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Abstract. Rapid changes in the ionospheric current sys-
tem give rise to induction currents in the conducting ground
that can significantly contribute to magnetic and especially
electric fields at the Earth’s surface. Previous studies have
concentrated on the surface fields, as they are important in,
for example, interpreting magnetometer measurements or in
the studies of the Earth’s conductivity structure. In this
paper we investigate the effects of induction fields at the
ionospheric altitudes for several realistic ionospheric current
models (Westward Travelling Surge,�-band, Giant Pulsa-
tion). Our main conclusions are: 1) The secondary electric
field caused by the Earth’s induction is relatively small at
the ionospheric altitude, at most 0.4 mV/m or a few percent
of the total electric field; 2) The primary induced field due
to ionospheric self-induction is locally important,∼ a few
mV/m, in some “hot spots”, where the ionospheric conduc-
tivity is high and the total electric field is low. However, our
approximate calculation only gives an upper estimate for the
primary induced electric field; 3) The secondary magnetic
field caused by the Earth’s induction may significantly affect
the magnetic measurements of low orbiting satellites. The
secondary contribution from the Earth’s currents is largest in
the vertical component of the magnetic field, where it may
be around 50% of the field caused by ionospheric currents.

Keywords. Geomagnetism and paleomagnetism (geomag-
netic induction) – Ionosphere (electric fields and currents)

1 Introduction

In this paper we investigate the effects of induction on iono-
spheric electric and magnetic fields. Ionospheric currents
may change very rapidly in response to magnetospheric driv-
ing, especially during magnetic storms and substorms. As
the ionospheric current system and the accompanying pri-
mary magnetic field vary, a primary induced electric field is
produced in accordance with Faraday’s law of induction. In
addition, if the Earth’s conductivity is nonzero, the induced
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electric field drives currents in the Earth and these currents,
in turn, produce the secondary electric and magnetic fields.

In the majority of studies where ionospheric processes are
investigated, the ionospheric electric field is assumed to be
curl-free, i.e. induction effects are ignored (e.g. Untiedt and
Baumjohann, 1993). However, in some cases, for example,
Alfv én wave reflection (Yoshikawa and Itonaga, 1996, 2000;
Buchert, 1998), inductive effects may have a significant role.
The inductive field is, of course, important in studies of in-
duction in the Earth. In these studies the main attention is
given to magnetic and/or electric fields at the Earth’s surface,
as these are needed, for example, when calculating geomag-
netically induced currents (GIC) in man-made conductor sys-
tems (electric grids, pipelines, etc.; see, for example, Vilja-
nen et al., 1999, 2004 and references therein) or in studies of
the conductivity structure of the crust and upper mantle (e.g.
Olsen, 1998, 1999; Constable and Constable, 2004).

In this paper our purpose is to investigate the relative mag-
nitudes of the primary (Ep) and secondary (Es) inductive
fields with respect to the driving electric field (E0) in differ-
ent realistic situations. We also investigate the magnitude of
the secondary magnetic field (Bs) produced by the Earth’s
currents as compared to the primary field (Bp) produced by
the ionospheric currents at different altitudes and discuss the
implications to satellite measurements. This is the first time
that these effects are studied using realistic time-dependent
three-dimensional models for high latitude ionospheric cur-
rent systems.

Our nomenclature, already used above, concerning the dif-
ferent fields is as follows. The driving electric fieldE0

gives rise to the current densityJ 0=6·E0, where6 is the
ionospheric conductance tensor. The models of ionospheric

current systems that we use consist ofE0, 6 andJ 0. E0
is assumed to be caused by magnetospheric processes and
mapped along the magnetic field lines to the ionosphere. In
all the models we use∇×E0=0, i.e. the input electric field
does not include any induction effects. The currentsJ 0 pro-
duce the primary magnetic fieldBp and, if there is time
dependence, the primary induced electric fieldEp, so that
∇×Ep

=−∂tB
p. If the Earth’s conductivity is nonzero, in-

duced currents flowing in the Earth cause the secondary elec-
tric and magnetic fields, which also satisfy∇×Es

=−∂tB
s .
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The total electric and magnetic fields in the ionosphere are
E0+Ep

+Es andBp
+Bs , respectively.

