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ABSTRACT 

The  symretry  of the induction  machine zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be  exploited 
to  obtain  general  closed  form  expressions  for  the  small 
signal  transfer  functions  describing  speed,  voltage, 
frequency,  or  load  perturbations  by  utilizing the com- 
plex t h e  variables  introduced  by  Ku  and  Lyon in the 
1950's. 

After  a  brief  introduction to complex  variables,  the 
linearized  complex  variable  equations  describing  small 
signal  dynamic  performance  are  presented.  These  equa- 
tions are used  to obtain  transfer  functions in which 
the  effects  of  excitation  level  are  isolated in the 
gain factors. The  speed and frequency  dependence of 
the  poles zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand zero8 is expressed in closed  form  employ- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ing a  useful  non-diPeneional  parameter  system. 

To  illustrate  the  application  of  these  results,  the 
dynamic  behavior of the induction  machine  without  feed- 
back  control is analyzed.  It is shown  that  the  general 
dpnamic  response can be  characterized  by  the n o w  
dimensional  loop  gain  and  stator  frequency.  A  set  of 
general  non-dimensional  root  loci  are  presented  which 
permit  rapid  estimation  of  the  relative  stability 
(dominant  eigenvalues)  and  the  frequency  of minimum 
damping  of  any  specific  machine.  The  application  of 
the transfer  functions  to  cases  involving  feedback con- 
trol  of  the  machine  is  also  discussed. 

INTRODUCTION 

Unlike  a dc  machine,  the  dynamic  response  of an induc- 
tion  machine is of high  order  and no generally  applica- 
ble  simple  model  exists  to  predict  performance  and 
assist  in design.' Computer  simulatione,2-6  linearized 
models  requiring nyrical evaluation of  eigenvalues  or 
transfer  functions,  -lo  and  simple  approximatemodels1b12 
have  been  employed  with  varying  degrees  of  success. Of 
theee  methods,  the  numerical  calculation  of  transfer 
characteristics9  has  the  advantage of  avoiding  direct 
simulation  and  yet  not  being  subject  to  the  limitations 
inherent in the  approximate  methods.  This  approach, 
however,  has the disadvantage  of  being  entirely  numeri- 
cal  and  thus  not  capable  of  producing  general  results 
without  extensive  computation. 

The  basic  difficulty in any  analytical  approach is the 
high  order  and  non-linearity  of  even the idealized 
model  of an ac  machine.  Linearization  methods  are use- 
ful,  but  the  resulting  linear  models are of  high  order 
and  involve the operating  point  constraints  in  a  very 
complicated  manner.  The  only  obvious  possibility  of 
simplifying  these  descriptions  and  obtaining  general 
closed  form  results  lies in the  structural  symmetry  of 
the  induction  machine.  The  successful  and  routine  util- 
ization  of  this  .symmetry in steady  state  analysis is a 
good  example  of  the h e n s e  simplification  which is at- 
tainable by this means. 

chinery Committee of the IEEE  Power Engineering Society for presentation at the 
Paper F 76 196-6, recommended and  approved by the IEEE Rotating Ma. 
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J. H. Wouterse 
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In a  search  for  a  method  to  exploit the s 
complex  variable  analysis  introduced by  Ku l Y t r y ,  and L on 
and  extensively  employed  outside  of  the U.S.15-17  ap- 
pearp to  hold  promise.  Brcept  for  isolated instan- 
c e d  ,19 this  method  has  been  ignored  in  favor  of  real 
variable  analysis in the U.S. 

The  results of employing  complex  variables  to  de-couple 
and  otherwise  simplify the mathematical  description  of 
induction  machine  dynamics are presented in this paper. 
This initial  report  incorporates  voltage,  frequency  and 
speed  feedback  but  excludes  cases  utilizing  current 
feedback.  The  analysis  is  also  restricted  to  linear 
symmetric source  impedances.  Subsequent  work  to in- 
clude  current  feedback  and  inverter  dc  side  source 
impedancfOis under  way. An analysis  of  inverter  per- 
fornwce and steady2pate performance  of  an  inverter 
fed  induction  machine  using  complex  variables  have 
been  completed. 

COWPLXX TIME DOMAIN  MODEL 

The  machine  model  employed  in the study is the  conven- 
tional id%ized machine  with  power  invariant two phase 
variables.  The  development  presented in Appendix  A 
first  transforms  the  three  phase  machine to a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtwo phase 
power  invariant  equivalent  and  subsequently  combines 
the two phase  variables  into  complex  variables  such 
that  the  symmetry  of  the  real  variable  equations is 
made  evident.  Except  for  the  constants  associated  w5th 
power  invarienc  the  results are the same as Lyon's 
original work. 18' 

With  the  notation  defined in Appendix A, the  induction 
machine is represented in a  synchronous  reference by 
the two complex  variable  equations 

in which  the  impedances  as  given in (A-16) are complex 
operational  impedances  containing  the  derivative  opera- 
tor  p  and the instantaneous  frequencies w andus(stator 
and  slip  frequency  respectively).  The  instantaneoue 
torque  equation  is 

These  complex  variable  equations are exactly  equivalent 
to  the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 x 4  matrix  equation  and the torque  equation 
used  in  real  variable  theory  (see (A-3) and (A-4)). For 
balanced  polyphase  excitation  Appendix  A  yields  the 
complex  variable  applied  voltage  as 

and  it is convenlent  but  not  essential  to  choose $=$g 
such  that is a  real  quantity. 

In  addition  to  the  obvious  advantages of simplicity  and 
compactness,  a  major  advantage  of  the  complex  variable 
equations is the  reduction of the order  of  the  voltage 
equations  from  four  to two. Clearly  the  order haa been 
reduced  by m e a m  of the  special  symmetry  associated 
with  the  machine; the system is still fourth  order  but 
complex  variables  decouple the fourth  order  system  into 
two second  order  systems  which  are  complex  conjugates. 
Only one  of  the  second  order  systems  need  be  solved 
since  the  solution  to the second is simply  the  complex 
conjugate  of  the  first  solution.  The  situation is 
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similar  to the decoupling  which  takes  place in steady 

state  analysis  where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAonly one phase  need  be  solved 
with the solutions  for  the  other  phases  being  obtained 
by  introducing the appropriate  phase shift. 

