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Induction Machines Fault Detection Based on

Subspace Spectral Estimation
Youness Trachi, Elhoussin Elbouchikhi, Vincent Choqueuse, Member, IEEE, and M. Benbouzid, Senior

Member, IEEE.

Abstract—The main objective of this paper is to detect faults
in induction machines using a condition monitoring architecture
based on stator current measurements. Two types of fault are con-
sidered: bearing and broken rotor bars faults. The proposed ar-
chitecture is based on high-resolution spectral analysis techniques
also known as subspace techniques. These frequency estimation
techniques allow to separate frequency components including
frequencies close to the fundamental one. These frequencies
correspond to fault sensitive frequencies. Once frequencies are
estimated, their corresponding amplitudes are obtained by using
the Least Squares Estimator (LSE). Then, a fault severity
criterion is derived from the amplitude estimates. The proposed
methods were tested using experimental stator current signals
issued from two induction motors with the considered faults.
The experimental results show that the proposed architecture
has the ability to efficiently and cost-effectively detect faults and
identify their severity.

Index Terms—Induction machine, bearing faults, broken rotor
bar faults, stator current analysis, subspace techniques, Root-
MUSIC, ESPRIT, fault severity detection.

I. INTRODUCTION

INDUCTION machines are the most common electrical ma-

chines used in industry applications. The use of induction

machines in electromechanical conversions is mainly due to

their advantages such as low cost, reliability, availability, and

high robustness [1]. However, these electromechanical devices

are susceptible to many types of faults. The main induction

machine fault types studied in the literature are generally clas-

sified into electrical and mechanical faults [2]–[4]. The most

common electrical faults that could appear are open or short

circuit in motor windings (mainly due to winding insulation

failure), wrong connection of windings, high resistance contact

to conductor, and wrong or unstable ground. Besides, me-

chanical faults include: broken rotor bars, cracked end-rings,

bent shaft, bolt loosening, bearing failure, gearbox failure, and

air-gap irregularity [5]. Induction machine faults can cause

shutdowns, components degradation, vibrations, and expen-

sive maintenance cost. Consequently, developing noninvasive

condition monitoring and fault diagnosis techniques seems an
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Brest, France (email: elbouchikhi@isen-bretagne.fr).

attractive solution to reduce operating and maintenance costs.

Most methods for condition monitoring and fault detection

of induction machines can be classified into the following

categories: vibration monitoring, temperature monitoring, oil

or debris analysis, acoustic emission monitoring, and current,

voltage, or power monitoring [5]. These technologies require

additional sensors and specific data acquisition devices to

be implemented and are difficult to access during induction

machine operation. Under fault condition, stator current-based

condition monitoring has received a great deal of attention

in the recent years to develop a non-invasive, a lower-cost,

and a reliable technology that fully exploit the benefits of

induction machines condition monitoring [6]–[8]. The use of

the stator current presents advantages such as its easy-access,

the ease of implementation, the information richness, and the

ability to detect electrical and mechanical faults. In fact, stator

current analysis-based condition monitoring do not require

an additional sensors or data acquisition devices. A general

reviews of induction machines monitoring and faults diagnosis

techniques are available in [2], [9]–[11].

It has been demonstrated that faults introduce additional

frequency components in the stator current signal. Therefore,

several advanced spectral estimation techniques using stator

currents have been proposed to detect these fault frequencies.

There are mainly two types of power spectrum estimation

(PSE): parametric and nonparametric methods. Nonparamet-

ric methods estimate the power spectrum directly from the

measurements. These methods constitute the classical means

for Power Spectral Density (PSD) estimation. These meth-

ods include the conventional periodogram and its extensions

[12]–[14]. However, these techniques have several drawbacks

since their frequency resolution is limited and long data

measurements are required. To overcome these issues, many

different parametric techniques have been developed for PSE.

These parametric methods for PSE are based on parametric

models to represent the signal and then to estimate model

parameters from the available signal data. Parametric methods

for spectral estimation are divided into two classes: parametric

for continuous spectra and parametric for line spectra [15].

The parametric techniques for continuous spectra include the

linear prediction techniques. The linear prediction techniques

contain several algorithms like the Prony and Pisarenko meth-

ods. These methods are specifically designed for continuous

PSD, where the frequency content does not vary abruptly.

