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A B S T R A C T

Purpose
A phase I/II trial was performed to evaluate the safety and immunogenicity of a novel vaccination
with �-type 1 polarized dendritic cells (�DC1) loaded with synthetic peptides for glioma-associated
antigen (GAA) epitopes and administration of polyinosinic-polycytidylic acid [poly(I:C)] stabilized by
lysine and carboxymethylcellulose (poly-ICLC) in HLA-A2� patients with recurrent malignant
gliomas. GAAs for these peptides are EphA2, interleukin (IL)-13 receptor-�2, YKL-40, and gp100.

Patients and Methods
Twenty-two patients (13 with glioblastoma multiforme [GBM], five with anaplastic astrocytoma
[AA], three with anaplastic oligodendroglioma [AO], and one with anaplastic oligoastrocytoma
[AOA]) received at least one vaccination, and 19 patients received at least four vaccinations at two
�DC1 dose levels (1 � or 3 � 107/dose) at 2-week intervals intranodally. Patients also received
twice weekly intramuscular injections of 20 �g/kg poly-ICLC. Patients who demonstrated positive
radiologic response or stable disease without major adverse events were allowed to receive
booster vaccines. T-lymphocyte responses against GAA epitopes were assessed by enzyme-
linked immunosorbent spot and HLA-tetramer assays.

Results
The regimen was well-tolerated. The first four vaccines induced positive immune responses against at
least one of the vaccination-targeted GAAs in peripheral blood mononuclear cells in 58% of patients.
Peripheral blood samples demonstrated significant upregulation of type 1 cytokines and chemokines,
including interferon-� and CXCL10. Nine (four GBM, two AA, two AO, and one AOA) achieved progression-
free status lasting at least 12 months. One patient with recurrent GBM demonstrated sustained complete
response. IL-12 production levels by �DC1 positively correlated with time to progression.

Conclusion
These data support safety, immunogenicity, and preliminary clinical activity of poly-ICLC-boosted
�DC1-based vaccines.

J Clin Oncol 29:330-336. © 2010 by American Society of Clinical Oncology

INTRODUCTION

Early phase studies of glioma vaccines have shown
feasibility and encouraging preliminary clinical
activity.1-9 The ultimate success of glioma vaccines
likely depends critically on the further refinement of
strategies to promote type 1 immunity10-12 and to

target multiple glioma-associated antigen (GAA)
epitopes, given the marked antigenic heterogeneity
of gliomas.13,14

To this end, this study employed two novel
strategies based on our own preclinical studies. First,
we implemented culture methods for �-type 1 po-
larized DCs (�DC1) that are able to produce high
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levels of interleukin (IL) -12 and induce long-lived type 1 T-cell re-
sponses against tumor-associated antigens more efficiently than stan-
dard mature DCs.15,16 Second, we incorporated administration of the
immunoadjuvant polyinosinic-polycytidylic acid [poly(I:C)] stabi-
lized by lysine and carboxymethylcellulose (poly-ICLC), which has
been shown to be safe through extensive evaluations in patients with
malignant glioma,17-19 to enhance the efficacy of GAA-targeting vac-
cinations, as we demonstrated in glioma-bearing mice.20,21

The HLA-A2–restricted epitopes included two that we
had previously identified, an IL-13R�2-derived analog peptide
(IL-13R�2345-353:1A9V)22,23 and EphA2883-891,24,25 as well as two
additional epitopes, YKL-40201-210

26,27 and gp100209-217:M2.28

Thus, this study is the first to evaluate �DC1 loaded with GAA
epitopes in combination with poly-ICLC in humans. We hypothe-
sized that this regimen would prove to be safe, and would induce
potent antiglioma immune responses.

