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Abstract

Introduction: Microglia are tissue macrophages of the central nervous system that monitor brain homeostasis and

react upon neuronal damage and stress. Aging and neurodegeneration induce a hypersensitive, pro-inflammatory

phenotype, referred to as primed microglia. To determine the gene expression signature of priming, the transcriptomes

of microglia in aging, Alzheimer’s disease (AD), and amyotrophic lateral sclerosis (ALS) mouse models were compared

using Weighted Gene Co-expression Network Analysis (WGCNA).

Results: A highly consistent consensus transcriptional profile of up-regulated genes was identified, which

prominently differed from the acute inflammatory gene network induced by lipopolysaccharide (LPS). Where

the acute inflammatory network was significantly enriched for NF-κB signaling, the primed microglia profile

contained key features related to phagosome, lysosome, antigen presentation, and AD signaling. In addition,

specific signatures for aging, AD, and ALS were identified.

Conclusion: Microglia priming induces a highly conserved transcriptional signature with aging- and disease-specific

aspects.

Introduction
Neuroinflammation plays an important role in the progres-

sion of neurodegenerative diseases, with a prominent role

for microglia [1-5]. Microglia are the primary innate im-

mune cells of the brain and the first to respond to a variety

of stimuli, like neuronal damage and infections, initially to

restore homeostasis [6]. Upon activation, microglia release

increased amounts of inflammatory cytokines, phagocytose

cellular debris, and support tissue remodeling [6].

Microglia are versatile cells that, depending on environ-

mental cues, are able to adopt different phenotypes but

clear phenotypical identities have not been established.

Microglia, like other cultured macrophages, are often clas-

sified into inflammatory (M1) and alternatively activated

(M2) phenotypes [7,8], in which the M1 phenotype was

originally induced using LPS or IFNγ stimulation, and the

M2 phenotype using IL-4, IL-13 or IL-10.

In several neurodegenerative disorders and upon

aging, chronic activation of microglia has been reported

to induce a hypersensitive phenotype, often referred to

as primed [9-11]. Primed microglia do not secrete high

amounts of cytokines, but when triggered by pro-

inflammatory stimuli, they become hyper-reactive, se-

creting large amounts of cytokines, chemokines, and

other reactive molecules associated with neurotoxicity.

We recently reported that microglia priming in a mouse

model for accelerated aging was induced by an affected

neuronal environment and not by intrinsic aging [12].

Although microglia priming is becoming a generally ac-

cepted concept [9], at present priming primarily is a

functional definition and it is unclear whether microglia

priming is a homogeneous phenotype with a specific

transcriptional signature or a heterogenous phenotype

with model-system specific transcriptional profiles and

what the functional consequences of priming are.

In this study, these aspects were addressed by compar-

ing the gene expression networks in pure cell populations

of primed microglia that were isolated from mouse

models for neurodegenerative disease and aging. The
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mouse models included are: 1) aged mice; 2) acceler-

ated aging mice (Ercc1∆/KO), a DNA repair-deficient

mouse model that displays features of accelerated aging

[10]; 3) APPswe/PS1dE9 (App-Ps1), a mouse model for

Alzheimer’s disease, carrying transgenes for mutated Amyl-

oid Precursor Protein and Presenilin-1 and 4) a mouse

model for Amyotrophic Lateral Sclerosis (Sod193A, abbre-

viated as Sod1), a line carrying a mutation in the Super-

Oxide Dismutase-1 gene, encoding an enzyme involved in

free radical degradation, resulting in motor neuron degen-

eration in the spinal cord [4].

In addition, the microglia priming network was also

analyzed using (unsorted) brain tissue expression data.

The mouse models included are: 1) aged mice; 2) App-Ps1

mice; 3) rTg4510, a mouse line expressing P301L mutant

human tau [13,14]; 4) an ME7 model of murine prion dis-

ease, associated with neuronal loss and microglial activa-

tion [15,16] (for an overview of mouse models and data

sets used, see Additional file 1: Table S1).

Transcriptional profiles of microglia isolated from four

mouse models of aging and disease and four brain tissue

expression data sets were analyzed in parallel and com-

pared using WGCNA [17]. In contrast to traditional dif-

ferential gene expression analysis, co-expression network

analysis does not regard genes as single entities, but in-

corporates the interrelation of genes to generate struc-

tures called modules. WGCNA has been reported to be

a useful approach to integrate immunology with bio-

informatics [18], and has been applied to evaluate com-

mon denominators in meta-analyses or disease models

[1,19-21]. By raising the network to a power function,

WGCNA results in a heterogeneous network dominated

by a few highly connected nodes (hubs), which link the rest

of the less connected nodes to the system [17]. These hub

genes are likely control points or key genes that modulate

the expression of the network-module and thereby are con-

sidered important for the observed phenotype [19,21,22].

In this paper, a WGCNA-based meta-analysis was applied

to determine the transcriptional signature and hub

genes of different microglia phenotypes: primed, age- and

neurodegeneration-associated, and acute inflammatory.

Materials and methods
Microglia and brain tissue expression profiling

Pure ex vivo microglia populations were obtained by

FACS sorting and RNA was isolated as recently de-

scribed in [10,23]. Three microglia expression datasets

were generated; 4 and 24 months old DBA/2 J and C57/

SJL mice (Harlan, The Netherlands) were used. For acute

LPS activated microglia, C57BL/6 mice (4 months, Harlan,

The Netherlands) were i.p. injected with LPS (10 mg/kg)

or PBS and microglia were isolated after 4 hr. RNA quan-

tity and quality of the RNA samples was checked using

the Experion RNA HighSense Analysis kit (BioRad,

Cat.no. 700-7105), samples with high integrity (RIN > 7)

were used for expression profiling. RNA was amplified

with Nugen Ovation PicoSL WTA system (Cat nr. 3310-

48), labeled with the Encore BiotinIL Module (Cat nr.

4210-48) and hybridized to Illumina MouseRef8 bead-

chip microarrays. Raw data were generated using Illumina

Genome studio.

rTg4510 mice carry a human P301L mutant tau trans-

gene downstream of the tetracycline operon-responsive

element (TRE), whose expression is driven by a second

transgene expressing the tetracycline-controlled transac-

tivator (tTA) under control of the Ca2+/calmodulin-

dependent protein kinase II α (CaMKIIα) promoter. tTA

constitutively induces tau expression via the TRE, but can

be inactivated with doxycycline administration. Transgenic

mice were bred at Taconic, Denmark. Mice expressing the

tTA activator transgenes were maintained on a 126S6

background strain (Taconic) and mutant tau responder

mice were maintained in the FVB/N background strain

[14]. rTg4510 mice were perfused and sacrificed at 2, 4 , 6

and 8 months of age. RNA was isolated from brain tissue

and hybridized to Illumina MouseWG6 bead-chip micro-

arrays. All experiments were approved by the animal ex-

perimentation committees of the University of Groningen

and the Royal Netherlands Academy for Arts and Sciences

and are in accordance with the European Communities

Council Directive #86/609 and the directives of the Danish

National Committee on Animal Research Ethics. Previ-

ously published transcriptomes from pure microglia,

brain tissue, and cultured and stimulated macrophages

were included in our analysis, for detailed platform and,

experimental design information see Additional file 1:

Table S1 [15,24-28].

