,P) as

N = p(x, i(x), e)) ∧ p(x, e, x) ∧ p(e, e, i(e)) ∧
p(i(x), x, i(e)) ∧ p(i(e), x, x) ∧ p(i(e), i(e), e).

Note here that we do not have the axiom i(e) = e. The first and second clauses in N are
the desired ones, which represent that the left inverse is also a right inverse and that the left
identity is also a right identity.
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When a new formula is not a single clause but a CNF formula F = C1 ∧· · ·∧Cm , where
each Ci is a clause, NewCarc(�, F,P) can be decomposed into m NewCarc operations
where each of the added new formulas is a single clause (Inoue, 1992, Proposition 2.8):

NewCarc(�, F,P) = µ

[ m∧
i=1

NewCarc(�i , Ci ,P)

]
, (5)

where �1 = �, and �i+1 = �i ∧ Ci , for i = 1, . . . , m − 1. This incremental computation
can be applied to get the characteristic clauses of � with respect to P as follows.

Carc(�,P) = NewCarc(True, �,P). (6)

The Eqs. (5) and (6) are independent of the order of the clauses in F and �. For example,
when � = (¬p ∨ q) ∧ p,

Carc(�,L) = NewCarc(True, (¬p ∨ q) ∧ p,L)

= µ [NewCarc(True, ¬p ∨ q,L) ∧ NewCarc(¬p ∨ q, p,L)]

= µ [(¬p ∨ q) ∧ (p ∧ q)]

= p ∧ q,

where L = {p, ¬p, q, ¬q}, and similarly,

Carc(�,L) = NewCarc(T rue, p ∧ (¬p ∨ q),L)

= µ [NewCarc(T rue, p,L) ∧ NewCarc(p, ¬p ∨ q,L)]

= µ [p ∧ q]

= p ∧ q.

Several procedures have been proposed to compute (new) characteristic clauses. For
example, SOL resolution (Inoue, 1992) is an extension of the Model Elimination (ME)
calculus to which the Skip rule is introduced. In computing NewCarc(�, C,P), SOL res-
olution treats a newly added clause C as the top clause input to ME, and derives those
consequences relevant to C directly. With the Skip rule, SOL resolution focuses on deriving
only those consequences belonging to the production field P . Various pruning methods are
also introduced to enhance the efficiency of SOL resolution in a connection-tableau format
(Iwanuma, Inoue, & Satoh, 2000). Instead of ME, SFK resolution (del Val, 1999) is a vari-
ant of ordered resolution, which is enhanced with the Skip rule for finding characteristic
clauses. An extensive survey of consequence finding algorithms in propositional logic is
given by Marquis (2000).

3. Inverting entailment for abduction and induction

This section reviews previous approaches to hypothesis finding through inverse entailment
for abduction and induction. Recall that the logical setting of both inductive logic program-
ming (ILP) and abductive logic programming (ALP) is given as follows.
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Input: B: a background theory
E : (positive) examples/observations

Output: H : a hypothesis satisfying

B ∧ H |= E, and

B ∧ H is consistent.

Inverse entailment (IE) is defined as follows. Given that B ∧ H |= E , computing a
hypothesis H can be done via the relation:

B ∧ ¬E |= ¬H.

That is, the negation of H is entailed by B ∧ ¬E .
For IE, we should consider the following three problems.

1. Computation. How to compute ¬H via B ∧ ¬E |= ¬H ?
2. Class. Which classes of theories are allowed for B, E , and H?
3. Completeness. Is the calculus sound and complete for generating hypotheses?

These three problems are considered for both abduction and induction in the following
subsections.

3.1. Inverse entailment for abduction

Computing hypotheses in abduction via IE is considered in Inoue (1992). Abduction is
elegantly characterized by consequence finding as follows. We here denote the set of all
literals in the representation language by L, and a set � of candidate hypotheses is defined
as a subset of L. Any subset H of � is identified with the conjunction of all elements in H .
Also, for any set T of formulas, T represents the opposite of T , which is the set of formulas
obtained by negating every formula in T , i.e., T = {¬C | C ∈ T }.

Let E1, . . . , En be a finite number of observations, and suppose that they are all literals.
We want to explain the observations E = E1 ∧ · · · ∧ En from an abductive theory (B, �),
where B is a clausal theory representing a background theory and � is a set of ground literals
representing an abductive bias. Then, H = H1 ∧ · · · ∧ Hk is an (abductive) explanation of
E from (B, �) if:

1. B ∧ (H1 ∧ · · · ∧ Hk) |= E1 ∧ · · · ∧ En ,

2. B ∧ (H1 ∧ · · · ∧ Hk) is consistent,
3. Each Hi is an element of �.

An explanation H of E is minimal if if no proper sub-conjunction H ′ of H satisfies B ∧ H ′

|= E . For minimal explanations, the following result holds.
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Theorem 3.1. Let (B, �) be an abductive theory. The set of minimal explanations of an
observation E from (B, �) is:

NewCarc(B, ¬E,P) ,

where the production field P is �.

Proof: This theorem is essentially the same as Inoue (1992, Proposition 3.2), and we here
give an outline of the proof. Suppose that H = H1 ∧ · · · ∧ Hk is an abductive explanation
of E from (B, �). Then, the above three conditions for E are equivalent to the following:

1′. B ∧ (¬E1 ∨ · · · ∨ ¬En) |= ¬H1 ∨ · · · ∨ ¬Hk ,

2′. B �|= ¬H1 ∨ · · · ∨ ¬Hk ,

3′. Each ¬Hi is an element of �.

By 1′, a clause derived from the clausal theory B ∧ ¬E is the negation of an explanation of
E from (B, �). By 2′, such a derived clause must not be a consequence of B before adding
¬E . By 3′, every literal appearing in such a clause must belong to �. Moreover, H is a
minimal explanation from (B, �) if and only if ¬H is such a minimal consequence from
B ∧ ¬E . Hence, the theorem holds.