SMALL SIGNAL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACOMPLEX zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVARIABLE EQUATIONS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
AB given in (1) to (3) the  complex  variable  equations 
are  non-linear in the same way as the  real  variable 
equations.  A  linearization  can  be  carried  out  as  for 
real  variables  by  allowing  small  variations in the 
voltages,  currents,  frequencies,  speed and torque. The 
details are given  in  Appendix B; the  results  are 

where  the  A-variables  are  the  small  signal  quantities, 
subscript  o-variables are steady  state  quantities,  and 
the  complex  operational  impedances now involve only 
steady  state  frequencies  as shown in (E-7). In addi- 
tion  to  these  small  signal  equations, the steady  state 
equations  defining  the  operating  point  are  also  avail- 
able  as  given  in (B-3). The  steady  state  impedances 
are,  of  course,  not  operational  impedances  but  simply 
complex  numbers  which dependonthe speed  and  frequency 
of the operating  point. 

Simplification of Small  Signal  Equations 

To  this  point,  except  for  the  reduction  in  order, the 
complex  variable  equations  are  simply  a  compact  ver- 
sion  of  the  real  variable  equations;  nothing  beyond 
a  saving  of  space  has  really  been  accomplished. How- 
ever,  the  simplicity  of the equations now permits  a 
series  of  simplifications  and  changes in form  which 
would  be  difficult  with  real  variables. 

The  steady  state  rotor  voltage  equation (B-3) yields  a 
very  simple  relation  between the.  steady  state  currents 

which  can  be  used  to  eliminate  the  steady  state  stator 
current  from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4) and (5). Using  this  result  the  steady 
state  fluxes  become 

where Qo is Go zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ jus,%. The  torque  equation (5) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
can also  be  rewritten  using (6) in a  much  more  conven- 
ient  form  involving only I,, and yo (after  some  mani- 
pulation). With  these  changes  the  small  sigaal  equa- 
tions  become 

R -. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw r  iro (b - Aur) = fd AIs + fr ATr 
SO 

AT = Re [ iro  (Zdo  Ais + Zro Air) ] 0 ; pAur + ATL (9) 
-* -* - -* - J 

uSO 

in which only the  steady  state  rotor  current  occurs, 
along  with the steady  state  stator  and  slip  'frequency, 
to  define  the  operating  point.  From  a  conceptual  point 
of  view (8) and (9) suggest  the  block  diagram  shown in 
Fig.  la. The  nature of the  transfer  properties  of  this 
diagram  is  the  subject  of  the  remainder of the  paper. 

Electrical Torque 

Behaviour Production 

(a) General 

- -  
Cb) Incremental  torque 

Fig. 1. Block  diagram  representation  of  the  induction 
machine. 

OPEN LOOP TRANSFER FUNCTIONS 

If  the  feedback  path  in Fig.  la  is  opened,  the  various 
transfer  functions  of  the  diagram  can  be  obtained  by 
simple  complex  variable  algebra.  With  these  open  loop 
transfer  functions  available,  subsequent  analysis  to 
evaluate  the effectof the internal  feedback  loop  (speed 
voltages)  or  externally  applied  feedback  paths  can  be 
carried  out  using  any  of  the  various  methods  of  linear 
feedback  analysis. 

Incremental  Currents 

Considering  the  incrementalvoltage,  frequency, androtor 
speed  as  independent  variables, (8) can  be  solved  for 
the  incremental  currents  to  yield 

where 22 = Z,Z, -%?dm  ~n  effect,  (10) , defines  a  set 
of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsix transfer  functions  relating  the  incremental cur- 
rents  to  the  incremental  input  variables  Avs, &, b. 
Each  of  these six complex  variable  transfer  functions 
can  be  utilized  to  obtain  several  real  variable  trans- 
fer  functions  (describing  magnitude,  phase,  in  phase 

not  be  developed  further in this  paper in order  that 
component, etc.). These  current  transfer  functions will 

attention  can  be  centered  on  the  more  immediately  ap- 
plicable  incremental  torque  functions. 

Incremental  Torque  Transfer  Functions 

The  incremental  torque  can now be  evaluated  by  subeti- 
tuting  the  incremental  currents  (10)  into  the  torque 
equation (9). It  is  convenient  to  immediately  define 
torque  transfer  functions  and  treat  each  independent 
variable  separately.  This  is  illustrated  in  Fig.  lb 
where-the three  incremental  torque  transfer  functions 
for  Avs, b, and AL+ are  applied  to  express  the  proper- 
ties  of  Fig.  la  in  conventional  block  diagram  form. 
For  convenience,  the  feedback  transfer  function  Gr  is 
defined  to  include  a  minus  sign  to  allow  drawing the 
diagram with the  normal  negative  feedback  convention. 

With  the  conventions  and  symbols  established  in Fig. 
lb,  the  speed  feedback  transfer  function  becomes 
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(11) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I Avs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, b o  

which  can  be  evaluated zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAusing (9) and (lo) 

Ra ionalizing  the  complex  expression  b  multiplying by 
(&)* and using the  result iroI:o = lIrj2 yields 

This  result is remarkable in several  respects: 

the real  multiplier (gain) is immediately  recogniz- 
able  as the steady  state  torque  divided  by  slip 
frequency  To/w 

the  demoninator 1z2 I (poles  of the  transfer  func- 
tion)  is  a  fourth  order  pol  omial  in  p  which is 
automatically  factored  into zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz q z 2 ) * ,  
a  complex  quadratic and its  conjugate, tPe,n5:Pt:rsof 
the numerator  complex  expression  which  depends only 
on machine  parameters,  speed,  and  frequency,  repre- 

sents  a  closed  form  expression  for  the  zeros. 

SO' 

The  simplification  and  decoupling  which has been  accom- 
plished  by  applying  complex  variables is extremely  val- 
uable. The  dependence  of  the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAresultingtransferfunction 
on the  steady  state  operating  point  has  been  greatly 
simplified; only To and wso appear in the  gain  and  only 
oo and wso in the  poles  and  zeros.  The  problem  of 
finding  the  poles is reduced  from  a  fourth  order  to  a 
quadratic  problem  and  a  closed  form  expression  for  the 
zeros  has  been  obtained. 