Pre-processing of transcriptomes

Raw expression values were preprocessed using R and Bio-

conductor package Limma [29]. Samples with an average

inter-sample correlation three standard deviations below

the mean inter-sample correlation after normalization were

filtered out and this procedure was repeated until all sam-

ples met the inclusion criteria. Quantile normalization was

applied to the Illumina microarrays. To eliminate batch ef-

fects between both physiological aging datasets, the ComBat

function was applied [30]. For Agilent array preprocessing,

background correction was performed with an offset of 50

followed by Lowess within array normalization and Quan-

tile between array normalization. Relative intensities were

converted into expression values. The Affymetrix microar-

rays were preprocessed using the Expresso-function of R

package Affy [31]. The parameters were set to RMA back-

ground correction and quantile normalization, with pm

correct pmonly and a medianpolish. From the Sod1 RNA-

sequencing dataset [4] the published RPKM-values were

used, to which quantile normalization was applied to ensure
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that all samples have the same distribution in order to gen-

erate a more stable network.

Select representative probes

Datasets from different platforms were made comparable

at the level of gene symbols. The WGCNA collapseRows

function was applied to calculate the representative gene

expression for several probes, associated with a single

gene [30]. The default method ‘MaxMean’ was used to se-

lect the row with the highest mean value. Similarly for the

RNA-sequencing data several RefSeq accession numbers,

associated on the same gene, were collapsed on gene sym-

bols. Next, all gene symbols from the different platforms

were intersected and only those genes that were present

on all included platforms were used for further analysis.

Parallel and consensus network formation

In all pure microglia datasets, genes with low variation or

low connectivity were filtered out, resulting 7512 genes in

the 5 parallel networks for the individual datasets, as de-

scribed previously [17]. In the combined pure microglia

and brain tissue analysis, no further filtering was applied,

because less genes were present as more platforms were

included, resulting in 9936 genes that were taken into this

analysis. Subsequently, the topological overlap (TO) matri-

ces from all five models were scaled such that the 95th

quantiles matched. A consensus TO matrix was calculated

using the minimal value (pMin) for all gene pairs in any of

the scaled TO matrices. From each of these six TO matri-

ces, a dendrogram was generated by average linkage hier-

archical clustering. Using the tree cut function, branches of

highly co-expressed genes were grouped into modules.

Only modules of a minimum size of 100 genes were con-

sidered for further analysis. Modules from the five model

networks were defined using a hard-clustering approach,

meaning that only genes directly clustered in the module

were taken, and the module EigenGenes (ME) were calcu-

lated. For the consensus network, modules were defined

using a soft-clustering approach, in which meta-q values

and meta ME correlation thresholds were used to deter-

mine which genes were included (min correlation of 0.25

and min meta FDR-corrected q-value of 1E-8).

For each module, a Kruskall Wallis non parametric test,

was used to assess differential expression of the ME with

respect to aging or disease. Only modules with a p < 0.005

were considered to be differentially expressed, and were

used for further analysis. A Fisher’s exact test was used

to determine if the modules from the 5 datasets had

a significant number of overlapping genes and these re-

sults were depicted as an overlap Heatmap. Modules

were annotated by using WEB-based GEneSeT AnaLysis

Toolkit (WEBGESTALT) to perform KEGG pathway and

GO analysis [22,32]. The gene list that resulted from the

intersection of the Illumina and Agilent arrays and

Illumina Sequencing was used as the background list. To

compare our modules to other gene expression studies

WGCNA’s userListEnrichment function was used [33].

Hub gene classification to compare different WGCNA core

networks

The importance of a gene in a network module is deter-

mined by the strength of the correlation to the Modu-

leEigene, or module membership (kME) value [17]. The

35 genes with the highest (most significant) kME were

taken from the networks to be analyzed. Module mem-

bership correlation thresholds were used to determine

whether a gene is highly associated (i.e., a “hub” gene;

FDR-q < 1.0E-11 for primed and acute FDR-p < 1E-7),

moderately associated (below hub-gene association and

FDR-p < 1.0E-2) or not associated (FDR-p > 1.0E-2) with

a module. This strategy resulted in five clusters of genes:

2 clusters with hub genes significantly correlated with

one and not the other network, 2 clusters with hub

genes significantly correlated with one network and less

significantly with the other dataset and a cluster contain-

ing hub genes strongly correlated to both networks.

Gene set enrichment analysis: pre-ranked analysis

Systematic differences between two network modules

were determined with gene set enrichment pre-ranked list

analysis [33]. The 1000 most significantly module mem-

bership associated genes from either the acute and/or the

primed networks were taken into the analysis, negative

correlations were set to zero, and genes were ranked on

strength of module membership to both networks. The

difference in rank-values between consensus primed and

acute was used as input for the analysis. GSEA pre-ranked

list analysis was applied using a 1000 permutations.

Quantitative RT-PCR and immunohistochemistry

Quantitative RT-PCR and immunohistochemistry were

performed as described in [10]. See Additional file 2:

Table S2 for primer information.

Differential gene expression analysis

Differential gene expression was applied to the pure

microglia datasets (see Additional file 3: Table S3 for these

lists) as well as to datasets related to several in vitro stimu-

lation conditions like LPS, IL-4, and IFNγ [27,34] which

were used as genesets for UserListEnrichment. Differential

gene expression was done using Limma [29] for micro-

array data and EdgeR for RNA-seq data [35].

Results

Aim and outline of the co-expression network analysis

Microglia are versatile cells that adopt different activa-

tion states and become primed during aging and neuro-

pathological conditions, but the transcriptional signature
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underlying the induction of this phenotype is yet un-

clear. To gain more insight in the microglia transcrip-

tome during aging and neuropathological conditions, a

WGCNA-based analysis workflow was set up consisting

of several phases (Figure 1). In the first phase, expression

profiles of pure populations of microglia from physio-

logical aging, accelerated aging (Ercc1), disease mouse

models for AD (App-Ps1) and ALS (Sod1) mice, and

acute immune activated (i.p. injection with LPS) microglia

were obtained and preprocessed in parallel (Figure 1,

phase 1). Only genes that could be detected by all plat-

forms were taken into account for further analysis. In the

second phase, for each gene expression dataset, a network

was created using WGCNA, resulting in modules that

Figure 1 (See legend on next page.)
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consist of branches of highly correlating genes (Figure 1,

phase 2). In addition, the individual primed microglia net-

works were combined into a consensus network, which

contains the commonalities of all four networks. For the

primed microglia networks, module colors were initially

randomly assigned and subsequently matched based on

the number of overlapping genes. The aim of the third

phase is to find modules related to the aging or neurode-

generative phenotype. Therefore, the Module Eigengene

(ME) was calculated, which is the first principal compo-

nent and represents the expression profile of the module.