Hence, the problem of abduction is reduced to the consequence finding problem which
seeks a clause C such that (i) C is a minimal consequence of B ∧ ¬E , but (ii) C is not a
consequence of B alone, and (iii) C consists of literals only from the production field �.
Note here that both ¬E and ¬H are clauses. Hence, a resolution-based consequence finding
procedure can be used to deduce ¬H from B ∧ ¬E .

In the above setting, E is assumed to be a conjunction of literals. Extending the form of
each example Ei to a clause, let E = E1 ∧ · · · ∧ En be a CNF formula, where each Ei is
a clause. Then, ¬E is a DNF formula. By converting ¬E from DNF into the CNF formula
F , NewCarc(B, F,P) can be computed by (5).

In Theorem 3.1, explanations obtained by a consequence finding procedure are not nec-
essarily ground and can contain variables. In implementing resolution-based abductive
procedures, however, each variable in the CNF formula E is replaced with a new constant
in the complement ¬E through Skolemization. To get a universally quantified explana-
tion by negating each new characteristic clause containing Skolem constants, we need to
apply the reverse Skolemization algorithm (Cox & Pietrzykowski, 1986). For example, if
¬P(x, sky, u, skv) is a new characteristic clause where sky, skv are Skolem constants, we
get the explanation ∀y∀v∃x∃u P(x, y, u, v) by reverse Skolemization.

To summarize, abduction via IE gives us the following answers to the three problems for
IE.

IE for Abduction (Inoue, 1992)

1. Computation. The negation of a hypothesis, ¬H , is computed using a consequence
finding procedure.
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2. Class. In the basic setting, we consider

B: a full clausal theory (containing non-Horn clauses),
E : a conjunction of (existentially-quantified) literals,
H : a conjunction of literals (belonging to the abductive bias).

3. Completeness. For the above class, the IE calculus is sound and complete for computing
abductive explanations.

3.2. Inverse entailment for induction

Computing hypotheses in induction via IE was first considered by Muggleton (1995) in the
Progol system. Muggleton considered a Horn program for a background theory B, a single
Horn clause as an example E , and a single Horn clause as a hypothesis H . Even in this
setting, however, neither ¬E nor ¬H is a single clause. Moreover, both ¬E and ¬H contain
existentially quantified variables. This means that a simple application of a resolution-
based procedure is not sufficient to compute inductive hypothesis. Then, Muggleton (1995)
introduced the bottom clause:

⊥(B, E) = {¬L | L is a literal and B ∧ ¬E |= L}, (7)

and a hypothesis H is constructed by generalizing a sub-clause of ⊥(B, E), i.e.,

H |= ⊥(B, E). (8)

Any hypothesis H obtained in this way is correct, that is, it satisfies B ∧ H |= E . Yamamoto
(2000) used two special consequence finding procedures to implement IE in this way.
However, Yamamoto (1997) also showed that this method is incomplete for finding inductive
hypotheses (see Example 4.3 in this paper). Sufficient conditions for the completeness to
hold have been investigated in Yamamoto (1997) and Furukawa (1997). See the details of
these previous works in Section 6.

Hence, induction via IE by Muggleton (1995) can be summarized as follows.

IE for Induction (Muggleton, 1995)

1. Computation. The negation of a hypothesis, ¬H , is computed using consequence finding
procedures (Yamamoto, 2000).

2. Class. In the original setting, we consider

B: a Horn program,
E : a Horn clause,
H : a Horn clause.

3. Completeness. For the above class, the IE calculus is sound but incomplete for computing
inductive hypotheses (Yamamoto, 1997).

In the next section, we introduce a new approach to IE called CF-Induction. Instead
of computing the bottom clause ⊥(B, E), CF-induction computes characteristic clauses
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of B ∧ ¬E , hence any resolution-based consequence finding procedure can be used. CF-
induction includes all previous approaches to IE as special cases, in particular, includes
abductive computation.

The specification of CF-induction is as follows. The details are given in Section 4.

CF-Induction
1. Computation. A consequence finding procedure is used.
2. Class. The most general class is considered:

B: a full clausal theory,
E : a full clausal theory,
H : a full clausal theory.

3. Completeness. The IE calculus is sound and complete for computing inductive hypothe-
ses.

4. Induction as consequence finding

In this section, we characterize explanatory induction by consequence finding.

4.1. CF-induction

Suppose that we are given a background theory B and examples E , both of which are clausal
theories (or CNF) possibly containing non-Horn clauses. Recall that explanatory induction
seeks a clausal theory H such that:

B ∧ H |= E,

B ∧ H is consistent.

These two are equivalent to

B ∧ ¬E |= ¬H, (9)

B �|= ¬H. (10)

Like inverse entailment, we are interested in some formulas derived from B ∧ ¬E that are
not derived from B alone. Here, instead of the negation of the bottom clause ⊥(B, E) in
Muggleton (1995), we consider some clausal theory CC(B, E) as a “bridge” formula U .
Then, Eq. (9) can be written as

B ∧ ¬E |= CC(B, E), (11)

CC(B, E) |= ¬H. (12)

The latter (12) is also written as

H |= ¬CC(B, E). (13)



INDUCTION AS CONSEQUENCE FINDING 119

Also, by (10) and (12), we have

B �|= CC(B, E). (14)

By (11), CC(B, E) is obtained by computing the characteristic clauses of B ∧¬E because
any other consequence of B ∧¬E belonging to P can be obtained by constructing a clause
that is subsumed by a characteristic clause. Hence,

Carc(B ∧ ¬E,P) |= CC(B, E), (15)

where the production fieldP = 〈 L, Cond 〉 is defined as a pair of a set L of literals reflecting
an inductive bias in the complement form and a certain condition Cond. When no inductive
bias is considered, P is just set to L, which is the set of all literals in the first-order language.
The other requirement for CC(B, E) is Eq. (14), which is satisfied if at least one of the
clauses in CC(B, E) is not a consequence of B; otherwise, CC(B, E) is entailed by B.
This is realized by including a clause from NewCarc(B, ¬E,P) in CC(B, E).