We assume the ionosphere to be a thin horizontal sheet
110 km above the ground, so that effects of spherical geome-
try and vertical variations within the ionosphere are ignored.
Furthermore, the Earth’s conductivity structure is assumed to
be one-dimensional, so that the Earth consists of horizontal
layers and each layer has a constant conductivityσ , permit-
tivity ε and permeabilityµ(=µ0).

We represent the ionospheric current systems as superpo-
sitions of Cartesian Elementary Current Systems (CECS).
Amm (1997) introduced two different CECS, one being curl-
free and the other divergence-free. Any continuously deriv-
able two-dimensional vector field can be presented as a sum
of an infinite number of these elementary systems. The use of
CECS simplifies the calculations, as analytical expressions
for the electric and magnetic fields of these current systems
exist.

The inductive response of the Earth is calculated using the
complex image method (CIM) introduced to geophysical ap-
plications by Thomson and Weaver (1975). In CIM the lay-
ered Earth is replaced by a perfect conductor at a complex
depth, and the secondary electric and magnetic fields pro-
duced by the currents flowing in the Earth can be calculated
by the standard image principle. The depth of the perfect
conductorp can be calculated from the plane wave surface
impedanceZ(ω) as

p=
Z(ω)

iωµ0
, (1)

whereω is the angular frequency. Once the thicknesses and
conductivities of the Earth layers are specified, the surface
impedanceZ(ω) can be calculated by using a recursion for-
mula given, for example, by Wait (1981, pp. 52–53).

In most cases CIM gives very good approximations to the
exact solutions and we believe it to be completely adequate
for our purposes (see Thomson and Weaver, 1975; Boteler
and Pirjola, 1998; Pirjola and Viljanen, 1998; Shepherd and
Shubitidze, 2003, for discussions of accuracy). The neglec-
tion of horizontal variations in the Earth’s conductivity may
not always be a valid approximation, as large horizontal con-
ductivity gradients exists, for example, between well con-
ducting oceans and more resistive inland areas. However,
in this study we are interested in the order of magnitude of
the secondary fields and for this purpose the layered Earth
assumption is adequate.

While the response of the conducting ground to external
sources is described with a very good accuracy by CIM,
our treatment of the ionospheric induction is more approx-
imate. We calculate the primary and secondary induced elec-
tric fieldsEp andEs in the ionosphere using Eqs. (4, 6, 9 and
11). These equations give the fields in a vacuum, i.e. they do
not take into account the response of the ionospheric plasma.
In reality, the induced electric fields would drive currents in
the ionosphere and these currents would cause their own sec-
ond order induction phenomena, and so on. In this sense our
treatment corresponds to terminating this iterative loop in the

zeroth order. The higher order corrections would obviously
decrease the total induced electric field, in accordance with
Lenz’s law, and therefore we obtain upper estimates for the
induction effects. The induced currents in the ionosphere and
associated field-aligned currents would also create their own
magnetic fields both below and above the ionosphere, but we
also neglect these effects.

The paper is organized so that in Sect. 2 we give the
expression for the primary and secondary electromagnetic
fields of the curl- and divergence-free elementary systems.
In Sect. 3 we apply the combined CECS and CIM to dif-
ferent ionospheric model systems and compare the primary
and secondary induced electric fields with the driving elec-
tric field of the models. Section 4 deals with the effect of
Earth induction on satellite measurements of magnetic field
variations at heights of a few hundred km.

2 Fields of elementary systems

We use a coordinate system in whichx is northward,y is
eastward andz is vertically down. The Earth’s surface is
the xy-plane and ionospheric currents are assumed to flow
at heighth (i.e. z=−h). A more detailed derivation of the
expressions for the primary and secondary electromagnetic
fields of the divergence- and curl-free CECS is given in the
Appendix; here we just give the final results.