Unfortunately, these methods are not suited for fault frequency

estimation because the fault signature introduces specific fre-

quencies close to the fundamental frequency. The paramet-
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ric techniques for line spectra include Maximum Likelihood

Estimator (MLE) and subspace techniques called also high-

resolution techniques. The MLE is an asymptotically optimal

estimator but it requires a multidimensional grid search that

increases drastically when the model order increases [16]. The

applications of MLE-based spectral estimations for machine

fault detection are available in [17], [18]. Indeed, in [17],

[18], a model order and spectral estimations based on MLE

are proposed to detect induction machine fault frequency

signatures. In stator current analysis, subspace techniques have

been proposed to avoid the computational complexity inherent

to multidimensional optimization of MLE [4], [19]–[26]. The

subspace techniques include the MUSIC (MUltiple SIgnal

Classification) and ESPRIT (Estimation of Signal Parameters

via Rotational Invariance Techniques) approaches.

In induction machine condition monitoring, the problem of

frequency estimation using subspace techniques has received

a lot of attention in the electrical engineering community. Mo-

tors faults detection technique using high-resolution spectral

analysis has been proposed in [20]. In [20], the authors propose

to use the Spectral-MUSIC or Root-MUSIC for frequency esti-

mation. An application of high-resolution spectral analysis for

identifying multiple combined faults in induction motors can

be found in [26]. The major contribution of [26] is the devel-

opment of a condition-monitoring strategy that allows accurate

and reliable assessments of the presence of specific fault con-

ditions in induction motors with single or multiple combined

faults. This proposed condition monitoring strategy is based

on the combination between a finite impulse response filter

bank to separate the original current and vibration signals into

different fault-related bandwidths and the Spectral-MUSIC to

detect frequencies of the stator current. This methodology

can detect two faults: bearing and broken rotor bars faults.

A fusion between two techniques: the Complete Ensemble

Empirical Mode Decomposition (CEEMD) and the MUSIC

is proposed in [27]. In this case, the proposed methodology

allows identifying time evolution of the faulty frequencies in

start-up and steady-state regimes from the short data record

signal buried in noise, as it is the case of inverter-fed induction

motors. Another technique has been proposed in [28] to

detect incipient broken rotor bar in induction motors using

high-resolution spectral analysis based on the start-up current

analysis. This technique is based on the short-time MUSIC

algorithm that provides high-resolution and the time-frequency

pseudo-representation. The proposed methods can graphically

show the physical effect of a broken or partially-broken rotor

bar. A modified version of the MUSIC algorithm has been

developed in [4] to estimate the stator current spectrum. In

[4], a fault detection criterion is proposed to detect faults. This

criterion does not take into account the harmonic structure

of the stator current. An application of the ESPRIT and the

Simulated Annealing Algorithm (SAA) has been proposed to

detect broken rotor bar fault in induction motors with short-

time measurement data in [25]. The proposed techniques in

[25] can correctly identify the parameters of the broken rotor

bars characteristic components with short-time measurement

data. Another fusion between two techniques: the Hilbert

transform and the ESPRIT for detecting rotor fault in induction

motors at low slip has been proposed in [24]. This fusion

combines two main characteristics: ability to avoid spectral

leakage and to achieve high-frequency resolution even with a

short measurement time.

Another application of high-resolution frequency estimation

method for three-phase induction machine fault detection has

been suggested in [29]. The proposed Zoom-MUSIC in [29] is

used to detect broken rotor bars fault using spectrum analysis

in induction machine under different loads and in steady-state

condition. The proposed technique in [29] allows reducing

the computational complexity focusing on frequencies close

to the fundamental frequency. In this case, the model order is

obtained by the Frequency Signal Dimension Order (FSDO)

estimator proposed in [30]. The application of high-resolution

parameter estimation method to identify broken rotor bar faults

in induction motors has been proposed recently in [21]. The

authors in [21] propose two algorithms Zoom-MUSIC and

Zoom-ESPRIT to estimate frequencies in order to reduce

the long computation times required by classical subspace

techniques from short data signals with low Signal-to-Noise

Ratio (SNR). In this case, the model order is obtained by the

FSDO estimator proposed in [31]. In [21], a fault detection

criterion based on false alarm and detection probabilities

is proposed to detect faults. A comparative study and the

evaluation of various condition monitoring methods used for

induction machines, with the aim of early detection of one

partially-broken rotor bar by steady-state current spectrum

analysis and different supply conditions is proposed in [32].