PATIENTS AND METHODS

Patients

Patients with recurrent malignant glioma were enrolled with informed
consent and approvals by the institutional review board and US Food and
Drug Administration (BB-IND#12415). Clinical characteristics of patients are
summarized in Table 1 and Appendix Figure A1 (online only). Enrollment
criteria included: histologic diagnosis of glioblastoma multiforme (GBM) or
anaplastic glioma (AG) including anaplastic astrocytoma (AA), anaplastic
oligodendroglioma (AO), or anaplastic oligoastrocytoma (AOA); up to two
previous recurrences; � 18 years old; Karnofsky performance status � 60;
adequate liver and renal function and HLA-A2�. Minimum doses of cortico-
steroid (dexamethasone up to 4 mg/d) were permitted. Twenty-two patients
were enrolled and received at least one vaccination. Nineteen of 22 patients
completed the scheduled initial four immunizations; three patients (patients 4,
11, and 13) were withdrawn from the protocol due to early tumor progression.
Nine patients completed five additional booster vaccinations. Immunologic
and safety data are presented on patients who had at least four vaccinations
(n � 19), and at least one vaccination (n � 22), respectively.

Clinical Trial Design

This single institution phase I/II study was designed to assess toxicity and
the induction of immune and preliminary clinical responses of vaccinations
with GAA-loaded �DC1 and administration of poly-ICLC (Hiltonol; Onco-
vir, Washington, DC). The first course of vaccines consisted of four
ultrasound-guided intranodal (IN) administrations of 1 � or 3 � 107 �DC1/
injection every 2 weeks rotating between right and left inguinal and axillary
lymph node clusters to minimize the potential effects of injection-induced
trauma in the microenvironment of the lymph nodes (Data Supplement Fig
DS1, online only). The first 10 evaluable patients received 1 � 107 �DC1/
injection (dose level 1); the subsequent nine received 3 � 107 �DC1/injection
(dose level 2). The sample size justification is provided in the Data Supplement
(Study Design Parameters; online only). All patients received intramuscular
injections with poly-ICLC (20 �g/kg) twice/wk for 8 weeks starting on day 1.
Patients exhibiting stable disease or tumor regression without major adverse
events (AEs) after the fourth vaccination were eligible for additional vaccina-
tions. Starting at week 13, these patients were treated with the same dose of
additional vaccinations every 4 weeks to a maximum of five vaccine injections
and intramuscular poly-ICLC starting on the day of the first additional vaccine
and twice/wk (first booster phase). Patients not demonstrating major AEs or
tumor progression after the first booster phase were offered the same dose of
additional vaccines (every 3 months) and poly-ICLC (every week) for up to 3
years from the first vaccination (second booster phase).

Toxicity Assessment and Stopping Rules

The trial was monitored continuously for treatment-related AEs using
the National Cancer Institute Common Toxicity Criteria version 3.0. The
following were considered to be a dose-limiting toxicity (DLT) if they were
judged possibly, probably, or definitely associated with treatment: � grade 2
hypersensitivity; � grade 3 nonhematologic/metabolic toxicity; � grade 3
hematologic (except for lymphopenia) or metabolic toxicity that did not
subside after 4 weeks cessation of poly-ICLC. Stopping rules were imple-
mented such that a dose level was considered excessively toxic, warranting that
accrual be halted, if at any time the observed rate of DLT was � 33% and at
least two DLTs had been observed.

Peptides

HLA-A2–restricted peptides used in these studies were: ALPFGFILV
(IL-13R�2345-353:1A9V)23; TLADFDPRV (EphA2883-891)24; IMDQVPFSV
(GP100209-217:M2)29; and SIMTYDFHGA (YKL-40201-210). �DC1 were also
loaded with aKXVAAWTLKAAaZC (a pan-DR epitope [PADRE]), a non-
natural epitope optimized for helper T-cell response.30 The peptides were
synthesized by automated solid-phase peptide synthesis in the University of
Pittsburgh Peptide Synthesis Facility. Peptides were tested in multiple quality-
assurance studies including purity, sterility, identity, potency, pyrogenicity,
and stability.

