EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Induction machine transfer functions and dynamic response
by means of complex time variables

Citation for published version (APA):

Novotny, D. W., & Wouterse, J. H. (1976). Induction machine transfer functions and dynamic response by
means of complex time variables. IEEE Transactions on Power Apparatus and Systems, 95(4), 1325-1335.
https://doi.org/10.1109/T-PAS.1976.32227

DOI:
10.1109/T-PAS.1976.32227

Document status and date:
Published: 01/01/1976

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 23. Aug. 2022


https://doi.org/10.1109/T-PAS.1976.32227
https://doi.org/10.1109/T-PAS.1976.32227
https://research.tue.nl/en/publications/d0f6e3bc-329a-4b2d-8516-ea14e8652992

1EEE Transactions on Power Apparatus and Systems, Vol. PAS-95, no. 4, July/August 1976

INDUCTION MACHINE TRANSFER FUNCTIONS AND DYNAMIC RESPONSE BY MEANS OF COMPLEX TIME VARIABLES

D. W. Novotny
University of Wisconsin -Madison

ABSTRACT

The symmetry of the induction machine can be exploited
to obtain general closed form expressions for the small
signal transfer functions describing speed, voltage,
frequency, or load perturbations by utilizing the com-
plex time variables introduced by Ku and Lyon in the
1950's.

After a brief introduction to complex variables, the
linearized complex variable equations describing small
signal dynamic performance are presented. These equa-
tions are used to obtain transfer functions in which
the effects of excitation level are isolated in the
gain factors. The speed and frequency dependence of
the poles and zeros is expressed in closed form employ-
ing a useful non-dimensional parameter system.

To 4llustrate the application of these results, the
dynamic behavior of the induction machine without feed-
back control is analyzed. It is shown that the general
dynamic response can be characterized by the non-
dimensional loop gain and stator frequency. A set of
general non-dimensional root loci are presented which
permit rapid estimation of the relative stability
(dominant eigenvalues) and the frequency of minimum
damping of any specific machine. The application of
the transfer functions to cases involving feedback con-
trol of the machine is also discussed.

INTRODUCTION

Unlike a dc machine, the dynamic response of an induc-
tion machine is of high order and no generally applica-
ble simple model exists to predict performance and
assist in design.l Computer simulations,2~® 1inearized
models requiring n%nnerical evaluation of eigenvalues or
transfer functions, ~10 and simple approximate modelsl
have been employed with varying degrees of success. Of
these methods, the numerical calculation of transfer
characteristics? has the advantage of avoiding direct
simulation and yet not being subject to the limitations
inherent in the approximate methods. This approach,
however, has the disadvantage of being entirely numeri-
cal and thus not capable of producing general results
without extensive computation.

The basic difficulty in any analytical approach is the
high order and non-linearity of even the idealized
model of an ac machine. Linearization methods are use—
ful, but the resulting linear models are of high order
and involve the operating point constraints in a very
complicated manner. The only obvious possibility of
simplifying these descriptions and obtaining general
closed form results lies in the structural symmetry of
the induction machine. The successful and routine util-
ization of this symmetry in steady state analysis is a
good example of the immense simplification which is at-
tainable by this means.
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J. H. Wouterse
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In a search for a method to exploit the s try, thz
complex variable analysis introduced by Kul and Lyon!
and extensively employed outside of the p.s.15-1 ap-
peargd to hold promise. Except for isolated instan-
cesl®19 this method has been ignored in favor of real
variable analysis in the U.S.

The results of employing complex variables to de-couple
and otherwise simplify the mathematical description of
induction machine dynamics are presented in this paper.
This initial report incorporates voltage, frequency and
speed feedback but excludes cases utilizing current
feedback. The analysis is also restricted to linear
sympetric source impedances. Subsequent work to in-
clude current feedback and inverter dc side source
impedancs is under way. An analysis of inverter per-
formance 0 and steady itate performance of an inverter
fed induction machine? using complex variables have
been completed.

COMPLEX TIME DOMAIN MODEL

The machine model employed in the study is the conven-
tional ideglized machine with power invariant two phase
variables. The development presented in Appendix A
first transforms the three phase machine to a two phase
power invariant equivalent and subsequently combines
the two phase variables into complex variables such
that the symmetry of the real variable equations is
made evident. Except for the constants associated with
power invariency, the results are the same as Lyon's
original work. L

With the notation defined in Appendix A, the induction
machine is represented in a synchronous reference by
the two complex variable equations

sz = zSLﬂ isw + zlm) irw

63

0= Zdu) isw + zrw irw

in which the impedances as given in (A-16) are complex
operational impedances containing the derivative opera-
tor p and the instantaneous frequencies & and Wg (stator
and slip frequency respectively). The instantaneous
torque equation is
—%
i

T=nM Im[isw w

1= Qlmpu, + 1, @

These complex variable equations are exactly equivalent
to the 4 x4 matrix equation and the torque equation

used in real variable theory (see (A-3) and (A-4)). For
balanced polyphase excitation Appendix A yields the
complex variable applied voltage as

S . J(o-9)

Vew V3 Vs € g (&)

and it 1is convenient but not essential to choose ¢-¢8
such that VBw is a real quantity.
In addition to the obvious advantages of simplicity and
compactness, a major advantage of the complex variable
equations 18 the reduction of the order of the voltage
equations from four to two. Clearly the order has been
reduced by means of the special symmetry associated
with the machine; the system is still fourth order but
complex variables decouple the fourth order system into
two second order systems which are complex conjugates.
Only one of the second order systems need be solved
since the solution to the second is simply the complex
conjugate of the f£first solution. The situation is
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similar to the decoupling which takes place in steady
state analysis where only one phase need be solved
with the solutions for the other phases being obtained
by introducing the appropriate phase shift.