The current density of the divergence-free CECS (Fig. 1),
in cylindrical coordinates centered on the pole of the CECS,
is given by Amm (1997) as (misprint in his formula corrected
here)

jdf
=

I0

2πρ
δ(z + h) êφ . (2)

The magnitude of the elementary system is denoted byI0,
andδ is the Dirac delta function. This current system gives
rise to a primary magnetic field

Bdf,p
=

µ0I0

4πρ

([
1−

|z+h|√
ρ2+(z+h)2

]
sign(z+h)êρ+

+
ρ√

ρ2+(z+h)2
êz

)
(3)

and a primary induced electric field (harmonic time depen-
denceeiωt with the angular frequencyω is assumed)

Edf,p
=

−iωµ0I0

4πρ

(√
ρ2+(z+h)2−|z+h|

)
êφ . (4)

For a layered Earth model, the secondary fields produced
by induced currents in the Earth can be calculated by using
CIM. In this case the secondary fields of a divergence-free
elementary system above the ground (z≤0) are

Bdf,s
=

µ0I0

4πρ

([
1−

h+2p−z√
ρ2+(h+2p−z)2

]
êρ−
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Fig. 1. The current density of the curl-free CECS (upper) and the
divergence-free CECS (lower).

−
ρ√

ρ2+(h+2p−z)2
êz

)
(5)

Edf,s
=

iωµ0I0

4πρ

(√
ρ2+(h+2p−z)2−(h+2p−z)

)
êφ . (6)

The depth of the perfect conductorp is given by Eq. (1).
Similarly, for the curl-free CECS the current density is

j cf
=

I0

2πρ
δ(z+h)êρ+I0δ(x)δ(y)U(−z−h)êz, (7)

whereU is the Heaviside unit step function. The primary
magnetic and electric fields are

Bcf,p
=

−µ0I0

2πρ
U(−z−h)êφ (8)

Ecf,p
=

−iωµ0I0

4πρ

([√
ρ2+(z+h)2−|z+h|

]
êρ −

−ρ log(k0

√
ρ2+(z+h)2+k0(z+h))êz

)
. (9)

In the last equationk0=ω/c is the vacuum wave number. In
practise the z-component of the electric field is not important,
because it (in good approximation) cancels due to the very
high field-aligned conductivity in the ionosphere.

For a curl-free CECS CIM cannot be applied, but the sec-
ondary fields can be calculated in a different manner, as ex-
plained in the Appendix. For all geophysically reasonable
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Fig. 2. The driving electric field and associated currents of the WTS
model.

frequencies and conductivities the results can be approxi-
mated with negligible errors as

Bcf,s
=0 (10)

Ecf,s
=

iωµ0I0

4πρ

([√
ρ2+(h − z)2−(h−z)

]
êρ+

+

[
log(k0

√
ρ2+(h−z)2+k0(z−h))

]
êz

)
. (11)

Concerning the horizontal electric field, the Earth behaves as
a perfect conductor, so that the horizontal part of the primary
and secondary electric fields produced by curl-free CECS ex-
actly cancel at the Earth’s surface.

3 Induced electric fields of different model systems

In this section we will apply CIM for studying induction ef-
fects using several realistic models for ionospheric phenom-
ena. These include Westward Travelling Surge (WTS),�-
band and Giant Pulsations. The driving electric fields and
currents of the models are illustrated in Figs. 2–4. The WTS
and�-band models were composed from observational data
by Amm (1995, 1996), who also gave the associated Hall
and Pedersen conductivity distributions. The Giant Pulsa-
tion model is based on observations and analysis by Glass-
meier (1980) and has been used by Viljanen et al. (1999).
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Fig. 3. The driving electric field and associated currents of the�-
band model.

Only the total current density is available for the Giant Pulsa-
tion model, so we assumed constant Hall and Pedersen con-
ductances of 10 and 5 S, respectively, when we calculated
the electric fieldE0 for this model. These conductance val-
ues give a representative estimate for the driving electric field
of the Giant Pulsations. However, in this case the resulting
field E0 is not a pure potential field, but this does not affect
the calculations.

3.1 Calculation method

The calculation of the primary and secondary fieldsEp, Bp,
Es andBs is done in 6 steps.

1. The horizontal current density of each model is rep-
resented by a sum of curl-and divergence-free CECSs
placed at different locations in the model area.