The techniques considered in this study are the Fast Fourier

transform (FFT), Wavelet plus FFT, MUSIC, Empirical Mode

Decomposition (EMD) plus FFT, and EMD associated with

MUSIC. Broken rotor bar detection in variable speed drive-

fed induction motors at start-up by high-resolution spectral

analysis has been proposed in [33]. In this case, the time-

frequency spectrum is able to graphically show a different

pattern for the healthy and faulty conditions. Finally, a stator

current analysis by subspace methods for fault detection in

induction machines has been proposed in [19]. Two subspace

techniques: Root-MUSIC and ESPRIT are presented and a

fault severity criterion with a fault severity criterion.

This paper focuses on two induction machines faults: bear-

ing and broken rotor bar faults. To detect these faults, we pro-

pose to use advanced signal processing and statistical analysis

techniques to estimate a group of signal parameters that are as-

sumed to be stationary. We present frequency estimators based

on subspace techniques such as MUSIC and ESPRIT. These

methods require the exact knowledge of either the number of

sinusoids in the data. In order to detect the model order, we

propose to use information criteria. A Fault Severity Criterion

(FSC) is also proposed to measure the degree of the considered

faults based on the amplitude evaluation corresponding to

estimated frequencies. These amplitudes are obtained by the

Least Squares Estimator (LSE).

The main contributions of this paper, compared to previ-

ously published and above-discussed ones, can be summarized

by:

− Many papers assume the model order to be known

[20], [25], [26], [28], [32]. However, the performances
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of subspace techniques completely degrade when using

a wrong model order. Consequently, a model order

estimation step is required to estimate faulty frequen-

cies appearing in the stator current spectrum based on

subspace spectral estimation. In [19], [21], [29], several

authors have proposed to use model order estimation

techniques based on the eigenvalue decomposition of

the covariance matrix proposed in [30], [31]. However,

these eigenvalue-based techniques are general and do not

take into account the particular structure of the signal

subspace. From an estimation viewpoint, the particular

structure of the signal subspace offers opportunity to

improve the estimation of the model order, which is

of main concern in spectral estimation. To fulfill this

problem, we propose to use the model order estimator

given in [34] that associates the order-selection rule with

the maximum likelihood method. In this paper, we have

also demonstrated using Monte-Carlo trials that the best

model order selection for the considered stator current

structure is the Bayesian Information Criterion (BIC).

− A new Fault Severity Criterion (FSC) is proposed to

determine the state of the studied machines. Moreover,

the proposed FSC allows to detect the faults degree

even in the presence of harmonic components. The

main advantages of the proposed fault detection criterion

is its low computational complexity and its ability to

automatically detect faults without the need of an expert

for interpreting the stator current spectrum.

The remainder of the paper is organized as follows. Sec-

tion II presents the problem formulation of stator current

based condition monitoring. Section III gives the estimation

of stator current model parameters. Section IV provides the

proposed fault severity criterion and the condition monitoring

architecture. Section V shows the experimental results for the

considered faults. Section VI concludes this paper.

II. PROBLEM FORMULATION

In this section, we present the stator current model under

bearing faults and broken rotor bar faults.

A. Stator Current Model

Stator current analysis using advanced signal processing

techniques needs to select a good model in order to approx-

imate the signal. The stator current signal model is based on

the following assumptions. The received signal is modeled as

a sum of L exponential components in noise. The phases of

the exponential components are independent and uniformly

distributed on the interval [−π, π[.
In practice, a noise component is added to take into account

the measurement errors. We assume the noise as a white Gaus-

sian noise with zero-mean and variance σ2. This assumption

is motivated by the following reasons:

− The Gaussian noise assumption leads to minimize the

worst-case asymptotic Cramer-Rao Bound (CRB) [35];

− The Minimum Variance Unbiased (MVU) estimator is

equivalent to the mean LSE when the noise is white

Gaussian [16];

− The sum of a sufficiently large number of indepen-

dent and identically random variables are approximately

Gaussian distributed (Central Limit Theorem) [36].