SMALL SIGNAL COMPLEX VARIABLE EQUATIONS

As given in (1) to (3) the complex variable equationms
are non-linear in the same way as the real variable
equations. A linearization can be carried out as for
real variables by allowing small variations in the
voltages, currents, frequencies, speed and torque. The
details are given in Appendix B; the results are

8 8 m T 80 %)

=z +Z A+ (Mw-bw)
e J
AT = nM Im[iso Air+Ais iro] ey pAu)r+ATL (5)

where the A-variables are the small signal quantities,
subscript o-variables are steady state quantities, and
the complex operational impedances now involve only
steady state frequencies as shown in (B-7). In addi-
tion to these small signal equations, the steady state
equations defining the operating point are also avail-
able as given in (B-3). The steady state impedances
are, of course, not operational impedances but simply
complex numbers which depend on the speed and frequency
of the operating point.

Simplification of Small Signal Equations

To this point, except for the reduction in order, the
complex variable equations are simply a compact ver—
sion of the real variable equations; nothing beyond
a saving of space has really been accomplished. How~
ever, the simplicity of the equations now permits a
series of simplifications and changes in form which
would be difficult with real variables.

The steady state rotor voltage equation (B-3) yields a
very simple relation between the steady state currents

iso = _(Zro/zdo)iro (6
which can be used to eliminate the steady state stator

current from (4) and (5). Using this result the steady
state fluxes become

- I"s 2r':o T - Rr T
¢so = Muw TO cl)m = “w iro M
s0 so

where Z{-o is 21'.0 =Ry + JWgoOLy. The torque equation (3)
can also be rewritten using (6) in a much more conven-
ient form involving only Iy, and wg, (after some mani-

pulation). With these changes the small signal equa-
tions become
= (B %o - _—
Avs+ Mw irkogzsAis-'-zmir
so
R ®
r - - - -
o, iro(Aw-Amr) Z‘_1 A:Ls + Zr Air

n -k =k - =k - J
AT = Es—o Re[iro(zdo Ais+zro Air)] 3 pAmr+ATL (¢))
in which only the steady state rotor current occurs,
along with the steady state stator and slip frequency,
to define the operating point. From a conceptual point
of view (8) and (9) suggest the block diagram shown in
Fig. la. The nature of the transfer properties of this
diagram is the subject of the remainder of the paper.

Yo “so*ro “so *ro 4Ty
R S N N
v_s_, Machine s Machine - LR W
-_— T
A Electrical | ,T Torque K (J)
w r =P
| Behaviour Production n
tAm r
(a) General
Av
2, G,
1 Awr
(i
Aw n
— GU) Gl'
(b) Incremental torque
Fig. 1. Block diagram representation of the induction

machine.

OPEN LOOP TRANSFER FUNCTIONS

If the feedback path in Fig. la is opened, the various
transfer functions of the diagram can be obtained by
simple complex variable algebra. With these open loop
transfer functions available, subsequent analysis to
evaluate the effect of the internal feedback loop (speed
voltages) or externally applied feedback paths can be
carried out using any of the various methods of 1linear
feedback analysis.

Incremental Currents
Considering the incremental voltage, frequency, and rotor

speed as independent variables, (8) can be solved for
the incremental currents to yield

v 1 (5 A= Iro s Iro Lgor =
Ais == ZT:AVs +m—Rr Zm Am;?q sz Zr- R.r Zm Aw

Z S0 0
- 10)
- 1z, _tro. 5 I1':0 Leor 3
Air Y3 -szvs—rRr zs Amr- w_ (M zro zd - ers bw
Z 80 so

where 22=ZS'Z'r -ZpZq. In effect, (10), defines a set
of six transfer functions relating the incremental cur-
rents to the incremental input variables Avg, Awy, Aw.
Each of these six complex variable transfer functions
can be utilized to obtain several real variable trans-
fer functions (describing magnitude, phase, in phase
component, etc.). These current transfer functions will
not be developed further in this paper in order that
attention can be centered on the more immediately ap—
plicable incremental torque functioms.

Incremental Torque Transfer Functions

The incremental torque can now be evaluated by substi-
tuting the incremental currents (10) into the torque
equation (9). It 1is convenient to immediately define
torque transfer functions and treat each independent
variable separately. This is illustrated in Fig. 1b
where the three incremental torque transfer functions
for AW-IS, Aw, and Aw, are applied to express the proper-
ties of Fig. la in conventional block diagram form.
For convenience, the feedback tranafer function G, is
defined to include a minus sign to allow drawing the
diagram with the normal negative feedback convention.

With the conventions and symbols established im Fig.
1b, the speed feedback transfer function becomes
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¥, _.AT
Gr - —Awr Mr _ (11)
Avs,Aw-O

which can be evaluated using (9) and (10)

n -k 2* Iro ers 2* Ir.-o erm (12)
Gr " Re 1:0 ro W =2 do 22

il

8o so Z 80

gionalizing the complex exprission b
Z¢)* and using the result i i

multiplying by
yields

2 -2*
n|i R_ Re Z Z -Z zZ )z
Ir:c>I T [( ro 8 do m)( )1
G_= (13)
r 2 =22
w A
80

This result is remarkable in several respects:

1) the real multiplier (gain) is immediately recogniz-
able as the steady state torque divided by slip
frequency T /Lu

2) the demninator |Z | (poles of the transfer func-
tion) is a fourth order polgnomial in p which is
automatically factored into Z4(Z )*, thz Egoggc]c_ of
a complex quadratic and its conjugate 8

3) the numerator complex expression which depends only
on machine parameters, speed, and frequency, repre-
sents a closed form expression for the zeros.

The simplification and decoupling which has been accom-
plished by applying complex variables is extremely val-
uable. The dependence of the resulting transfer function
on the steady state operating point has been greatly
simplified; only T, and Wy, appear in the gain and only
W, and wg, in the poles and zeros. The problem of
finding the poles is reduced from a fourth order to a
quadratic problem and a closed form expression for the
zeros has been obtained.