Similar  operations  yield  the  other  incremental  torque 
transfer  functions  defined as 

AT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. _ I  

A -  I 

In each  cage  the  poles  are  given  by  the same expression 
involving 22. The  gain  and  complex  expressions  for  the 
zeros are summarized  in  Table I. In (15) Ats is treated 
as  a  real  quantity  (see (3)) and  the  transfer  function 
represents  the  torque  change  resulting  from  a  change  in 
voltage  magnitude. A transfer  function  for  voltage 
phase  changes  can also be  found  if  needed.  To  obtain 
the  results in Table I for  G  the  relation  between qo 
and vso given by the  stator  Viquation  in (E-3) is needed 
to  allow  extraction  of  the  steady  state  voltage  from 
inside the Re operator.  Note  that  the  gain  factor in G, 
contains  an  additional  term  compared  to Go  and G 

Evaluation  of Poles and  Zeros 

The  remaining  task is to  evaluate  the  complex  expres- 
sions in  the  transfer  functions  to  obtain  the  poles  and 
zeros.  The  nature  of  this  problem can zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbe illustrated 
by  elamining  the  complex  valued  quadratic  defining  the 
poles  of (13). 

r' 

The  complex  roots  of  this  equation  in  p  are  the  poles 
(eigenvalues)  of the transfer  functions.  The  complete 
set  of  four  poles is obtained  by  complementing  these 
roots by  their  conjugates. A somewhat  more  complica- 
ted expression  which is a  real  valued  cubic  equation in 
p  results  from  expanding  the  numerator  line of  (13). 

NORMALIZED  OPEN  LOOP TRANSFER FUNCTIONS 

To produce  results  in  a  form  convenient  for  general  use 
it is helpful  to  introduce  a  normalized.  time  variable 
and  to  replace  the  conventional  machine  impedances with 
a set  of  non-dimensional  parameters.  The  normalized 
system isbasedon the  machine  time  constants  and  places 
the  relative  importance  of  the  machine  parameters r e  
garding  dynamic  performance in better  perspective. 

Non-Dimensional  Variables 

The  base  of the normalized  variables is chosen  as the 
rotor  transient  decrement  factor  (reciprocalof  transient 
time  constant).  The  non-dimensional  variables  are: 

a T' Rs 

'r Ti 

a P S I I  9 ratio  of  transient  decrement  factors 

u = 1 - H2/LsLr leakage  parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ii = w/ar normalized  frequency 

X = p/ar normalized  eigenvalue 

where 

ar - Rr/GLr - 1/T: rotor  transient  decrement  factor 

as = RS/m = 1/T'  stator  transient  decrement  factor 

This  normalization  results  in  much  simpler  expressions 
for  the  poles  and  zeros  and  expresses  all  decrements 
and  frequencies  as  multiples  of  the  rotor  transient 
decrement  factor ar. 

Normalized  Transfer  Functions 

In  terms  of  normalized  variables  the  transfer  functions 
are  expressed  in  the  form 

s 

I 

= k  - NX 
x x 5  

where Gx and 6 are  dimensionless  expressions  for  the 
zeros  and  poles  respectively.  For  convenience,  the 
coefficient  of the highest emer of X is always  reduced 
to  unity.  The  gain  factor & carries the dimensions  of 
the particular  transfer  function  under  study. 

Non-Dimensional  Constant  Speed  Eigenvalues  (Poles) 

The  non-dimensional  form  of  (16)  and  (17)  are 

from  which  the  solutions to z2 = 0 can  be  expressed  as - 
r 

X=-jiiso-tll+a+ jiirof2/(l+u)2-4ua-iiro+~2(a-l)ojro 2 1 
Carrying  out  the  multiplication  of  the  complex  opera- 
tional  impedances  results in 
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Table I. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS u m a r y  of  transfer  functions 

Transfer  Norna_lized zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.., 
function  Complex  expression  gain zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 Non-dimensional  polynomial  for  zeros Nx 

" 

Gr a -- AT 
&r 

AGs = 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
h = O  

Gu - AT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
AfA 

AGs = 0 

hr = 0 

Gv = - AT 

Aur = 0 

& = O  

., 
ICr - TO 

*SO 

A' x 1 

Gain = - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA"so 

*SO 

This  closed  form  expression  for  the  eigenvalues  has  the  Non-Dimensional  Zeros 
useful  property  that  the  normalized  slip  frequency 
enters  as a simple  linear  term  and  thus  affects  only 
the frequency aad not  the  decrement.  Therefore, a sin- 
gle  solution  for a given  rotor  speed  is  sufficient  for 
all  values  of  slip;  it  is  only  necessary  to  subtract 
zs0 from  the  j-part  of  the  zero  slip  eigenvalue  to ob- 
tain  the  actual  eigenvalue. 

Figure 2, which  for  convenience  is  drawn  for  the  conju- 
gate of  (21) in order  to  show  the  positive  j-axis,  is a 
representative  set  of  eigenvalues  for 0~0.05. The fig- 
ure actuallygivesthe eigenvalues  in a rotor  reference; 
the speed  of the  reference  system  affects  only the-j- 
part  of the  eigenvalues.  Adding  the  slip  frequency ws0 
to  the  j-part  converts  to a synchronous  reference  as 
explained  above. 

Note  that  the  eigenvalue  variation  for  higher  speeds 
(Fig.  2a)  is  quite  simple. An excellent  approximation 
for 8-_>3 and a near  unity  is 

Thus  for  these  higher  speeds  one  eigenvalue  has a fre- 
quency  slightly  greater  than  slip  frequency  and a decre- 
ment  equal  to  the  rotor  decrement  and  the  other  is  near 
stator  frequency  and  has a decrement  equal  to the sta- 
tor  decrement. 

For  lower  speeds (Fig.  2b) the  variation  of  the  eigen- 
values  becomes  more  complicated.  The  wide  separation  in 
frequency  characteristic  of  higher  speeds  gradually 
disappears  and  is  replaced  by a wide  separation  in 
decrements  which  reaches a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmaximum at  zero  speed.  Note 
that  the a = l  curve  is  unique  in  that a double  complex 
eigenvalue  occurs  for a speed  slightly  below 2.0. For 
other  values  of a the two branches  are  always  separate. 
In  this low speed  region  the  value  of u also  becomes 
important  and  Fig.  2b  should  only  be  used  to  indicate 
trends,  the  correct  eigenvalues  must  be  found  from(21). 

The  complex  variable  expressions  for  the  zeros  of  the 
transfer  functions  make  the  determination of the  poly- 
nomials definingthezeros a straightforward  operation. 
Emever, the  resulting  polynomials  are  often  cubic and 
the  zeros  must  be  located by approximation  or  by  nu- 
merical  methods.  The  non-dimensional  polynomial  and 
the  corresponding  gain  factor  for  each  of the three 
torque  transfer  functions  defined  previously  is  given 
in  Table I. A major  advantage of  these  polynomials 
expressing the zeros  is  their  use  in  obtaining  approx- 
imate  zero  locations and in estimating  the  effects  of 
parameter  or  operating  point  changes. This type  of 
application  is  illustrated  later in the paper. 