In constructing a hypothesis H from the clausal theory CC(B, E), notice that ¬CC(B, E)
is entailed by H in (13). Since ¬CC(B, E) is DNF, we convert it into the CNF formula F ,
i.e.,

F ≡ ¬CC(B, E). (16)

Then, H is constructed as a clausal theory which entails F , i.e.,

H |= F. (17)

In ILP, there are several methods to compute a new clausal theory H which entails a
given clausal theory F . A procedure to construct such a more general clausal theory is
called a generalizer (Yamamoto & Fronhöfer, 2000) (see Section 4.2). Note that applying
an arbitrary generalizer to F may cause an inconsistency of H with B. To ensure that
B ∧ H is consistent, the clauses of H must keep those literals that are generalizations of
the complement of at least one clause from NewCarc(B, ¬E,P).

Now, the whole algorithm to construct inductive hypotheses is as follows.

Definition 4.1. Let B and E be clausal theories. A clausal theory H is derived by a CF-
induction from B and E if H is constructed as follows.

Step 1. Compute Carc(B ∧ ¬E,P);
Step 2. Construct CC(B, E) = C1 ∧ · · · ∧ Cm , where each Ci is a clause satisfying the

conditions:

(a) Each Ci is an instance of a clause in Carc(B ∧ ¬E,P);
(b) At least one Ci is an instance of a clause from NewCarc(B, ¬E,P);

Step 3. Convert ¬CC(B, E) into the CNF formula F ;
Step 4. H is obtained by applying a generalizer to F under the constraint that B ∧ H is

consistent.
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Several remarks are necessary for the definition of CF-induction.

1. At Step 1, the number of characteristic clauses in Carc(B ∧ ¬E,P) may be large or
infinite in general. Hence, this step should be interleaved on demand with construction
of each Ci at Step 2 in practice.

2. At Step 2, a selected clause Ci in CC(B, E) can contain variables. In this case, each
variable x in Ci is replaced with a Skolem constant skx in the complement ¬Ci at Step 3,
in which x is interpreted as existentially quantified. Sometimes we need multiple Skolem
constants sk1

x , sk2
x , · · · for each variable x of ¬Ci , depending on how many times Ci

is used in deriving ¬H from B ∧ ¬E . See 7 in the appendix for further details and an
example.

3. At Step 3, a DNF formula ¬CC(B, E) is converted to CNF. The complexity of this
computation is high, that is, in the class #P (Yamamoto & Fronhöfer, 2000). Of course,
we do not need this conversion if we allow a DNF hypothesis as H .

4.2. Generalizers

At Step 4 of CF-induction, we need a generalizer. The task of a generalizer is, given a CNF
formula F , to find a CNF formula H such that

H |= F.

There are several methods to realize a generalizer. For example, the following techniques
are well-known, and can be jointly used as a generalizer.

• Reverse Skolemization (Cox & Pietrzykowski, 1986): Skolem constants/functions are
converted to existentially quantified variables.

• Anti-instantiation: ground terms are replaced with variables.
• Anti-subsumption (dropping): some literals are dropped from a clause.
• Strengthening (anti-weakening): some clauses are added. Yamamoto (2001) argued that

the application of anti-weakening might cause difficulties because any clausal theory F ′

that is a superset of F is derived as a correct hypothesis H with this operation. Hence,
anti-weakening should be used in a restricted way so that H does not contain any clause
which is not used to explain E .
On the other hand, anti-weakening is necessary to assure the completeness of CF-
induction (Theorem 4.4 in Section 4.4). For instance, any hypothesis which contain
redundant clauses can be obtained only by anti-weakening. This fact indicates that a real
implementation is incomplete if it avoids producing some redundant hypotheses.

• Inverse resolution (Muggleton & Buntine, 1988): the inverse of the resolution principle
is applied. In some cases, this is reduced to the folding operation in logic program-
ming (Pettorossi & Proietti, 1994). This operation is useful for introducing new predi-
cates/literals not appearing in F .

• Least generalization (Plotkin, 1971): a least general generalization is constructed from
multiple clauses.
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Note that if the “entailment” relation |= is replaced with the weaker “subsumption”
relation in H |= F , the completeness in Theorem 4.1 (shown in Section 4.4) does not
precisely hold. When a hypothesis H such that H subsumes F is found, B ∧ H |= E does
not necessarily hold, but it holds that H subsumes E relative to B in the sense of Plotkin
(1971). See Yamamoto (1997) for details.

4.3. Examples

Example 4.1. For the introductory example shown in Section 1, B1 = human(s) and
E1 = mortal(s). Then,

Carc(B1 ∧ ¬E1,L) = human(s) ∧ ¬mortal(s),

where ¬mortal(s) is the clause in NewCarc(B1, ¬E1,L). In this case, CC(B1, E1) is set to
Carc(B1 ∧ ¬E1,L). Then,

F1 ≡ ¬CC(B1, E1) = ¬human(s) ∨ mortal(s).

By applying anti-instantiation to F1 with s/x , we get

H1 = (human(x) ⊃ mortal(x)).

Example 4.2. The following theory is a variant of an example in Buntine, 1988, and is
often used to illustrate how the bottom clause is used in inverse entailment (Yamamoto,
1997, 2000, 2001). Consider

B2 = (cat(x) ⊃ pet(x)) ∧
(small(x) ∧ fluffy(x) ∧ pet(x) ⊃ cuddly pet(x)),

E2 = (fluffy(x) ∧ cat(x) ⊃ cuddly pet(x)).