Similar operations yield the other incremental torque
transfer functions defined as

AT
- —w AT
€ % B TM|  _ (14)
Aw_,Av =0
r 8
AT
G v AT (15)

v E = Avs
Awr.Aw-O

In each cage the poles are given by the same expression
involving 72, The gain and complex expressions for the
zeros are summarized in Table I. In (15) A\?s is treated
as a real quantity (see (3)) and the transfer function
represents the torque change resulting from a change in

voltage magnitude. A transfer function for voltage
phase changes can also be found if needed. To obtain

the results in Table I for G _, the relation between
and vg, given by the stator Vequation in (B~3) is needed
to allow extraction of the steady state voltage from
inside the Re operator. Note that the gain factor in G,
contains an additional term compared to Gw and Gr'

Evaluation of Poles and Zeros

The remaining task is to evaluate the complex expres-
sions in the transfer functions to obtain the poles and
zeros. The nature of this problem can be illustrated
by examining the complex valued quadratic defining the
poles of (13).

«? ==

Z zsz - zmzd 0 (16)
Carrying out the multiplication of the complex opera-
tional impedances results in

2
Q=oLL p"+(RL +RL)p+RR_

- 0L Lw (w

gLy (W ~ W, )+j[dLL(2w°-wro)p

Reerro] Q17)

+ (RL +R L )w
sr rs

The complex roots of this equation in p are the poles
(eigenvalues) of the transfer functions. The complete
set of four poles is obtained by complementing these
roots by their conjugates. A somewhat more complica=-
ted expression which is a real valued cubic equation in
p results from expanding the numerator line of (13).

NORMALIZED OPEN LOOP TRANSFER FUNCTIONS

To produce results in a form convenient for general use
it is helpful to introduce a normalized time variable
and to replace the conventional machine impedances with
a set of non—-dimensional parameters. The normalized
system is based on the machine time constants and places
the relative importance of the machine parameters re-
garding dynamic performance in better perspective.

Non-Dimensional Variables

The base of the normalized variables is chosen as the
rotor transient decrement factor (reciprocal of transient
time conmstant). The non-dimensional variables are:

a T! R
a = a_s = T—f % _R_s ratio of transient decrement factors
r 8

o=1- M2/Ler leakage parameter

&= w/a . normalized frequency

A= p/ar normalized eigenvalue

where

a = Rr/O‘Lr = 1/T1': rotor transient decrement factor
a, = RS/O‘Ls = l/T; stator transient decrement factor

This normalization results in much simpler expressions
for the poles and zeros and expresses all decrements
and frequencies as multiples of the rotor transient
decrement factor &

Normalized Transfer Functions

In terms of normalized variables the transfer functions
are expressed in the form

Gx = Kx (18)

U,'ﬁza

where ﬁx and D are dimensionless expressions for the
zeros and poles respectively. For convenience, the
coefficient of the highest power of A is always reduced
to unity. The gain factor K; carries the dimensions of
the particular transfer function under study.

Non-Dimensional Constant Speed Eigenvalues (Poles)

The non-dimensional form of (16) and (17) are

52 2x _
Z dLer(lr D 0 (19)

~ 2 ~ o~ P ~ ~

D=2+ (1+)A + oa-womso+j((wo+mso)}\ +ou.uso+w°)
(20)

from which the solutions to 22 =0 can be expressed as

A=-gi__ - !5[1+a+ 1B, N(1+) 2= 4o B °2+ 3 Z(a—l)u')roJ

(21)
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Table I. Summary of transfer functions
Transfer Normalized -
function Complex expression gain Ky Non-dimensional polynomial for zeros Ny
AT ) A3 x1
G_ = =5 Gain = T /w
T bas, o 80 . T A2 x 1+a+on -2
F a2 80
- E ST 1 ~2 2 ~2
Av_=0 Sk ok =D & so AT X w + 200+ 00" - 208
Zeros = Rel(Z,,2,-2,,2,) () ] 2 22 2, 2.2
Moy =0 ° 2% x §°+0%-3° (@ +3%)
(-} 80 °
2
€ = B Gain To/wso Kw Weo [A] 1 2 - -
: AT X A +oa(l+a) - (20 +od )
A5 =0 o 80 0 80
8 Zeros = Re | ((E~ % -7, 2 )~ A=1/(0a-338 )  2°xA@E+0%®-285 -
Ay =0 ros dom 80 =} o 80
r S ke =k =2 32 @ +a+a-20) +25 3
' - - W& ))
(Ls/RrM)zro(zrozd Zdozr)) ") 50" 0 0 8o
- AT 3
Gv Av ? Vso ~ T % f1 AT x1
Gatn = Tw V(B 2
s0 50 8O A x 14+a+B@ -0 )@ & -oa)
o 80’ o 80
- =k = =k = =2 1 ~ ~2 ~2
Ay =0 (z_2z,-2,2)Z, (2°) AT x 2B (W +ga(l+a)+ad
T Zeros = Re rg d__ do-r -do B = ll(at'I)so+LTJ°) o so- o 2 SJ
Ay =0 ZgoZr0 ™ Lnoldo A x Zwso(B(wowso-oa) +1/B)

This closed form expression for the eigenvalues has the
useful property that the normalized slip frequency Esso
enters as a simple linear term and thus affects only
the frequency and not the decrement. Therefore, a sin-
gle solution for a given rotor speed is sufficlent for
all values of slip; it is only necessary to subtract
gy from the j-part of the zero slip eigenvalue to ob-
tain the actual eigenvalue.

Figure 2, which for convenience is drawn for the conju~
gate of (21) in order to show the positive j-axis, is a
representative set of eigenvalues for ¢ =0.05. The fig~
ure actually gives the eigenvalues in a rotor reference;
the speed of the reference system affects only the j-
part of the eigenvalues. Adding the slip frequency [Eso
to the j-part converts to a synchronous reference as
explained above.

Note that the eigenvalue variation for higher speeds
(Fig. 2a) is quite simple. An excellent approximation
for __ >3 and a near unity is

2 2
_fot+1 ~ _ (at+1)” | ~
= ) +wso] s 12j [4&:0 +wso} (22)

A=-—q ¢ j[&
o
T
Thus for these higher speeds one eigenvalue has a fre-
quency slightly greater than slip frequency and a decre-
ment equal to the rotor decrement and the other is near
stator frequency and has a decrement equal to the sta-
tor decrement.