2. The time variationI0(t) of the CECS amplitudes is cal-
culated at each location. In the case of the WTS and�-
band models the time variation of the CECS amplitudes
is calculated by moving the system in the east-west di-
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Fig. 4. Snapshot of the driving electric field and associated currents
producing Giant Pulsations.

rection at a constant speed. The Giant Pulsation model
already consists of several timesteps, one of which is
illustrated in Fig. 4.

3. The time sequence of the CECS amplitudesI0(t) at
each location is Fourier transformed to the frequency
domain.

4. The primary and secondary fields for each frequency
and CECS location are calculated using Eqs. (3–6 and
8–11).

5. The total fields are obtained by summing the contribu-
tions from the individual elementary systems.

6. Inverse Fourier transform gives the time domain fields.

In fact, all the primary fields and the secondary fields of
the curl-free CECSs could be calculated analytically in the
time domain, but the secondary fields of the divergence-free
CECSs given in Eqs. (5–6) must be calculated in the fre-
quency domain, as they depend on the complex depthp(ω)

of Eq. (1). According to the properties of the inverse Fourier
transform, this dependence onp(ω) also means that the in-
ductive response of the conducting Earth is non-local in time.
In other words, the secondary fields of the divergence-free
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Fig. 5. Upper row: primary (left) and secondary (right) induced electric fields of the WTS model, note the different scales of the plots. Lower
row: induced currents, i.e. currents driven by induced electric fields (left) and the ratio (primary+secondary induced electric field)/(driving
electric field) (right). The color scale is limited to 25% while the maximum ratio is 94%.

CECSs at timet are not determined just from the amplitudes
I0(t) at that same moment, but the fields are affected by the
whole previous time development ofI0(t

′), t ′≤t .
The primary magnetic fieldBp describes the static field

produced by the ionospheric currents and therefore it does
not depend on the velocity of the current system or its oscil-
lation frequency. The primary electric fieldEp is caused
by the time variations of the currents and according to
Eqs. (4 and 9) the dependence onω (and hence also on the
velocity) is linear. The secondary fields of the divergence-
free CECSs in Eqs. (5–6) depend on the complex depthp(ω)

and therefore the detailed relationship between the secondary
fields, the Earth’s conductivity structure and the oscillation
time of the Giant Pulsation or velocity of the WTS and�-
band models is complicated. However, it is clear that rapid
time variations and large Earth conductivity result in larger
induced currents within the Earth and also largerBs andEs

above the Earth.

3.2 Results

Figures 5-8 show the resulting primary and secondary
fields for the different models, together with comparison
|Ep

+Es
|/|E0| against the driving electric field. Also, the

induced ionospheric currentsJ ind driven by Ep
+Es are

plotted. These currents were ignored in our calculations, so
comparison ofJ ind againstJ 0 for each model system gives
an estimate for the magnitude of correction terms these in-
duced currents would produce. In these calculations we used
a highly conducting “ocean” model in which the layer thick-
nesses and resistivities are 3, 147,∞ km (lowest layer is
semi-infinite) and 0.25, 100, 1�m, respectively. All the lay-
ers are assumed to haveµ=µ0 andε=5ε0 (the exact value of
ε is not important, as it appears only in the displacement cur-
rent term that is negligible in the low frequency limit). The
WTS system moves at a velocity of 10 km/s westward and
the�-band at 2 km/s eastward. These values are in the upper
range of realistic speeds (e.g. Paschmann et al., 2002, Chap-
ter 6). The oscillation time of the Giant Pulsation is about
100 s.

It should be remembered that we calculateEp andEs as
if the ionosphere were a vacuum, i.e. we ignore the currents
driven by the induced electric fields. For this reason the re-
sults in Figs. 5–8 should be considered as upper limits for the
induced electric fields, since the response of the ionospheric
plasma should decrease the fields.

From Figs. 5, 7 and 8 it is obvious that in most cases the in-
ductive electric fields are much smaller than the correspond-
ing driving electric fields and that the secondary contribu-
tion to inductive fields is small compared to the primary part.



