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Abstract-The performance of a stochastic search algorithm, 

Bacterial Foraging Optimization (BFO), when used for fault 

identification of induction machine stator and rotor winding 

faults, is investigated in this paper. The proposed condition 

monitoring technique uses time domain terminal data in 

conjunction with the optimization algorithm and an induction 

machine model to indicate the presence of a fault and provide 

information about its nature and location. The proposed 

technique is evaluated using experimental data obtained from a 

1.5 kW wound rotor three-phase induction machine. BFO is 

shown to be effective in identifying the type and location of the 

fault without the need for prior knowledge of various fault 

signatures. 

Index Terms-- Induction machine, bacterial foraging algorithm, 

condition monitoring. 

I.  INTRODUCTION 

Induction motors are used in a wide variety of domestic and 

industrial applications due to their simple construction, 

ruggedness, low price and efficiency. The monitoring the 

condition of the motor is essential to detect any developing 

fault at an early stage, reducing the risks of severe motor 

faults. Faults can then be treated before completely damaging 

the motor, thus decreasing the maintenance cost and 

shutdown time. Consequently, there is an increasing need for 

a simple and reliable technique to detect incipient motor 

faults. Traditional induction machine condition monitoring 

techniques [1] usually involve the use of sensors embedded in 

the machine to measure, for example, temperature or 

vibration [2]. There has also been considerable interest in 

detecting windings and other machine faults by examination 

of terminal current waveforms [3] using data gathered under 

steady-state operating condition. This may involve the 

calculation of quantities such as input power [4] or negative 

sequence components [5]. Recent trends in condition 

monitoring include the detection of machine faults using data 

acquired during speed transients [6] and the estimation of 

machine parameters [7-11].  

A new fault identification technique using machine terminal 

data and rotor position information has been recently 

proposed by the authors [8-10]. In this method, a stochastic 

search is carried out to estimate the values of machine 

parameters which give the best possible match between the 

performance of the faulty experimental machine and its 

mathematical model, thus identifying both the location and 

nature of the winding fault. Figure 1 shows a schematic 

diagram of the fault identification technique. Stator currents 

are calculated from an induction motor dynamic model and 

compared to the actual measured currents to produce a set of 

current errors that are integrated then summed to give an 

overall error function. When the machine is in its healthy 

state, there is a high correlation between its effective 

parameters and the model parameters resulting in a small 

calculation error. If a fault develops in the machine, its 

electrical parameters are of course modified and when the 

measured currents are compared with calculated currents 

there will be a large calculation error giving a fast indication 

that a fault of some type is present. Fault identification is 

carried out by adjusting the model parameters, using a 

stochastic search method to minimize the error. The new set 

of model parameters then defines the nature and location of 

the fault. Unlike many other methods, it should be noted here 

that the new stochastic search based approach does not 

require any expert prior knowledge of the type of fault or its 

location; both are identified as an integral part of the 

optimisation process. 

The Fault identification technique proposed in this paper is 

based on Bacterial Foraging Optimization (BFO). This 

stochastic algorithm continuously adjusts the induction 

machine model parameters off-line to achieve the minimum 

error between the measured and calculated stator currents. 

The new set of model parameters defines the nature and 

location of the fault.  

Experimental tests based on a 1.5 kW wound rotor three 

phase induction machine have been carried out to validate the 

proposed fault identification algorithm with stator and rotor 

faults considered. Results confirm the capability of BFO to 

identify and locate the fault without the need for a previous 

knowledge of different fault current signatures.   
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Fig. 1 Block diagram of the stochastic search based fault identification 

technique 



II.  INDUCTION MACHINE MATHEMATICAL MODEL 

The mathematical ABCabc model of an induction motor is 

developed using Simulink software and used with BFO to 

identify different machine winding faults. This ABCabc 

model is obtained from the standard machine voltage 

equations and represented by (1): 
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where (VsA, VsB, VsC) ,(IsA, IsB, IsC) are the stator winding 

voltages and currents, (Vra, Vrb, Vrc), (Ira, Irb, Irc) are the rotor 

winding voltages and currents, (RsA, RsB, RsC), (Rra, Rrb, Rrc) 

are the stator and rotor winding resistances respectively, Lss 

and Lrr are the stator and rotor winding self-inductances 

respectively, Mss and Mrr are the mutual inductance between 

pairs of stator and rotor windings respectively, Msr is the peak 

value of the rotor position dependent mutual inductance 

between stator and rotor winding pairs, r is the rotor position 

angle, r1= r+2 3, r2= r+4 3 and p is the differential 

operator.  