For lower speeds (Fig. 2b) the variation of the eigen-
values becomes more complicated. The wide separation in
frequency characteristic of higher speeds gradually
disappears and is replaced by a wide separation in
decrements which reaches a maximum at zero speed. Note
that the a =1 curve is unique in that a double complex
eigenvalue occurs for a speed slightly below 2.0. For
other values of a the two branches are always separate.
In this low speed region the value of 0 also becomes
important and Fig. 2b should only be used to indicate
trends, the correct eigenvalues must be found from (21).

Non-Dimensional Zeros

The complex variable expressions for the zeros of the
transfer functions make the determination of the poly-
nomials defining the zeros a straightforward operatiom.
However, the resulting polynomials are often cubic and
the zeros must be located by approximation or by nu-
merical methods. The non-dimensional polynomial and
the corresponding gain factor for each of the three
torque transfer functions defined previously is given
in Table I. A major advantage of these polynomials
expressing the zeros is their use in obtaining approx-
imate zero locations and in estimating the effects of
parameter or operating point changes. This type of
application is illustrated later in the paper.

OVERALL TRANSFER FUNCTIONS WITH FINITE INERTIA

The transfer function relating a change in one of the
input variables to a change in speed or torque is ob-
tained by using Fig. 1b in combination with the results
summarized in Table I. Because the open loop transfer
functions all have the same poles, there are simple
relations between the overall functions and the open
loop functionms.

Speed Transfer Functions

As an example, the overall relation between a change
in frequency and a change in speed is (in normalized

form)
A(T)r - (n/Jarl)
= ¢ ———— (23)
w1+ 6 (n/Jad)

Av_=0
8

Multiplying through by the common denominator D of &w
and Er yields
A n K N
A;s-o rJ DA + (n Kr/Jur)Nr
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which demonstrates the following facts:
1) the overall gain is n/Ja, times the gain of Ew
2) the overall zeros are the zeros of E

3) the poles of the overall function are the roots of
the characteristic equation DA+ (nK /Ja )N =0,

The gain and zeros for voltage or load torque as the
input quantity can be obtained in the same manner. The
poles of all the transfer functions are the same and
are given by the characteristic equation associated
with (23) or (24).

Torque Transfer Functions

If the output quantity of interest is the machine torque
it is only necessary to multiply the corresponding speed
function by the reciprocal of the inmertia function
JarA/n. This has the effect of multiplying the overall
gain factor by Jo,/n and modifies the zeros by adding a
zero at the origin. The poles are unchanged.

Transfer Functions for Constant Slip

As an example of external feedback control, consider a
speed loop arranged to hold constant slip by varying
L

e,

Qpo=7 7]

A

o =7-
o

6] - 63

k53

_4j

-3

_2j

Fig. 3. Zeros of 51. for
no load and o =0.05.

Fig. 2a. High speed
eigenvalues.

-3 -2 -1
Fig. 2b. Low speed eigenvalues - rotor reference.

the applied frequency. Such a loop would~place éw in
parallel with Gr to produce a new function Gs

t = -g=-2L

s . X (25)
Avs,Am;O

With Es available (by combining results from Table I)

the overall transfer functions can be obtained as in

the previous sections. Note that this external feed-

back loop would result in new system poles but would

not affect the gain factors or zeros.

DYNAMIC RESPONSE WITH FINITE INERTIA

To illustrate the type of general results which can be
obtained using the information in Table I, the poles of
the overall transfer functions without external feed-
back will be examined. These poles are obtained from
the roots (eigenvalues) of the characteristic equation
of (24)

DA + K Nr =0

K=n Kr/Jur (26)
and characterize the stability and dynamic response of
an induction machine for small changes in input or load.
A set of general root loci can be obtained and the non-
dimensional loop gain K provides a simple means of
locating the operating point for a specific machine.

Root Locus End Points

For §=0, the roots of (26) are the open loop poles
given by (21) and Fig. 2 plus the_dinertial pole at the
origin. At the other extreme as K approaches infinity,
the roots approach the zeros of G.; given in terms of
the polynomial for Nr in Table I and illustrated for
0=0.08 and wso-o in Fig. 3. Note that for higher fre-~
quencies the complex pair of zeros "tracks" the high
frequency open loop poles (compare Fig. 2a and Fig. 3).
An excellent approximation for the zeros for high values
of E)o and small slip is

A=-1, -%a (1+0) tj&o @n
The zeros are essentially independent of slip for nor-
mal operation since only wéo occurs in the polynomial
coefficients and “’so <<1 for typical machines. For high
slip the real root moves toward the origin and crosses
into the right half plane when the slip exceeds the
slip for peak torque, yielding an unstable real root of
(26) for operation beyond peak torque.

General Form of Root Locus

For normal operation (small slip) there are two basic
types of root loci depending upon the non-dimensional
stator frequency (u (and hence upon rotor speed mro)
The two situations are illustrated in Fig. 4. For typi-
cal machines at nominal frequency, the operating point
is on the lower, nearly vertical part of the high speed
locus and the damping is quite acceptable. At very low
stator frequencies the low speed locus applies and the
damping can become very poor. If the non-dimensional
gain K is large enough, an actual instability can occur
at some intermediate frequency when the high speed locus
is still applicable.

The following sections develop a general quantitative
root locus representation of these phenomena. Space
limitations preclude treating all possible operating
conditions and hence only the worst case of no load
operation/*® is considered. Only the dominant roots are
presented to conserve space, but it must be emphasized
that the complete locus for all operating conditions
could be treated by the same methods. In the following
sections it 1is important to remember that {; and @y,
are non-dimensional frequency and speed and that a par-
ticular machine may never operate on a "high frequency
locus" if for example it has a very large value of e,
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\ |
! i
X 1
! asymptote I
i |
] _ 1+a(1-0) /.
| 2 {
1 I
! o~
|
' )
1
:
. )
o ¥
low speed high speed
Fig. 4. General form of root locus for small slip.