According to the above-mentioned assumptions, the induction

machine stator current in presence of faults can be described

by the following model

x[n] =

L−1∑

k=0

ake
j(2πfk× n

Fs
+φk) + b[n] (1)

where x[n] denotes the stator current samples, b[n] ∼
Nc(0, σ

2) is a white Gaussian noise, L represents the model

order, Fs is the sampling frequency, ak, fk, and φk are

amplitude, frequency, and initial phase of the kth component,

respectively.

At time n = 0, 1, 2, 3, ..., N , the observed stator current

vector x, defined as x =
[
x(n) . . . x(n+M − 1)

]T
, can

be expressed as

x = A(θ)s+ b (2)

where

− s =
[
a0e

jφ0 a1e
jφ1 . . . aL−1e

jφL−1

]
is a L × 1

column vector containing the amplitudes and phases of

the frequencies.

− A(θ) =
[
a(f0) a(f1) . . . a(fL−1)

]
is a M × L

Vandermonde matrix, where θ =
[
f0 . . . fL−1

]
and

a(f) =
[
1 ej2πf×

1

Fs . . . ej2πf×
M−1

Fs

]T
,

− b =
[
b[n] . . . b[n+M − 1]

]T
is a M × 1 column

vector containing the noise samples,

− (.)T refers to the matrix transpose.

B. Stator Current Frequency Model

In stationary environment, the stator current spectrum of

induction machines without faults contains only the funda-

mental frequency and harmonics. In the international standard

IEC 038 of electrical engineering, frequencies of the stator

current spectrum may have a small variation up to 1% of the

fundamental frequency value [37]. In case of fault presence,

the spectrum also contains frequencies called fault frequencies

according to the following relationship [1]

ff = fs ± kfc, (3)

where fs is the supply fundamental frequency, fc is the

fault characteristic frequency, and k ∈ N
∗. In this paper,

we consider two faults: bearing faults and Broken Rotor Bar

(BRB) faults. The exact value of the characteristic frequency

with respect to the fault parameters are given in [2].

The purpose of the next section is to present techniques

used to estimate model parameters given in (1).

III. PARAMETRIC SPECTRAL ANALYSIS

In this paper, condition monitoring based on stator cur-

rent processing needs to estimate values of unknown stator

current model parameters. A three steps process is therefore

needed: frequency estimation, amplitude complex estimation,

and model order selection.
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A. Parameter Estimation

The objective is to estimate model parameters from stator

current measurements. The model parameters estimates can be

obtained using the Nonlinear Least Squares Estimator (NLSE)

[15], [16]. These estimations are obtained by the squared

deviations minimization between stator current measurements

and the assumed stationary model [15], [16]. These estimation

problems using NLSE can be expressed by the following cost

function

Ω̂ = argmin
Ω

‖x−A(θ)s‖2 , (4)

where Ω =
[
θ s

]
denotes the unknown stator current model

parameters. Note that, when the noise is assumed to be white

and Gaussian, this estimator corresponds to the MLE. The

main drawback of the NLSE is its computation cost since the

estimation of the frequencies requires the maximization of a

multidimensional and multimodal cost function [17], [18].

In this paper, as a first step, it is assumed that the model

order is known. Using this assumption, we propose to use sub-

space techniques for frequency estimation. Once frequencies

are estimated, we use linear least squares estimator to estimate

the vector of complex amplitudes s. Finally, we also propose

a technique for the estimation of L when the model order is

unknown.

B. Frequency Estimation

To estimate frequencies, the natural estimator is the NLSE

[15]. To avoid the computational complexity inherent to mul-

tidimensional optimization, we resort to subspace techniques.

Subspace estimation techniques are based on the eigendecom-

position of the covariance matrix Rx. This decomposition

permits to separate two distinct subspaces, the signal subspace

and the noise subspace. Thus, the covariance matrix can be

written as a sum of the signal and the noise covariance

matrices

Rx = Rs +Rn =
[
S G

] [ Λs 0
0 Λn

] [
S G

]H
,

(5)

where Rs denotes the signal covariance matrix, Rn is the

noise covariance matrix, Λs = diag
[
λ1 . . . λL

]
and

Λn = diag
[
λL+1 . . . λM

]
are diagonal matrices contain-

ing eigenvalues of the signal and the noise subspaces arranged

in descending order, respectively (S and G are the associated

orthonormal eigenvectors, respectively). In practice, the theo-

retical covariance matrix Rx and its eigendecomposition are

not known but can be estimated from observations as follows

R̂x(n) =
1

G

G∑

n=1

x(n)xH(n), (6)

where x =
[
x(n) . . . x(n+M − 1)

]T
has length M .