Then, the complement of E2 is

¬E2 = fluffy(skx) ∧ cat(skx) ∧ ¬cuddly pet(skx),

and NewCarc(B2, ¬E2,L) is

¬E2 ∧ pet(skx ) ∧ ¬small(skx ).

Let CC(B2, E2) = NewCarc(B2, ¬E2,L). In this case, F2 = ¬CC(B2, E2) is equivalent
to ⊥(B2, E2). By applying reverse Skolemization (or anti-instantiation) to F2, we get the
hypothesis:

H2 = (fluffy(x) ∧ cat(x) ∧ pet(x) ⊃ cuddly pet(x) ∨ small(x)).
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While in the above cited references the subclause of H2:

fluffy(x) ∧ cat(x) ⊃ small(x)

is often adopted as a definite clause, H2 is the most-specific hypothesis in the sense of
Muggleton (1995).

In Yamamoto (2001), the following hypothesis:

H ′
2 = (pet(x) ⊃ dog(x)) ∧ (dog(x) ⊃ small(x))

is shown as another correct hypothesis if dog is a predicate symbol in the language. This is
obtained if we take CC ′(B2, E2) = pet(skx )∧¬small(skx ). That is, F ′

2 = ¬CC ′(B2, E2) =
(pet(skx ) ⊃ small(skx )). Then, H ′

2 is constructed by applying anti-instantiation and inverse
resolution (or folding).

Example 4.3. This example (Yamamoto, 1997) illustrates the incompleteness of inverse
entailment based on the bottom clause in Muggleton (1995). Consider the background
theory and the example:

B3 = even(0) ∧ (¬odd(x) ∨ even(s(x))),

E3 = odd(s(s(s(0)))).

Then, Carc(B3 ∧ ¬E3,L) = B3 ∧ ¬E3. Suppose that CC(B3, E3) is chosen as:

even(0) ∧ (¬odd(s(0)) ∨ even(s(s(0)))) ∧ ¬odd(s(s(s(0)))),

where the second clause is an instance of the second clause in B3, and the third clause
belongs to NewCarc(B3, ¬E3,L). By converting ¬CC(B3, E3) into CNF, F3 consists of
the clauses:

¬even(0) ∨ odd(s(0)) ∨ odd(s(s(s(0)))),

¬even(0) ∨ ¬even(s(s((0))) ∨ odd(s(s(s(0)))).

Considering the single clause:

H3 = ¬even(x) ∨ odd(s(x)),

H3 subsumes both clauses in F3, so is a hypothesis. There are many ways to compute H3

from F3. For example, by computing the least generalization of the two clauses in F3, we
obtain the clause:

¬even(0) ∨ ¬even(x) ∨ odd(s(x)) ∨ odd(s(s(s(0)))).



INDUCTION AS CONSEQUENCE FINDING 123

Dropping two ground literals from the above, we get H3.
On the other hand, the bottom clause is

⊥(B3, E3) = ¬even(0) ∨ odd(s(s(s(0)))),

from which H3 cannot be obtained by any generalizer. In fact, H3 �|= ⊥(B3, E3).

4.4. Completeness

We now present the correctness result for clausal theories derived using CF-induction. The
result implies not only the completeness but also the soundness of CF-induction.

Theorem 4.1. Let B, E , and H be clausal theories. H is derived by a CF-induction from
B and E if and only if B ∧ H |= E and B ∧ H is consistent.

Proof: The proof is given in the appendix.

In Theorem 1, both B and E may contain non-Horn clauses and integrity constraints.
Also, the derived hypothesis H may be non-Horn. This result answers the open question
posed by Muggleton (1998), as to whether a generalization of inverse entailment would be
complete for arbitrary clausal background theories.

As a special case of CF-induction, we can obtain an IE procedure based on the bottom
clause ⊥(B, E). Notice here that for the production field with no restriction, i.e., P = L, it
holds that

⊥(B, E) ⊆ Carc(B ∧ ¬E,L).

Instead of L, consider now the production field

P≤1 = 〈L, length ≤ 1 〉.

Whenever the background theory B is consistent and B �|= E , the characteristic clauses of
B ∧ ¬E with respect to P≤1 are equivalent to the opposite of the bottom clause, i.e.,

Carc(B ∧ ¬E,P≤1) = ⊥(B, E).

Hence, the restricted version of CF-induction with the production field P≤1 is essentially
the same as the procedure by Muggleton (1995). The soundness of CF-induction in this case
is guaranteed for not only Horn programs but also arbitrary clausal theories B, although the
completeness does not hold even for Horn programs as seen in Example 4.3.

Corollary 4.1. Let B, E , and H be clausal theories. Suppose that the production field is
set as P≤1. If H is derived by a CF-induction from B and E , then B ∧ H |= E and B ∧ H
is consistent.
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4.5. Negative examples

So far, we have not considered negative examples in CF-induction. To avoid over-generaliza-
tion, it is common for an ILP system to use negative examples as well as positive ones. For
CF-induction, negative examples can also be incorporated as follows.

Suppose that B, E+, and E− are a background theory, positive examples, and a nega-
tive example, respectively. Here, we assume that there exists only one negative example,
but extending the case to multiple negative examples is possible. The task of explanatory
induction in this case is to compute a hypothesis H satisfying both

B ∧ H |= E+

and

B ∧ H �|= E−.

Here, the negative example can be used to reduce the number of possible choices for
CC(B, E+), which contributes toward increasing the efficiency of CF-induction as follows.
Instead of (10), we now have

B ∧ ¬E− �|= ¬H,

and the relation (14) is replaced with

B ∧ ¬E− �|= CC(B, E+).

Hence, it holds that

Carc(B ∧ ¬E−,P) �|= CC(B, E+).