High Frequenc eration

W, 28)

The simplest case occurs when E)O is large since the
high and low frequency poles and zeros are widely sepa-
rated, good approximations for the pole and zero loca-
tions are available, and the real zero at -1 (see (27))
cancels one of the low frequency poles. The locus is
illustrated in Fig. 5 for several values of a and sym
bolically for the general case. Clearly for low values
of K the high frequency poles and zeros cancel and the
locus is well approximated as a second order system
with poles at 0 and ~1. A simple gain calibration for-
mula then applies

ib-ab2+1/4

where ?K;s and &, are the gain and frequency of a point
on the locus as shown in Fig. 5.

(28)

For larger values of K the high frequency pole and zero
become significant and the locus bends intc the right
half plane. A small angle approximation (setting ¢ =Yy
in Fig. 5) yields a useful approximate expression for
the zero damping frequency &,

G, = O/ (1+%a(1-0))
which in combination with (28) requires

29)

X o~ X o X0
//’ | 153
pole at —a+ju, .
L
/ L 103
-~ 53
—¥ ¥ ¥ 0
-1 ~1 -1
general a=2 a=} a=.5

Fig. 5. High frequemcy root loci for zero slip (&,=16).

R<i:&2-w2
[ [+

/(1+ka(1-0))

as an approximate stability criterion when the high
frequency locus applies. At the other extreme when 4
1s small and the second order approximation is valid,
(28) yields the result

(30)

R T " K2 1/4
o (31)
=-kt/H-K K £1/4

for the dominant eigenvalues. This approximation holds
until the frequency of the eigenvalue is of the order
of one half of §, as can be seen from Fig. 5. Thus, for
high frequency operation all the critical locus param—
eters can be expressed in equation form.

Intermediate and Low Frequency Operation

As the frequency is reduced the form of the locus grad-
ually changes from the simple high frequency case to
the closely packed pole zero pattern of the low fre-
quency case. The transition region (8 >m >3) is 1illus-
trated in Pig. 6a for 0= 0.08 and four values of a. The
high frequency locus shape is retained down to about
w°-4 except for large values of a. For these loci (29)
is still a useful approximation; the error, however,
increases as w decreases and as o increases. The
actual values of “’c and can be read from Fig. 6a 1if
0 is not significantly different from 0.08.

For low frequencies (8')°< 3) the unstable region disap~
pears as shown in Fig. 6b. Furthermore the variation of
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2‘;07\ 100 20%7 4 100 <]
100
~ 50
L wg=8 50 o s
T =4 50 —
~ ©
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20
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K-values
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1
2
l -]
e i |
] T i
-ll T 0 T ; y :

(b) Low frequencies (i, =2,1)

Fig. 6. Root loci for zero slip (o=0.08).
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the roots with K becomes very slow. Poor damping is
possible and 1is associated with relatively low values
of R. For these low frequency loci the value of 0 be-
comes increasingly important with better damping asso—
ciated with larger values of 0. The loci in Fig. 6 were
obtained by computer analysis and additiomal loci or
tables of minimum damping can be prepared to evaluate
the influence of @, 0, and &30 in more detail.

Non-Dimensional Gain

The utility of the gemeralized root loci of Figs. 5 and
6 is dependent on the simplicity of locating the opera-
ting point on the locus for a specific machine. This
requires evaluation of the gain K vwhich is, fortunately,
a simple computation. From (26) and Table I

K=n To/wso Jo_ (32)
and the evaluation of K hence requires only a steady
state computation of the torque/slip -frequency ratio
To/Wgg. Furthermore, because of the linearity of the
torque speed curve near zero slip, this ratio is nearly
a constant and need only be calculated once for a given
machine (unless large slip operation 1s. of interest).
Note that except for very low frequencies_where resis-
tive effects are important, the value of K is indepen-
dent of frequency for operation at constant volts/hertz
and can be easily corrected for changes in volts/hertz
by multiplying by the squarg of the change. Perhaps the
simplest means of finding K for rated conditioms is to
use nameplate data to obtain rated torque and slip and
evaluate K as

K=n TR/SRwoR Ja_ (33)
where Tp is rated torque, sy 1s rated slip, and wy is
rated frequency. (learly the effect of machine param-
eter changes on K can be easily investigated by using
steady state theory to find the effect of the parameter
change on To/wso'

Typical Dynamic Performance

Computations for typical machines indicate K ranges
from values of the order of 0.1 for small or high iner-
tia machines up to 10 or so for large machines. Because
of these relatively lowvalues of K for typical machines,
instability 4is quite unlikely except in very large
machines. It is also apparent that the simple second
order response associated with low gains on Figs. 5 and
6 18 quite typical for most induction machines over a
wide range of operating frequencies. However, because
the gain 1s essentially independent of frequency, at
some reduced frequency the damping of the dominant roots
wvill reach minimum and then again increase for still
smaller frequencies.

To 1llustrate these phenomena, consider a machine near
the middle of the available size range (100 kW) with
non-dimensional parameters a=1, 0=0,08, =20, K=3,
At nominal frequemcy (314 Hz) this machine has &, =15.7
and Fig. 5 with a =1 applies. The machine is well ap-
proximated as a second order system and (31) yields the
dominant eigenvalues as -%+j 1.66 (=10%§ 33.2 sec™l).
As the frequency 1s reduced, maintaining constant volts/
hertz, this situation remains essentially unchanged
until a value of @, slightly larger than 4 1s reached
as shown on Fig. 6a. Below 830-4 the damping of the
roots slowly decreases reaching a minimum near &, =2
(Fig. 6b) with an eigenfrequency of 1.40 (28.0 sec 1,
A further reduction in frequency increases the damping
again although the change is not large (see Uxosl root
locus on Fig. 6b).