Since we have N observations of x[n], G = N−M+1. In the

following subsections, we describe two subspace techniques:

MUSIC estimators based on the noise subspace and ESPRIT

estimators based on the signal subspace.

1) MUSIC Estimators: The MUSIC frequency estimates

are determined as the minimizing arguments of the following

cost function

f (θ) = Tr
(
A(θ)AH(θ)GG

H
)
. (7)

If we replace the matrix expression of A(θ) in (7), we can

write

θ̂ = argmin
{f}

∥∥∥aH(f)Ĝ
∥∥∥
2

F
, (8)

where ‖.‖F denotes the Frobenius norm. There exist two

kinds of MUSIC implementations, Spectral-MUSIC and Root-

MUSIC [38].

The Spectral-MUSIC finds the minimizing arguments of

f (θ) by a one-dimensional search algorithm as follows

θ̂ = argmax
{f}

1
∥∥∥aH(f)Ĝ

∥∥∥
2

F

, (9)

Frequency estimation is obtained by finding the L-highest

local maxima of the (9) called pseudo-spectrum function.

The Root-MUSIC finds the minimizing arguments of f (θ)
by polynomial rooting to avoid searching for peaks [38], [39].

This estimator converts this pseudo-spectrum function into a

polynomial representation that is given by

Q(z) = a
H(

1

z∗
)GG

H
a(z), (10)

where a(z) =
[
1 z . . . zM−1

]T
is a column vector and

z = e
j2πf
Fs . The Root-MUSIC algorithm requires to finds

the roots of the complex polynomial function zM−1Q(z) for

frequency estimation

Q(z) = z−(M−1)
[
zM−1 . . . z 1

]
GG

H




1
z
...

zM−1


 .

(11)

Thus, the Root-MUSIC algorithm finds the roots of Q̃(z), that

is a complex polynomial function given by

Q(z) = z−(M−1)Q̃(z), (12)

where Q̃(z) is a 2(M − 1) degree polynomial in z the roots

of which come in pairs, since, by construction, if z0 is a root,

then 1
z∗

0

is a root. Once the polynomial Q̃(z) is obtained,

the frequency estimation can be determined by calculating the

2(M − 1) roots of Q̃(z), then keeping the L stable roots that

are closest to the unit circle. The relationship between L roots

and frequencies is given by

f̂k =
arg(ẑk)

2π
× Fs, (13)

where ẑk denotes the kth root of Q̃(z). Note that many

programming language contain functions for root finding.

Root-MUSIC has the same asymptotic performance as

Spectral-MUSIC [39]. Since the search procedure in Spectral-

MUSIC is replaced by solving the roots of a polynomial in

Root-MUSIC, the computational cost is significantly reduced

[38]. Thus, it is preferable to use only the Root-MUSIC

estimator for practical applications.
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2) ESPRIT Estimators: The key element of ESPRIT is to

use the rotational property between staggered subspaces for

frequency estimation [40], [41]. Two extensions of ESPRIT

methods are considered: Least-Squares (LS) ESPRIT and Total

Least-Squares (TLS) ESPRIT.

Let S1 =
[
IM−1 0

]
S and S2 =

[
0 IM−1

]
S be

unstaggered and staggered signal subspaces, respectively. In

the LS ESPRIT, we estimate frequencies by using eigenvalues

of ΦLS that are given by

ΦLS =
(
S
H
1 S1

)−1
S
H
1 S2. (14)

This LS solution is obtained by minimizing the estimation

error on S1. We can do better by using the TLS ESPRIT that

is obtained by minimizing estimation errors on S1 and S2. In

this technique, we estimate frequencies by using the Singular

Value Decomposition (SVD) of
[
S1 S2

]
= LΣV

H [40],

where L is a matrix of left singular vectors, Σ is a matrix

consisting of singular values on the main diagonal ordered in

descending magnitude, and V is a matrix of right singular

vectors. The matrix V is an (2L× 2L) unitary matrix, which

can partitioned into (L× L) quadrants according to

V =

[
V11 V12

V21 V22

]
. (15)

In the TLS solution, we estimate frequencies by using eigen-

values of ΦTLS that are given by

ΦTLS = −V11V
−1
22 . (16)

In practice, we can estimate signal frequencies using the

following expression

f̂k =
arg(vk)

2π
× Fs, (17)

where vk are eigenvalues of Φ̂LS or Φ̂TLS .

