
Int. J. Metaheuristics, Vol. 6, Nos. 1/2, 2017 85

Induction motor parameter estimation using
disrupted black hole artificial bee colony
algorithm

Fani Bhushan Sharma* and
Shashi Raj Kapoor

Department of Electrical Engineering,

Rajasthan Technical University,

Kota, India

Email: fbsharma.kota@gmail.com

Email: srkapoor@rtu.ac.in

*Corresponding author

Abstract: The most widespread motors in industries are induction motors
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are based on circuit parameters. The accurate measurement of electrical
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1 Introduction

The electrical energy is also one of the bases of socio-economic development of any

country (Bazmi and Zahedi, 2011). The three-fourth part of electrical energy is consumed

by electrical motors in industrial sector (Dandil et al., 2013; Sakthivel, Bhuvaneswari and

Subramanian, 2011). So, for energy conservation techniques, motor’s energy consumption

is a significant issue. Induction motors require low maintenance, less space and are

easy to control (Lindenmeyer et al., 2001). Therefore, the induction motors are the

most commonly used motors in industries. Eventually, enlightening the parameters of

induction motor plays vital role in its designing, evaluating performance and application

control. Though there are many methods for estimating induction motor parameters,

iterative methods are most widespread and reasonable (Gupta, Wadhwani and Kapoor,

2011; Lindenmeyer et al., 2001; Pedra and Corcoles, 2004; Toliyat et al., 2003). The

swarm intelligence (SI)-motivated algorithms are also iterative schemes. The significant

SI algorithms are artificial bee colony (ABC) algorithm (Karaboga, 2005a), particle

swarm optimisation (PSO) algorithm (Eberhart et al., 1995), bat swarm optimisation

(BSO) algorithm (Yang, 2010), water cycle algorithm (WCA) (Eskandar et al., 2012)

etc. The above metaheuristic techniques are a recent field of interest to solve real-world

optimisation problems (Nesmachnow, 2014b, 2014a). The ABC algorithm carries out

superior results than many other state-of-the-art methods (El-Abd, 2012; Karaboga and

Akay, 2009; Karaboga and Basturk, 2008). This algorithm has already been applied on

various real-world problems (Chandrasekaran et al., 2012; Haluk Gozden, 2011; Samanta

and Chakraborty, 2011).

On the other hand, ABC algorithm may incline towards local optima stagnation and

shows drawback in terms of sluggish convergence. To conquer these drawback, researchers

have proposed a number of ABC variants (Akay and Karaboga, 2012; Banharnsakun,

Achalakul and Sirinaovakul, 2011; Bansal et al., 2013; Bansal, Sharma and Jadon, 2013;

Bansal et al., 2013; Sharma et al., 2015, 2016; Sharma, Bansal and Arya, 2014; Sharma

et al., 2015; Zhu and Kwong, 2010). The WSO, BSO and PSO algorithms are also

significantly modified, respectively, as chaotic WCA (Heidari, Abbaspour and Jordehi,

2015), Chaotic BSO (Jordehi, 2015a) and enhanced leader PSO (Jordehi, 2015b). In

the same series of modifications, the authors of this paper presented a new variant of

ABC algorithm. The proposed variant is based upon a amalgamation of two significant

phenomena of physics and named as disruption black hole ABC (DHABC). The black

hole ABC (BHABC) (Hatamlou, 2013; Sharma et al., 2015) increases exploitation, while

disruption ABC (DiABC) (Sharma et al., 2016; Sarafrazi, Nezamabadi-Pour and Saryazdi,

2011) enhances both exploitation and exploration. In the proposed DBHABC, an optimum

balance between exploitation and exploration is kept upon and positive aspect of both

BHABC and DiABC is retained. Further, the proposed algorithm is applied on two test

cases for estimating parameters of induction motor.

The remainder of this paper is organised as follows: Parameter estimation of induction

motor is outlined in Section 2. Section 3 presents overview of ABC and the proposed

algorithm is discussed. The results analysis, discussion and comparison are presented in

Section 4. Finally, conclusion of the work is given in Section 5.
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2 Parameter estimation of induction motor

The induction motor parameters can be calculated by any approximate or exact model.