The importance of the gain K can easily be demonstrated
by considering the effect on performance in this exsm-
ple if the value of K is increased from 3 to 10. The
initial performance at nominal frequency is similar
except the eigenvalues have a higher frequency (-%%

j 3.12 from (31)). This remains the case until about
Wo=8 at which point the damping begins to decrease
reaching an unstable condition at wy,=4 with in oscil-
lation frequency of approximately 2.9 (58 sec™). Again
for lower frequency the damping improves and the machine
is stable with reasonable damping for {, = 2.

Parameter Variations

A more complete set of generalized loci would permit
very simple determination of the behavior of the roots
for any machine in as much detail as desired. The loci
given in Figs. 5 and 6 are already sufficient to allow
general conclusions regarding the major effects of
parameter variations on dynamics. Clearly high values
of K and low values of a, tend to cause instability and
poor damping. The effect of o is well illustrated in
Fig. 6a where the effect is seen to depend stromgly on
(T)o. The leakage parameter O 1s relatively unimportant
except at low frequencies where larger values of o
yield better damping.

To ascertain the influence of machine impedances it is
only necessary to convert the impedance change to its
effect on the non-dimensional parameters. Space limita-
tions restrict the presentation to a few examples which
illustrate the nature of the results which can be obtained:

1) an increase in the rotor resistance reduces K as
the square of the change, increases 0o, linearly
and decreases 0. The result is better stability
and a decrease in the normalized frequency at which
minimum damping occurs (the real frequency may go
up or down depending on the relative change in a.).

2) an increase in the leakage inductance increases K
linearly and decreases O, linearly. The result is
a greater tendency toward instability but at a lower
value of real frequency (since a, is smaller).

3) a decrease in magnetizing reactance increases 0 and
improves the damping at reduced frequencies.

4) an increase in volts/hertz increases K and results
in a greater tendency toward instability and a
larger value of the (normalized and real) frequency
of minimm damping.

A more comprehensive study of dynamic response based on
the methods developed in this paper is partially com-
pleted and will be presented in a subsequent paper.

CONCLUSION

The general results presented in this paper clearly
demonstrate the value of complex variables in induction
machine dynamic analysis. Of particular significance
are: the decoupling resulting in excitation level de-
pendent gain factors and general expressions for the
zeros; the simple form and linear slip dependence of
the open loop eigenvalues; the simplicity of form and
guidance regarding relative significance of parameters
resulting from introduction of non-dimensional param—
eters; and the general root loci and non-dimensional
loop gain describing dynamic response without external
feedback. These and other similar results depend
strongly on the inherent symmetry of the machine and
would be difficult to obtain using real variable methods.

APPENDIX A. TIME DOMAIN COMPLEX VARIABLE REPRESENTATION

OF THE POLYPHASE INDUCTION MACHINE

Subject to the three phase to two phase power invariant
transformation

v, 1 0 1/V2 Vea
vy = /273 |-1/2 32 1/V3 voa| ' (a-1)
v, -1/2 -/372 1}¥2 Voo
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Voo 1 =1/2 -1/2 A
Veg| = 2/3 | 0 7372 -/3]2 v (A-2)
eo /72 12 12 v,

the coupled circuit equations of f}xe equivalent two
phase machine in coil variables are

T = T !
[Vsa’vsslvm9vrsl - P[isa’isﬁ’ira’irsl (£-3)

Rs +L8P 0 ¥p cos Sr ~Mp sin Sr
P = 0 Rs+1‘sp Hpsiner MpcosGr
Mp cos Bt Hpsiner R +L.P 0
Mp sin Ot Mp cos Br 0 Rr+Lrp
T = nM[ usBira-isairB) coaer- (isaim+1sﬁirs)sin0r] (A-4)

where the reference polarities and variasbles are defined
in Fig. A-1. The zero sequence equations are omitted
from (A-3) based on the assumption the machine has no
neutral connection.

To obtain time domain complex equations, define the
complex variables

v + ;lvSB i = isa + jiss

ol SV U

=V
8C 8sQ 8c

(a~5)

Vre T Vra
and apply these definitions to (A-3) and (A-4) tc produce
the coil varisble complex equations

+ jv}B irc

s . T 30r<
Ve (Rs+l‘gp)isc +Mp(e” L) (a-6)
- - —j -
vrc Mp(e qsc) + (Rr+Lrp)irc
- i Or7 y* -
1w o I 3T )% -7
in which the complex exponential function for compactly
represents all of the trigonometric functioms in (A-3)

and (A-4). Similarly, the transformation equations of
(A-1) and (A-2) become
- - =2
Vee /273 (va+avb+a vc) (A-8)
sB
rf |
\ |
85\ . \ is -
\trs 1
\ rB 8B gY
\\ + + // P
\ \ I ”
AR I % ra
ANRY I i
\ A |

\ Y Vea T
\ s
\)_ — 15,
, T -
/ v
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/
+ /7
v
se /
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Fig. A-1. Coil and axis configuration and reference

polarity two phase and three phase machines.
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v, = IR Rel¥_ ] , v, - V273 Rel[37, ]

- (A-9)
v, " Y273 Rela vsc]

where a is the complex quantity €;121r/3.

The transformation of the coil variable complex equa-
tions to stator or synchronously referred variables is
readily accomplished by defining general (rotating ref-
erence) variables as follows

I =93 - 18 ¢

isg e '8 isc Irg € g r 1::c

- .19 - s - 10870 - (a-10)

vsg e 8 Vsc vrg € g Vre
where 0, is a general reference angle locating the ro—

tating reference axes of the new variables as shown in
Fig. A-l. Introducing these variables into the coil
variable equations, carrying out the differentiationm,
and cancelling the resulting common exponential factors
produces the general transformed equatioms.

Vgg = [Rg +L (pHiv) 11 +H(pHiw)1

_ 3 g re (a-11)
Veg = MOPH @0 )L+ TR AL (pH (0 )],
- %
T=nM Im[isg 1rg] (a-12)
where w, = pes is the speed of the reference system.