TLS-ESPRIT involves slightly more computations but it is

generally preferred over the LS-ESPRIT due to its statistical

performance [40]. Thus, it is preferable to use the TLS-

ESPRIT estimator for practical applications.

C. Complex Amplitude Estimation

A number of complex amplitude estimators are developed

in the literature, including the Maximum Likelihood Estimator

(MLE), Least Squares Estimator (LSE), and Weighted Least

Squares Estimator (WLSE). A survey of amplitude estimation

techniques for sinusoidal signals with known frequencies can

be found in [42]. Once frequencies are estimated, we propose

to use the LSE for complex amplitude estimation. This esti-

mator is given by

ŝ =
(
A

H(θ̂)A(θ̂)
)−1

A
H(θ̂)x. (18)

Finally, amplitudes and phases can be obtained as

âk = |ŝk|, φ̂k = arg (ŝk), (19)

where ŝk the kth component of ŝ, |.| denotes the complex

modulus, and arg(.) represents the argument.

D. Model Order Selection

Parametric spectral estimation methods require the knowl-

edge of the model order. The model order can be obtained by

minimizing information criteria such as Akaike Information

Criterion (AIC), Bayesian Information Criterion (BIC), and

Generalized Information Criterion (GIC). A review of infor-

mation criterion can be found in [34]. A comparison between

the proposed information criteria is required to determine the

best model order estimator. We compare between these criteria

using Monte-Carlo trials. In this context, we have studied

two parameters influence on the model order selection: The

samples number and Signal-to-Noise Ratio (SNR).

The model order is obtained by minimizing the following

information criteria

L̂ = argmin
L

N ln
(
σ̂2
L

)
+ n ∗ η(L,N), (20)

where N is the number of samples, n = 3L + 1, η(L,N) is

a penalty coefficients, which depend on information criteria

available in [34], and σ̂2
L denotes the noise variance given by

σ̂2
L =

1

N

N∑

n=0

∣∣∣∣∣x[n]−
L−1∑

k=0

âke
j(2πf̂k× n

Fs
+φ̂k)

∣∣∣∣∣

2

. (21)

For noise variance estimation, we have used the TLS

ESPRIT to estimate frequencies and LSE for amplitudes and

phases estimations.

Figure 1 shows the samples number influence on the model

order selection with σ2 = 0.1. Figure 2 shows the SNR

influence on the model order selection with N = 400. These

simulation examples are obtained with amplitudes and phases

are randomly generated according to

ak = |dk|+ 1, φk = arg (dk) (22)

where dk is the kth component of d, which is a normally dis-

tributed pseudorandom numbers. Frequencies fk = 50±k×5,

and k ∈ {0, 1, ..., 4}. The probabilities are expressed in %
and are obtained for 2000 Monte Carlo trials. According to

previous Figs. 1 and 2, the probability of model order detection

increases when samples number or SNR increases. In this

example, we observe that the best criterion for model order

selection is the BIC technique. The penalty coefficients of BIC

technique is given by

η(L,N) = ln(N). (23)

IV. PROPOSED CONDITION MONITORING ARCHITECTURE

This section proposes a condition monitoring architecture

of induction machines based on model parameters estimation

of the stator current. A fault severity criterion is also proposed

to measure the fault severity.

A. Proposed Fault Severity Criterion

The proposed fault severity criterion (FSC) is needed to

measure the machine state and to detect the fault severity. This

criterion is based on the evaluation of frequency component

amplitudes obtained with (19). It is an extension of the
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Fig. 2. SNR influence on the model order selection with N = 400.

proposed criterion in [4]. The FSC is inspired from the total

harmonic distortion (THD) of a signal, which is defined as the

ratio of the sum of the powers of all harmonic components to

the power of the fundamental frequency. Mathematically, the

FSC depends on amplitudes ak and it can be expressed as

C =

∑
k∈θ1

â2k
∑
l∈θ2

â2l
, (24)

where θ1 corresponds to the integers k that belong to [0, L− 1]

for which

∣∣∣f̂k − nfs

∣∣∣ > ∆f (n ∈ N), θ2 corresponds to the

integers l that belong to [0, L− 1] for which

∣∣∣f̂l − nfs

∣∣∣ < ∆f

(n ∈ N), and ∆f = 10−2fs is the authorized variation of

frequency values according to Standard IEC 038 [37].