III.  BACTERIAL FORAGING OPTIMIZATION 

Bacterial Foraging Optimization (BFO) was introduced in 

2002 by Passino [12]. The BFO is a stochastic search and 

optimization technique based on the foraging behaviour of 

Escherichia coli (E. coli) bacteria which takes advantage of a 

variety of bacterial swarming and social foraging behaviours. 

Unlike Particle Swarm Optimization (PSO) [13] the bacterial 

foraging is based on the idea of the survival of the fittest. In 

contrast, PSO is a collective method in which members of the 

population cooperate to find a global optimum in a partially 

random way and without any selection. Members of the 

population with the lower fitness functions are not discarded 

but do survive and can potentially be the future successful 

members of the swarm.  

The bacterial foraging system consists of four principal 

mechanisms, namely chemotaxis, swarming, reproduction, 

and elimination dispersal. 

  

A. chemotaxis 

A chemotactic step can be described as a tumble followed by 

another tumble or a tumble followed by a swim. The 

chemotactic process of E. coli is modelled within the BFO 

algorithm according to the possible mediums the bacteria 

discovers and its reaction within such mediums.  

This can be simply described as follow: 

If the matrix X
i
(j, k, l) represents the current position of the i

th
 

bacterium at the j
th

 chemotactic, k
th

 reproductive and l
th

 

elimination-dispersal step the new position X
i
(j+1, k, l) is then 

determined by:   

)(),,(),,1( jClkjlkj ii λΧΧ  i = 1,2,…S                                          

where S is the number of bacteria to be used in the search, C 

is the maximum step size taken to the next possible position, 

and the elements of the matrix (j) are random functions used 

to define the size of the step and the direction of movement 

given by: 
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)(iT
 is the transpose of )(i and ],...,[)( 1 mii rri , ri is a 

random number between [-1, 1] and m = 1, 2,…, p, where p is 

the number of dimensions of the search space (i.e. the number 

of variables). 

B. Swarming 

Swarming is a technique used in some versions of the 

algorithm to smooth the progress of the convergence of cells 

of bacteria to form groups around areas in the solution with 

high nutrient concentration, thereby improving the efficiency 

of the search and foraging process. Swarming was not 

implemented in the simple form of the algorithm used in this 

study. 

C. Reproduction 

After Nc chemotactic steps, a reproduction step takes place. 

All bacteria are arranged in order according to their fitness, 

only the first half of the population survives and each 

surviving bacterium splits into two new bacteria, located at 

the same position. 

D. Elimination-dispersion 

The chemotaxis gives a basis for a local search, while the 

reproduction process speeds the convergence of the 

algorithm. However, chemotaxis and reproduction are not 

enough for global optima searching since bacteria may get 

stuck around the initial positions or local optima. In the BFO, 

a dispersion event takes place after a certain number of 

reproduction processes. In each elimination-dispersal step, all 

members are subjected to elimination-dispersal with a 

probability of Ped. For each bacterium, if Ped is greater than a 

random number in the interval [0–1] the bacterium is 

eliminated and replaced by another bacterium dispersed to a 

new, random location within the search space. 