The input parameters are voltage, speed, starting torque, full-load torque and maximum

torque, while the measured parameters are the rotor and stator resistances, reactances and

magnetising reactances.

2.1 Approximate model

The approximate model is less accurate as the magnetising reactance and rotor reactance

are neglected in the approximate model. The modelling is done using following objective

function [11].

min(F ) = f2
1 + f2

2 + f2
3 , (1)

here;

f1 =
Kt ×R2

s[(R1 +
R2

s
)2 +X2

1 ]
− TFL(mf), (2)

f2 =
Kt ×R2

(R1 +R2)2 +X2
1

− TSTR(mf), (3)

f3 =
Kt

2[R1 +
√

(R2
1 +X2

1 )]
− TMAX(mf), (4)

Kt =
3V 2

ph

ωs

, (5)

Resistance, reactance, slip, manufacturer’s data, synchronous speed and phase voltage are

denoted with R, X, s, mf , ωs and Vph, respectively; subscript 1 is used for stator, while

2 is used for rotor; TFL, TSTR and TMAX are full load, starting and maximum torques,

respectively.

2.2 Exact model

It is comparatively a high-accurate model, since both magnetising and rotor reactance are

considered here with the parameters of approximate model.

min(F ) = f2
1 + f2

2 + f2
3 + f2

4 , (6)

here;

f1 =
Kt ×R2

s[(Rth + R2

s
)2 +X2

1 ]
− TFL(mf), (7)
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X
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VphXm

X1 +Xm

, (11)

Rth =
R1Xm

X1 +Xm

, (12)

Xth =
X1Xm

X1 +Xm

, (13)

X = X2 +Xth, (14)

Kt =
3V 2

th

ωs

, (15)

Resistance, reactance, slip, manufacturer’s data, synchronous speed, phase voltage,

thévenin voltage and power factor are denoted with R, X, s, mf , ωs, Vph, Vth and

PF, respectively; subscript 1 is used for stator, 2 is used for rotor, while m is used

for magnetising; TFL, TSTR and TMAX are full load, starting and maximum torques,

respectively. In exact model objective function optimisation, values of obtained parameters

and deviation amid estimated and manufacturer’s values of torque and power factor should

be within a specified range.

3 Disruption black hole artificial bee colony algorithm

3.1 Artificial bee colony algorithm

The ABC algorithm is an unique optimisation algorithm that comes under the category

of SI. ABC is inspired by the collective intelligent foraging activities of the natural bees

(Karaboga and Basturk, 2007).

In ABC algorithm, food source’s position represents a possible solution for the

optimisation problem and the nectar amount of a food source corresponds to the fitness

of the solution (Karaboga and Akay, 2009). The colony of the artificial bees is partitioned

into three groups, namely employed bees, onlooker bees and scout bees. The number of

onlooker bees or employed bees is equal to the number of food sources. A bee waiting for

employed bees for taking decision about how to pick the food source is known as onlooker

bee (Abu-Mouti and El-Hawary, 2012; Karaboga, 2005b).The employed bees randomly

search for the positions of the food source and share its experience with the onlooker bee

which stays at hive. Scout bees search the new food sources randomly depending upon the

internal motivation (Abu-Mouti and El-Hawary, 2012).
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ABC is an iterative process alike other population-based metaheuristic algorithms. It

requires cycles of the four phases, namely initialisation of the population phase, employed

bee phase, onlooker bee phase and scout bee phase (Akay and Karaboga, 2012). The

explanation of the phases is given below:

Initialisation of the population phase: Initially ABC generates an evenly scattered initial

population of SN solutions, where each solution xi (i = 1, 2, . . . ; SN) is a D-dimensional

vector. Here D is the number of variables in the optimisation problem, and xi is the ith

food source in the population. Generation of each food source is as follows:

xij = xminj + rand[0, 1](xmaxj − xminj), (16)

where xminj and xmaxj are bounds of xi in jth direction and rand[0, 1] is an evenly

scattered random number in the range [0, 1].