Vaccine Preparation

For the DC culture, monocytes were obtained from the leukapheresis
product and purified by the Elutra System (CardianBCT, Lakewood, CO). The
monocytes were cultured in antibiotic-free culture medium (CellGenix Tech-
nologie Transfer GmbH, Antioch, IL) supplemented with 1,000 U/mL
granulocyte-macrophage colony-stimulating factor and 1,000 U/mL IL-4 in
sterile cartridges, using the Replicell System (Aastrom Biosciences, Ann Arbor,
MI). The immature DC (iDC) were harvested on day 6 and cryopreserved.
Before each vaccination, aliquots of frozen iDCs were thawed, further ma-
tured, and polarized with clinical grade IL-1� (10 ng/mL), tumor necrosis
factor-� (10 ng/mL), interferon (IFN) -� (3,000 U/mL), IFN-� (1,000 U/mI),
and poly-I:C (20 �g/mI) at 37°C in 5% CO2 for 48 hours and loaded with GAA
peptides (10 �g/mL) for 4 to 6 hours. Two hours before harvest, the PADRE
peptide was added to the cultures. Criteria for release of �DC1 included:
sterility by Gram stain and bacteriologic culture; negative Mycoplasma; endo-
toxin lower than 5.0 EU/kg of body weight; greater than 70% expression of
both CD86 and HLA-DR on �DC1.

Enzyme-Linked Immunosorbent Spot Assays

Enzyme-linked immunosorbent spot (ELISPOT) assays were performed
as described previously5,31 with slight modifications. Briefly, peripheral blood

Table 1. Demographics and Clinical Characteristics of Participating Patients

Characteristic

DC Dose Level
(No. of DC/dose) Total No. of

Patients
(n � 22) %1 (1 � 107) 2 (3 � 107)

Received at least one vaccine 11 11 22
Completed at least four vaccines 10 9 19 86
Female (received at least four

vaccines) 5 4 9 47
Median age, years 52 46 48

Range 37-71 28-63 28-71
Tumor histology

AA 3 2 5 23
AO 1 2 3 14
AOA 1 0 1 4
GBM 6 7 13 59

No. of previous recurrences
0 7 4 11 50
1 2 5 7 32
2 2 2 4 18

Abbreviations: DC, dendritic cells; AA, anaplastic astrocytoma; AO, ana-
plastic oligodendroglioma; AOA, anaplastic oligoastrocytoma; GBM, glio-
blastoma multiforme.
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mononuclear cells (PBMC) samples drawn and cryopreserved at each visit for
vaccine (before the vaccine) as well as weeks 0, 9, and 33 were evaluated
simultaneously after in vitro stimulation with autologous, irradiated PBMC
loaded with wild-type IL-13R�345-353,22 EphA2883-891, GP100209-217, and
YKL-40202-211 for a week. A positive ELISPOT response was defined as a
two-fold increase in spot-forming T cells over the prevaccine level and at least
10 spots/20,000 cells for at least two consecutive postvaccine time points
against any antigen.

Tetramer Assays

Phycoerythrin-conjugated HLA-A*0201/ALPFGFILV (IL-13R�2-
tetramer), HLA-A*0201/IMDQVPFSV (gp100-tetramer), and HLA-A*0201/
TLADFDPRV (EphA2-tetramer) were produced by the National Institute of
Allergy and Infectious Disease tetramer facility (Emory University Vaccine
Center, Atlanta, GA) using the peptide synthesized by the University of Pitts-
burgh Peptide Production Facility. Fluorescein isothiocyanate–conjugated
antihuman CD8 was obtained from BD Biosciences (Sparks, MD). A single
timepoint-positive response for a peptide was defined to be (0.1�B)% of all
CD8� cells positive by tetramer assay,32,33 where B is the percent positive at
baseline, which was lower than 0.01% in all cases. A patient was considered to
have responded if he/she had two consecutive single timepoint responses for
any peptide.

Cytokine and Chemokine Assays

Total RNA samples were obtained from PBMC using the PAXgene
Blood RNA System (PreAnalytix, Hombrechtikon, Switzerland). Reverse-
transcriptase polymerase chain reaction (RT-PCR) was performed in tripli-
cate, and values were standardized to glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) and relative expression of mRNAs was calculated
using the ��CT method.34 The Luminex-based assay was performed in serum
samples as previously described.35 Pretested, multiplex plates (Invitrogen,
Carlsbad, CA) included standard curves and cytokine standards (R&D Sys-
tems, Minneapolis, MN). In situ hybridization with radiolabeled cRNA probe
for CXCL10 was performed as described,36 with autoradiographic exposure
times of 14 days.