At the beginning of the algorithm, the E. coli are randomly 

distributed in the solution space, which has different 

concentrations of nutrients and noxious substances (different 

function values). The fitness function (function value or 

nutrient concentration value J) for each randomly distributed 

bacterium is then calculated at its initial location. A tumble 

then takes place in a random direction and the fitness value Ji 

corresponding to the new position is calculated. This value of 

J(i, j, k, l)  is then compared with the previously calculated 

value and if the new value of J is better, a swim in the same 

direction as the previous tumble follows. If the fitness value is 

less at the new position, a second tumble takes place to a new 



random position, and so on. The maximum number of 

successive steps in any one swim sequence is limited to Ns 

steps. The cumulative fitness function of each bacterium is 

calculated after Nc steps as the sum of the nutrient 

concentration value 
Nc

j

lkjiJ
1

),,,(  obtained during its life 

time, i.e. the previous Nc chemotactic steps. The bacteria are 

then arranged in order according to their fitness values. The 

healthier half of the population survives and the less healthy 

half dies out. Each surviving bacterium split into two new 

bacteria, located at the same position and begins the 

exploration of the search space from a healthier starting 

position than the previous generation.  

Step 1: Initialize, the BFO algorithm parameters p, S, Nc, Ns, 

Nre, Ned, Ped, C(i), i =  1,…,S. Distribute the initial 

population (X
i
m(j,k,l)|i=1,2,…,S) randomly within the solution 

space. 

Step 2: Elimination-dispersal loop: l = l +1 

Step 3: Reproduction loop: k = k+1, 

Step 4: Chemotaxis loop: j = j+1, 

 substep a:  for i = 1,2,…S, take a chemotactic step 

for bacterium i 

 substep b: calculate the fitness function, J (i, j,k,l). 

 substep c: Let Jlast = J(i, j,k,l) to save this value since 

the algorithm may find a  better cost via a run. 

 substep d: Tumble: generate a random vector 
pi)(  with each element  )(im

, m= 1,2,. . . ,p, a 

random number on [-1, 1]. 

 substep e: Move: Let 
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 Use the new value of ),,1( lkji  to calculate the 

concentration function of  bacterium i. 

substep f: compute J(i,j+1,k,l), of the two feasible 

solutions (J 
j 
and J 

j+1
), the one with the lowest value of J is 

selected. 

 substep g:  Swim  

 i) Let m = 0 (counter for swim length). 

 ii) While m < Ns   

Let m=m+1. 

If J(i,j+1,k,l)  <  Jlast, let J last = J(i,j+1,k,l) and let 

)()(

)(
),,(),,1(

ii

i
Clkjlkj

T

ii  use the value 

of X
i
(j+1,k,l) to calculate the new J(i,j+1,k,l) as in 

(substep f) 

Else let m = Ns. (end while statement). 

 Substep h: Go to next bacterium (i + 1) if i ≠ S (go to 

substep b)  

Step 5: If j  <  Nc, go to step 4. In this case, continue 

chemotaxis, since the life  of the  bacteria is not over. 

Step 6: Reproduction 

For the given k and l, and for each i = 1,2,…,S, let 
1

1

),,,(
CN

j

i

health lkjiJJ  be the health of bacterium i (a measure of 

how many nutrients it got over its lifetime and how successful 

it was at avoiding noxious substances). Sort bacteria and 

chemotactic parameters C in order of ascending cost Jhealth, 

higher cost means lower health. 

The Sr (S/2) bacteria with the highest Jhealth values die and the 

other Sr bacteria with the best values split (and the copies that 

are made are placed at the same location as their parent). 

Step 7: If k  <  Nre, go to step 3. In this case, we have not 

reached the number   of specified reproduction steps, so we 

start the next generation in the   chemotactic 

loop. 

Step 8: Elimination-dispersal: For i = 1,2,…,S, with 

probability Ped ,  eliminate and disperse each bacterium 

which keeps the swarm size constant.  When eliminate 

a bacterium, simply disperse one to a random location within 

the search space. 

Step 9: If l  <  Ned, then go to step 2; if not end. 

The BFO parameters necessary for its implementation are 

first specified including the number of bacteria within the 

population S = 8, Ped = 0.25, and C = 0.1, the initial position 

of each bacterium within the solution space, the number of 

chemotactic steps Nc = 10 taken during each bacterium 

lifetime, the maximum number of successive steps in any one 

swim sequence Ns = 4 steps and the number of reproduction 

Nre = 4 and elimination/ dispersal events Ned = 2 that would 

occur during the BFO implementation. 