The proposed criterion is theoretically equal to zero for

healthy induction machines and increases for a faulty case.

In practice, the FSC value C gives the induction machine

state, which is compared with to the FSC value for healthy

condition. Performance of this proposed criterion depends on

the performances of model order, frequency, and amplitude

estimators. This criterion can be explained by the algorithm

described in Algo. 1. In this algorithm, ⌊.⌉ denotes the

round function. This algorithm is characterized by its ease

of implementation.

The purpose of the proposed algorithm is to calculate the

FSC value that determines the state of the studied machine.

Three steps are needed: model order selection, frequency

estimation, and amplitude estimation. Once amplitudes are

determined, we can compute the FSC ratio value. The denom-

inator of this ratio contains the sum of squared amplitudes

corresponding to the fundamental frequency and harmonics.

The numerator contains the sum of the squared amplitudes

corresponding to others frequencies. Therefore, a frequency

evaluation is needed while respecting the authorized variation

according to standard IEC 038.

Algorithm 1 Fault Severity Criterion.

Require: N -data samples x[n]
1) Model Order Estimation.

2) Frequency Estimation.

3) Amplitude Estimation.

4) Compute the FSC value according to

∆f ⇐ 10−2fs
Num ⇐ 0
Den ⇐ 0
for k = 1 to L̂ do

V alue =
∣∣∣f̂k −

⌊
f̂k

fs

⌉
× fs

∣∣∣
if V alue < ∆f then

Den ⇐ Den+ â
2
k

else

Num ⇐ Num+ â
2
k

end if

end for

FSC ⇐ Num
Den

B. Proposed Architecture

The proposed condition monitoring architecture for induc-

tion machines is given by Fig. 3. It is based on the use of ad-

vanced signal processing techniques to estimate parameters of

the stator current. These parameters are exploited to determine

the value of the proposed FSC. This value allows evaluating

the induction machine state. One of the valuable advantages

of the proposed architecture is to detect faults in presence of

signal parameters.

V. EXPERIMENTAL RESULTS

The efficiency of the proposed approach is evaluated on

experimental stator currents issued from an induction machine

with bearing faults and broken rotor bars. Several fault degrees

are considered to evaluate the ability of the proposed criterion

to track fault severity. A comparison between currents spec-

trum for healthy and faulty machines, allows distinguishing the

frequency components that belong to the induction machine

faults.
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Fig. 3. Proposed condition monitoring architecture of induction machines.

Fig. 4. Machinery fault simulator.

TABLE I
BEARING FAULT SEVERITY VERSUS HOLE DIAMETER.

Fault
severity

1 2 3 4 5

Bearing hole
diameter (inches)

0.007 0.014 0.02 0.03 0.04

A. Experimental Setup Description

Two induction motors have been studied. The first induction

machine with bearing faults. In this case, the machine under

test is a 230/400 V, 0.75-kW, three phases induction motor

with the number of pole pairs p = 1 and 2780 rpm rated speed.

The induction machine has two 6204-2 ZR type bearings

(single row and deep groove ball bearings) with the following

parameters: outside diameter is 47 mm, inside diameter is

20 mm, and pitch diameter D is 31, 85 mm. Bearings have

8 balls with an approximate diameter d of 12 mm. Bearing

faults are obtained by drilling holes of several diameters in

the inner raceway (faults ranging from 0.007 inches (0.178
mm) in diameter to 0.040 inches (1.016 mm) as it can be

seen in Table I). The stator currents acquisition is performed

by a 24 bits acquisition card with 10 kHz sampling frequency.

The second induction machine is a 230/400 V, 5-kW three

phases induction motor. The faults are obtained by drilling

the bar of the squirrel cage. The stator currents acquisition is

performed by a 24 bits acquisition card with 20 kHz sampling

frequency.

All the experiments are done in steady state conditions. The

motors under study are fed by a PWM inverter with a funda-

mental frequency equals to fs = 50 Hz. The experimental

setup is given by Fig. 4.