Radiologic Response Monitoring and Other Clinical

End Points

Tumor size was assessed at weeks 9, 17, 25, and 33, and every 3 months
thereafter using magnetic resonance imaging (MRI) scans with contrast en-
hancement. Response was evaluated by McDonald criteria by gadolinium
(Gd) -enhanced T1 weighted images, area of signal prolongation on T2
weighted images, or a combination of both, on the basis of the appearance of
the pretreatment MRI. Overall survival was defined by the interval from study
entry to date of death. MRI scans were used to evaluate time to progres-
sion (TTP).

RESULTS

Summary of Clinical Toxicities

Treatment-related AEs are listed for all 22 patients in Data Sup-
plement Table DS1 (online only). There were no grade 3 or 4 toxicities,
no deaths on study, and no DLT at any dose through the first booster
phase. No incidences of autoimmunity were encountered. Toxicity
profiles were comparable across dose levels (data not shown). Grade 1
or 2 injection site reactions were the most common (82%). Grade 1
flu-like symptoms, including fatigue (73%), myalgia (32%), fever
(23%), chills/rigors (18%), and headache (32%), were common and
usually limited to 24 hours after each vaccine. Grade 2 lymphopenia
was recorded in one patient (5%).

IL-12 Production by �DC1 and Induction of

Epitope-Specific Immune Responses Against GAAs

As presented in Appendix Figure A1, CD40L-induced IL-12 p70
production levels by �DC1 varied substantially between patients, and

positively correlated with TTP (P � .0255; Fig 1), but not with IFN-�
ELISPOT response, patients’ age, or tumor types (data not shown).

All 19 patients who completed the initial course of four vaccina-
tions had PBMCs available for immunologic monitoring. Insufficient
PBMC were obtained from patients 17, 21, and 22 to perform both
ELISPOT and tetramer assays, and functional ELISPOT assays were
prioritized. The scheduled first four vaccines induced immune reac-
tivity to at least one of the vaccine-targeted GAAs in six of 10 and five
of nine patients in dose levels 1 and 2, respectively, by either IFN-�
ELISPOT or tetramer assays (Appendix Fig A1). In patients 6, 7, 8, 16,
19, 20, and 22, some readouts reached the criteria for positive response
after booster vaccines (indicated by † in Appendix Fig A1). In sum-
mary, 11 (58%) of 19 evaluable patients showed positive responses
after the initial four vaccinations, and three additional subjects (pa-
tients 8, 19, and 20; 16%) showed positive responses only after
booster vaccines.

Positive response rates (either by tetramer or ELISPOT) did not
show significant differences across the two �DC1 doses per Fisher’s
exact test. Furthermore, the magnitudes of ELISPOT response, based
on the summation of positive spots from weeks 3 through 9, were
comparable across the two �DC1 dose levels (Wilcoxon test). There-
fore, we present the time course of IFN-� ELISPOT responses by
combining results from both dose levels (Fig 2A). The gp100 epitope
demonstrated the highest magnitude of response among the GAA
peptides tested (P � .001 against IL-13R�2-, EphA2-, and YKL-40-
derived peptides by Wilcoxon test). For the other epitopes, booster
vaccines appeared to improve the induction of specific responses. A
temporary decline of responses was typically observed at week 13,
which may reflect that some patients who demonstrated positive re-
sponses by week 9 did not participate in the booster phase due to
tumor progression (patients 2, 9, 18, and 21) or lymphopenia (patient
10), resulting in overall reduction of response when data are pooled for
all patients. Patient 10 demonstrated the highest magnitude of IFN-�
ELISPOT responses against IL-13R�2- and gp100-derived epitopes as
well as PADRE (Fig 2B) but tetramer analyses on this patient yielded
no responses (Appendix Fig A1). Patient 6, who demonstrated stable
disease for longer than 30 months, developed durable and high level
responses in tetramer (Fig 2C) and ELISPOT assays.
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test. Circles indicate patients who have already experienced disease progression;
diamonds represent patients who have not experienced recurrence to date. DC,
dendritic cells.
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Induction of Type-1 Cytokine and Chemokine Responses

