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S u l n l n l l r y  

The effects of human immunodeficiency virus 1 (HIV-1) infection on cdlular differentiation and 
NF-xB DNA binding activity have been investigated in a new model of myeloid differentiation. 
PLB-985 cells represent a bipotential myelomonoblastic cell population capable of either granulocytic 
or monocytic differentiation after induction with appropriate inducers. By virtue of the presence 
of CD4 on the cell surface, PLB-985 cells were chronically infected with HIV-1 strain IIIB. PLB- 
IIIB cells clearly possessed a more monocytic phenotype than the parental myeloblasts, as determined 
by differential staining, increased expression of the myeloid-specific surface markers, and transcription 
of the c-f  ms proto-oncogene. NF-gB binding activity was inducible by tumor necrosis factor 
and phorbol myristate acetate in PLB-985. However in PLB-IIIB cells, constitutive expression 
of a novel NF-KB complex was detected, composed of proteins ranging between 70 and 110 kD. 
These proteins interacted specifically with the symmetric NF-xB site from the interferon/~ (IFN-/~) 
promoter. Mutations affecting the 5' guanine residues of the KB site were unable to compete 
for these NF-KB-related proteins. Inducibility of endogenous IFN-/~ and IFN-o~ RNA was also 
increased in PLB-IIIB cells. These studies indicate that HIV-1 infection of myelomonoblastic 
ceils may select for a more mature monocytic phenotype and that unique subunit associations 
of NF-xB DNA binding proteins may contribute to differential NF-KB-mediated gene expression. 

T 
he host range of the HIVol includes, in addition to 
CD4 + Th lymphocyte, ceils of the monocyte/macro- 

phage lineage, and hematopoietic progenitor cells (1-3). 
Whereas Th cells are ultimately destroyed by HIV infection, 
infection of monocytic cells is not cytolytic, and these calls 
may act as reservoirs for viruses, thus contributing to virus 
spread to peripheral tissues including the lungs, brain, skin, 
and lymph nodes (3). Furthermore, HIV infection of my- 
eloid cells results in the impairment of crucial functions in- 
volved in host defense, such as antigen presentation, chemo- 
taxis, cell killing, and cytokine release (4-6). 

HIV-1 infection of PBMC and monocytes/macrophages may 
have a dramatic impact on cellular gene expression and in 
particular on cytokine production (7-17). HIV infection does 
not generally lead to constitutive cytokine gene transcrip- 
tion and secretion (9, 12, 13); however, the cytokine response 
of HIV-infected cells to subsequent antigenic challenge by 
viruses, lipopolysaccharides, or poly(I:C) can be affected in 

1 A. Roulston and M. D'Addario were equal contributors to this work. 

HIV-infected cultures, often leading to increased expression 
of TNF and IL-1 (9, 12, 15-17). Cytokine release by HIV- 
infected ceils may, in turn, alter the course of virus patho- 
genesis in vitro. For example, treatment of cells with TNF-ot, 
Ibl,  or GM-CSF has been shown to increase gene expression 
driven by the HIV-1 LTR in transfection studies, and to stimu- 
late virus multiplication in vitro (10, 11, 18-21). 

Cytokines, phorbol esters, virus infections, double-stranded 
RNA, and other mitogenic agents potentiate HIV replica- 
tion, in part via activation of NF-KB, a family of mitogen- 
and phorbol-ester-inducible DNA binding transcription 
factors which bind to and activate the HIV enhancer (22-24). 
NF-KB proteins bind to a decameric recognition sequence (con- 
sensus 5'-GGGRNNYYCC-3') present in the promoter 
regions of many cellular genes encoding immunoregulatory 
molecules (Ib2 receptor-o~, MHC class I antigens, and TNF 
receptor) and cytokines (Ib2, II.-6, IL-8, IFN-3, TNF, and 
GM-CSF), as well as the enhancer domains of several viruses 
(22). To date, NF-IcB induction has been characterized pre- 
dominantly as a posttranslational event. Latent NF-KB exists 
in the cytoplasm as a heterotrimeric protein; induction in- 
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volves the dissociation of a p65-pS0 heterodimer from a regula- 
tory protein (inhibitor of rB or ItcB), and nuclear transloca- 
tion of the DNA-binding NF-rB complex (22, 25, 26). 
Phosphorylation of IrB appears to be a necessary requirement 
for dissociation of the heterotrimeric form of NF-rB (22). 