Employed bee phase: During this phase, the current solution is modified based on the

information provided by the experience of individual and the fitness value of the new

solution, i.e. nectar amount. If the fitness value of the new solution is higher than that of the

old solution, the bee updates its position with the new one and discards the old one (Akay

and Karaboga, 2012). For ith candidate, the position update equation in this phase is

vij = φij(xij − xkj), (17)

where k ∈ {1, 2, . . . , SN} and j ∈ {1, 2, . . . , D} are randomly chosen indices. k must be

different from i. φij is a random number between [−1, 1].

Onlooker bee phase: The information is shared by all the employed bees about the new

fitness, i.e. nectar of the new solutions (food sources) and their position information with

the onlooker bees in the hive. The available information is analysed by onlooker bees and

they select a solution with a probability, related to its fitness. The probability pi may be

calculated using either following expression or there may be some other function, but must

be a function of fitness:

pi =
fiti

∑SN
i=1 fiti

, (18)

where fiti is the fitness value of the solution i. Same as in the case of the employed

bee, it generates a modification in the position in its memory and checks for the fitness

of the candidate source. If the new fitness is higher than that of the previous one, the bee

memorises the new generated position and forgets the old one.

Scout bee phase: The food source is assumed to be abandoned if the position of a food

source is not updated up to a predetermined limit, i.e. number of cycles, and then scout bee

phase starts. In this phase, food source is replaced by a randomly chosen food source within

the specified region. Assume that the abandoned source is xi and j ∈ {1, 2, . . . , D} then

the scout bee replaces this food source with xi. This operation can be defined as follows:

x
j
i = x

j
min + rand[0, 1](xj

max − x
j
min), (19)

where x
j
min and xj

max are bounds of xi in jth direction.

The above discussion shows that there are three control parameters in ABC search

process: first, the number of food sources SN (equal to number of onlooker or employed

bees), second, the value of limit and third, the maximum number of cycles MCN .

In the ABC algorithm, the exploitation process is carried out by employed bees and

onlooker bees, while the exploration process is carried out by scout bees in the search

space. The pseudocode of the ABC algorithm is as follows:
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3.2 Disruption black hole artificial bee colony algorithm

In this paper, two significant phenomena of physics are combined, while keeping optimum

balance in exploration and exploitation to modify the ABC algorithm.

3.2.1 Black hole phenomenon

The black hole (BH) phenomenon was invented by John Michell and Pierre Laplace

(Montgomery, Orchiston and Whittingham, 2009). After the collapse of a massive star in

the space, there is always a possibility for the BH to come in the picture (Doraghinejad

et al., 2012). A lot of mass is scattered in the BH in such a way that the gravitational power

of a BH becomes so high that any object which crosses its boundary will be swallowed by

it and that object permanently dies out. Even the light cannot escape its gravitational pull.

The boundary of the BH is called the event horizon and the radius of the event horizon

is termed as the Schwarzschild radius (Doraghinejad et al., 2012; Hatamlou, 2013; Zhang

et al., 2008) which is calculated using Eq. (20).

Rs =
2GM

C2
, (20)

where G is the gravity constant, M is the mass of the BH and C represents the velocity

of the light. If any object moves close to the event horizon or crosses the Schwazschild

radius, it will be absorbed into the BH and permanently fade away.

3.2.2 Disruption phenomenon in nature

When a group of gravitationally bounded particles (having total mass m) approaches very

near to a massive object M , the group of particles tends to be torn apart. This is called

disruption phenomenon in nature (Sarafrazi, Nezamabadi-Pour and Saryazdi, 2011). The

same thing occurs in the solid body also. Disruption phenomenon in astrophysics is defined

as The sudden inward fall of a group of particles that are gravitationally bound under the

effect of the force of gravity (Ding, Liu and He, 2013; Sarafrazi, Nezamabadi-Pour and

Saryazdi, 2011). It occurs when all the forces fail to supply a sufficient high pressure to

counterbalance the gravity and keep the massive body in equilibrium (Liu, Ding and Sun,

2012).