1740 H. Vanham̈aki et al.: Ionospheric induction effects

−400

−200

0

200

400

X
, k

m

J0, Pedersen, max=278 A/km

−400

−200

0

200

400
Jind, Pedersen, max=35 A/km

−400

−200

0

200

400

X
, k

m

J0, Hall, max=721 A/km

−400

−200

0

200

400
Jind, Hall, max=131 A/km

−400

−200

0

200

400

X
, k

m

J0, curl−free, max=331 A/km

−400

−200

0

200

400
Jind, curl−free, max=91 A/km

−500 0 500
−400

−200

0

200

400

Y, km

X
, k

m

J0, div−free, max=603 A/km

−500 0 500
−400

−200

0

200

400
Jind, div−free, max=78 A/km

Y, km

Fig. 6. The input current system (left side) and the induced current system (right side) of the WTS model decomposed into Pedersen, Hall,
curl-free and divergense-free parts.

However, in some cases the primary inductive field may be
large enough to significantly alter the driving electric field
and therefore also the total current. These situations occur in
regions of high conductivity, where the driving electric field
is relatively weak. For example, in the “head” of the WTS
model the relative magnitude of the total inductive field is
94% of the driving electric field, although the area involved
is quite small. The average value of the ratio|Ep

+Es
|/|E0|

over the whole WTS model area is just 2%. A similar situ-
ation is visible in the Giant Pulsation case, where the maxi-
mum ratio is about 73% and the average value is about 6%.
For the�-band model the maximum and average values are
13% and 1%, respectively.

The induced currents, also plotted in Figs. 5–8, are in gen-
eral much weaker than the original currents, as could be ex-
pected from electric fields results. However, the induced cur-
rents are not negligible. For example, in the WTS model
the induced currents are locally quite large near the surge

“head”. This is the area where the largest FAC (field-aligned
currents) flow in the original model. This means that the in-
duction effects, although small in large scales, may signifi-
cantly alter the magnetosphere-ionosphere coupling through
modifying the FAC in this region. In Fig. 6 we have decom-
posed the original and induced currents of the WTS model
into Pedersen, Hall, divergence-free and curl-free parts. The
induced currents are associated with a pair of downward and
upward FAC near the surge “head”. In general, also in the
other models the induced currents are not exactly opposite to
the original currents, but nevertheless they tend to decrease
the total FAC. We expect that proper treatment of the plasma
response, i.e. the effects the induced currents cause, would
tend to make the induced electric field and hence the currents
more antiparallel to the original fields.

The secondary induced electric field is generally very
smooth when compared to the primary one, as can be ex-
pected because of the larger distance to the image currents



H. Vanham̈aki et al.: Ionospheric induction effects 1741

%

2

4

6

8

10

12

−200 0 200 400 600

−300

−200

−100

0

100

200

300

400

Y, km

|Ep+Es|/|E0|, max=13.1%, mean=1.1%

−200 0 200 400 600
−400

−200

0

200

400

Ep, max= 1.62 mV/m

X
, k

m

−200 0 200 400 600
−400

−200

0

200

400

X
, k

m

Y, km

Jind, max=75 A/km

−200 0 200 400 600
−400

−200

0

200

400

Es, max=0.32 mV/m

Fig. 7. Same as Fig. 5, but for the�-band model. Note the different scales of the vector plots.

−500 0 500

−400

−200

0

200

400

X
, k

m

Ep, max=0.60 mV/m

−500 0 500

−400

−200

0

200

400

Es, max=0.22 mV/m

−500 0 500

−400

−200

0

200

400

Y, km

X
, k

m

Jind, max=5.3 A/km

%

0

10

20

30

40

−500 0 500
−400

−200

0

200

400

Y, km

|Ep+Es|/|E0|, max=72.6%, mean=6.2%

Fig. 8. Same as Fig. 5, but for the Giant Pulsation model. The color scale is limited to 40% while the maximum ratio is 73%. Note the
different scales of the vector plots.