Differential ME expression was used to identify modules

that associated with aging or neurodegeneration. In the

fourth phase, the similarity between these response mod-

ules from different networks was determined with pair-

wise comparisons. In the fifth phase, the modules were

annotated using KEGG-pathway and Gene Ontology en-

richment analysis, in order to obtain a better understand-

ing of the implications of priming for microglia function.

In the sixth phase, ‘hub’ genes were determined of the

acute and primed microglia consensus networks by

module membership (or kME) and compared. When

microglia become primed, a strikingly similar transcrip-

tional network (the consensus blue module) is induced

which is distinct from the network induced by acute

activation (LPS).

Generation of co-expression networks and identification

of modules related to phenotype

Expression profiles of pure microglia populations from

different mouse models were used to generate co-

expression networks. In these co-expression networks,

we searched for WGCNA modules that were differentially

expressed between conditions (i.e. young vs. aged, control

vs. App-Ps1 etc.). Two classes of differentially expressed

modules were identified; either up-regulated or down-

regulated between conditions. The up-regulated modules

are the blue modules in aged, Ercc1, App-Ps1, and Sod1

microglia, the red module in LPS-stimulated microglia as

well as the Sod1-specific dark-turquoise module. The

down-regulated modules are the dark-green modules in

aged, Ercc1, App-Ps1, and Sod1 microglia, the magenta

module in Ercc1, and the green-yellow module in LPS-

stimulated microglia. For an overview of all modules and

their relation to different conditions with their associated

p-values see Additional file 4: Table S4.

To determine the (dis)similarities between these

modules, a pair-wise comparison of all differentially

expressed modules was performed. A highly significant

overlap was observed between the 4 up-regulated blue

modules (p-values ranging from 1.79E-79 to 1.62E-146)

(Figure 1, phase 4) and the overlap of these blue modules

with the acute LPS-induced red module was much less

(p-values ranging from 2.44E-8 to 1.13E-29. These data

indicate that aging and neurodegeneration induce a

very similar up-regulated gene expression profile in

microglia. For a pair-wise comparison between all

modules identified in all mouse models, see Additional

file 5: Figure S1.

The overlap between the down-regulated dark-green

modules in aged, Ercc1, App-Ps1, and Sod1 microglia, as

well as the overlap of these modules with the down-

regulated green-yellow module of LPS-activated microglia,

was less pronounced (p-values ranging from 1.67E-04 to

5.56E-65). No significant overlap of the Ercc1-specific ma-

genta module with any other differentially expressed mod-

ule was observed.

In order to address the observed overlap between the

blue and dark-green modules in aged, Ercc1, App-Ps1, and

Sod1 microglia, we generated a consensus network, con-

sisting of co-expressed genes shared between the four indi-

vidual datasets. This consensus network contained two

modules: a blue and a dark-green module. The consensus

blue module, consisting of 295 genes, is up-regulated and

(See figure on previous page.)

Figure 1 Outline of the WGCNA analysis. Phase 1) Obtaining pure microglia datasets. Transcriptome datasets were obtained from microglia of

aged, accelerated aged, App-Ps1 transgenic (Alzheimer’s Disease model), Sod1 transgenic (Amyotrophic Lateral Sclerosis model), and i.p. LPS

injected mice (acute activation). Each dataset contained its own control. Phase 2) Co-expression network formation. Co-expression networks were

generated for 7512 genes of the indicated transcriptome datasets. Average linkage hierarchical clustering was applied to the topological overlap

matrix and branches of highly correlating genes were formed, which were cut and assigned a color. Primed microglia networks were combined

into a consensus network that represents the commonalities in the gene expression profiles of the individual primed microglia networks.

Phase 3) Differential ME expression. For each module the Module Eigengene (ME) was calculated, which represents the expression profile

of the module. A Kruskall Wallis between group test was applied to determine if ME values were significantly different between conditions,

to find modules that were related to phenotype. The consensus primed microglia blue modules and acute red module are depicted as a

box-plot containing the distribution of the ME values across the samples of each particular condition. Phase 4) Overlap between modules.

The Fisher’s exact test was used to determine the significance of the overlap between modules from different model systems. Phase 5) Annotation

of the modules. Modules were annotated using WebGestalt for GO and KEGG analysis. Phase 6) Comparison of core profiles. The correlation of each

gene to the module EigenGene (kME) values was calculated for all genes in the analysis of the consensus blue priming module. These consensus

primed microglia derived hub genes were subsequently compared to the acute activation network to find genes generally associated with

activation, uniquely with primed microglia, or uniquely with acute LPS activation.
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the consensus dark-green consensus module (205 genes) is

down-regulated in aged, Ercc1, App-Ps1, and Sod1 micro-

glia (these gene lists can be found in Additional file 6: Table

S5).

GO and KEGG annotation of modules related to

phenotype

The primed microglia blue modules (up-regulated in

aged, Ercc1, App-Ps1, and Sod1 microglia) and the acute

LPS-activated microglia red module (up-regulated in acute

LPS activated microglia) were most strongly enriched for

GOs “immune response” and “response to stress” and

KEGG pathways significantly enriched in the priming blue

modules were: “Alzheimer’s disease signaling”, “antigen-

presentation”, “lysosome” and “phagosome”. The acute red

module was most significantly enriched for the “ribosome”,

“Toll-Like Receptor (TLR) signaling” and “NOD-like re-

ceptor (NLR) signaling” pathways (Figure 2). The primed

microglia dark-green modules and the acute green-yellow

module were significantly down-regulated in primed

microglia mouse models and acute inflammation (LPS)

compared to control. In the App-Ps1, Sod1, and LPS

models, a significant enrichment for the “cellular meta-

bolic process” GO category was observed. The App-Ps1

dark-green module was enriched for “neurotrophin”

KEGG-pathway (p = 3.29E-5), suggesting reduced neur-

onal support by microglia in App-Ps1 mice (Figure 2).