3.3 Proposed DBHABC algorithm

In working of ABC algorithm, stagnation is a situation where the candidate solution stop

exploring the new regions and work in a very narrow region. Due to the stagnation,

algorithm lost its energy of finding better solution. Stagnation may cause algorithm to

converge prematurely or stuck to the local optima. The stagnation phenomena occurs when

all or most of the candidate solutions come very close to each other. In other words, when

the sum of distances between any two candidate solutions become very small. In case of

stagnation, to make ABC algorithm more explorative, concept of BH is introduced to basic

version of ABC (Hatamlou, 2013).

For simulating the BH phenomenon, all candidate solutions are considered as stars,

while the solution having best fitness among all candidate solutions is chosen as a BH.

Further, for simulating the disruption phenomenon, a new phase called disruption phase is

introduced within the ABC. In the proposed phase, the disruption operator initially explores
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the search space and as time passes it switches to the exploiting conditions. The proposed

strategy is named as disruption black hole artificial bee colony algorithm (DBHABC). In

DBHABC, it is assumed that the solution having best fitness value initially acts as BH and

then is nominated as a star, and rest of the candidate solutions is scattered in the search

space under the gravity force of the star solution (Sharma et al., 2015, 2016).

Initially all the solutions are randomly initialised in the given search space as shown in

Eq. (21):

xij = xminj + rand[0, 1](xmaxj − xminj), (21)

where xi represents the ith food source in the swarm, xminj and xmaxj are bounds of xi

in jth dimension and rand[0, 1] is an uniformly distributed random number in the range

[0, 1]. BH creation is not a randomised procedure. During the each iteration of the proposed

algorithm, a new solution is generated near to the best solution and rest of the candidates is

moved towards the black hole that depends upon the current position and a random number.

After the initialisation phase, the fitness values of all the candidate solutions are

evaluated and the solution, having the best fitness value in the current swarm, is nominated

as a black hole, and rest of the solutions form the ordinary stars. The BH is considered as

an estimate of the actual optimal solution. After initialising the BH and stars, the stars are

attracted by the BH, i.e. the solutions update their positions using the distance and direction

of the BH (best solution found so far). The position update equation of the solutions is

expressed by Eq. (22):

xi(t+ 1) = xi(t) + rand(xBH − xi(t)), (22)

where xi(t) and xi(t+ 1) represent the position of the ith solution during iteration t and

t+ 1, respectively. xBH is the position of the BH (best solution) in the search region and

rand is an uniformly distributed random number specified in the interval [0, 1].

The BH search strategy is described as follows: While moving towards the BH, a star

(solution) may reach to a position, which may be better than the position of the black

hole. In such a case, the positions of the BH and the star are interchanged, i.e. the star

is nominated as a new BH of the search space. In addition, when a star moves towards

a BH, there is always possibility of crossing the event horizon of the BH. Therefore, the

star which crosses the event horizon of the BH will be absorbed in the BH. When a star is

sucked by the BH, it is died out and another star is born, i.e. a new solution is randomly

generated in the search space.

The Euclidean distance RE between the star and BH is calculated and compared with

the radius of the event horizon. The radius of the event horizon of BH is calculated using

Eq. (23):

R =
fBH
∑N

i=1 fi
, (23)

where fBH represents the fitness value of the black hole (current best solution) and fi is

the fitness value of the ith star. N represents the total number of solutions in the search

space.

The DBHABC algorithm is divided into four phases, namely employed bee phase,

onlooker bee phase, scout bee phase and disruption phase. The BH phenomenon is applied
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in the employed bee phase of the algorithm, and a new phase namely disruption phase is

applied after scout bee phase. The other phases are kept same as in the basic ABC. Based

on the above explanation, the DBHABC algorithm is described in Algorithm 1.