1742 H. Vanham̈aki et al.: Ionospheric induction effects

0 100 200 300 400 500
−1000

−500

0

500

1000

1500
X−comp

nT

Bp+Bs
Bp
Bs

0 100 200 300 400 500
−600

−400

−200

0

200

400
Y−comp

Bp+Bs
Bp
Bs

0 100 200 300 400 500
−1000

−800

−600

−400

−200

0

200

400

Z−comp

Height, km

nT

Bp+Bs
Bp
Bs

0 100 200 300 400 500
0

400

800

1200

1600
|B|

Height, km

Bp+Bs
Bp
Bs

Fig. 9. Height profile of the primary and secondary magnetic fields at position x=100 km, y=200 km of the�-band model.

within the Earth. In areas where the ratio|Ep
+Es

|/|E0| is
highest, the ratio|Es

|/|Ep
| is usually lowest, as can be seen

in Figs. 5, 7–8. The maximum values of the secondary field
are about 15–35 % of the primary field maximum values, and
the secondary field is comparable to the primary one only in
those areas where the inductive fields are very small.

We also made similar calculations for the Harang disconti-
nuity (Amm, 1995) and Auroral Streamer (Amm et al., 1999)
models. For the Harang discontinuity model the induced
electric field is completely negligible, with the maximum ra-
tio induced/driving field being<2%. This is expected be-
cause of the slow movement of the discontinuity. For the Au-
roral Streamer model the maximum inductive effect is also
rather small but uniform, the maximum ratio is about 8%,
but the mean ratio is 4.5%.

It seems that the secondary contribution to the total induc-
tive electric field can be neglected, at least in the first ap-
proximation. If the Earth contribution is taken into account,
representing the Earth with a perfect conductor should be a
reasonable approximation in most cases. On the other hand,
the primary inductive field may be locally very significant
and it has to be taken into account when modelling dynami-
cal ionospheric current systems. For example, in the case of
Alfv én wave reflection (Yoshikawa and Itonaga, 1996, 2000;
Buchert, 1998) the inductive response of the ionosphere may
play a significant role.

4 Magnetic field at satellite altitudes

In this section we study the effect of the Earth’s induction on
magnetic fields at heights 300-500 km above ground, where
satellites like CHAMP and Ørsted measure the geomagnetic
field. We use the WTS and�-band current models of Sect. 3,
together with the “ocean” conductivity model.

The calculation method is the same as in the case of the
induced electric fields, outlined in Sect. 3.1. Also in this
case, the ionospheric response toEp andEs is ignored, i.e.
the magnetic field associated with the ionospheric currents
driven by these induced electric fields is not included in our
calculations. The results in the previous section indicate that
the ionospheric currents driven byEp andEs may produce
large corrections to the magnetic field near the “head” of
the WTS model, where the ratio|Ep

+Es
|/|E0| is large, but

probably not in the�-band model. In any case, our purpose
here is to investigate the effect of the secondary magnetic
field at the satellite altitudes. The secondary field is mod-
elled very well by CIM and on average the currents driven
by Ep andEs should not change the ratio secondary/total
magnetic field by more than a few percentage points.

The vertical profile of the primary and secondary magnetic
fields at positionx=100 km,y=200 km of the�-band model
is shown in Fig. 9. The secondary field decreases relatively
slowly with altitude, whereas the primary field peaks quite
sharply at the current sheet. Above the current sheet the hor-
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izontal part of the primary magnetic field is dominated by the
field-aligned currents, and therefore it is essentially constant
above 300 km. Thez-component of the magnetic field is af-
fected only by the horizontal primary currents in the iono-
sphere and the secondary currents in the Earth. Therefore,
at higher altitudes the contribution from the secondary cur-
rents should be more important in thez-component than in
the horizontal components of the magnetic field.

Figure 10 shows height profiles of the ratio|Bs
|/|Bp

|

for the vertical and horizontal part of the magnetic field for
two locations of the WTS and�-band models. The upper
left panel corresponds to Fig. 9. In these cases the field-
aligned currents decrease the ratio secondary/primary hori-
zontal field to around 5–15% at altitudes above 250 km. On
the other hand, the vertical magnetic field is heavily affected
by the secondary field, with the ratio secondary/primary field
being about 20–50% between 250–500 km.