Recent cloning of the p65 and p50 subunits has revealed that 
the NH2-terminal DNA binding region of both proteins 
shares homology with the c-tel proto-oncogene, (27-32). Fur- 
thermore these studies indicate that NF-rB induction may 
also be controlled at the level of transcription. 

As a step toward understanding the consequences of HIV-1 
infection on myeloid differentiation and cellular gene expres- 
sion, we have investigated the induction of monocytic differen- 
tiation and NF-rB/rel activities in a new myelomonoblastic 
model of HIV-1 infection. PLB-985 cells represent an imma- 
ture blast population, capable of both monocytic and granulo- 
cytic differentiation (33). By virtue of CD4 expression on 
the cell surface, these cells were infected by HIV-1 strain IIIB 
and a chronically infected line (PLB-IIIB) was established. 
Characterization of PLB-IIIB cells and NF-rB-related activity 
has demonstrated that HIV-1 infection of myelomonoblastic 
cells may select for a more mature monocytic phenotype, and 
that distinct subunit associations of NF-rB DNA binding 
proteins may contribute to developmental and inducible NF- 
rB-mediated gene expression. 

Materials and Methods 

Cell Culture 

Myelomonoblastic PLB-985 and PLB-IIIB cells were maintained 
at 370C, 5% CO2, in RPMI 1640 medium (Gibco Laboratories, 
Grand Island, NY) supplemented with 10% FCS, 1% glutamine, 
1,000 IU/ml penicillin, 20/zg/ml streptomycin, and 1/xg/ml gen- 
tamycin. Induction of exponentially growing ceils was performed 
as described for the individual experiments. Cells were treated with 
PMA (Sigma Chemical Co., St. Louis, MO) to a final concentra- 
tion of 25 ng/ml, DMSO (Aldrich Chemical Co.) to a final con- 
centration of 1.25%, 2'-dibutyryl adenosine-Y, 5'-cyclic monophos- 
phate (Bt2cAMP; Sigma Chemical Co.) to a final concentration of 
750/zM, cis-retinoic acid (R.A; Sigma Chemical Co.) to a final con- 
centration of 1/~M, and TNF-c~ to a final concentration of 100 
U/ml. 

Infection of PLB-985 

Cells were infected using supernatant HTLV-IIIB virus obtained 
from U9-IIIB cells as previously described (34). 

P24 Antigen Determination 

Immunofluorescence. Production of HIV-l-specific p24 antigen 
was monitored over a period of 60 d by indirect immunofluores- 
cence. Cells were fixed on multibeveled slides with methanol/ace- 
tone (1:1). An aliquot of mouse anti-p24 antibody (a gift from 
Dr. R. Gallo, National Institutes of Health, Bethesda, MD) diluted 
1:1,000 in PBS was added to each well for 30 rain. After washing 
with PBS, goat anti-mouse-conjugated FITC antibody (diluted 
1:1,000 in PBS) (Caltag Laboratories, San Francisco, CA) was added 
for 30 min. Slides were washed with PBS plus 0.25% Triton X-100, 
air-dried, and mounted with glycerol. 

ELISA. An ELISA (Abbott Labs, North Chicago, IL) was used 
to detect HIV-1 p24 in culture fluids, as per manufacturer's in- 
structions. 

Reverse Transc@tase Analysis 

At different time points after infection 1 ml of culture medium 
was centrifuged at 1,200 rpm for 10 rain. Keverse transcriptase ac- 
tivity was evaluated without further virus concentration using 3H 
TTP incorporation into acid-precipitable nucleic acid (34). 