Algorithm 1 : Disruption black hole artificial bee colony (DBHABC)

Initialize the parameters: MCN (Maximum number of cycles), D (Dimension of the

problem), SN (Swarm Size), C0, ρ;

Initialize the swarm having solutions, xi where (i = 1, 2, ..., SN) by using Eq. (21);

cycle = 1;

while cycle <> MCN do

Employed Bee Phase: /* Explained as follows:*/

for each solution do

Evaluate the objective function;

Select the best fitness solution as Black hole;

Change the position of each star solution using Eq. (22); /* fitnessstar represents

the fitness of the star solution and fitnessBH represents the fitness of the black

hole solution */

if fitnessstar > fitnessBH then

Interchange the position of star and black hole; /* RBH represents the radius

of the event horizon of black hole while RE represents the Euclidean distance

between the star solution and the black hole solution */

end if

if RBH > RE then

Generate a new solution xi randomly in the search space;

end if

end for

Onlooker Bee Phase;

Scout Bee Phase;

Step 4: Memorize the best food source found so far (Considered as star Solution);

Step 5: Disruption Phase: /* Explained as follows:*/

for each solution do

Check the condition using Eq. (24) for all the candidate solutions except the star

solution; here Ri,j represents the Euclidean distance between the ith solution and

its neighbour j, while Ri,best is the Euclidean distance between the ith solution and

the star solution; C is a threshold calculated using the Eq. (25);

if (
Ri,j

Ri,best
< C) then

D is calculated using the Eq. (27);

Change the position of the solutions using Eq. (26);

end if

end for

Memorize the best food source found so far;

cycle=cycle+1;

end while

Output the best solution found so far.
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The disruption phase is described as follows: for all the candidate solutions except the star

solution (having best fitness value) following disruption condition is checked.

Ri,j

Ri,best

< Cc, (24)

where, Ri,j and Ri,best are the Euclidean distances between the ith and jth candidate

solution and between ith and the best solution, respectively. Here j is the nearest neighbour

of i. Cc is a threshold and it is defined as:

Cc = C0

(

1−
t

T

)

(25)

Here, C0 is a constant as described in Section 4.1. T and t represents the total number

of iterations and current iteration, respectively. The solutions that satisfy the Eq. (24) are

disrupted under the vicinity of the star (best) solution. The threshold Cc is a variable

which is used to make the operator more meaningful. Initially when the solutions are not

converged the value of Cc is kept to be large that leads to increase the exploration of the

search space and as the solutions get closer to each other, Cc has to be small for exploitation

of the search space. The position update equation for the candidate solutions that satisfies

the Eq. (24) is defined as:

xi(t+ 1) = xi(t)×Dd. (26)

Here, xi(t) and xi(t+ 1) are the position of the ith candidate solution during the iteration

t and t+ 1, respectively.

The value of Dd is defined as:

Dd =

{

Ri,j × U(−0.5,0.5), if Ri,best >= 1

(1 + ρ× U(−0.5,0.5), otherwise.
(27)

In the above Eq. (27), U(−0.5,0.5) is an uniformly distributed random number from the

interval [−0.5,0.5]. ρ is a small number used for the purpose of exploitation of the search

space. Depending upon the value of Dd, the exploration and exploitation of search space

are performed during the phase. When the value of Ri,best >= 1 means the solutions are

not converged, then the value of Dd can be less than or greater than 1 [using Eq. (27)]

and by multiplying this value with previous value of the ith solution, the dimension of the

ith solution is changed randomly and it can be smaller or larger than the previous solution

value. So this leads to explore the search space. On the other part, when Ri,best <= 1
means ith solution is close to the best solution, then the value of Dd is set to very small,

and it will update the position of the candidate solution near to old position. This helps in

exploitation of the search space. This implies that when the solutions are not converged,

the disruption operator explores and as the solutions are converging and getting close to

the star solution, the operator exploits the search space. Cc and Dd are the two new control

parameters in the disruption phase. Fine tuning of both the parameters are required for

proper implementation of the strategy.
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4 Comparison and analysis of result

The performance of proposed algorithm DBHABC is evaluated on 20 different benchmark

continuous optimisation functions (f1 to f20) having different degrees of complexity and

multimodality as shown in Table 1. To check the competitiveness of DBHABC, it is

compared with, ABC algorithm (Karaboga, 2005b), PSO-2011 (Clerc and Kennedy, 2011),

differential evolution (DE) algorithms (Price, 1996) and three significant variants of ABC

algorithm namely, Gbest-guided artificial bee colony (GABC) algorithm (Zhu and Kwong,

2010), Memetic artificial bee colony (MeABC) algorithm (Bansal et al., 2013) and Lévy

flight artificial bee colony (LFABC) algorithm (Sharma et al., 2015). The experimental

setting is given in Section 4.1.