The horizontal and vertical parts of the primary and sec-
ondary magnetic fields for the WTS and�-band models at
an altitude of 400 km are illustrated in Figs. 11–14. The sec-
ondary magnetic field is much smoother than the primary one
and tends to be in the opposite direction. The horizontal part
of the secondary field is much smaller than that of the pri-
mary field, but in the vertical fields the difference is smaller.
It seems that in general the ratio secondary/primary field can

be several tens of percent, even 50%, for the vertical part, but
only a few percent for the horizontal part.

The above examples indicate that inductive currents within
the conductive Earth may have large effects on ionospheric
magnetic field variations. We used a highly conducting Earth
model representing ocean areas and rapidly changing iono-
spheric model systems, so the effect of the Earth’s induction
is in the upper range of realistic values in these examples.
The Earth’s effect should be taken into account when in-
terpreting magnetic measurements made by low-orbit satel-
lites. Of course, if the aim is to use satellite measurements
in studies of the Earth conductivity structure, as, for exam-
ple, recently done by Constable and Constable (2004), the
secondary field is the important part. Olsen (1999) gives
an extensive review of the different techniques used in these
conductivity studies and discusses the obtained results. On
the other hand, if one wants to study ionospheric current sys-
tems, one has to remove the secondary contribution, in order
to obtain the right ionospheric currents. The simplest way of
estimating the solid Earth contribution is to replace the Earth
by a perfect conductor at a certain depth, as done, for ex-
ample, by Olsen (1996). This may be completely adequate
in many cases, although the depth of the perfect conductor
should vary according to the large-scale conductivity proper-
ties of the underlying ground.
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Fig. 11. The horizontal part of the primary and secondary mag-
netic fields of the�-band model at an altitude of 400 km. Note the
different scales of the plots.

5 Conclusions

We have calculated the secondary electric and magnetic
fields caused by the Earth’s induction for several realistic
models of ionospheric current systems. We have also es-
timated an upper limit of the electric field associated with
ionospheric self-induction. Induction in the Earth was mod-
elled accurately, assuming the Earth’s conductivity does not
vary in the horizontal directions, but the induced ionospheric
fields were calculated as vacuum fields, that is, the iono-
spheric currents driven by the induced electric fields were
ignored. Temporal variations of these currents would cause
another induction loop, and so on. These corrections would
tend to decrease the total induced electric field, in accordance
with Lenz’s law, so our calculations should give an upper es-
timate for the induced fields.

The calculated electric fields for different ionospheric
models indicate that the secondary fieldEs is very small
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Fig. 12. The vertical part of the primary and secondary magnetic
fields of the�-band model at an altitude of 400 km.

in most cases, both in absolute value and in comparison to
the total electric field in the ionosphere. Thus, the Earth’s
induction can be neglected in studies of ionospheric electro-
dynamics, at least in most cases. If one wants to include the
secondary electric field, replacing the Earth with a perfect
conductor at some (real) depth should be a completely ade-
quate approximation. At the Earth’s surface the secondary
electric field is of course important and must be taken into
account, but at the ionospheric altitude the secondary field is
small compared to the other electric fields.

The primary induced electric fieldEp, due to ionospheric
induction, is larger than the secondary one and may be lo-
cally very important. For example, with the WTS model the
primary field may be almost as large as the driving poten-
tial field E0 in some areas, as shown in Fig. 5. Similar “hot
spots” are also present in the Giant Pulsation model and to
a lesser extent also in the�-band model, but not, for ex-
ample, in the Harang discontinuity model. Our calculations
give only upper estimates for the induced fields, as the iono-
spheric induction is not treated correctly. However, the re-
sults presented in this paper indicate that inductive phenom-
ena may be important in ionospheric electrodynamics and a
proper method for calculating the inductive fields in the iono-
sphere should be developed. A more precise treatment will
be presented in a further paper.
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Fig. 13. Same as Fig. 11, but for the WTS model.

We also calculated the secondary magnetic fieldBs at al-
titudes up to 500 km, in order to estimate the effect of the
Earth’s induction on magnetic measurements made by low-
orbit satellites. In the horizontal part of the magnetic field
the secondary contribution is rather small, less than about
15% of the primary part at altitudes above 300 km. In the
vertical part the ratio secondary/primary field may be much
higher, 40–50% is not unusual. These results, calculated
for the WTS and�-band models, show that the Earth’s in-
duction must be taken into account when determining iono-
spheric currents from magnetic measurements made by low-
orbit satellites.