B. Proposed Approaches Performance

1) Bearing faults detection: Figure 5 illustrates the pe-

riodograms using a sampling frequency Fs = 1000Hz,

N = 2000 samples, and a Hanning window for healthy and

faulty induction motors with bearing faults. This figure shows

that the FFT-based techniques suffer from a poor frequency

resolution. Figure 6 shows the stator current spectrum using

TLS ESPRIT approach for healthy and faulty induction motors

with bearing faults. The spectral components caused by the

specific faults appear in the spectrum for faulty induction

motors in the neighborhood of the fundamental frequency.

A fault severity criterion value for different bearing fault

degrees in induction motors is given by Fig. 7. According

to this figure, FSC values based firstly on the estimation of

fault frequency signature by TLS-ESPRIT or Root-MUSIC

give almost the same results.

Figure 8 shows the evolution of the fault severity criterion

with respect to sample numbers. It can be shown that for

low values of samples numbers the criterion increases. This is

normal since we can assume that the estimation is not optimal.

For N greater than 500 samples the criterion is constant for

a given fault severity. we can conclude that for N = 500
samples, the proposed approach results are reliable.

2) Broken rotor bar faults detection: Figure 9 gives the

periodograms using a sampling frequency Fs = 1000Hz,

N = 4096 samples, and a Hanning window for a healthy

and faulty induction motors with 3 broken rotor bar. This

figure shows again that the FFT-based techniques suffer from

a poor frequency resolution. Figure 10 shows the stator cur-

rent spectrum by using TLS ESPRIT approach for healthy

and faulty induction motors with 3 broken rotor bars. The

spectral components caused by the specific faults appear in
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the spectrum for faulty induction motor. The appearance of

new frequencies in the spectrum is a signature of broken rotor
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Fig. 8. Fault severity criterion value for different N (samples number) for
bearing faults using TLS ESPRIT, for healthy and faulty induction motors
with bearing faults.
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Fig. 9. Spectral analysis by Welch periodogram using Hanning window (N =

4096 ) for a healthy and faulty induction motors with broken rotor bar faults.

bars. In addition, their amplitudes indicate the fault severity.

Figure 11 depicts the evolution of the proposed criterion

for 1, 2, and 3 broken rotor bars. This figure clearly show that

the proposed criterion allows measuring the fault severity. The

behavior of the fault severity criterion value is the same for

different number of broken rotor bars.

Figure 12 shows the FSC for different N value using TLS

ESPRIT, for healthy and faulty induction motors with broken

rotor bars. For faulty motors, the FSC value increases with

samples number and also with the the number of broken rotor

bars (Fig 11).

VI. CONCLUSION

This paper has proposed an induction machines condition

monitoring and fault detection architecture based on advanced

signal processing and statistical analysis techniques that ex-

ploits stator current measurements. In this context, a four

steps process is needed: model order selection, frequency

estimation, amplitude estimation, fault severity criterion value

computation. We have shown that the Bayesian information
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Fig. 11. Fault severity criterion for different broken rotor bars. In this figure,
0 corresponds to the healthy induction motor and the other values correspond
to broken rotor bars number.
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Fig. 12. Fault severity criterion value for different N (samples number) for
bearing faults using TLS ESPRIT, for healthy and faulty induction motors
with broken rotor bars.

criterion is more efficient than other information criteria. The

frequencies estimated by subspace techniques are exploited

for fault signature detection. The amplitudes of frequency

components determined by least squares estimator indicate the

severity degree of the considered faults by using the proposed

fault severity criterion. According to the achieved experimental

results, it can be concluded that the proposed architecture is

able to efficiently and cost-effectively detect electrical and me-

chanical faults using stator current processing. Further works

must be conducted in order to examine the feasibility of the

proposed induction machines condition monitoring and fault

detection architecture in case of non-stationnary environments

such as renewable energy systems.

REFERENCES

[1] E. Elbouchikhi, V. Choqueuse, and M. E. H. Benbouzid, “Current
frequency spectral subtraction and its contribution to induction machines
bearings condition monitoring,” IEEE Trans. Energy Conversion, vol. 28,
no. 1, pp. 135–144, December 2013.

[2] P. Zhang, Y. Du, T. G. Habetler, and B. Lu, “A survey of condition mon-
itoring and protection methods for medium-voltage induction motors,”
IEEE Trans. Ind. Appl., vol. 47, no. 1, pp. 34–46, January/ February
2011.
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