4.1 Experimental setting

To prove the efficiency of proposed DBHABC algorithm, following experimental setting

is adopted:

• The number of simulations/run =100

• Colony size NP = 50 and Number of food sources SN = NP/2

• C0 = 60

• ρ = 10−10

• φij = rand[−1, 1] and limit = Dimension × Number of food sources = D × SN

(Akay and Karaboga, 2012)

• Parameter setting for other considered algorithms are similar to their legitimate

research papers (Banharnsakun, Achalakul and Sirinaovakul, 2011; Bansal et al.,

2013; Kennedy and Eberhart, 1995; Storn and Price, 1995; Sharma et al., 2015; Zhu

and Kwong, 2010)

• The data set for induction motors are used from Table 3.

4.2 Results comparison

The obtained results are shown in Table 2 expressed by success rate (SR), average number

of function evaluations (AFE), mean error (ME) and standard deviation (SD).

The DBHABC is compared with ABC and its significant variants, it is also compared

with DE and PSO. The results are shown in Table 2. The results reveal that DBHABC

is a competitive algorithm and performs better for most of the optimisation benchmark

functions irrespective of their nature. The boxplot analysis have also been carried out for

all considered algorithms for comparison in terms of consolidated performance. In boxplot

analysis tool (Williamson, Parker and Kendrick, 1989), graphical distribution of empirical

data is efficiently represented. The boxplots for DBHABC and other considered algorithms

are represented in Figure 1. It is clear from this figure that DBHABC performs better than

the considered algorithms as interquartile range and median are quite low.
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Table 1 Test problems. D, dimensions; Ch, characteristic; U, unimodal; M, multimodal; S,
separable; N, non-separable; AE, acceptable error
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Table 1 Test problems. D, dimensions; Ch, characteristic; U, unimodal; M, multimodal; S,
separable; N, non-separable; AE, acceptable error (continued)
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Table 2 Comparison of the results of test problems