Appendix A

In this appendix we outline the calculation of the expressions
in Eqs. (3–6 and 8–11) for the primary and secondary fields
of the curl- and divergence-free elementary systems. Most of
the results, together with detailed calculations, have already
been presented by Pirjola and Viljanen (1998). However,
they gave the fields only at the Earth’s surface, so the results
must be generalized. Some simplified expressions based on
numerical calculations are also introduced.

Our starting point is Eq. (7) for the current density of the
curl-free elementary system. Pirjola and Viljanen (1998)
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Fig. 14. Same as Fig. 12, but for the WTS model.

give the vector potential for this current system as (their
Eqs. A17 and A22)

Acf,p
=

µ0I0

4πρ

([√
ρ2+(z+h)2−|z+h|

]
êρ−

−ρ log(

√
ρ2+(z+h)2+(z+h))êz

)
. (A1)

More detailed calculation including retardation effects for
the line current would give the factork0 that is included in-
side the logarithm in Eq. (9) and other terms that vanish at
least as fast asO(k0) whenω→0. The vector potential of
the divergence-free CECS has only a horizontal part and it
has exactly the same form as the horizontal part of the curl-
free CECS’s potential in Eq. (A1), except that is in theêφ-
direction.

Using the above formulas for the vector potentials it is
easy to verify the expressions for the primary fields given in
Eqs. (3–4 and 8–9) by evaluatingB=∇×A, andE=−∂tA.

The CIM technique of Thomson and Weaver (1975) can be
directly applied to the divergence-free CECS, asjdf has only
a horizontal part. Equations (5–6) clearly represent the fields
of a mirror system placed at a complex depth 2p+h below
the surface, in accordance with having a perfect conductor at
depthp.

The vertical line current inj cf prevents the use of CIM
for the secondary fields of the curl-free CECS. Pirjola and
Viljanen (1998) calculated the secondary fields directly from
Maxwell’s equations for a homogenous Earth model, and we
will apply these results. The relevant equations in Pirjola and
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Viljanen (1998) read (their Eqs. A2, A6, A9, A10, A11 and
A29)

B
cf,s
φ =

∫
∞

0
C(b)J1(bρ)eκ0zdb, (A2)

Ecf,s
ρ =

iω

k2
0

∫
∞

0
κ0C(b)J1(bρ)eκ0zdb, (A3)

E
cf,s
z =

−iω

k2
0

∫
∞

0
bC(b)J0(bρ)eκ0zdb, (A4)

C(b)=
µ0I0

4π
k2

0k2 e−hb

b(k2κ0+k2
0κ)

, (A5)

k2
=ω2µε−iωµσ,

−π

4
≤ arg(k)≤0, (A6)

κ2
=b2

−k2,
−π

2
≤ arg(κ)≤

π

2
, (A7)

These expressions are valid in the half spacez≤0. J0 and
J1 are the zeroth and first order Bessel functions, whilek0
and κ0 are values ofk and κ in the air, with parameters
µ0, ε0, σ=0.

Numerical evaluation of the above expressions for the sec-
ondary fields of the curl-free CECS reveals that for all geo-
physically reasonable frequencies (ω=10. . . 10−4 s−1) and
conductivities (σ=10. . . 10−5(�m)−1) they can be approx-
imated with the formulas given in Eqs. (10–11). Errors in
these approximations are<0.1%, at least in the distance
rangeρ≤500 km, 0≤z≤500 km, where the fields are needed.
Pirjola and Viljanen (1998) derived their analytical results
for the homogenous conductivity case, but they also per-
formed numerical calculations for a layered Earth conductiv-
ity model. These calculations confirmed that for a curl-free
CECS the secondary magnetic field vanishes above the Earth
and the secondary electric field can be calculated as if the
Earth were a perfect conductor. Thus, Eqs. (10–11) can be
also used with layered Earth conductivity models.
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