IV.  EXPERIMENTAL RESULTS 

The experiment work was conducted on a 1.5kW, 50 Hz, 

240V, 2-pole wound rotor induction machine coupled to a 

3kW DC machine used as a generator to provide the 

necessary load torque. The induction motor has a star 

connected stator windings and a short circuited delta 

connected rotor winding. Standard tests (dc resistance, no-

load and locked rotor tests) [14] were carried out to determine 

the nominal values of the machine parameters, giving the 

following results in Table 1. 

Tests are carried out emulating stator and rotor open-circuit 

winding fault conditions. In all tests, the measured waveforms 

are the three terminal voltages, three stator currents and rotor 

speed. Voltage differential probes, current probe amplifier 

and a digital tachometer are used to measure these signals. 

Data are collected over a time window of 0.2 sec, with a 

sampling interval of 1ms, as the machine was operating at 



steady state with no load. The acquired data were then 

processed off-line using the BFO algorithm to determine the 

effective resistances of the six windings. The position of each 

bacterium within the solution space Xi = (RsA, RsB 

,RsC,Rra,Rrb,Rrc) is a potential solution which can be applied to 

the induction motor model to evaluate a set of stator currents. 

Each parameter value must lie within a pre-defined search 

space and the overall calculation error; the Integral Absolute 

Error (IAE) as defined in (2). This error function is the cost 

function to be minimized by BFO. 

TiiiiiiIAE sCcsCmsBcsBmsAcsAm
                        (2) 

where ( sAmi , sBmi , sCmi ) are the measured currents, 

( sAci , sBci , sCci ) are the calculated currents and ΔT is the 

sampling period. 

TABLE 1 

INDUCTION MOTOR PARAMETERS   
 

INDUCTION MOTOR PARAMETERS  Values 

Stator resistances Rs = 5. 88 Ω 

Rotor resistances  Rr = 6.83 Ω 

Stator self-inductances  Lss = 0.729 H 

Rotor self-inductances  Lrr = 0.578 H 

Mutual inductances between the stator 

windings 
Mss = 0.25 H 

Mutual inductances between the rotor 
windings 

Mrr = 0.7 H 

Mutual inductance between stator and 

rotor winding pairs 

Msr = 0.769 H 

Mrs= Msr 

A. Stator winding open-circuit fault 

A developing stator open-circuit winding fault is emulated by 

connecting a 7  resistor in series with a stator phase winding 

(winding B) as shown in Fig. 2.  
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Fig. 2 Developing stator winding open-circuit fault test circuit 

 

Results of the identification algorithm are shown in Figs. 3-5. 

The BFO algorithm successfully identifies the presence of the 

stator winding fault as indicated by the high values of RsB 

compared with RsA and RsC. The number of investigations 

required to obtain convergence is 1844 where the calculation 

error falls from a maximum value of 0.068 A.s to 0.022112 

A.s. Figs. 3-4 show the estimated stator and rotor resistances, 

respectively. The error function corresponding to the existing 

best solution is shown in Fig. 5. The final estimated values of 

the stator and rotor resistances are given in Table 2.  
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Fig.3 Stator resistance estimation using BFO for operation with stator 

winding fault 
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Fig. 4 Rotor resistance estimation using BFO for operation with stator 

winding fault 
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Fig. 5 Current estimation error using BFO for operation with stator winding 

fault 

TABLE 2 

FINAL VALUES OF WINDING RESISTANCES OBTAINED USING BFO WITH 

STATOR OPEN-CIRCUIT FAULT 

RsA (Ω) RsB (Ω) RsC (Ω) Rra (Ω) Rrb (Ω) Rrc (Ω) 

5.75 12.31 6.7 6.6 7.5 8.47 



B. Rotor open-circuit fault 

A developing open-circuit rotor winding fault is emulated by 

connecting a 7  resistor in series with the line connected to 

the two ends of the b-c rotor delta windings as shown in Fig. 