Then, at Step 2(b) of CF-induction, an instance of a clause from Carc(B ∧ ¬E+,P) −
Carc(B ∧ ¬E−,P) must be selected in CC(B, E+). Moreover, at Step 4, H must be
constructed so that B ∧ H �|= E−.

4.6. Implementation

An incomplete version of CF-induction has been implemented in Java. The incomplete-
ness of such a procedure is due to the incompleteness of generalizers. In particular, anti-
weakening (clause addition) cannot be realized completely, but this is not practically bad be-
cause increasing clauses in H results in a redundant hypothesis in general (see Section 4.2).
As a consequence finding procedure, we have realized a tableaux version of SOL resolution
(Iwanuma, Inoue, & Satoh, 2000). After computing Carc(B ∧ ¬E,P), the selection of
CC(B, E) is guided by a menu, in which a user choose clauses from Carc(B ∧ ¬E,P).
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At this time, the lack of a clause from NewCarc(B, ¬E,P) is automatically detected.
Moreover, if a clause with variables is selected for CC(B, E), it is instantiated with terms
constructed from constants and functions, in which the number of created terms is specified
by a user in advance. As generalizers, we realized anti-instantiation, least generalization, and
anti-subsumption. See Otsuji (2002) for details of a Java implementation of CF-induction.

Runtimes for examples shown in Section 4.3 are: 288 msec (Example 4.2) and 150 msec
(Example 4.3) in a Pentium III machine. The reason why it takes more time for Example 4.2
is that the negation of E2 is not a single clause but a conjunction of literals, so multiple SOL
deductions have to be computed iteratively via (5).

5. Abduction vs. induction

CF-induction is realized by abductive computation. In fact, computing Carc(B ∧ ¬E,P)
at Step 1 can be implemented by calling NewCarc operations incrementally in (5) and (6),
each of which can be regarded as computing abduction by Theorem 3.1.

Conversely, computing abduction is regarded as a special case of CF-induction.

Theorem 5.1. Let (B, �) be an abductive theory. A conjunction H of literals is a minimal
explanation of an observation E from (B, �) if and only if H is derived by a CF-induction
from B and E in which the size of CC(B, E) at Step 2 is 1 (m = 1) and reverse Skolemization
is used as the generalizer at Step 4.

Proof: When the size of CC(B, E) is 1, CC(B, E) consists of a single clause C taken
from NewCarc(B, ¬E,P) at Step 2. The negation of C is then a minimal explanation of E
by Theorem 3.1.

The set of all minimal explanations is characterized by Theorem 3.1, and can also be
obtained by slightly modifying CF-induction. Namely, every clause of CC(B, E) is taken
from NewCarc(B, ¬E,P) at Step 2, and we do not have to convert ¬CC(B, E) into CNF
at Step 3, and reverse Skolemization is used as the generalizer at Step 4. By Theorem 5.1,
each single conjunction ¬Ci obtained in this way is a minimal explanation of E . Then, the
disjunction ¬CC(B, E) of every ¬Ci is also an explanation. Such DNF explanations are
used in AI applications such as computing circumscription (Helft, Inoue, & Poole, 1991),
diagnosis (Konolige, 1992), and knowledge base updates and knowledge assimilation (Inoue
& Sakama, 2002).

Thus, abduction and induction are very similar if we allow arbitrary forms of clausal
theories as hypotheses. There are three main differences between them.

1. By convention, the form of hypotheses in induction is CNF, while it is usually DNF (or
a set of conjunctions) in abduction.

2. In induction, at least one of the clauses in CC(B, E) is taken from NewCarc(B, ¬E,P).
On the other hand, all clauses in CC(B, E) must be in NewCarc(B, ¬E,P) in abduction
(by Theorem 3.1).
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3. Reverse Skolemization is solely used as a generalizer in abduction, while other gen-
eralizers can be used in induction. In particular, when anti-weakening is allowed as
a generalizer, an obtained hypothesis is not necessarily minimal in induction, while
minimal explanations are usually preferred in abduction.

No other difference exists between abduction and induction as long as their implementa-
tion is concerned in the context of consequence finding. The next example illustrates the
similarity between induction and abduction.

Example 5.1. (Yamamoto & Fronhöfer, 2000). Let

B4 = (dog(x) ∧ small(x) ⊃ pet(x)),

E4 = pet(c).

be the background theory and the example. Then,

NewCarc(B4, ¬E4,L) = ¬pet(c) ∧ (¬dog(c) ∨ ¬small(c)).

Now, put CC(B4, E4) = NewCarc(B4, ¬E4,L). Then,

¬CC(B4, E4) = pet(c) ∨ (dog(c) ∧ small(c)),

which is exactly the same as the minimal abductive explanations. Converting ¬CC(B4, E4)
into CNF, we have

F4 = (dog(c) ∨ pet(c)) ∧ (small(c) ∨ pet(c)).

By applying anti-instantiation, we get the clausal theory:

H4 = (dog(x) ∨ pet(x)) ∧ (small(x) ∨ pet(x)).

On the other hand, the next example shows the main difference between abduction and
induction, which is the second one in the above differences: all clauses in CC(B, E)
are taken from NewCarc(B, ¬E,P) in abduction, while it is not the case in induction.
Namely, induction often utilizes consequences of B before adding ¬E in the construction
of CC(B, E). This operation is essential to associate observations E with the background
theory B in induction. Abduction, on the other hand, does not need such consequences of
B because they are redundant in virtue of the minimality of explanations. This difference
also reflects Peirce’s theory of induction and abduction (Peirce, 1932): induction infers a
rule (i.e., hypothesis) A ⊃ C from a case (i.e., background theory) A and a result (i.e.,
example/observation) C , while abduction infers a case A from a rule A ⊃ C and a result C .
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Example 5.2. (Muggleton, 1995). Let us consider the background theory and the example:

B5 = white(swan1), E5 = ¬black(swan1).