Analysis of R N A  

Total cellular R.NA was isolated from untreated and PMA-treated 
PLB-985 and PLB-IIIB cells at specific times using a modified 
guanidinium isothiocyanate procedure (35). Total RNA (20/xg) 
was electrophoresed in a 1% denaturing formaldehyde gel, trans- 
ferred to a nylon membrane, and hybridized with ~-[32P]ATP nick 
translated probes at 42~ The probes include a 1.23-kb c-f ms frag- 
ment generated by EcoKI cleavage of clone pc-fins 104 (American 
Type Culture Collection, Rockville, MD), a 1.1-kb/~-actin frag- 
ment, a 4.5-kb c-roTe fragment containing exons 2 and 3 produced 
by cleavage of plasmid pHSK-1 (American Type Culture Collec- 
tion) with XbaI, EcoRI, and HB10, a 12.5-kb HIV-IIIB probe (a 
gift from Dr. F. Wong-Staal, University of California at San Diego, 
La Jolla, CA). The blots were washed at 55-60~ air-dried, and 
exposed to X-OMAT film (Kodak) at - 70~ The relative amounts 
of each signal were quantified by laser densitometry (Ultrascan XL; 
Pharmacia LKB Biotechnology Inc., Piscataway, NJ). 

Analysis of Surface Markers 

PLB-985 and PLB-IIIB ceils treated with PMA or retinoic acid 
were analyzed for expression of myeloid specific surface markers 
using mAbs directed against CD13, CD14, CD33, CD34, and 
CD67 and analyzed in an Epics Profile II cytofluorograph; (Coulter 
Electronics, Hialeah, FL). 

Whole Cell Extract Preparations 

Whole cell extracts (WCE) z were prepared from untreated 
PLB-985 and PLB-IIIB cells or from cells treated for 6 or 15 h with 
PMA (25 ng/ml) or TNF-~ (100 U/ml) as previously described (24). 

Gel Retardation Assays 

Cell protein in WCE buffer (0.1 M KC1), was preincubated with 
5/zg of poly(dI:dC) as nonspecific competitor DNA for 10 min 
on ice. 32p-labeled probe (0.2 ng) consisting of the P2 oligonucle- 
otide (5'-GC~AAA.TTCCGC~AAATTCC-Y) or the HIV enhancer 
(5'-AGGGACTTTCCGC'/GGC, GACTTTCC-Y) was added to the 
protein, and incubated for 30 min at room temperature. Competi- 
tion assays were performed by incubating 125-fold excess of unla- 
beled competitor (25 ng) with the protein for 10 min on ice, before 
the addition of radiolabeled probe. 

UV Crosslinking Analysis 

For UV crosslinking analysis, assays were performed using double- 
stranded BUdR-substituted UPqabeled P2 or HIV oligonucleotide 
probes. The crosslinking procedure was performed as previously 
described (36). 

2 Abbreviation used in this paper: WCE, whole cell extract(s). 
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of I m  RNA 

Total RNA was isolated from uninduced or Sendal virus-induced 
PLB-985 or PLB-IIIB cells. Ceils were IFN-~x primed (250 U/ml), 
then treated with Sendai virus (2,000 HAU/ml) for 6 h before RNA 
isolation. IFN-ot- and IFN-B-specific RNA was analyzed by PCR- 
mediated RNA phenotyping as previously described (9) using the 
IFN-cx (sense: 5 ' - C A A T A I L ' T A C ~ G C - 3 '  and antisense 
5'CAGAAGC~TCCAGCCATCTCT-3') and IFN-B primers de- 
scribed previously (12). 

Resuks 

Isolation and C~racterization Of PLB-IIIB Cells. PLB-985 
cells were originally derived from a patient with acute non- 
lymphocytic leukemia and characterized as a diploid my- 
elomonoblastic cell line (33). PLB-985 cells are capable of 
differentiation along the monocytic lineage after treatment 
with phorbol esters or along the granulocytic lineage after 
treatment with agents such as DMSO, dibutyryl cAMP, or 
retinoic acid (33). By virtue of the expression of CD4 on 
the surface of >99% of the calls, PLB-985 ceils were infected 
with HIV-IIIB using culture fluids of HIV-l-infected U937 
cells 04). At various times after infection, the ceils and/or 