The acute, down-regulated green-yellow module was

significantly enriched for the “lysosome” KEGG path-

way (Figure 2), a category that was increased in primed

microglia, further highlighting the fundamental differ-

ences between the acute classical M1-profile and the

priming profiles. In addition, some model-specific differ-

entially expressed modules were identified: the down-

regulated brown module in physiological aging, which is

enriched for “proteoglycan catabolic process” GO (p =

0.0023), the down-regulated magenta module in Ercc1,

enriched for “cellular macromolecule metabolic process”-

GO, and the dark-turquoise module which is up-regulated

in all Sod1 samples, is unrelated to age of the animals, and

is significantly associated with “cell-division” and “organelle

organization” – GO’s (Figure 2c; p = 2.14E-6, and p =

1.46E-5 respectively). A complete list of all significantly

enriched GOs and KEGGs is given in Additional file 7:

Table S6.

The priming modules strongly overlap with an

independent age-induced microglia expression dataset

The effect of aging on microglia gene expression was re-

cently determined by direct RNA sequencing with a focus

on proteins for sensing endogenous ligands and microbes,

referred to as the microglia sensome [36]. Using this data-

set, genes significantly increased in expression during

aging were determined and compared to our up-regulated

primed and acute microglia modules. This microglia aging

profile significantly overlapped with the primed microglia

blue modules (ranging from p = 1.56E-25 to 6.39E-44; Fig-

ure 2a), and much less significant with the acute LPS-

stimulated red module (p = 8.33E-13). This observation

validates our observation that the up-regulated profiles of

primed microglia is very similar to the transcriptional pro-

file reported for aged microglia using an independent ex-

pression dataset.

M1- and M2-classifications in relation to the blue and red

modules

Microglia, in analogy to macrophage activation termin-

ology, are often classified as M1 or M2, with M1 consid-

ered as a classical pro-inflammatory activation state and

M2 as a tissue supportive, remodeling or anti-inflammatory

state [10]. Using the WGCNA function userListEnrich-

ment, the up-regulated primed blue and acute red modules

were compared to M1 and M2 macrophage datasets

(Figure 2). The acute red microglia module showed a highly

significant overlap with LPS-stimulated macrophages (p =

2.45E-45), and this was a much more significant overlap

than was observed with primed microglia (p = 1.22E-5 to

3.06E-16). Only the Sod1 up-regulated blue module had a

minor overlap with the M2 up-regulated profile (p = 6.92E-

5). These results suggested that the primed microglia phe-

notypes did not resemble a clear M1, M2 or intermediate

phenotype.

Microglia activation and priming is associated with a

decreased expression of the ‘microglia unique signature’

Recently, a ‘microglia unique’ gene expression signature

was reported [37], but the relationship between this signa-

ture and microglial activation is unknown. We compared

this profile to our differentially expressed microglia mod-

ules. Where no significant overlap with the up-regulated

blue module was detected, surprisingly all down-regulated

primed dark-green and acute green-yellow modules signifi-

cantly overlapped with this core microglial signature (Fig-

ure 2b; p-values ranging from p = 1.17E-5 to p = 8.11E-24).

Hub genes of the down-regulated dark-green and green-

yellow module were determined, and many of them were

present in the microglia-unique expression signature, in-

cluding Mertk, Tmem119, P2ry12, P2ry13, SPARC, and

Cx3cr1 (Additional file 8: Figure S2). This suggests that

upon activation or priming, microglia not only acquire an

activation signature, but also decrease their ‘surveilling’

state expression profile. The genes of down-regulated con-

sensus modules are listed in Additional file 6: Table S5.

Priming and acute LPS activation induce distinct

transcriptional programs

To determine the differences between acute activation

and priming, the blue and red modules were compared
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using two approaches: hub gene classifications and ranked

gene set enrichment analysis. First, WGCNA was used to

identify hub genes that have a strong interrelation (i.e., an

expression pattern highly similar to the module Eigengene

(kME)). Hub genes have been reported to function as im-

portant determinants of a phenotype, for example as

markers for cell types or intracellular biological processes

[16]. For both the acute red and the consensus primed

microglia blue modules, hub genes were determined. The

35 most ‘connective’ genes of both networks were catego-

rized based on correlation thresholds (see materials and

methods) in 5 groups according to the strength of the re-

spective association with the up-regulated acute red and

primed blue modules: “acute”, “mainly acute”, “general”,

“mainly primed” and “primed” hubs and depicted as heat-

maps (Figure 3a) and as a scatterplot (Figure 3b).

“Acute” hub genes mark processes specifically activated

in the acute microglia response, whereas “primed” hub

genes mark processes occurring in primed microglia.

“General” hubs mark processes common to both acute

and primed microglia and therefore relate to general

microglial activation. Genes that belong to the “acute” hub

category are not significantly associated with any of the

other datasets and examples of “acute”-unique hub genes

are Map3k8 and Socs3. The “general” hub category con-

tained genes that were up-regulated (and highly con-

nected) in all five mouse models. This hub included genes

like Tlr2, Il-1β, Cxcl10, and Spp1, representing a group of

genes consistently up-regulated in activated microglia. Im-

portantly, also a “primed” hub was identified containing

genes specifically increased in expression and highly con-

nected in primed microglia, including genes as Apoe, Axl,

Clec7a, Itgax (also known as CD11c), and Lgals3 (also

known as Galectin-3 and Mac2). Of these genes Lgals3

has been associated with microglia priming during accel-

erated aging [10] and microglia activation following axonal

injury [38]. Also two intermediate hub categories were de-

fined, containing genes that were primarily highly con-

nective in either primed microglia or acute LPS activation.

The “mainly primed” hub contained genes like Cybb and

Csf1 (also known as Mcsf) that were highly connected in

the priming datasets and were also significantly correlated

in the acute data set, but to a lesser extent. In the “mainly

acute” hub, genes were significantly but not very strongly

associated to any dataset other than the “acute” profile. It

contained genes like Nf-kb2 and Irf1 that were highly con-

nected in the acute dataset and were also significantly cor-

related in the primed data sets, although not in all mouse

models or to a lesser degree.

Ranked gene set enrichment analysis was applied to

determine potential functional differences between

primed and acute networks directly. Gene sets that were

significantly enriched in acute activation were NF-κB

factor p65 (RelA), toll like receptor, and NOD like

receptor signaling (Figure 2c). Gene sets significantly

enriched in primed microglia were: Alzheimer’s and Par-

kinson’s disease signaling, oxidative phosphorylation,

mitochondria, and lysosome (Figure 2d; for all annota-

tions see Additional file 7: Table S6). These data indicate

that the expression profiles of primed and acute activated

microglia differed in several ways, and the most promin-

ent changes were oxidative phosphorylation, and lysosome

in primed microglia and NF-κB signaling in acute activa-

tion. These results are in agreement with the findings of

the Webgestalt-KEGG-pathway analysis, further strength-

ening the notion that the primed microglia profile sub-

stantially differs from the M1 or M2-phenotype observed

in acute activated microglia.