These equations are the complex variable form of the
equations resulting from the rotating coordinate trans-—
formatjons of real variable theory (arbitrary reference
frames?) . The complex operator p+jw 1s a very compact
representation of the existence of both speed and trans-
former voltages in the machine.

It is convenient to define complex operational imped-
ances and write (A-11) as
Veg " Zgg Isg + 2 irs

_ _ - _ (A~13)
vrg = st :l.sg + zr8 irg

where the definitions of the impedances are apparent by
comparison of (A-11) and A-13). The instantaneous
electrical frequencies which appear in the various im—
pedances depend upon the choice of the reference system.
The important systems and the corresponding complex
operational impedances and complex voltage associated

with balanced sinusoidal excitation are:
w =0
( . )

Stator reference: (A-14)

I, =R, *tLp Z_=Mp

Zgg = M(P-Jw)
- J(wt+¢)
. V3 Voms €

[3]]

rs RT.' + L'E (p-jwr)

<1

Rotor reference: (ung -wr) (A-15)

zsr - Rs + LS (p+jwr) zmr

M(p+ Ju)
Zdr-np Z, =R +Lp
j((ur-mr)t+¢-¢g)

;sr =/3 Vv rms €
Synchronous reference: (m8 =4) (A-16)
2 Ls(p+ju)) Z
de = M(P'":l""s) er
3 (=8g)

M(p+iw)

R, + L_(p+iw,)

vsw-/svms



APPENDIX B — L ZED TIONS OF THE POLYPHASE
UCTION Us DOMAIN COMPLEX VARIABLES

Allowing all variables in (A-12) and (A-13) to have a
small signal component (perturbation) added to the
steady state solution such that each variable has the
form X=X +Ax results in the following expanded form
of the synchronous referred complex variable equatioms

Gso + A?s = Ir, +L (p+jw°+;|Ew)] (ISO+AI8)
+ M(pHju tw) B +41)

R (3-1)
0= H(p+jms°+jAms) Ao+l
+ [R AL (pHiu, +38w ) 1A +AT )
- - - *
T, + AT = nH[(is°+Ais) (1r°+AIr) ]
(8-2)

J
i p(wro+Awr) + TLO + ATLO
Since 350 is constant in a synchronous reference, the
steady state solution is also a set of complex con-~
stants. A set of relations defining the steady state
solution can be obtained from (B-1) and (B~2) by dropping
all derivative terms and incremental variables and set-
ting the frequencies equal to their steady state values.

vso = (RB +jmoLs)iso + jwomro = zsoiso + zmoiro
- - - _ (B-3)
0= jw80m80+ (Rr+jwsoLr)iro = zdo SO+ZtO To
MInfI I =T (B~4)
To m 80 TO Lo

Carrying out the linearization by neglecting products
of small signal (A) variables and subtracting the steady
state solution of (B-3) and (B~4) yields the linearized
equations relating the small signal variables
AV =aZ M +ZA +6 Aw
8 _s _s -m _r _so (B-5)
0=2 dAis + ZrAir + ¢rkos

-
i

T T J
oM Im[isoAir+iroAis] o pAwr + ATL (B-6)
where

Zq

R, +L(p+iu) Z,

= M(p+3u,)
- (8-7)
Z =R+ Lr(p+jws°)

¢1.‘0 =1 (Mio + Lriro)

(31}
L}

4 M(p + Jug )
$SC) = j(I‘BISO +Mi1‘0)

NOTATION

Specific symbols are defined where introduced 1n the
text. The following general symbols are used throughout.

x complex quantity [ stator frequency
-% -
x conjugate of x Wg slip frequency
Re[x] real part of x w, rotor frequency
Im[X] j-part of x v line-neutral rms
~ voltage
rmalized quantit

x ne 1 Voo 1-mLL
x, steady state T

quantity n pole pairs

P time derivative

Ax incremental quantity complex operator
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Discussion

V. R. Stefanovic (Concordia University, Montreal, Canada): The authors
are to be complimented for developing a new analytical procedure for
the calculation of induction motor transfer functions. The transfer
function approach is receiving renewed attention (9, 23) after some of
the disadvantages of other methods in the system transient analysis and
design have been recognized (24). It is expected that this trend will con-
tinue, especially in the treatment of motor drives, where the number of
inputs and outputs is relatively small. By using complex time variables,
the authors have provided not only a new tool for the analysis, but were
also able to significantly simplify the complex problem of induction
motor transients.

The authors have made a wise choice by giving special attention to
the speed-torque transfer function which may be regarded as the motor
equivalent output impedance. As such, it is one of the most important
drive transfer functions and describes fully the induction motor dy-
namic characteristics regardless of the input voltage-frequency rela-
tionship.

Would the authors comment on the following points:

1. The method presented here is restricted to induction motors
operating without any current feedbacks. A much more general method
(named Direct Method) has been proposed recently (23). Within stand-
ard linearity constraints this method permits to predict the speed-
torque transfer function of any electric drive, operating with any num-
ber of feedback loops and having an arbitrary controller configuration.
In addition to this, the method is simple and comes out directly from
the drive equations in the synchronous reference frame. Since both
complex time variable and Direct Method are based on the symmetry
of electrical machines, I feel that some of the restrictions in the method
presented here may be removed so that it can be extended to other
types of motor drives.

2. The authors have provided us with a very useful and simple
formula for the analytical computation of the transfer function zeros —
equations {131, [16] and [21]. (The poles of G; become the zeros of
the overall speed — load torque transfer function). The remaining part
of the paper deals then almost exclusively with the transfer function
poles — equation [26]. The zeros, however, play a very important role.
For example, it was found that for a motor without external feedbacks
which operates above 10-15 hz. the four poles determined by the motor
electrical system are effectively cancelled by four zeros (23). This then
leaves a first order speed-torque transfer function with a pole deter-
mined by a slope of the motor torque — speed curve, total drive inertia
and friction. It should be possible to obtain the same result by the com-
plex time variable method. .