OVERALL TRANSFER FUNCTIONS WITEI FINITE INERTIA 

The  transfer  function  relating a change  in  one  of the 
input  variables  to a change in speed  or  torque  is ob- 
tained  by usingFig.lb in combination  with  the  results 
summarized in Table I. Because the open  loop  transfer 
functions  all  have  the  same  poles,  there  are  simple 
relations  between  the  overall  functions and the  open 
loop  functions. 

Speed  Transfer  Functions 

As an example,  the  overall  relation  between a change 
in  frequency  and a change  in  speed  is (in  normalized 
f o m )  

(n/JarW zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x -  u 1 + cr(n/JarA) (23) 

Multiplying  through by 
and E- yields 

the common  denominator zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 of Gu 
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which demonstrates the following  facts: 

1)  the  overall  gain  is  n/J%  times  the  gain  of Zu 
2) the  overall  zeros  are the zeros  of Gu 

3) the  poles  of  the  overall function_are th_e roots  of 
the characteristic  equation DA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ (nKr/Jar)Nr = 0. 

The  gain  and  zeros  for  voltage  or  load  torque  as  the 
input  quantity  can  be  obtained in the  same  manner.  The 
poles  of  all  the  transfer  functions  are the same and 

with (23) or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(24). 
are  given by the  characteristic  equation  associated 

Torque  Transfer  Functions 

If  the  output  quantity ofinterest is  the  machine  torque 
it  is  only necessaryto multiplythe corresponding  speed 
function by the reciprocal  of  the  inertia  function 
J+A/n. This  has  the  effect  of  multiplying the overall 
gain  factor by JS/n and  modifies  the  zeros  by  adding a 
zero at the origin.  The  poles  are  unchanged. 

Transfer  Functions  for  Constant  Slip 

As an  example  of  external  feedback  control,  consider a 
speed  loop  arranged  to  hold  constant  slip by varying 

.. 
the  applied  fgequency.  Such a loop  would-place zu in 
parallel  with G to  produce a new function G 

r 

With ss available (by  combining  results  from  Table I) 
the  overall  transfer  functions  can  be  obtained  as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin 
the previous  sections.  Note  that  this  external  feed- 
back  loop  would  result  in  new  system  poles  but  would 
not  affect  the  gain  factors  or  zeros. 

DYNAMIC RESPONSE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWITH FINITE  INERTIA 

To illustrate  the  type of  general  results  which  can  be 
obtained  using  the  information  in  Table  I,  the  poles  of 
the  overall  transfer  functions  without  external  feed- 
back  will  be  examined.  These  poles  are  obtained  from 
the  roots  (eigenvalues)  of  the  characteristic  equation 
of (24) 

i h + q  = 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi? = n iir/Jar 

and  characterize  the  stability  and  dynamic  response  of 
an  induction  machine for small  changes  in  input  orload. 
A set  of  neneral  root  loci  can  be  obtained  and  the  non- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-3 -2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1  I 
Fig.  2a.  High  speed 
eigenvalues. 

L dimenslo&  loop  gain  provides a simple means of - 
, 1 4 I _. locating  the  operating  point  for a specific  machine. ~~=~.-1----1-1--[ 'J 

Root  Locus  End  Points 

For i?= 0, the  roots  of  (26)  are  the  open  loop  poles 
given by  (21)  and  Fig. 2 plus the-inertial pole at the 
origin.  At  the  other  extreme  as  K-approaches  infinity, 
the  roots  approach -the zeros  of  Gr;  given  in  tenus  of 
the  polynomial  for K, in Table I and  illustrated  for 
0 ~0.08 and Gs0 = 0 in  Fig. 3. Note  that  for  higher  fre- 
quencies  the  complex  pair  of  zeros  "tracks"  the  high 
frequency  open  loop  poles  (compare  Fig.  2a  and  Fig. 3). 
An excellent approximationfor the  zeros  for  high  values 
of G and small  slip  is 

x = - 1 ,  -+a (1 +a) * jiio (27) 

The  zeros  are  essentially  independent of  slip  for  nor- 
mal  operation  since  only ;go occurs  in  the  polynomial 

2 j coefficients  and ijso << 1 for  typical  machines.  For  high 
slip  the  real  root  moves  toward  the  origin  and  crosses 
into  the  right  half  plane  when  the  slip  exceeds  the 
slip  for  peak  torque,  yielding  an  unstable  real  root  of 

3 =o 

j (26) for  operation  beyond  peak  torque. 

General Form of  Root  Locus 

For  normal  operation  (small  slip)  there  are  two  basic 
types  of  root  loci  depending  upon  the  non-dimensional 

Fig. 3* Zeros Of 'r for stator  frequency Go (and  hence  upon  rotor  speed ;it.,). 
no  load  and a=0.05. The two situations  are  illustrated in Fig. 4. For  typi- 

I 1 1 

-3 -2 - 1  

cal  machines at nominal  frequency,  the  operating po& 
2j is  on the lower,  nearly  vertical  part  of  the  high  speed 

locus  and  the  damping  is  quite  acceptable.  At  very  low 
stator  frequencies the low  speed  locus  applies  and  the 
damping  can  become  very  poor.  If  the  non-dimensional 
gain K is  large  enough,  an  actual  instability zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan occur 
at some  intennediatefrequency  when  the  high  speed  locus 
is  still  applicable. 

The  following  sections  develop a general  quantitative 
j root  locus  representation  of  these  phenomena.  Space 

limitations  preclude  treating  all  possible  operating 
conditions  and  hence  only  the  worst  case  of  no  load 
ope ratio^^,^ is  considered.  Only  the  dominant  roots  are 
presented  to  conserve  space,  but  it  must  be  emphasized 
that  the  complete  locus  for  all  operating  conditions 
could  be  treated  by the same  methods.  In  the  following 
sections  it  is  important  to  remember  that Go and Go 
are  non-dimensional  frequency  and  speed  and  that a par- 
ticular  machine  may  never  operate  on a "high  frequency 
locus"  if  for  example  it  has a very  large  value  of  ar. 

Fig.  2b. Low speed  eigenvalues-  rotor  reference. 
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0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

low  speed 

asymptote zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I 
I 

0- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2 

high  speed 

Fig. 4. General  form  of  root  locus  for  small  slip. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Ugh Frequency  Operation Go= 
The  simplest  case  occurs  when Go is  large  since  the 
high and low  frequency  poles  and  zeros  are  widely  sepa- 
rated,  good  approximations  for  the  pole  and  zero  loca- 
tions  are  available,  and the real  zero  at  -1(see (27)) 
cancels  one  of  the  low  frequency  poles.  The  locus  is 
illustrated  in  Fig. 5 for  several  values of a and sylb 
boli_cally  for  the  general  case.  Clearly  for low values 
of K the high  frequency  poles  and  zeros  cancel  and  the 
locus  is  well  approximated  as  a  second  order  system 
with  poles  at 0 and  -1. A  simple  gain  calibration  for- 
mula  then  applies 

&ere zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 and ii& are the  gain and  frequency  of a point 
on the  ocus as shown  in  Fig. 5. 