Then, NewCarc(B5, ¬E5,L) = ¬E5 = black(swan1). Hence, ¬black(swan1) is the
unique minimal abductive explanation of E5. In induction, on the other hand, let

CC(B5, E5) = white(swan1) ∧ black(swan1),

in which the first conjunct is the clause of B5. By anti-instantiating F5 = ¬CC(B5, E5),
we can learn the integrity constraint:

H5 = ¬white(x) ∨ ¬black(x).

6. Related work

6.1. Previous work on inverse entailment

CF-induction is obviously influenced by previous work on inverse entailment (IE). As shown
in Section 3.2, the original IE (Muggleton, 1995) allows Horn clauses for B and a single
Horn clause for each of H and E . Even in this setting, however, IE based on ⊥(B, E) is
incomplete for finding H such that B ∧ H |= E (Yamamoto, 1997). Furukawa et al. (1997)
consider a sufficient condition for IE to be complete, which restricts the class of logic
programs to a proper subset of the Horn programs. Muggleton (1998) considers an enlarged
bottom set to make IE complete in the class of Horn programs, but the revised method is
unsound. Furukawa (1998) also proposes a complete algorithm, but it is relatively complex.
Yamamoto (2000) shows that a variant of SOL resolution can be used to implement IE based
on ⊥(B, E). However, he computes positive and negative parts in ⊥(B, E) separately, where
SOL resolution is used only for computing positive literals. Muggleton and Bryant (2000)
suggest the use of PTTP (Stickel, 1988) for implementing theory completion using IE,
which seems inefficient since PTTP is not a consequence finding procedure but a theorem
prover. Compared with these previous works, CF-induction proposed in this paper is simple,
yet sound and complete for finding hypotheses from not only Horn programs but also full
clausal theories. Instead of the bottom clause, CF-induction uses the characteristic clauses,
which strictly include the unit clauses in ⊥(B, E).

6.2. Yamamoto and Fronhöfer

Yamamoto and Fronhöfer (2000) first extend IE to allow for full clausal theories for B and
E , and introduce the notion of a residue hypothesis for a set of ground instances of B ∧¬E .
A residue hypothesis is computed from the ground instances T of B ∧ ¬E by:

1. Select a finite set (i.e., conjunction) S of ground clauses from T ;
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2. Convert ¬S into the CNF formula R;
3. Remove all tautologies from R.

An inductive hypothesis H is then computed by applying a generalizer to a residue hypoth-
esis.

A residue hypothesis can be computed using Bibel’s Connection method (Bibel, 1993),
and the constructed CNF formula R corresponds to the enumeration of all paths in the
matrix of clauses S. By contrast, CF-induction is realized by a resolution-based consequence
finding procedure, which naturally extends most previous work on IE, and can easily handle
non-ground clauses.

Compared with the procedure by Yamamoto and Fronhöfer, a merit of CF-induction lies
in the existence of a production field P , which can be used to guide and restrict derivations
of clauses by reflecting an inductive bias. Usually, we are given some inductive bias for
inductive problems. For example, the production field P≤1 in Section 4.4 guides derivations
of a consequence finding procedure to produce unit clauses only. Also, Progol (Muggleton,
1995) uses mode declarations to constrain search for H which subsumes ⊥(B, E). It is
unclear how to incorporate inductive biases in the procedure of Yamamoto and Fronhöfer
(2000).

Note that the consistency of a residue hypothesis is not always guaranteed. Although not
mentioned in Yamamoto and Fronhöfer (2000), the consistency is assured if instances of
¬E are selected within S from the ground instances T of B ∧ ¬E , which is similar to our
incorporation of NewCarc(B, ¬E,P) into CC(B, E).

Finally, residue hypotheses are relatively longer and more complex than hypotheses
constructed by CF-induction, and require more efforts for a generalizer to construct a final
inductive hypothesis H .

Example 6.1. Suppose that we are given the background theory and an example as:

B6 = (a ∨ b) ∧ (a ⊃ c) ∧ (b ⊃ c) ∧ (d ⊃ g),

E6 = g.

Then,

NewCarc(B6, ¬E6,L) = ¬d ∧ ¬g,

Carc(B6 ∧ ¬E6,L) = NewCarc(B6, ¬E6,L) ∧ (a ∨ b) ∧ c.

If we put CC(B6, E6) = Carc(B6 ∧ ¬E6,L), we get a hypothesis:

H6 = (a ∧ c ⊃ d ∨ g) ∧ (b ∧ c ⊃ d ∨ g).

Alternatively, suppose we take another bridge as

CC ′(B6, E6) = c ∧ ¬d.
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Then,

F ′
6 = ¬CC ′(B6, E6) = (c ⊃ d).

This formula F ′
6 is taken as an inductive hypothesis H ′

6 without applying any generalizer.
On the other hand, it is not easy to obtain H ′

6 = (c ⊃ d) using Yamamoto and Fronhöfer
(2000) method. Firstly, all clauses of B6 ∧ ¬E6 are necessary to construct H ′

6. Then, the
residue hypothesis for B6 ∧ ¬E6 is

(a ∧ c ⊃ b ∨ d ∨ g) ∧ (a ∧ c ⊃ d ∨ g)

∧ (b ∧ c ⊃ a ∨ d ∨ g) ∧ (b ∧ c ⊃ d ∨ g)

In the above formula, the first and the third clauses are subsumed by the second and fourth
clauses, respectively, and are redundant. After removing them, take the least generalization
of (a ∧ c ⊃ d ∨ g) and (b ∧ c ⊃ d ∨ g), which is (c ⊃ d ∨ g). Finally, g is dropped from
this clause to construct (c ⊃ d). Hence, subsumption tests must be used for simplifying
residue hypotheses. In CF-induction, the notion of subsumption tests is already implicit in
the notion of characteristic clauses.