Specific expression profiles for aged, Ercc1, App-Ps1, and

Sod1 microglia

As described above, a core consensus expression profile

was found that describes the commonality of the primed

microglia response in different mouse models. To deter-

mine mouse model-specific components, genes that sig-

nificantly associated to the blue module in any, but not

all of the mouse models were selected. These genes were

grouped according to specificity and association strength

1) to the individual mouse models, 2) to both aging

models (physiological aging + Ercc1 accelerated aging), or

3) to both neurodegenerative disease models (App-Ps1 +

Sod1; Figure 4a). To functionally annotate the differences

between conditions, ranked gene set enrichment analysis

was performed for aging models (aging + Ercc1) vs. disease

models (App-Ps1 + Sod1). Gene sets significantly enriched

in aging models were related to ribosome activity and

interferon alpha/beta signaling (Figure 3b). The aging spe-

cific ribosome activity was supported by ribosome-related

hub genes RPL3,9,28,39,41 and RPS15. No gene sets were

significantly enriched in the general neurodegeneration or

individual neurodegeneration disease modules. The genes

of these model-specific modules are listed in Additional

file 6: Table S5.

Validation of the primed blue module and model

system-specific gene profiles

Differential expression of several hub genes of the con-

sensus blue module as well as mouse model-specific

gene expression was validated using quantitative RT-

PCR analysis of Ercc1 and App-Ps1 microglia. Expres-

sion levels of primed microglia blue module hub-genes

Axl, Cybb, Apoe, Clec7a, and Cox6a were determined

(Figure 3b). All these genes were significantly increased

in Ercc1 and App-PsS1 microglia compared to controls,

confirming the validity of the consensus primed micro-

glia blue module. Lgals3 is a hub gene in the primed

microglia consensus module and identified as a marker

for primed microglia in accelerated aging Ercc1 mutant
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mice [39]. Brain sections of aged, Ercc1, and App-Ps1

mice were stained and Iba1/Lgals3 double positive cells

were only observed in aged, Ercc1, and App-Ps1 animals

and not in young or aged-matched controls (Additional

file 9: Figure S3). Mouse model-specific expression of

several hub genes was confirmed using quantitative RT-

Figure 2 (See legend on next page.)
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PCR analysis of Ercc1 and App-Ps1 microglia. CD14,

Gm1673, and Ldlr expression was restricted to the App-

Ps1 blue module and significantly induced in 15 months

old App-Ps1 microglia while their expression was not in-

creased in Ercc1 microglia (Figure 3d). The Ccl3 gene

was restricted to the general aging module and the Oas2

gene was most significantly associated with the Ercc1

blue module. Their expression level was significantly in-

creased in Ercc1, but not in App1-Ps1 microglia, con-

firming the specificity of the identified sub-modules.

Signatures of acute and primed microglia are preserved

in brain tissue samples

To determine, if the transcriptional profiles associated

with primed microglia are preserved in mouse brain tis-

sue, expression sets of App-Ps1, aged, rTg4510 and ME7

prion infected mice (-/+ LPS) were analyzed. rTg4510

mice overexpress the a mutant form of human tau that

causes fronto-temporal dementia and parkinsonism

linked to chromosome 17 (FTDP-17). rTg4510 mice pro-

vide a model for tauopathies, including Alzheimer’s dis-

ease. ME7 prion brain infection is a frequently used

model system to induce microglia priming. The overlap

between the up-regulated blue modules in pure micro-

glia and significantly up-regulated genes in brain tissue

expression data was determined as a measure of preser-

vation. Significant overlap was observed between pure

microglia up-regulated blue modules and the up-regulated

genes in App-Ps1 (p-values ranging from 7.35E-10 to

2.68E-32) and aging (p-values ranging from 9.24E-7 to

7.56E-20; Additional file 10: Table S7) brain tissue. No

significant overlap of the upregulated App-Ps1 and aging

genes was observed with the up-regulated acute red mod-

ule of microglia from LPS injected mice. Interestingly, the

ME7 response genes (main effect of ME7) significantly

overlapped with the primed blue modules (p-values ran-

ging from 7.31E-17 to 2.58E-50), but much less with the

acute red module (p = 3.5E-9). In contrast, a highly signifi-

cant overlap between the LPS response genes (main effect

of LPS) with the up-regulated acute red module was

observed (Additional file 10: Table S7, p = 8.7E-36) and

the overlap with the blue primed modules was less

pronounced (p-values ranging from 1.67E-4 to 1.74E-14).

Similar results were obtained with the rTg4510 dataset; a

highly significant overlap with the primed blue microglia

modules was found (p-values ranging from 5.95E-8 to

2.68E-30). These data suggest that signatures of primed,

but not acute activated, microglia are preserved in brain

tissue expression data from models of Alzheimer’s disease,

prion infection and, aging.

Comparative WGCNA analysis of brain tissue and pure

microglia expression data

WGCNA has successfully been applied to brain tissue ex-

pression data to identify modules enriched for particular

cell types like microglia [1,17,36,40], but it is currently un-

clear to which degree these microglial modules resemble

the profile of pure microglia. We applied WGCNA to

brain tissue (App-Ps1, aged, Me7, and rTg4510) and pure

microglia (aged, App-Ps1 and Ercc1) datasets, to generate

two parallel consensus networks (Figure 5a). In brain tis-

sue expression data, a consensus green module was

found, that is significantly up-regulated with aging and

neurodegeneration (Figure 4b). The brain tissue con-

sensus green WGCNA module significantly overlapped

with microglia modules reported in other brain tissue

expression studies (p = 1.19E-57 to 8.41E-32; Additional

file 11: Table S8a).

The overlap between the consensus brain tissue green

module with the identified individual pure microglia

blue modules, the consensus blue module, and the acute

LPS red module was determined (Additional file 11:

Table S8b). A significant overlap was observed with all

primed microglia blue modules (p = 5.16E-48 to 4.95E-

18) but a less significant overlap was present with

the acute activation red module (1.61E-7). Next, this

consensus green microglia-enriched profile was com-

pared to the consensus blue primed microglia profile

(Figure 1a), hub genes were allocated, and five categories

were defined (see Methods): “brain tissue derived micro-

glia signature”, “mainly brain tissue derived microglia

signature”, “general microglia”, “mainly pure microglia”,

and “pure microglia”. The “general microglia”-hub con-

sists of highly connective genes that were found both in

(See figure on previous page.)