For  larger  values  of 2 the  high  frequency  pole  and  zero 
become  significant  and  the  locus  bends  into  the  right 
half  plane.  A  small  angle  approximation  (setting $ = y  
in  Fig. 5) yields a useful  approximate  expression  for 
the  zero  damping  frequency 3, 

GC zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= Go/(1+4a(1-u)) 

which in combination  with (28) requires zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I: 
- l O j  

- 5 j  

-+-PO 
- 1  

general a=2 a=I a=.5 
Fig. 5. High  frequency  root  loci  for  zero  slip (G0=16). 

as  an  approximate  stability  criterion  when  the hi@ 
frequency  locus  applies.  At  the  other  extreme  when K 
is  emall and the  second  order  approximation  is  valid, 
(28) yields  the  result 

A = -++ jm i? 2 1/4 

= - 4 + m  2 5 1/4 (31) 

for the dominant  eigenvalues. This approximation  holds 
until  the  frequency  of  the  eigenvalue  is  of  the  order 
of one half  of GC as can  be  seen  from  Fig. 5. Thus,  for 
high  frequency  operation all the  critical  locus  param- 
eters  can  be  expressed  in  equation  form. 

Intermediate  and Low Frequency  Operation 

As the frequency is reduced the form  of  the  locus  grad- 
ually  changes  from  the  simple  high  frequency  case  to 
the  closely  packed  pole  zero  pattern  of  the low fre- 
quency  case.  The  transition  region (8 >Go > 3) is  illus- 
trated in Fig. 6a for a-0.08 and four  values  of a. The 
high  frequency  locus  shape  is  retained  down to about 
G,, = 4 except  for  large  values  of a. For  these loci (29) 
is  still  a  use_ful  approximation; the error,  however, 
increases  as wo decreages  and  as a increases.  The 
actual  values  of GC and K, can be  read  from  Fig.  6a  if 
u is  not  significantly  different  from 0.08. 

For low frequencies (G,, < 3) the  unstable  region disap 
'e the  variation  of pears  as  shown  in-Fig.  gb.  Furthetmor 

-1  0 -1 0 
am2 a= 1 

20 - 
h 

2 -< 

.5 

. 2  .2 
-4 

- I A  
A 
0 

a=.5 

I 100g 

20 - 
220 

IO': 

5 .  

2 -  

- 5. 

r 
.( 

.( 

< . 2 
.( 

-1 A " 0  
0=.2  

(a) Intermediate  frequencies (u0=8,4) 

E-values 

- 1  0 

c 

h i2  01 - 1  ' . 2  0 d a -1 .2  0 0 

(b) Low frequencies (Go - 2.1) 
Fig. 6. Boot loci for  zero  slip ( 0 = 0 . 0 8 ) .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA44 -1 . 2  0 
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the  roots   wi th  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt becomes very slow.  Poor damping is 
possible and is associated  wi th   re la t ive ly  low values 
of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8. For these low f requency  loci   the  value of a be- 
comes increasingly  important  wi th  bet ter  damping asso- 
ciated  wi th  larger  values of a. The l o c i  in Fig. 6 were 
obtained by computer analysis and a d d i t i o n a l   l o c i   o r  
tab les  of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAminimum damping can  be  prepared  to  evaluate 
the  in f luence of a, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, and Go in more de ta i l .  

Uon-DimenaioPal Gain 

The u t i l i t y  of the  general ized  root loci of  Figs. 5  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6 is dependent on the   s imp l ic i t y  of locat ing  the  opera- 
t ing  po int  on the   locus   fo r  a gpec i f i c  machine. This 
requires  evaluation of the  gain K vh ich is ,   fo r tunate ly ,  
a simple  computation. From (26) and Table I 

2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- n  To/uso Jar (32) 

and the  evaluat ion of E hence  requires only a steady 
state computation  of  the  torquelsl ip-frequency  rat io 
To/us0. Furthermore,  because  of  the  l inearity  of  the 
torque  speed  curve  near  zero  slip, this r a t i o  is nearly 
a constant and  need  only  be  calculated  once  for a given 
machine (unless l a rge   s l i p   ope ra t i on  is of i n t e r e s t ) .  
Note that except  for   very low frequencies-where resis- 
t i v e   e f f e c t s  are important,  the  value of K is indepen- 
dent  of  frequency  for  operation at  constant   vo l ts fher tz  
and  can  be  easily  corrected  for  changes in vo l ts /her tz  
by mult iplying by the  square_ of the  change.  Perhaps  the 
simplest means of  f inding K for   ra ted  condi t ions is t o  
use  namepiate  data  to  obtain  rated  torque and s l i p  and 
evaluate K as 

i - n TR/%uoR Jar (33) 

where TR is rated  torque, a is r a t e d   s l i p ,  and uac is 
rated  f requency.  Clear ly  the  ef fect  of machine par- 
eter changes on : zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be  easi ly  invest igated by using 
steady state theory   to   f ind   the   e f fec t  of the  parameter 
change  on To/uso. 

Tppical Ihmamic Performance 

Computations fo r   t yp i ca l  machines ind ica te  2 ranges 
from values of the  order of  0.1  for small or  h igh iner- 
tia machines up to   10   o r  so f o r   l z r g e  machines.  Because 
o f   these  re la t i ve ly lovva lues  of K for   typicalmachines, 
i n s t a b i l i t y  is quite  unl ikely  except in very  large 
machines. It i s  also  apparent that the  simple  second 
order  response  associated  with low gains on Figs. 5  and 
6 is qu i te   t yp i ca l   f o r  most induction machines  over a 
wide range of operating  frequencies.  Hwever,  because 
the gain is essent ia l ly   independent of  frequency, a t  
some reduced  frequencythe damping of the  dominant roo ts  
vill reach minimum and then  again increase f o r  st i l l  
emaller  frequencies. 