RT-PCR analyses of PBMC (Appendix Fig A2A, A2B, online
only) revealed upregulation of mRNA expression for several type 1
cytokines and chemokines, specifically IFN-�1, CXCL10, and TLR3, at
both postfirst vaccine and postfourth vaccine. IFN-� was found to be
upregulated after the fourth vaccine, but not after the first vaccine,
suggesting that the IFN-� upregulation may be associated with the
induction of adaptive, rather than innate, immune response. CCL22,
which is known to attract regulatory T cells,37 and CCL5 levels de-
creased in paired analyses of postfirst vaccine samples. Perforin, Gran-
zyme B, cyclo-oxygenase2, and forkhead box protein p3 levels did not
change significantly (data not shown).

A panel of cytokines and chemokines was evaluated at protein
levels in available prevaccine and postvaccine serum samples from five
patients (Appendix Fig A2C). Among them, IFN-�, CXCL10, IL-15,
MCP-1, and MIP-1� were significantly upregulated in postvaccine
sera. IL-17 was under detectable ranges in both RT-PCR and serum
analyses (data not shown).

In addition, three of five available tumors resected due to post-
vaccine radiographic progression expressed mRNA for CXCL10,
which is a critical chemokine for effective trafficking of CD8� T-cells
to brain tumor sites (Appendix Fig A2D for a representative case).10-11,38

These data suggest that this regimen induces systemic, polyfunctional
immune responses in generally immunosuppressed patients with ma-
lignant glioma.

Clinical Outcomes

Two patients (patients 1 and 20) experienced objective clinical
tumor regressions (response rate, 9%). Both patients were nonre-
sponders by ELISPOT, but tetramer responders. Patient 20 with
recurrent GBM demonstrated complete response based on disappear-
ance of the Gd-enhanced mass at week 17 postvaccine compared with
the baseline MRI, which has been durable and ongoing to date for at
least 13 months since initiation of treatment (Appendix Fig A3A,
online only). Patient 1 with recurrent GBM exhibited a partial re-
sponse at week 9. After two booster vaccines, the Gd-enhanced lesion
enlarged. Biopsy of the lesion, however, revealed intensive infiltration
of CD8� T cells and CD68� macrophages and no evidence of mitot-
ically active tumor (Appendix Figs A3B to A3D). Then, this patient
received one additional vaccine before exhibiting recurrence at 7
months after the initial vaccine. Nine patients (41%; four and five with
GBM and AG, respectively) are progression free for at least 12 months.
Five patients are currently progression-free (Appendix Fig A1) and
still receiving booster vaccines. Median TTP were 4 and 13 months for
GBM and AG, respectively (Data Supplement Fig DS2, online only).

DISCUSSION

To our knowledge, this is the first clinical evaluation of �DC1-based
vaccines loaded with novel GAA-derived peptides, in combination
with poly-ICLC. Our findings demonstrate safety and immunogenic-
ity as well as preliminary efficacy of the approach.

With regard to the manufacturing of �DC1, since the publication
of the original �DC1 preparation method16 and during optimization
studies for �DC1 production from patients with glioma, lipopolysac-
charide was eliminated to achieve the US Food and Drug Adminis-
tration–mandated endotoxin level on vaccine release. Our preclinical

studies also indicated that prostaglandin E2 should not be used for
optimal type-1 maturation of DC.39,40 Although suppressed immune
status,41 as well as decreased numbers and functions of mono-
cytes,42,43 have been reported in patients with glioma, we had no major
difficulties generating adequate numbers of �DC1. Although the abil-
ity to produce IL-12 varied substantially among the patients, surface
maturation markers, such as CD83, were all strongly positive in all DC
preparations (data not shown), supporting that these cells were prop-
erly matured. Based on our data showing a positive correlation be-
tween �DC1 production of IL-12 and TTP, further studies are
warranted to determine which factors in patients with cancer influ-
ence the IL-12 production of �DC1, and whether IL-12 production is
a surrogate measure of DC potency and vaccine efficacy in future trials.