Figure 2 Annotation of the up- and down-regulated modules. a) The up-regulated priming and acute activation modules are distinct. The

main up-regulated modules (blue modules for priming datasets and red for the acute dataset) were annotated with Webgestalt to determine

significantly enriched KEGG-pathways and Gene Ontologies. These results are depicted with the multiple testing (FDR) corrected p-values. Using

the UserListEnrichment function, significance was calculated for the overlap between these modules and gene sets significantly up-regulated in

macrophages stimulated with IL-4, IFN? or LPS, and microglia-aging profile. For the UserlistEnrichment results Bonferroni multiple-testing p values

are shown. b) KEGG-GO and UserlistEnrichment annotation of the down-regulated modules. The main down-regulated modules (dark-green modules

for priming datasets and green-yellow for the acute dataset) were annotated with Webgestalt to determine significantly enriched KEGG-pathways and

Gene Ontologies. These results were depicted as a table with multiple testing (FDR) corrected p-values. Using the UserListEnrichment function,

significance was calculated for the overlap between these modules and the Butovsky microglia-signature [36]. For the UserlistEnrichment results Bonferroni

multiple-testing p values are shown. c) KEGG-GO annotation of mouse model specific modules The Ercc1 down-regulated magenta module and

ALS dark-turquoise up-regulated module were GO annotated, multi-testing (FDR) corrected p values are depicted.
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the pure microglia and in the microglia-enriched brain

tissue modules and contains genes like: Spp1, Csf1, Axl,

B2m, Lgals3bp, and Tlr2. The “pure microglia” hub con-

tains, amongst others, the Clic4, Rap2B, and Gapdh

genes that are highly connective in microglia but not in the

microglia-enriched brain tissue module. The “brain tissue-

derived microglia signature” hub contains genes like C1QB,

C1QC, and Irf8. The intermediate “mainly pure microglia”

hub contains genes like Cybb and Igf1, and the “mainly

brain tissue microglia” hub contains previously reported

microglial hub genes Tyrobp and Trem2, as well as the

astrocyte marker Gfap (Figure 4c,d). The genes of these

pure microglia and brain tissue modules are listed in Add-

itional file 6: Table S5. Since these data indicate that

C1QB, C1QC, Tyrobp and Trem2 expression is not in-

creased in primed or acute activated microglia, the ex-

pression level of these genes was checked a recently

published database by Zhang and colleagues [41] and

we found that all these genes are very highly expressed

in microglia and therefore likely identified as hub genes

for microglia in brain tissue expression data.

These data show that the consensus profile of microglia

(-enriched) modules found in different pure microglia and

brain tissue expression datasets share similarities at the

hub gene level, but also are critically different. These dif-

ferences are likely caused by a combination of changes in

microglia cell numbers in the brain under neuropatho-

logical conditions and microglia-intrinsic changes in gene

expression. Several papers have shown that neuropathol-

ogy is associated with increased microglia cell proliferation

[10,24,42]. As a consequence, typical hub genes of

microglia modules identified using brain tissue expres-

sion data are not necessarily hub genes in pure micro-

glia expression data.

Discussion and conclusions

Primed microglia are characterized by hypersensitive re-

sponses to proinflammatory stimuli. It has been sug-

gested that priming of microglia is induced by chronic

exposure to low-grade inflammation, as observed in neu-

rodegenerative diseases and brain aging [9]. Microglia

priming has been described to occur during aging and in

a variety of CNS-diseases including AD, Parkinson’s

disease, Multiple Sclerosis, ALS, stroke, Wallerian de-

generation, and Me7 prion infection [43]. Furthermore,

it is hypothesized that this hyper exaggerated responsive-

ness of the primed microglia contributes to the observed

neurodegeneration [11]. The signaling pathways and

mechanisms involved in the induction of priming are

unknown. We therefore set out further to characterize

the mechanisms of microglia priming using gene expres-

sion profiling in mouse models for aging and neurode-

generative disease. Using WGCNA we have identified

specific gene expression networks associated with micro-

glia priming. A visual summary of the main findings of

this manuscript are depicted in Figure 6.

One of the main objectives of this study was to investi-

gate the hallmarks of gene expression profiles of primed

microglia isolated from mouse models for aging and

neurodegeneration. We show that in all mouse models

investigated, independent of the origin and platform

used, these primed microglia expressed a core gene ex-

pression profile, which substantially differed from the in-

flammatory gene network observed in acutely activated,

pro-inflammatory, microglia. The degree of preservation

of this core gene expression profile in physiological

aging, Ercc1, App-Ps1, Sod1, and Me7 mice made it very

likely that these microglia acquired a similarly primed

phenotype. In the current paper, we show that primed

microglia are clearly different from M1 and M2 macro-

phages or M1 ex-vivo isolated microglia. The observa-

tion that activated microglia in chronic brain disease/in

a neurodegenerative disease do not resemble an M1 or

M2 phenotype was already suggested by Chiu et al. [4],

whose Sod1-dataset was used in the current study. They

proposed that the pattern of regulation of a particular

set of genes, including Axl, can distinguish LPS stimu-

lated microglia from Sod1-associated microglia. Based

on the primed microglia gene expression network we

predict that that primed microglia are characterized by

expression of cell surface markers like Itgax, Lgals3, Axl,

Clec7a, MHC class 2, and Cxcr4.

The major functions of the primed microglia gene ex-

pression network show that these cells are involved in

immune-, phagosome-, lysosome-, oxidative phosphoryl-

ation, and antigen presentation signaling pathways. These

(See figure on previous page.)

Figure 3 (Dis)similarities in primed and acutely activated pure microglia. a) Heatmaps of acute to chronic activation categories. Hub genes (or

genes that are centrally located in a module) were assigned by module membership. The 35 most correlated genes from the acute red and

primed microglia blue module were categorized in 5 categories and depicted using a sidebar. “Acute-unique” hubs (red sidebar), “Mainly Acute”

hubs with (lower) significant association in any of the primed models (dark-red sidebar), “General” hubs (black sidebar), “Mainly primed” hubs (dark

blue sidebar) and “Primed” unique hubs (blue sidebar). b) Scatterplot of priming blue and acutely activated red module membership values. For

each gene which was significantly associated to either the acute or the primed networks, module membership values for the acute red and

primed blue modules were plotted. Top 50 most connected hubs genes from acute and consensus primed microglia networks were assigned one

of the five colors as described under a (filled dots). c, d) Gene set enrichment analysis of primed and acutely activated microglia. c) Acute activated

microglia were significantly enriched for NF-?B, NOD, and TLR signaling, d) Primed microglia were enriched for KEGGs lysosome, oxidative

stress, and AD-signaling.
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functions fit the needs of chronically degenerating brain tis-

sue. In response to tissue damage, microglia migrate to the

site of injury and phagocytose tissue debris or damaged

cells [6], thereby potentially degrading healthy synapses

and contributing to the ongoing degenerative process [44].

In the used mouse models for neurodegeneration and

aging, the phagosome and closely related lysosome KEGG

pathways were indeed significantly enriched in the consen-

sus blue module, suggesting aging- or neuropathology-

induced phagocytic activity of primed microglia.