culture fluids were assayed for RT activity, p24 core antigen, 
and accumulation of viral RNA (Fig. 1). After a lag period 
of about 10 d, the number of p24-positive cells increased rap- 
idly together with levels of RT. By day 18, more than 50% 
of the population was infected with HIV-1 (Fig. 1A). Spliced 
and unspliced viral RNA spedes were easily detectable by 
Northern blot analysis using the HB10 probe (Fig. 1 B). 
During the next several weeks, the infected cell population 
underwent considerable death, presumably because of rapid 
virus multiplication. Within 2 too, a chronically infected cell 
population (>95% positive for p24 antigen and <4% 
CD4 +) emerged that possessed a more mature monocytic 
phenotype than the immature parental blast ceils (compare 
Fig. 2, A and C). Phorbol ester treatment of PLB-985 pro- 
duced an adherent, monocyte-like phenotype (Fig. 2 B). In 
contrast, PLB-IIIB without induction displayed several char- 
acteristics of monocyte maturation, including less basophilic 
cytoplasm, decreased nuclear/cytoplasmic ratio, production 
of vacuoles, less visible nucleoli, ruffling at the cytoplasmic 
membrane, and lobularization of the nucleus (Fig. 2 C). PMA 
treatment of the PLB-IIIB ceils further acxentuated these fea- 
tures of the monocytic phenotype (Fig. 2 D). 

Expression of Myeloid Specific Suoface Markers. To deter- 

Figure 1. Kinetics of infection of PLB-985 cells by HIV-1. (A) The kinetics of infection were assessed by p24 core antigen immunofluorescence 
( I )  and by analysis of reverse transcriptase activity (O) in culture supernatants at various times after initial infection. (B) Detection of HIV-1 viral 
RNA species in chronically infected PLB-IIIB ceils. Total RNA (20/~g) from FLB-985 (lane 1) and/or PLB-IIIB (lane 2) was electrophoresed in a 
1% formaldehyde gel, transferred to a nylon filter (Amersham Corp.), and hybridized with the HB10 probe. 
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Figure 2. Morphological characteristics of PLB-985 and PLB-IIIB cells. PLB-985 cells (A and B) and PLB-IIIB (C and D) were fixed and differentially 
stained with Giemsa and examined by phase contrast microscopy. Cells were either untreated (A and C) or PMA treated for 6 h (B and D) before staining, 

mine whether the morphological alterations were accompa- 
nied by other changes in the PLB-IIIB phenotype, expres- 
sion of myeloid-specific markers was determined by flow 
cytometry. PLB-985 cells were <5% positive for the 
monocyte-specific marker CD14, whereas the PLB-IIIB cells 
were about 20% positive for the monocyte-specific CD14 
surface antigen. After PMA treatment, PLB-IIIB cells be- 
came >60% CD14 positive within 24 h (Fig. 3 A). The levels 
of other mydoid markers CD13, CD33, and CD67 remained 
at >90%. Similarly 5-15% of the cells were CD34 positive 
both before and after infection (Fig. 3 B). 

Expression of elms and c-myc Proto-oncogenes. Alteration of 
proto-oncogene expression is a recognized consequence of in- 
duction of differentiation in a variety of hematopoietic cell 
types (37, 38). To examine the effects of HIV-1 infection on 
PMA-induced proto-oncogene expression, the steady state 
mRNA levels for c-myc and c-fras were measured at different 
times after PMA treatment of PLB-985 and PLB-IIIB cells 
(Fig. 4). In both cell types, c-myc RNA levels decreased about 
2-3 fold by 24 h after PMA treatment (Fig. 4, upper). In con- 
trast, c-f ms RNA was only weakly detectable by Northern 
blot analysis in PLB-985 cells before or after PMA induction 
(Fig. 4, middle, lanes 1-5). In untreated PLB-IIIB cells, c-f ms 

RNA was present in low quantities. This level of c-f ms was 
induced more than 20-fold by PMA treatment (Fig. 4, middle, 
lanes 6-10). The level of B-actin ILNA did not fluctuate 
significantly with induction or differentiation (Fig. 4, bottom). 
After granulocyte induction of PLB-985 and PLB-IIIB cells 
with dibutyryl cAMP, no increase in c-f ms was observed (data 
not shown). Finally, morphological and histochemical studies 
demonstrated that PLB-IIIB cells were nonresponsive to in- 
ducers of granulocytic differentiation, indicating that the cell 
population had irreversibly differentiated along the mono- 
cytic lineage (data not shown). 