To i l lustrate these phenomena, consider a machine near 
the  middle  of   the  avai lable  s ize  range (100  kW)_with 

A t  nominal  frequency (314 Hz) t h i s   m a c h i n e k s  Go - 15.7 
non-dimePsional  parameters a=1, a=0.08, =20 ,  K=3.  

and  Fig.  5  with a = l  appl ies.  The machine is well ap- 
proximated as a second  order  system and  (31) y ie lds   the  
dominant  eigenvalues as k j 1.66 (-10 f j 33.2 sec-l) . 
Ae thefrequency is reduced,  maintaining  constant  volts/ 
her tz ,  this s i tuat ion  remains  essent ia l ly  unchanged 
u n t i l  a value  of 3 s l i gh t l y   l a rge r   t han  4 is reached 
as shown on Fig. 8,. Below Go - 4 the  damping of the  
roots  slowly  decreases  reaching a minimum near zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAij - 2  
(Fig.  6b)  with  an  eigenfrequency  of  1.40 (28.0  secQ1). 
A fur ther  reduct ion in frequency  increases  the damping 
again  although  the change is not   large  (see Go - 1 roo t  
locus on Fig.  6b). 

The importance  of  the  gain  can  easily  be  demonstrated 
by considering  the  egfect on performance in this exam- 
p le   i f   t he   va lue  of K is increased from  3 t o  10. The 
initial performance a t  nominal  frequency is similar 
except  the  eigenvalues  have a higher  frequency (-4f 

j 3.12 from  (31)).  This remains t he  case unt i l   about  
Go- 8 a t  which point   the damping begins  to  decrease 
reaching  an  unstable  condition a t  Go = 4 with  oeci l-  
lat ion  f requency of approximately 2.9 (58 sec -f ). Again 
for   lowerfrequency  the damping improves  and the  machine 
is stable  wi th   reasonable damping f o r  Go = 2. 

Parameter  Variations 

A more complete set of genera l ized  loc i  would permit 
very  simple  determination  of  the  behavior of the  roots  
f o r  any machine i n  as much d e t a i l  as desired. The l o c i  
given in   F igs .  5  and  6 are a l ready   su f f i c ien t   to  allow 
general  conclusions  regarding  the  major  effects  of 
par-peter  var iat ions on dynamics. Clearly  high  values 
of K and low values of 9 tend  to   cause  instab i l i ty  and 
poor damping. The e f fec t  of a is w e l l  i l l u s t r a t e d   i n  
z ip.  6a  where the   e f fec t  is seen  to  depend strongly on 
uo. The leakage  parameter a is relat ively  unimportant 
except at  low frequencies where larger  values of U 
y i e l d   b e t t e r  damping. 

To ascer ta in   the  in f luence of  machine  impedances it is 
only  necessary  to  convert  the impedance  change t o  i ts 
e f fec t  on the  non-dimensional  parameters.  Space limita- 
t ions  restrict the  presentat ion  to  a few examples which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
illustratethenatureoftheresultswhichcanbe obtained: - 

an  increase  in  the  rotor  resistance  reduces K as 
the  square of the change, increase6 9 l i nea r l y  
and decreases a. The r e s u l t  is b e t t e r   s t a b i l i t y  
and a decrease  in  the  normalized  frequency a t  which 
minimum damping occurs  ( the real frequency may go 
up or d m  depending  on  the  re lat ive change in +). 
an  increase  in  the  leakage  inductance increases a 
l i nea r l y  and decreases p l i near ly .  The result i s  
a greater tendencytoward  instab i l i ty   but  a t  a lower 
value of real frequency  (since a, is smaller).  

a decrease in magnetizing  reactance  increases a and 
improves the  damping a t  reduced  frequencies. 

an increase i n   vo l ts /her tz   inc reases  i and results 
in a greater tendency  toward i n s t a b i l i t y  and a 
la rger   va lue of the  (normalized and real)  frequency 
of minimum damping. 

A more comprehensive  study of  dynamic response  based on 
the methods  developed in   t h i s   paper  is p a r t i a l l y  com- 
pleted and w i l l  be  presented  in a subsequent  paper. 

CONCLUSION 

The genera l   resul ts   presented in this paper  c lear ly 
demonstrate  the  value  of complex var iab les   in   induc t ion  
machine dynamic analysis.  Of par t icu lar   s ign i f icance 
are: the  decoupl ing  resul t ing in exc i ta t ion   leve l  de- 
pendent  gain  factors and general   expressions  for   the 
zeros;  the  simple form  and l i n e a r   s l i p  dependence  of 
the  open loop  eigenvalues;  the  simplici ty  of form  and 
guidance  regarding  relat ive  s igni f icance of parameters 
resu l t ing  from introduct ion of  non-dimensional param- 
eters; and the  genera l   root   loc i  and  non-dimensional 
loop  gain  describing dynamic response  without external 
feedback.  These  and  other similar r e s u l t s  depend 
strongly on the  inherent synmetry of the machine  and 
would b e d i f f i c u l t   t o o b t a i n   u s i n g r e a l v a r i a b l e  methods. 

APPENDIX A. TIME DOMAIN COMPLEX  VARIABLE  REPRESENTATION 
OF THE POLYPHASE INDUCTION MACHINE 

Sub jec t   to   the   th ree   phase  to  two phase power invar ian t  
transformation 
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the  coupled  circuit  equations  of .@e equivalent two 
phase  machine in coil  variables  are 

where  the referencepolarities and variable8 are defined 
in Fig.  A-1. The  zero  sequence  equations  are  omitted 
from (A-3) based on the  assumption  the  machine has no 
neutral  connection. 

TO obtain  time  domain  complex  equations,  define the 
cauplex  variables 

v SC zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- va + 1VSB Isc - iea + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl i s p  
- (8-5 1 
vrc vm + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA’Ye Irc - im + Jirp 

and apply  these  definitions  to (A-3) and (A-4) to produce 
the  variable  complex  equations 

v - (Rs +Lsp)Isc + Mp(der- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i rc = *(E -1 e qSc) + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Rr +Lre)Irc 

- 
SC ‘rc) 

in which the  complex  exponential  function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAder compactly 
represents all of the trigonometric  functions in (8-3) 
and (A-4). Sidlarly, the transformtion equations  of 
(A-1) and (A-2) become 

; SC - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm3 (va+&b+12vc) (A-8) 

S 6  

r6 I 

\ -sa  

SC 

Fig. A-1. Coil  and ax is  configuration  and 
polarity two phase  and  three  phase 

reference 
machines. 

where is the  complex  quantity 

The  transformation  of the coil 
tions  to  stator  or  synchronously 
readily  accomplished  by  defining 
erence)  variables  as f o l l m  