Using WGCNA, hub genes were identified that are

likely candidate genes that drive the observed phenotype

[1,19-21]. Interestingly, four hub genes unique to the

primed microglia gene expression network, Galactin-3,

Igf1, Csf1, and Axl were previously shown to be instru-

mental for microglia functions including proliferation,

activation, and phagocytosis. Igf1 signals through Galac-

tin-3 and inactivation of the Galactin-3 gene resulted in

Igf1 insensitivity, decreased microglia activity and a sig-

nificant increase in the ischemic lesion size [38,45]. Igf1

signaling is related to neuroplasticity and neuroprotec-

tion [46] and is shown to mediate motor neuron protec-

tion and prolonged survival in ALS animal models[4].

Csf-1-mediated microglia proliferation has been shown

to be important in chronic neurodegeneration [41] and

inhibition of Csf-r1 signaling in mice resulted in

complete ablation of microglia [47]. The tyrosine kinase

receptor Axl is up-regulated in microglia in various neu-

rodegenerative and demyelinating conditions, such as

cuprizone-induced demyelination, EAE and in MS lesions,

and is shown to play an important role in phagocytosis of

apoptotic cells and myelin [48-50]. Axl KO mice experi-

ence enhanced inflammation and delayed myelin removal

in EAE-mice [49], and fewer mature oligodendrocytes and

more axonal damage in cuprizone induced demyelination

[48]. Contrarily, a recent paper showed that Axl is an

inflammatory phagocytic receptor whose expression was

induced by pro-inflammatory mediators [51]. The up-

regulation of these hub-genes suggests that microglial

priming also has adaptive aspects, necessary to cope with

increased neurodegeneration and environmental stress.

In a recent study, microglia were compared to other

myeloid immune cells and a microglial signature, which

is dependent on TGFβ signaling, was reported [38]. This

list of genes was enriched in the down-regulated mod-

ules of both primed and acutely activated microglia.

Two genes that are particularly interesting in this re-

spect are SPARC and Cx3cr1, which are hub genes of

the down-regulated consensus module. SPARC regulates

the activity of growth factors and cytokines. Enhanced

microglia proliferation, microgliosis around stroke le-

sions, and enhanced recovery is observed in SPARC null

mice [52]. Cx3cr1 is ubiquitously expressed by microglia

and plays an important role in microglia-neuron commu-

nication [53]. It was shown that Cx3cr1 deficiency resulted

in microglia activation, and increased neurodegeneration

following LPS injections in PD and ALS-models [49].

Moreover, Cx3cr1 deficiency worsens the AD-related

neuronal deficits, associated with microglial activation and

elevated chemokines [50]. In contrast, others reported that

in two mouse models for AD, Cx3cr1-deficiency resulted

in increased beta amyloid clearance and prevented neuron

loss [54,55]. Furthermore, lack of Cx3cr1 was shown to

reduce infarct size, ischemic damage and inflammation

[56]. The notion is that constitutively expressed Cx3cl1

(the ligand for Cx3cr1) provides a tonic inhibitory signal

to microglia to remain quiescent, and that deficiency re-

sults in hyperactivated microglia [57,58]. This indicates

that upon activation, microglia partially lose their resting

signature and acquire a priming or acute signature.

Besides the aforementioned common primed micro-

glia gene expression network, additional, specific ele-

ments of the microglia gene expression networks were

found, exclusively for the aging, AD, or ALS mouse

models used in our study. Although it is impossible to

eliminate potential confounding factors like isolation

protocols, mouse strain, age, CNS regions used, and

different expression profiling methodologies, we could

confirm the model-specific differences in gene expres-

sion in App-Ps1 and Ercc1 mice with quantitative RT-

PCR. These model-specific changes in gene expression

were related to an increased interferon-type 1 signature

in both aging models, an altered cell-cycle GO in Sod1

and decreased neurotrophin signaling in App-Ps1. An

aging-associated type-1 interferon signature is recently

described in the choroid plexus of aging mice and

(See figure on previous page.)

Figure 4 Model system-specific microglia transcriptional signatures. a) Heatmap of model system-specific hub genes. The top 100 most significantly

associated module membership-genes from the App-Ps1, Sod1, Aged, and Ercc1 blue modules. Genes belonging to the consensus network were

removed. The other genes were grouped according to significant association with both Aging models (green sidebar), both Disease models (dark-pink

sidebar), physiological aging (dark-green sidebar), Ercc1 (dark-olivegreen sidebar), App-Ps1 (purple sidebar), and Sod1 (orange sidebar). b) Quantitative

RT-PCR validation of consensus hub genes. RNA was isolated from App-Ps1 and Ercc1 FACS sorted microglia and mRNA expression levels were

determined. The fold expression, normalized to HMBS, compared to its control with the standard error is depicted. c) Quantitative RT-PCR validation of

model-specific hub genes. RNA was isolated from App-Ps1 and Ercc1 FACS sorted microglia and mRNA expression levels were determined. The fold

expression, normalized to HMBS, compared to its control with the standard error is depicted. d) General aging microglia are significantly enriched for

KEGG ribosome and IFNa-ß signaling. GSEA was used to determine differences between consensus chronic activation and acute activation. Primed

microglia are enriched for KEGGs ribosome and IFNa-ß signaling.
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Figure 6 Summary figure describing the main findings of the current paper. Surveilling microglia are activated either acutely by a ligand such as

LPS or by a neurodegenerative and aging brain environment.

(See figure on previous page.)

Figure 5 Comparison of pure-microglia and brain tissue-derived microglia-enriched modules. a) Consensus co-expression networks of brain tissue

transcriptomes. Co-expression networks were generated for the indicated brain tissue transcriptome datasets. b) brain tissue consensus module

expression boxplots. The ME of the green microglia-enriched module in the Me7, App-Ps1, Aging, and rTg4510 datasets was significantly up-regulated

in all model systems. ME expression across all datasets and conditions is depicted as box-and-whisker plots. c) Scatterplot of the hub genes of the

consensus pure microglia module and the brain tissue microglia-enriched module. For each gene, which was significantly associated to the pure

microglia or the brain tissue microglia-enriched networks, module membership values for the brain tissue green and microglia modules were plotted.

Top-50 most connected hubs genes from brain tissue to pure microglia were assigned one of five colors (filled dots). “Pure microglia” (blue), “Mainly

pure microglia“ (dark-blue), “General microglia” (black), “Mainly brain tissue-derived microglia signature” (dark-green) and “brain tissue-derived microglia

signature” (green). d) Heatmaps of pure microglia to brain tissue microglia-enriched categories. Heatmaps of the consensus profiles of pure microglia

and brain tissue datasets as indicated are depicted. Hub genes were assigned by module membership, the top-35 most correlated genes from the

pure microglia and brain tissue microglia-enriched consensus modules were categorized in 5 categories as described in c).
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humans [59]. This interferon signature had a negative

effect on brain function, and was induced by brain-

derived signals derived from the CSF. In addition, it

was suggested that interferon type 1 plays a role in

microglial priming [42].