Induction of NF-r,B Binding Activity in PLB-IIIB Cells. 
Previous studies have demonstrated a correlation between 
monocyte maturation and the expression of NF-tcB DNA 
binding activity (39-41). More recently, NF-gB has been 
shown to represent a family of rel-related DNA binding pro- 
teins involved in both transcriptional control and oncogen- 
esis (reviewed in references 22, 27-32). We therefore sought 
to examine the relationship between HIV infection, mono- 
cytic differentiation, and activation of the NF-tcB/rel tran- 
scription complex in this new myelomonoblastic model of 
HIV-1 infection. Induction of NF-gB DNA binding activity 
was examined after treatment with PMA or TNF-cr using 
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Figure 3. Myeloid-specific surface marker expression. PLB-985 and PLB- 
IIIB cells were either untreated or PMA treated for various times before 
surface marker analysis using the EPICS cytofluorograph (Coulter Elec- 
tronics Inc.). (/1) The percentage of CD14 positive cells is plotted as a 
function of time after PMA treatment. (e)  PLB-IIIB; (O) PLB-985. (B) 
The levels of CD13-, CD33-, and CD34-positive PLB-985 ([]) and PLB- 
IIIB (11) cells. 

the P2 oligonucleotide which consists of two copies of the 
NF-KB site found in IFN-t3 (PRDII site, -64 to -55) and 
human c-tel (-28 to -18) or the HIV enhancer oligonucle- 
otide which contains two NF-KB-binding sites found in the 
HIV-1 LTR (-105 to -80). In PLB-985 cells, multiple 
protein-DNA complexes were induced by 5 or 16 h of PMA 
or TNF treatment. Both inducers appeared to be equally effec- 
tive in stimulating NF-KB-DNA binding activities (Fig. 5 
A, lanes 1-3 and 7-9). In PLB-IIIB cells, a distinct pattern 
of protein-DNA complex formation (complex A) was de- 
tected consisting of strong constitutive P2 DNA binding ac- 
tivity; formation of slowly migrating complexes; and weak 
inducibility of this DNA binding activity by either PMA 
or TNF (Fig. 5 A, lanes 4-6 and I0-12). A similar profile 
was observed using the HIV enhancer sequence as probe al- 
though about fivefold less complex A was detected with this 
probe (Fig. 5 B). In competition experiments, both the P2 
oligonucleotide and the HIV enhancer oligonucleotide were 
able to compete effectively for the TNF-induced NF-KB 
binding activities in PLB-985 cells (Fig. 6 A). However, in 
PLB-IIIB cells only the P2 probe (Fig. 6 B, lanes 2, 5, and 
8) competed efficiently for the slower migrating constitutive 
A complex. The HIV enhancer competed weakly for this 
DNA binding activity (Fig. 6 B, lanes 3, 6, and 9). In dis- 
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sociation rate analysis, complex A dissociated from the ra- 
diolabeled probe with a TI,~ of <4 min in the presence of 
excess P2 oligonucleotide, whereas addition of excess HIV 
enhancer failed to dissociate the A complex (T~ >30 min) 
(Fig. 7). Thus, the proteins involved complex A bound pref- 
erentiaUy to the 5'-GGGAAATTCC-3' site. These proteins 
had a >20-fold higher affinity for P2 sequences than for HIV 
enhancer sequences. 