€1 2*/ 3 

variable  complex  equa- 
referred  variables is 
general  (rotating  ref- 

where Og is a  general  reference  angle  locating  the  ro- 
tating  reference  axes  of  the new variables  as shown in 
Fig. A-1. Introducing  these  variables  into  the  coil 
variable  equations,  carrying  out  the  differentiation, 
and  cancelling the resulting  com~oll  exponential  factors 
produces  the  general  transformed  equations. 

v sg = [Rs +Ls(e+lWg)l~sg+M(ptjwg)~rg 

v  rg - We+j (wg-ur) ITsg + 1 (Rr+Lr (p+1 (w,’w,) 1 ]Irg 

- 
(A-11) - 

- -* 
T = nH Idisg irgl (8-12) 

where wg = peg is the  speed  of  the  reference  system. 
These  equations  are  the  complex  variable  form  of the 
equations  resulting  from  the  rotating  coordinate  trans- 
format  one  of  real  variable  theory  (arbitrary  reference 
frames 1 The  complex  operator p + j w  is a  very  compact 
representation  of  the  existence of  both speedand trans- 
former  voltages in the  machine. 

It is convenient  to  define  complex operationalimped- 
antes and  write (A-11) as 

t 

- 
(A-13) 

where the definitions  of  the  impedances  are  apparent  by 
comparison  of (A-11)  and  A-13). The  instantaneous 
electrical  frequencies  which  appear in the  varioue im- 
pedances dependuponthe choice  of  the  reference  system. 
The  important  systems  and  the  corresponding  complex 
operational  impedances  and  complex  voltage  associated 
with  balanced  sinusoidal  excitation  are: 

Synchronous  reference: (wg-w) (A-16) 
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Allowing all variables in (A-12) and (A-13)  to have  a 
d l  signal  component  (perturbation)  added  to  the 
steady  state  solution such that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAeach variable zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhae the 
form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-$ +& results  in the following  expanded  form 
of  the  svnchronous  referred  ccmmlex  variable  eauations . ~ -~~~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ r ~ ~ _ ~ ~ ~ ~ - ~  -~ ~ ~~~ ~ ~ I -  

~~ . - ~  
v + A?s - IRE + Lsb+juo+jh)I ('isoas) 

0 - H(e+juso+jhs) (xso+Axs) 
- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

80 

+ Ne+juo+jAd (xro +AIr) 
(B-1) 

+ [Rr+Lr (P+juso+jhs) 1 (IroMlr) 

To + AT - nM( (?so+Es) (lro+Air) ] 
* 

J (B-2) 
~ ( u ~ ~ + h ~ >  + TLo + ATLO 

Since Fs0 is constant in a  synchronous  reference,  the 
steady  state  solution is also  a  set  of  complex  con- 
stants.  A  set  of  relations  defining  the  steady  state 
solution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be  obtained  from (B-1) and (E-2)  by dropping 
aU derivative  tenus  and  incremental  variables  and  set- 
tingthefrequencies equal  to  their  steady  state  values. - 

v SO - (RE + jwoLs)iso + juogro - isoiso + ZmoIro 

0 - jusoM?so + (I$ + jusoLr)iro - idoIso + iroIro 

To - nM Im[iso ire] - Tu 
(E-3) 

- -* 
(E-4) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Carrying out the  linearization by  neglecting  products 
of  small  signal(A)variables  and  subtracting  the  steady 
state  solution  of (B-3)  and  (B-4) yields  the  linearized 
equations  relating  the  small 6-1 variables 

Specific  symbols are defined  where  introduced in the 
text. The  following generalsymbols are used  throughout.  16. - 
X complex  quantity u stator  frequency 

X conjugate  of ; u slip  frequency 

~e[;] real  part  of 5 w, rotor  frequency 

,* 
s 17. 

j-part  of G V- line-neutral rms ., 
X normalized  quantity 

voltage 18. 

x. steady  state 

AX incremental  quantity  complex  operator 

u 1 -M~/L,L~ 

quantity  n  pole  pairs 
t h e  derivative 19. 
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Discwsion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
V. R. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAStefanovic (Concordia University, Montreal, Canada): The authors 
are to be complimented for developing a new analytical procedure for 
the calculation of induction motor transfer functions. The transfer 
function approach is receiving  renewed attention (9,23) after some  of 
the disadvantages of other methods in the system transient analysis  and 
design have been recognized (24). It is expected that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthis trend zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwill con- 
tinue, especially in the  treatment of motor drives, wheh the number of 
inputs and outputs is relatively  small. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABy using complex time variables, 
the authors have  provided not only a new tool for the analysis, but were 
also able to significantly simplify the complex problem of induction 
motor transients. 

the speed-torque transfer function which  may be regarded as the motor 
The authors have  made a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwise choice by  giving special attention to 

equivalent output impedance. As such, it is one of the most important 
drive transfer fuqctions and  describes fully the induction motor  dy- 
namic characteristics regardless of the  input voltage-frequency  rela- 
tionship. 

Would the authors comment on the following points: 
1. The method presented here is restricted to induction motors 

operating without any current feedbacks. A much more general method 
(named Direct Method) has been proposed recently (23). Within stand- 
ard linearity constraints this method permits to predict the speed- 
torque transfer function of any electric drive, operating with any num- 
ber  of  feedback loops and  having an arbitrary controller configuration. 
In addition to this, the method is simple  and  comes out directly from 
the drive equations in the synchronous reference frame. since both 
complex time variable  and  Direct  Method are based on  the symmetry 
of electrical machines, I feel that some of the restrictions in  the method 

types of motor drives. 
presented here may be removed so that  it can  be extended to other 

formula for the analytical computation of the transfer function zeros - 
2.  The authors have provided us with a very  useful  and  simple 

equations[13],[16]  and[21l.(ThepolesofG  becomethezerosof 
the overall  speed - load torque transfer function\.  The  remaining part 
of the paper deals then almost exclusively with the transfer function 
poles - equation [26] . The zeros, however,  play a very important role. 

which operates above  10-15 hz. the four poles determined by the motor 
For example, it was found that  for a motor without external feedbacks 

electrical system are effectively  cancelled  by four zeros (23). ”his then 
leaves a first order speed-torque transfer function with a pole deter- 

and friction. It should be possible to obtain the same result by the com- 
mined  by a slope of the  motor torque - speed curve, total drive inertia 

plex time variable method. 

clear. When a feedback loop is closed, this is done usually through a PI 
3. The statement which  follows equation [25] appears to be un- 

controller, which  very often includes some compensating network. 
Consequently, the number of poles and zeros in the closed loop t rans-  
fer function is increased  by the order of the added drive controller. 

only, so that the number of poles  and  zeros is unchanged, the transfer 
Even  if the statement refers to a controller with a proportional gain 

tion to the frequency loop has a feedback loop controlling the motor 
function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgain will change.  (Consider for example a drive which in addi- 

voltage or current. Without such a loop any  drive with constant slip 
speed  becomes unstable). 