7. Conclusion and future work

In this paper, we have defined a general resolution-based method to construct inductive
hypotheses from full clausal theories. We put emphasis on finding a sound and complete
method for inverse entailment in full clausal theories, which was a long-standing open
problem in ILP. To this problem, we have suggested a simple yet powerful solution: CF-
induction. Salient features of CF-induction are summarized as follows.

• CF-induction is sound and complete for finding hypotheses from full clausal theories.
• CF-induction performs induction via consequence finding, which enables us to generate

inductive hypotheses in a logically principled way based on the resolution principle.
• CF-induction can be implemented with existing systematic consequence finding proce-

dures such as SOL resolution (Inoue, 1992) and SFK resolution (del Val, 1999).
• CF-induction includes, as special cases, computing abductive explanations and the bot-

tom clause. Also, a restriction on the hypothesis vocabulary can easily be realized by
specifying a production field.

We also clarified the similarity and difference between abduction and induction in the
context of consequence finding.

CF-induction by Definition 4.1 computes the characteristic clauses Carc(B ∧ ¬E,P),
selects CC(B, E) to be a set of instances of Carc(B∧¬E,P), and then applies a generalizer
to the complement of CC(B, E) to obtain H . There are two choice points in this method: the
choice of CC(B, E), and the choice of the generalizer. Currently, these two choice points
cannot be combined into one. However, an open question is whether or when it is possible
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to construct a single bridge formula U such that any H can be derived in the complement
form from U using a generalizer. A simple method for such an ultimate bridge would be
to include all clauses from Carc(B ∧ ¬E,P) into CC(B, E). However, this only works
when (the instances of) Carc(B ∧¬E,P) is finite, and even in the finite case, a generalizer
should work very hard! In other words, a heavy work load of a generalizer is reduced if an
appropriate choice is made in the selection of CC(B, E).

A prototype system of CF-induction has been implemented in Java, but efficient imple-
mentation of CF-induction is an important future work. In particular, an intelligent selection
of CC(B, E) from Carc(B ∧ ¬E,P) needs to be addressed. To remove the manual inter-
vention in this step from the system, one can perform a search in the space of subsets of
Carc(B ∧ ¬E,P) or the space of possible instantiations of the clauses. In such a case, we
need heuristics for guiding searches, e.g., compression and the description length. More-
over, testing the (extended) system with intelligent search on large and practical problems
of learning from positive examples is necessary in the future, as for those examples used
in Muggleton (2001). Learning from both positive and negative examples should also be
automated with search in the framework of CF-induction. These extensions are necessary
for the algorithm of CF-induction to construct a practical ILP system. However, we should
again put emphasis on the completeness of CF-induction in extended systems. Making an
ILP system complete is worthwhile to discover an interesting hypothesis even if it takes
much time.

Finally, there exist formalizations of induction other than explanatory induction in the
literature on ILP, such as learning from interpretations (or satisfiability) (De Raedt, 1997),
and descriptive induction (Helft, 1989; Lachiche, 2000). De Raedt (1997) proposes a trans-
lation of learning from interpretations into learning from entailment, but the method requires
negative examples. Lachiche (2000) discusses various forms of descriptive induction, which
can also be characterized by deduction from completed theories. The precise relationships
between these different formalisms and consequence finding need to be addressed in the
future.

Appendix A. Proof of Theorem 3.1

We prove the correctness of CF-induction by giving its soundness and completeness. Let
B, E and H be clausal theories. Section 7 shows that for any H derived by a CF-induction
from B and E , it holds that B ∧ H |= E and B ∧ H is consistent. Section 7 shows the
converse, that is, if B ∧ H |= E and B ∧ H is consistent then H is derived by a CF-induction
from B and E .

In the following, we assume the language LH for all hypotheses H ’s. Usually, LH is
given as the set of all clauses constructed from the first-order language, but we can restrict
the form of hypotheses by considering an inductive bias with a subset of literals/predicates.
The following proofs can be applied to the case with an inductive bias. In this case, the
literals specified in the production field P are set to the opposite of LH . When LH is the set
of all clauses, P is given as L. Note that a length restriction in a production field cannot be
used to assure the completeness (e.g., P≤1 in Section 4.4). We also assume the existence of
a sound and complete generalizer at Step 4 of a CF-induction.
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A.1 Soundness of CF-induction

Let H be a hypothesis obtained by a CF-induction from B and E . By the definition of
a CF-induction, there is a CNF formula CC(B, E) = C1 ∧ · · · ∧ Cm such that [a] H is
obtained by applying a generalizer to the CNF representation of ¬CC(B, E); [b] every Ci

(i = 1, . . . , m) is an instance of a clause from Carc(B ∧ ¬E,P); and [c] there is a C j

(1 ≤ j ≤ m) that is an instance of a clause from NewCarc(B, ¬E,P). By [b], for any Ci

(i = 1, . . . , m), there is a clause Di ∈ Carc(B ∧ ¬E,P) such that B ∧ ¬E |= Di and
Di |= Ci . Obviously, it holds that B ∧¬E |= Ci . Also, by [c], it holds that B �|= C j . Hence,

B ∧ ¬E |= C1 ∧ · · · ∧ Cm and B �|= C1 ∧ · · · ∧ Cm .

Now, let

F ≡ ¬CC(B, E) ≡ ¬C1 ∨ · · · ∨ ¬Cm .

Then,

B ∧ ¬E |= ¬F and B �|= ¬F,

which are equivalent to

B ∧ F |= E and B ∧ F is consistent.

Finally, H |= F holds by [a], which implies that B ∧ H |= E . The condition that B ∧ H is
consistent is included in Step 4 of a CF-induction.