Test

Function Measure DBHABC PSO LFABC MeABC GABC ABC DE

f1

SD 8.12E-07 1.73E-06 7.87E-07 1.81E-06 1.98E-06 2.15E-06 2.02E-06

ME 7.88E-06 8.39E-06 9.27E-06 8.11E-06 7.33E-07 7.59E-06 8.17E-06

AFE 10205.35 16733.85 13626.8 14347.5 29341.69 30062 20409

SR 100 100 100 100 100 100 100

f2

SD 1.36E-06 3.02E-06 1.69E-06 2.72E-06 1.69E-06 3.12E-06 3.11E-06

ME 8.04E-06 6.62E-06 8.26E-06 5.51E-06 4.59E-07 5.37E-06 4.90E-06

AFE 8285.64 9556.12 5516.18 8388 24055.41 24523.5 9578.5

SR 100 100 100 100 100 100 100

f3

SD 1.14E-06 1.65E-06 8.48E-07 1.96E-06 2.15E-06 2.28E-06 2.20E-06

ME 8.66E-06 8.84E-06 9.15E-06 8.10E-06 7.99E-06 7.58E-06 7.77E-06

AFE 19674.68 24546.79 28443.32 23163 62825.35 62171.5 34887

SR 100 100 100 100 100 100 100

f4

SD 8.97E-07 1.58E-06 7.70E-07 1.88E-06 2.17E-06 2.15E-06 2.13E-06

ME 8.51E-06 8.55E-06 9.21E-06 7.91E-06 7.50E-06 7.49E-06 7.84E-06

AFE 9982.85 16111.3 13848.76 14072 28208.78 31418.5 20917

SR 100 100 100 100 100 100 100

f5

SD 7.70E-07 8.04E-07 3.75E-07 6.90E-07 8.71E-07 1.10E-06 1.03E-06

ME 9.12E-06 9.34E-06 9.58E-06 9.30E-06 9.48E-06 9.19E-06 9.16E-06

AFE 21135.18 30994.7 31451.16 27636 62256.74 52967 41646

SR 100 100 100 100 100 100 100

f6

SD 7.10E-07 1.70E-06 7.12E-07 1.98E-06 1.19E-06 2.18E-06 2.04E-06

ME 7.92E-06 8.43E-06 9.20E-06 7.71E-06 9.90E-06 7.70E-06 7.96E-06

AFE 10691.31 18093.08 16789.28 16084.5 52119.75 36751 22672

SR 100 100 100 100 100 100 100

f7

SD 2.86E-06 3.13E-06 2.87E-06 2.95E-06 2.95E-06 2.96E-06 2.65E-06

ME 6.36E-06 5.86E-06 5.59E-06 5.62E-06 5.35E-06 6.19E-06 5.16E-06

AFE 3723.85 7523.66 4527.08 9285 46248.07 14209 16229

SR 100 100 100 100 100 100 100

f8

SD 8.89E-07 6.84E-02 1.06E-02 1.04E+00 1.00E+00 6.78E+00 6.74E-01

ME 5.00E-06 1.07E-01 8.88E-02 1.17E+00 7.56E-01 4.64E+00 9.22E-01

AFE 22110.61 39650.81 22134.93 200014.61 201186.56 200024.84 200004.61

SR 100 95 100 0 0 0 0

f9

SD 1.01E-06 1.99E-06 9.59E-07 1.93E-06 2.98E-06 2.42E-06 2.14E-06

ME 8.58E-06 8.51E-06 9.11E-06 7.85E-06 7.98E-06 7.77E-06 7.80E-06

AFE 16102.15 21192.18 22617.84 19475.5 58781.89 49131 28065

SR 100 100 100 100 100 100 100

f10

SD 1.01E-06 1.97E-06 8.51E-07 1.94E-06 1.65E-06 2.47E-06 2.34E-06

ME 8.10E-06 8.07E-06 9.14E-06 7.82E-06 8.53E-06 8.17E-06 7.44E-06

AFE 11892.78 18653.59 17885.74 16683.5 64658.99 41449 24167

SR 100 100 100 100 100 100 100

f11

SD 2.83E-06 2.84E-06 2.96E-06 3.04E-06 3.31E-06 6.45E-05 2.25E-06

ME 4.03E-06 7.52E-06 4.94E-06 5.61E-06 5.38E-06 6.26E-05 8.23E-06

AFE 1758.93 3746.11 2573.53 9335.88 16158.98 49489.15 16098.58

SR 100 100 100 100 100 93 100

f12

SD 3.53E-04 1.29E-03 2.31E-03 1.61E-02 3.16E-02 3.68E-02 1.20E-01

ME 6.92E-04 9.19E-03 6.99E-03 1.58E-02 2.53E-02 2.73E-02 1.74E-01

AFE 19125.84 65107.64 29780.95 197731.18 199159.1 198577.54 200023.42

SR 100 100 100 5 2 2 0
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Table 2 Comparison of the results of test problems (continued)