6. This arrangement was used because it was not possible to 

gain access to the three separate delta connected windings. 

a
b

c

7 Ω

 
Fig. 6 Developing rotor winding open-circuit fault test circuit 

 

The BFO algorithm is implemented to identify the presence 

of a developing rotor winding open-circuit fault based on the 

experimental measurements. In this test, the six winding 

resistances (RsA, RsB, RsC, Rra, Rrb, Rrc) are again the 

parameters to be optimized in order to minimize the IAE (2).  

Figs. 7 and 8 show the estimated stator and rotor resistances, 

respectively obtained by the BFO algorithm. The error 

function corresponding to the existing best solution is shown 

in Fig. 9. The number of steps or investigations required to 

obtain convergence of the two data sets was 1882. The 

calculation error falls from a maximum value of 0.068 A.s, 

before reducing to 0.02 A.s. Because of the simplicity of the 

machine model used in the investigation, it would be 

unrealistic to expect this error to reduce to zero, even with a 

much larger number of iterations. Clearly, the algorithm 

successfully detects the presence of the rotor winding fault as 

indicated by the high values of Rrb and Rrc in Fig. 8. The final 

estimated values of the stator and rotor resistances are given 

in Table 3. The final values of stator resistances are higher 

than the nominal values identified in Table 1 due to the fact 

that the algorithm is limited to changes in resistance values 

alone and has to find a way to compensate for the effect of the 

fault on other machine parameters.  
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Fig. 7 Stator resistance estimation using BFO for operation with rotor 

winding fault 
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Fig. 8 Rotor resistance estimation using BFO for operation with rotor 

winding fault 
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Fig. 9 Current estimation error using BFO for operation with rotor winding 
fault 

TABLE 3 

FINAL VALUES OF WINDING RESISTANCES OBTAINED USING BFO WITH 

ROTOR OPEN-CIRCUIT FAULT 

RsA (Ω) RsB (Ω) RsC (Ω) Rra (Ω) Rrb (Ω) Rrc (Ω) 

7.58 7.624 7.61 6.88 11.1 12.534 

 

C. Comparison with PSO algorithm 

Table 4 shows a comparison of the BFO results with those 

obtained using the PSO algorithm [8, 9]. The BFO algorithm 

had a success rate of about 75% when used with the no-load 

measured current data compared with a success rate of about 

85% for the PSO algorithm. PSO was also substantially faster 

than BFO which requires a much larger number of 

investigations to produce consistent values for the estimated 

rotor and stator resistances (the number of investigations 

when conducting a BFO search being noticeably larger than 

the number of accepted solutions). This demonstrates the 

robust nature of the PSO process and its suitability to this 

type of nonlinear multivariable optimization problem. Both 

algorithms showed estimated stator and rotor resistances to 

converge to similar values, confirming that there is fault in 

the machine's stator and rotor windings. 

 

 



TABLE 4 
ALGORITHM COMPARISIONS; STATOR AND ROTOR OPEN-CIRCUIT WINDING 

FAULTS 

Stator fault 

Algorithm 
Computational 

time (sec) 

Current 

error 

(A) 

Number of 

evaluations 

Success 

Rate 
 

PSO 44.8 0.01700 320 
85% (120 

trials) 

BFO 258.16 0.022112 1844 
75% (120 

trials) 

Rotor fault 

Algorithm 
Computational 

time (sec) 

Current 

error 

(A) 

Number of 

evaluations 

Success 

Rate 

PSO 53.76 0.016713 384 
80%(120 

trials) 

BFO 263.48 0.020247 1882 
70%(120 

trials) 

 

V.  CONCLUSION 

The use of the BFO search algorithm to detect a developing 

induction motor winding fault has been presented in this 

paper. The condition monitoring method is based on the 

comparison of measured machine stator currents with those 

obtained from a machine mathematical model, and then using 

the stochastic search algorithm to minimise the resulting error 

function. BFO has been shown to be effective in determining 

the winding fault type and location. However results show 

that the PSO algorithm is better suited for this type of 

application, achieving a success rate of about 85% compared 

with 75% for BFO algorithm with noticeably improved 

execution times because of the smaller number of function 

evaluations needed for convergence.  
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