3. The statement which follows equation [25] appears to be un-
clear. When a feedback loop is closed, this is done usually through a PI
controller, which very often includes some compensating network.
Consequently, the number of poles and zeros in the closed loop trans-
fer function is increased by the order of the added drive controller.
Even if the statement refers to a controller with a proportional gain
only, so that the number of poles and zeros is unchanged, the transfer
function gain will change. (Consider for example a drive which in addi-
tion to the frequency loop has a feedback loop controlling the motor
voltage or current. Without such a loop any drive with constant slip
speed becomes unstable).

4. The statement that the gain K, defined by the equation [32] is
essentially independent of the input frequency is somewhat dubjous.
This gain is proportional to the slope of the motor torque-speed curve.
Generally, this slope starts to decrease as the input frequency is low-
ered reducing the motor damping (25). Our measurements on a typical
5 hp motor showed for example that this decrease starts when the fre-
quency is lowered below 20 hz and becomes very pronounced below
10 hz. If such a motor operates in a standard range of up to 60 hz, the
gain would not be constant over 16% (or 30%) of the motor speed
range.

5. Equations [2], [5] and figure (1) indicate that the drive total
friction is neglected. This tends to give slightly pessimistic stability re-
sults. (Closure of (25)). There is no apparent reason why the method, as
presented here could not include the total drive friction. (Note that
lumping the friction together with the load torque is not dynamically
equivalent to treating it as a part of the mechanical system, figure 1b).
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D. W. Novotny and J. H. Wouterse: The authors thank Mr. Stefanovic
for his remarks regarding the analytical approach of the paper and wel-
come the opportunity to comment on the specific points raised in the
discussion. The clarification of these points plus the two additional
references (the third added reference {25] is already given as reference
8 in the paper) relating to the value of transfer functions and to a new
alternative approach are valuable additions to the paper.

Regarding the specific numbered items in the discussion:

1. The *“Direct Method” presented by Mr. Stefanovic in reference
23 is a method which yields the speed-torque transfer function of a
drive system in terms of the solution of two separate eigenvalue prob-
lems.. In general this method requires numerical solution for the two
sets of eigenvalues. In comparison, the method of the paper yields a
partly closed form solution to a more restricted problem. The authors
share the discusser’s feeling that some of the present restrictions on the
method of the paper can be removed. However, it is unlikely that the
general applicability of the “Direct Method” can be attained since the
type of symmetry required for effective use of complex variables does
not appear to exist except in induction machines. The complex variable
method offers the advantage of providing very general closed form solu-
tions for induction machines including speed-voltage and speed-fre-
quency transfer functions in addition to the speed-torque transfer func-
tion. Thus the two methods offer different types of generality; the
“Direct Method™ in the sense of application to a wide variety of drives
and complex variables in the sense of a wide variety of conditions in
induction motor drives.

2. Although not specifically identified in the paper, the cancella-
tion of the speed-torque transfer function (Awr/ATy in Fig. 1b) zeros
with four of the poles can be seen in Fig. 6. When the non-dimensional
gain K is small, the roots (poles) on the loci of Fig. 6 are close to their
starting points. However, these starting points, except for the one at
the origin, are the zeros of the speed-torque transfer function and hence
cancellation occurs.

This result can be made quantitative by using equation 31

A= -kt/5 - K K<y

which is valid when the normalized frequency &g is sufficiently large
(see text below equation 31). If K is small compared to %, the two
roots can be obtained from a binomial expansion as
A=-K and -1+ K

The smaller root at -K %the only pole which is not cancelled by a zero.
Using the definition of K in equation 32, the (dimensional) value of this
root'is

Aar nTo/ wsoJ
which is in agreement with the qualitative result given in the discussion.
Note, however, that in addition to requiring a sufficiently high fre-
quency, a cni%cal criterion of whether this first order approximation is
valid is that K <<¥%. Thus, since K increases as the size of the machine
increases, large machines will not be adequately represented as a first
order system even at nominal frequency.

3. The statement following equation 25 refers only to the use of
a unit gain loop to hold constant slip. For this case the statement in
question is correct. The authots agree that such a loop alone results in a
constant torque drive and must have a second loop controlling voltage
or current to be practical. Knowledge of the transfer function of the
machine with the slip control loop is useful in the design of this second
control loop.

4. The non-dimensional gain K does indeed decrease as the input
frequency decreases (at constant volts/hertz) as a result of the decreased
slope of the speed-torque curve. This change is caused by the presence
of stator resistance and becomes appreciable when the resistance is no
longer small compared to the reactances of the machine. The frequency
at which this occurs depends essentially on the values of a and ar. How-
ever, a is normally close to unity and hence the critical parameter is
ar, which is strongly dependent on machine size. Thus, in general, large
machin% with small values of ar can be run to quite low frequencies
before K decreases significantly. Small machines with large values of ar
will show the effect much more rapidly.

The influence of this change in gxs to alter the point of operation
on the locus diagrams of Fig. 6. In general, a reduction in K would tend
to produce better damping as can be seen by examining the figure. The
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generally poorer damping associated with low frequency operation is
therefore not caused by the reduced value of X, but by the motion of
the poles and zeros resulting from the frequency change itself.

5. Drive system friction can be included by replacing the inertial
integration in Fig. 1b by the appropriate time constant. This has the
effect of moving the origin pole in Figs. 4, 5 and 6 slightly to the left of
the origin. Note that this will have only a small effect if K and &g are
large but will move the dominant real pole leftward for small values of

(when _pole-zero cancellation occurs). As in item (2), the important
role of K as a general indicator of the dynamics of an induction ma-

chine and of the influence of various parameter changes is evident.

The authors would also like to correct a symbolic error in the
paper. The symbol D in equation 18 represents the real variable normal-
ized denominator of the transfer functions and contains two pairs of
complex conjugate poles. Unfortunately, the same symbol was used in
the complex variable expressions of equations 19 and 20 where only
two of these poles are represented. The two poles given by equation 20
must be augmented by their complex conjugates to give D in equation
18. This is best handled by replacing D in equations 19 and 20 by a new
symbol ¥ and defining D in equation 18 as% =FF=.
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