A.2 Completeness of CF-induction

Suppose that B ∧ H |= E and B ∧ H is consistent. Then, B ∧ ¬E |= ¬H and B �|= ¬H .
Since H belongs to LH that is the opposite of the literals in P , ¬H belongs to P . By
the definition of the characteristic clauses, any consequence of B ∧ ¬E belonging to P is
subsumed by a clause in Carc(B ∧ ¬E,P). Therefore,

Carc(B ∧ ¬E,P) |= ¬H.

Hence, Carc(B ∧ ¬E,P) ∧ H is unsatisfiable.
Now, there are two ways to prove the completeness of CF-induction: one uses Herbrand’s

theorem, and the other uses the compactness theorem.

Theorem A.1 (Herbrand’s Theorem). A set of clauses � is unsatisfiable if and only if a
finite set of ground instances of clauses of � is unsatisfiable.
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Theorem A.2 (Compactness). Let � be a set of clauses. If all finite subsets of � is
satisfiable, then so is �. Equivalently, if � is unsatisfiable then a finite subset of � is
unsatisfiable.

A.2.1 [A] Using Herbrand’s theorem. There is a finite set S of ground instances of
clauses from Carc(B ∧ ¬E,P) such that S ∧ H is unsatisfiable. This set S can actually be
constructed by a CF-induction. In fact, we can set S as CC(B, E). In other words, let us
construct CC(B, E) = C1 ∧ · · · ∧ Cm at Step 2 of a CF-induction such that

(a) each Ci (i = 1, . . . , m) is a ground instance of a clause from Carc(B ∧ ¬E,P),
(b) C1 ∧ · · · ∧ Cm ∧ H is unsatisfiable.

Then, there is a C j (1 ≤ j ≤ m) that is a ground instance of a clause from NewCarc(B, ¬E,

P) (for this, see the discussion below Eq. (15) in Section 4). Finally, at Steps 3 and 4, H can be
obtained by applying a generalizer (including anti-instantiation) to the CNF representation
of ¬CC(B, E).

A.2.2 [B] Using the compactness theorem. There is a finite subset S of Carc(B∧¬E,P)
such that S ∧ H is unsatisfiable. In this case, S can also be constructed at Step 2 of a CF-
induction as CC(B, E) = C1 ∧ · · · ∧ Cm , where

(a) every Ci (i = 1, . . . , m) is a variant of a clause from Carc(B ∧ ¬E,P), and
(b) C1 ∧ · · · ∧ Cm ∧ H is unsatisfiable.

Then, there is a C j (1 ≤ j ≤ m) that is a variant of a clause in NewCarc(B, ¬E,P) as in
the proof of [A]. In this case, however, we have to take care of variables in Ci ’s. Taking the
complement of a Ci , each variable x in Ci becomes a Skolem constant skx in ¬Ci , in which
x is interpreted as existentially quantified. Sometimes we need multiple “copies” of ¬Ci in
¬CC(B, E) using different constants like sk1

x , sk2
x , etc, depending on how many times Ci

is used to derive ¬H from B ∧ ¬E . Then, at Steps 3 and 4, H can be obtained by applying
a generalizer to the CNF representation of ¬CC(B, E).

Example A.1. We now verify the completeness proof [B] by applying it to a variant of
Example 4.3 from Yamamoto and Fronhöfer (2000, Example 2), while the proof [A] can
easily be checked in Example 4.3. Let us consider the background theory and the example:

B7 = even(0) ∧ (¬odd(x) ∨ even(s(x))),

E7 = odd(s5(0)),

where s1(0) = s(0) and sn(0) = s(sn−1(0)) for n > 1. This time, we choose a non-ground
characteristic clause as

CC(B7, E7) = even(0) ∧ (¬odd(x) ∨ even(s(x))) ∧ ¬odd(s5(0)).
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By making two copies of ∃x(odd(x) ∧ ¬even(s(x))), the complement of CC(B7, E7) be-
comes

(¬even(0) ∨ odd(sk1
x

) ∨ odd
(
sk2

x

) ∨ odd(s5(0)))

∧ (¬even(0) ∨ odd
(
sk1

x

) ∨ ¬even
(
s
(
sk2

x

)) ∨ odd(s5(0)))

∧ (¬even(0) ∨ ¬even
(
s
(
sk1

x

)) ∨ odd
(
sk2

x

) ∨ odd(s5(0)))

∧ (¬even(0) ∨ ¬even
(
s
(
sk1

x

)) ∨ ¬even
(
s
(
sk2

x

)) ∨ odd(s5(0))),

which represents

∃y∃z [ (¬even(0) ∨ odd(y) ∨ odd(z) ∨ odd(s5(0))) ∧
(¬even(0) ∨ odd(y) ∨ ¬even(s(z)) ∨ odd(s5(0))) ∧
(¬even(0) ∨ ¬even(s(y)) ∨ odd(z) ∨ odd(s5(0))) ∧
(¬even(0) ∨ ¬even(s(y)) ∨ ¬even(s(z)) ∨ odd(s5(0))) ].

The hypothesis

H7 = ¬even(x) ∨ odd(s(x))

entails ¬CC(B7, E7). To see this, take the substitution {y/s(0), z/s3(0)} in the above for-
mula. Then, H7 subsumes each clause in

(¬even(0) ∨ odd(s(0)))

∧ (¬even(s2(0)) ∨ odd(s3(0)))

∧ (¬even(s4(0)) ∨ odd(s5(0))),

and thus entails ¬CC(B7, E7).
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Yamamoto, A., & Fronhöfer, B. (2000). Hypotheses finding via residue hypotheses with the resolution principle.
In Proceedings of the Eleventh International Conference on Algorithmic Learning Theory (pp. 156–165). LNAI
1968, Springer.

Received April 29, 2002
Revised March 31, 2003
Accepted July 25, 2003
Final manuscript November 5, 2003