Microglia isolated from App-Ps1 mice were hall-

marked by a decreased expression of neurotrophin re-

lated genes. In App-Ps1 mice, amyloid plaque load

increases with age and is associated with a strong im-

mune signaling profile to which microglia contribute

[60]. Interestingly, two App-Ps1 model system-specific

hub-genes, LDL-receptor and CD14, are associated

with Amyloid Beta (Aβ) clearance. Microglia surround

amyloid fibril deposits and have been suggested to be

involved in their phagocytosis [61]. Increased LDL re-

ceptor expression prevented amyloid deposition and

led to an increased Aβ clearance [62]. CD14 is required

for Aβ stimulation of microglia and inhibition of CD14

prevents initiation of Aβ phagocytosis [62]. This indi-

cates that using WGCNA, we could identify disease-

specific module components with known biological

relevance in AD.

WGCNA is often used to generate microglia specific

profiles in brain tissue expression data [1,19,21]. Simi-

larly, we identified a microglia-enriched consensus mod-

ule in brain datasets, indicating that primed microglia in

Me7, aging, rTg4510, and App-Ps1 mice had a similar

gene expression profile. However, comparison of this

brain tissue microglia-enriched module to the pure

microglia expression profiles, showed substantial differ-

ences in hub genes. In the brain tissue data, Trem2 and

Tyrobp are identified as hub genes, where in pure micro-

glia they are only weakly associated with the consensus

priming module, suggesting that these genes might not

play a critical role in microglia priming. Tyrobp and

Trem2 are highly expressed in microglia, and therefore

often identified as hub genes of microglial modules in

brain tissue datasets. Changes caused by altered relative

cell numbers in brain tissue expression data are readily

detected using WGCNA, resulting in cell type-specific

modules. However, it is very difficult to discriminate be-

tween cell intrinsic alterations in gene expression levels

and changes in cell numbers in cell type-specific mod-

ules. In addition, other cell types, such as astrocytes,

possibly contaminate these modules. Summarizing, our

data indicate that a complementary WGCNA analysis of

both pure cell populations and brain tissue expression

data is required in order to fully unveil regulatory gene

networks.

In this study, we analyzed primed microglia from dif-

ferent neurodegenerative conditions. Microglia priming

is often regarded as a confounding factor, resulting in

exacerbation of neurodegeneration in a wide range of

conditions [11]. The core microglia priming module

described in this study supports the notion of a generic

microglia response in different neuropathologies, but

this module mostly contains genes related to phagocyt-

osis and cell proliferation, with tissue protective ele-

ments. This indicates that primed microglia adopt an

altered inflammatory profile predominantly adapted for

phagocytic clearance and in a state of immune readiness,

possibly necessary to cope with inflammatory and neu-

rodegenerative conditions.

Additional files

Additional file 1: Table S1. Overview datasets and references included

in the meta-analysis. Listed datasets were obtained via GEO or Arrayexpress

or generated by either of the authors from the current manuscript and used

in this manuscript.

Additional file 2: Table S2. Primer list of qPCR primers used for validation

of hub-genes.

Additional file 3: Table S3. Differential gene expression analysis. In

addition to the WGCNA analysis the genes included in the analysis

differential gene expression analysis was performed and the results are

depicted.

Additional file 4: Table S4. Differential Module Eigengene (ME) expression

for all modules of all pure microglia datasets. Kruskall Wallis between group

test was applied to determine whether a module was differentially expressed

or not. In addition the direction of differential expression is described

as up- or down regulated with genotype or phenotype.

Additional file 5: Figure S1. Overlap heatmap. Differentially expressed

modules were compared using a Fisher’s exact test and depicted as a

heatmap in which the intensity of the red color corresponds to p-value.

A p-value cut-off of 1E-100 was used.

Additional file 6: Table S5. Genes module assignments, module

membership and mouse model specific elements. WGCNA was applied

to the expression datasets and genes were assigned to modules using a

hard-clustering approach as well as with Module Membership values with

corresponding FDR multiple testing corrected p-values.

Additional file 7: Table S6. Annotations - Results of WEBGESTALT and

GSEA enrichment analyses. WEBGESTALT GOs, KEGGs and Benjamini

Hochberg Multiple Testing corrected p-values for all significantly differentially

expressed modules.

Additional file 8: Figure S2. (Dis)similarities in the down-regulated

primed microglia and acute activated microglia modules. a) Heatmaps of

acute to primed categories. Hub genes were assigned by module

membership. The top-35 most correlated genes from the acute green-

yellow and primed dark-green module were categorized in 5 categories

and depicted using a sidebar. Acute-unique hubs (green-yellow sidebar),

Mainly Acute hubs with (lower) significant association in any of the

chronic models (yellow sidebar), General hubs (grey sidebar), Mainly

primed hubs (green sidebar) and Primed unique hubs (dark-green sidebar).

b) Scatterplot of consensus primed microglia dark-green and acute

green-yellow module memberships- values. Module membership values

of the consensus priming dark-green and acute green-yellow down-

regulated modules were depicted as a scatterplot. In addition, highlighted

genes are present in the recently reported microglia core signature [38],

which is enriched in the down-regulated profiles.

Additional file 9: Figure S3. Primed microglia in aged, Ercc1 and

App-Psn1 mice. Staining of primed microglia in i.p. PBS or LPS injected,

aged, Ercc1, and App-Ps1 mice. Coronal (App-Ps1) and sagittal (rest)

sections were co-stained with Iba1 (microglia, green) and Lgals3 (or

Mac2) (primed microglia, red). Representative images of the cortex and

brain stem are depicted. No Mac2 expression was detected in LPS

injected mice, primed microglia were detected in both cortex and brain

stem in aged mice (indicated by arrows). As previously reported [10], in
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Ercc1 mutant mice, microglia priming was most pronounced in the brain

stem (arrow). In App-Ps1 animals, plaque-associated microglia also expressed

Mac2 (arrow), the brain stem was present in the sections analyzed.

Additional file 10: Table S7. Preservation of the chronic microglia

module brain tissue datasets. Differentially expressed gene lists from

brain tissue datasets: App-Ps1 and control frontal cortex, rTg4510 and

control brain tissue, aging brain tissue, ME7 inoculation hippocampus

with and without LPS and ME7 and mock inoculation on different time

points were used as input for userlistenrichment function. Significance of

the overlap between the significantly differentially expressed gene lists

and the blue and red (up-regulated) modules is depicted.

Additional file 11: Table S8. Overlap between brain tissue and pure

microglia priming microglia modules. a) The significance of the overlap

between the green consensus brain tissue microglia module and other

microglia modules identified in brain tissue datasets is depicted. b) The

significance of the overlap between the green consensus brain tissue

microglia module and the pure microglia priming blue modules and

acute activated red module is depicted.
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