Test

Function Measure DBHABC PSO-2011 LFABC MeABC GABC ABC DE

f13

SD 8.35E-05 1.79E-04 1.63E-05 3.80E-05 6.95E-05 6.55E-05 7.97E-05

ME 9.41E-05 1.37E-04 8.46E-05 9.10E-05 1.81E-04 1.39E-04 1.75E-04

AFE 47661.35 61386.26 41583.08 93336.22 131931.67 156968.02 181667.37

SR 97 95 100 90 67 49 20

f14

SD 2.62E-06 2.36E-06 1.89E-06 1.94E-06 2.24E-06 2.43E-06 2.50E-06

ME 7.00E-06 7.27E-06 7.64E-06 7.64E-06 7.14E-06 6.97E-06 6.85E-06

AFE 6202.14 6203.32 5587.6 5546.5 16187.82 18225 9074.5

SR 100 100 100 100 100 100 100

f15

SD 9.41E-07 1.34E-06 1.49E-06 1.60E-06 1.57E-06 1.58E-06 1.97E-06

ME 7.48E-06 8.66E-06 8.71E-06 8.28E-06 8.73E-06 8.83E-06 7.79E-06

AFE 8810.98 10934.63 10002.68 9305.5 11656.6 32219 16842

SR 100 100 100 100 100 100 100

f16

SD 2.76E-14 3.28E-14 2.08E-11 1.50E-12 1.56E-11 2.97E-14 8.06E-05

ME 4.58E-14 5.60E-14 2.15E-12 2.03E-13 1.65E-12 4.24E-14 2.71E-05

AFE 14092.61 14065.55 55466.86 43142.05 66599.57 4666.62 181234.08

SR 100 100 98 99 99 100 17

f17

SD 5.25E-03 5.68E-03 5.37E-03 4.84E-03 5.22E-03 5.51E-03 5.41E-03

ME 4.89E-01 4.91E-01 4.89E-01 4.89E-01 4.90E-01 4.92E-01 4.89E-01

AFE 1203.94 687.8 783.58 785 1069.99 2824.11 1432.53

SR 100 100 100 100 100 100 100

f18

SD 2.65E-06 3.10E-06 2.87E-06 2.91E-06 2.96E-06 2.77E-06 2.85E-06

ME 1.95E-03 1.95E-03 1.95E-03 1.95E-03 1.97E-03 1.94E-03 1.95E-03

AFE 1337.96 3418.07 3886.93 4809.51 8872.9 16676.11 31742.53

SR 100 100 100 100 100 100 100

f19

SD 9.41E-04 1.67E-03 2.39E-03 2.36E-03 1.87E-03 2.19E-03 1.85E-03

ME 1.30E-04 8.35E-03 7.30E-03 7.50E-03 6.57E-03 7.43E-03 7.88E-03

AFE 17291.91 22030.31 37251.9 48341.78 5139.55 63281.46 50666.58

SR 100 100 99 99 100 100 100

f20

SD 9.23E-03 1.62E+00 1.65E+00 3.88E+00 5.21E+00 2.07E+01 1.01E+01

ME 5.73E-04 1.03E+00 2.20E+00 6.12E+00 5.94E+00 2.66E+01 1.74E+01

AFE 94344.7 199313.43 200053.04 200025.49 201228.24 200033.4 200023.08

SR 71 3 0 0 0 0 0
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Table 3 Data of the motors used

Specifications Motor 1 Motor 2

Capacity (HP) 5 40

Voltage (V) 3000 3000

Frequency (Hz) 50 50

No. of poles 4 4

Full-load slip 0.07 0.07

Starting torque (Nm) 15 260

Maximum torque (Nm) 42 370

Full load torque (Nm) 25 190

Figure 1 Boxplots graphs for average number of function evaluation

4.3 Induction motor parameter estimation

In this work, penalty technique is used for converting multiobjective induction motor

parameter estimation problem into single-objective parameter estimation problem. The

estimated value of torque is obtained, and it is compared with manufacturer’s value. The

comparison between manufacturer’s value and estimated parameter values for proposed

and other considered algorithms is presented in Tables 4, 5, 6 and 7. The presented results

reveal that DBHABC is a better choice for induction motor parameter estimation.
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Table 4 Estimated parameters and percentage error using approximate model for motor 1
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Table 5 Estimated parameters and percentage error using exact model for motor 1
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Table 6 Estimated parameters and percentage error using approximate model for motor 2
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Table 7 Estimated parameters and percentage error using exact model for motor 2
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5 Conclusion

In this paper, an efficient variant of ABC algorithm, namely DBHABC is proposed. The

proposed variant is based on amalgamation of two significant phenomena of physics.

One is black hole and another is disruption. The DBHABC enhances exploration and

exploitation as well as maintains optimum balance between these two. Further, the

proposed variant is applied for estimation of induction motor parameters. On comparing

with the other existing methods, it is found that DBHABC is a better choice for induction

motor parameter estimation optimisation problem.
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