4. The statement that the gain K, defined by the equation 1321 is 
essentially independent of the  input frequency is somewhat dubious. 
This gain is proportional to the slope of the motor torque-speed  curve. 
Generally, this slope s t a r t s  to decrease as the input frequency is low- 
ered reducing the motor damping (25). Our measurements on a typical 
5 hp  motor showed for example that this decrease s t a r t s  when the fre- 
quency is lowered  below 20 hz and  becomes  very pronounced below 

gain would not be constant over 16% (or 30%) of the motor speed 
10 hz. If such a motor operates in a standard range of up to  60 hz, the 

range. 
5. Equations [2], [SI and figure (1) indicate that  the drive total 

friction is neglected. This tends to give slightly  pessimistic stability re- 
sults. (Closure  of (25)). There is no apparent reason  why the  method, as 
presented here  could not include the  total drive friction. mote  that 
lumping the friction together with the load torque is not dynamically 
equivalent to treating it as a part of the mechanical system, figure lb). 
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D. W. Novotny and J .  H. Wouterse: The authors thank Mr. Stefanovic 
for his remarks regarding the analytical appfoach of the paper and wel- 
come the opportunity to comment on the specific points raised in  the 
discussion.  The clarification of these points plus the two additional 
references (the third added reference [251 is already given as reference 
8 in  the paper) relating to the value  of transfer functions and to a new 
alternative approach are  valuable additions to the paper. 

Regarding the specific numbered items in the discussion: 
1. The  “Direct Method” presented by Mr. Stefanovic in reference 

23 is a method which  yields the speed-tor’que transfer function of a 
drive system in terms of the solution of two separate eigenvalue  prob- 
lems. In general this method requires numerical solution for the two 
sets of eigenvalues.  In comparison, the method of the paper  yields a 
partly closed form solution to a more restricted problem. The authors 
share the discusser’s  feeling that some of the present restrictions on the 
method of the paper  can be removed.  However, it is unlikely that the 
general applicability of the “Direct Method” can  be attained since the 
type of symmetry required for effective use of complex variables  does 
not appear to exist except in induction machines.  The  complex  variable 
method offers the advantage  of  providing  very  general  closed form solu- 
tions for induction machines including speed-voltage  and  speed-fre- 
quency transfer functions in addition to the speed-torque transfer func- 
tion. Thus the two methods offer different types of generality; the 
“Direct Method” in the sense  of application to a wide variety of  drives 
and complex variables in the sense  of a wide variety of conditions in 
induction motor drives. 

2. Although not specifically identified in the paper, the cancella- 

with our of the poles  can  be  seen in Fig. 6. When the nondimensional 
tion of the speed-torque transfer function (Awr/ATL  in  Fig. lb) zeros 

gain zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd is small, the roots (poles) on the loci of  Fig. 6 are  close to their 
starting points. However,  these starting points, except for the one at 
the origin, are the zeros  of the speed-torque transfer function and hence 
cancellation occurs. 

This result can be made quantitative by  using equation 3 1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
h = - K 2 5 %  

which is valid  when the normalized frequency Go is sufficiently large 
(see text below equation 3 1). If E is small  compared to %, the two 
roots can be obtained from a binomial expansion as 

h = -2 and -1 + k 
The  smaller root  at -K. the only pole  which is not cancelled by a zero. 
Using the definition o f f  in equation 32,  the (dimensional) value  of this 
root is 

hur = nTo/usoJ 

which is in agreement with the qualitative result given  in the discussion. 
Note, however, that in addition to requiring a sufficiently high fre- 

vahd IS that << %. Thus,  since R increases as the size of the machine 
que”?, a T c a l  criterion of whether this first order approximation is 

increases,  large  machines will not be adequately represented as a first 
order system even at nominal frequency. 

a unit gain loop to hold constant slip. For this zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcase the statement in 
3. The statement following equation 25  refers only to the use of 

question is correct. The authors agree that such a loop alone results in a 
constant torque drive  and must have a second loop controlling voltage 
or current to be practical. Knowledge of the transfer function of the 
machine with the slip control loop is useful in the design of this second 
control loop. 

frequency decreases (at constant volts/hertz) as a result of the decreased 
4. The non-dimensional gain R does indeed decrease as the input 

slope of the speed-torque curve. This change is caused  by the presence 
of stator resistance  and  becomes appreciable when the resistance is no 
longer  small compared to the reactances of the machine.  The frequency 

ever, a is normally close to unity and hence the critical parameter is 
at which this occurs depends essentially on the values  of a and ar. How- 

ar, which is strongly dependent on machine  size. Thus, in general,  large 
with small  values  of ar  can be run to quite low frequencies 
decreases significantly. Small  machines with large  values of ar  

will show the effect much more  rapid1 . 
The influence of this change in $is to alter the point of operation 

on the locus diagrams  of  Fig. 6. In general, a reduction in g would tend 
to produce better damping as can be seen by examining the figure. The 
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generally poorer damping  associated with low frequency operation is 
therefore not caused by the reduced value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI, but by the motion of 
the poles  and  zeros resulting from the frequency change itself. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

5. Drive system friction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be included by replacing the inertial 
integration in Fig. 1 b by the appropriate time constant. This has the 
effect of  moving the origin  pole in Figs. 4 ,s  and 6 slightly to the left of 
the origin. Note that t h i s  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwill have only a small effect if  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGO are 
large but zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwill move the dominant real  pole leftward for small values  of 
I (when  pole-zero cancellation occurs). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs in item (2), the important 
role  of K as a general indicator of the dynamics of  an induction ma- 

chine and of the influence of  various parameter changes is evident. 

paper. The symbol in equation 18 represents the real  variable nomal- 
The authors would also like to correct a symbolic error in the 

ized denominator of the transfer functions and contains two pairs of 
complex conjugate poles. Unfortunately, the same symbol was  used in 
the complex  variable  expressions of equations 19 and 20 where only 
two of these poles  are represented. The two poles given b equation 20 
must be  augmented  by their complex conjugates to give %in equation 

symbol P and  defining in equation 18 as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 = P F*. 
18. This is best handled y replacing E in e uations 19 and 20 by a new PP 
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