This study is the first to document in vivo induction of specific
CD8� T-cell responses against three of four GAA epitopes, IL-
13R�2345-353:1A9V,23,44,45 EphA2883-891,24,46 and YKL-40201-210.26,27

With regard to the expression of these GAAs in our series, although
reresection of the recurrent tumor is not often clinically indicated in
these patients, we summarized available immunohistochemistry data
for seven patients in Data Supplement Table DS2. These preliminary
data suggest that expression of gp100 may be very low in primary
high-grade gliomas, consistent with published results.47 We included
the gp100 peptide to assess the potency of the vaccine regimen because
this was the only epitope that was previously demonstrated for its
potent immunogenicity inhumans.29,48 Nowthattheimmunogenicityof
the other GAAs have been shown, we may not include the gp100 epitope
in future designs due to its low expression levels in primary gliomas.

We still have to elucidate the mechanisms underlying the ob-
served divergence in tetramer versus ELISPOT responses. This may be
because ELISPOT assays were performed following 1 week restimula-
tion of PBMC whereas tetramer assays were performed without
restimulation. Two clinical responders (patients 1 and 20) demon-
strated tetramer but not ELISPOT responses. Although we cannot
make conclusive comments with only two patients as to whether
tetramer responses would better correlate with clinical success than
ELISPOT, we are currently developing multicolor flow-cytometric
analyses for evaluation of polyfunctional tetramer-reactive T cells (eg,
tetramer-positive cells that also express multiple effector molecules,
such as IFN-�, TNF-�, and IL-2).49 These new technologies may lead
us to better understand critical immune response indicators that may
help us to predict clinical responses.

Although analyses of sentinel lymph nodes have reported higher
positive rates and magnitudes of vaccine-induced responses than
PBMCs,50,51 we focused our analyses on PBMCs to avoid invasive
lymph node biopsy and to save the central site of vaccine-induced
responses. Although our data did not clearly demonstrate correlations
between GAA-specific responses and clinical outcomes, this may be
because �DC1 vaccines promote the T-cell expression of receptors
against tumor-associated chemokines,11,15,52 thereby facilitating their
translocation from the circulation to tissues.

Our RT-PCR and serum analyses indicate upregulation of some
type-1 cytokines and chemokines by the current regimen. This obser-
vation is intriguing, given that our preclinical studies have demon-
strated critical contributions of these molecules to the efficacy of
glioma vaccines.10-12,20,38 Further studies are warranted to determine
if one or more of these molecules can serve as biomarkers of response
in patients receiving glioma vaccines.
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The choice of DC administration route may critically impact the
efficacy of vaccines. We employed ultrasound-guided IN administra-
tion based on previous studies showing feasibility53 and superior
T-cell response induction54 of the IN route of DC administration
compared with intravenous and intradermal routes. In our study, IN
administration was feasible and well-tolerated, warranting further
development with this approach.

The postvaccine biopsy on patient 1 after the increase of
Gd-enhancing signals revealed remarkable immune cell infiltra-
tion, but not mitotically active tumor cells, suggesting that the
condition was pseudotumor progression. This implies that MRI-
based evaluation of TTP requires particularly careful interpreta-
tion of imaging data and, potentially, pathologic confirmation of
true versus pseudotumor progression.

Although the relatively high number of patients with AG proba-
bly contributed to the high rate of 12-month progression-free survival,
our preliminary data on TTP in patients with GBM are not inferior to
the results of studies that provided the basis for recent US Food and
Drug Administration approval of the use of bevacizumab in these
patients.55-57 These data, particularly the complete response in a pa-
tient with GBM, support larger studies of �DC1-based vaccines
loaded with novel GAA epitopes.
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