To evaluate the sequence specificity of complex A binding, 
mutational analysis of the NF-xB sites was performed. Mu- 
tations that altered the 5' guanine residues of the HIV or 
P2 oligonucleotides completely inhibited NF-gB competition 
in PLB-985 extracts (Fig. 8 A, lanes 3 and 5), whereas muta- 
tion of the AA dinucleotide to CG partially inhibited >60% 
of the NF-KB binding (Fig. 8 A, lane 6). With extracts from 
PLB-IIIB cells, only the homologous P2 oligonucleotide com- 
peted effectively for complex A (Fig. 8 A, lane 10). Mutation 
of either the 5' guanine residues or the AA dinucleotide of 
the NF-KB site blocked competition (Fig. 8 A, lanes 1I and 
12). These results suggest that complex A is composed of 
NF-xB related proteins that require the entire P2 site for 
efficient DNA binding. 

The proteins involved in protein-DNA complex forma- 
tion were evaluated by in situ UV crosslinking analysis using 
BUdR-substituted 1)2 and HIV enhancer probes together with 
extracts from the TNF-treated PLB-985 or PLB-IIIB cells 
(Fig. 9). The regions of the mobility shift assay corresponding 
to NF-KB and complex A were cut from the gel (Fig. 9 A), 
crosslinked in situ for 30 rain and resolved on an SDS poly- 
acrylamide gel (Fig. 9 B). Both P2 and HIV probes bound 
proteins of 50, 40, and 20 kD from PLB-985 cell extracts 
(Fig. 9 B, lanes I and 2). In addition, proteins of 75 and 
60 kD interacted weakly with the HIV enhancer. Differences 
in protein migration were attributable to the size difference 
between the two probes. It is striking that the HIV probe 
did not effidently bind proteins from the PLB-IIIB extracts 
(Fig. 9 B, lane 4), whereas multiple proteins ranging in size 
from 50-105 kD were detected using the P2 probe (Fig. 9 
B, lane 3). Three prominent proteins of 100, 90, and 70 kD 
were identified, as well as several other proteins. Compar- 
ison of uninduced and TNF induced extracts by UV cross- 
linking also demonstrated that only the 70-kD protein was 
inducible by TNF (data not shown). Overall, the profiles of 
NF-xB DNA binding proteins in PLB-985 and PLB-IIIB cells 
differ dramatically, indicating that the nature of NF-gB-like 
interactions is altered in the HIV-infected cells. 

Transcription of IFN-ot and IFN-~ Genes. To examine if 
changes in the state of differentiation or NF-xB-related ac- 
tivities affected gene expression, the transcription of IFN-c~ 
and IFN-B genes was investigated in PLB-985 and PLB-IIIB 
cells (Fig. 10). In PLB-985 cells, IFN-~ KNA was induced 
by Sendai virus infection 6 h after infection. In PLB-IIIB cells, 
a low level of constitutive IFN-~ mRNA was detected and 
coinfection by Sendai virus resulted in three- to fourfold more 
IFN-/3 KNA than similarly induced PLB-985 cells. In con- 
trast to these results, IFN-ot transcription was only weakly 
induced in PLB-985 cells, but 50-fold higher levels of IFN-ot 
KNA were detected in PLB-IIIB cells. Together, these results 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://ru

p
re

s
s
.o

rg
/je

m
/a

rtic
le

-p
d
f/1

7
5
/3

/7
5
1
/1

1
0
2
2
8
0
/7

5
1
.p

d
f b

y
 g

u
e
s
t o

n
 2

4
 A

u
g

u
s
t 2

0
2

2



Figure 4. Modulation ofc-myc and c-f ms RNA levels in PMA-treated PLB-985 and PLB-IIIB cells. Total RNA (20/xg) from PMA-treated PLB-985 
cells (lanes I-5) or PLB-IIIB cells (lanes 6-10) was dectrophoresed in a 1% formaldehyde gel, transferred to a nylon membrane, and hybridized sequen- 
tially with c-myc, c-f ms, and 3-actin probes as described in Materials and Methods. R.NA was isolated at 0, 2, 6, 10, and 24 h after treatment (shown 
below the autoradiogram). The arrows indicate the positions of the correct RNA signal. 

indicate that HIV infection of myelomonoblastic cells results 
in selection of a cell population with a more monocytic pheno- 
type by several criteria, changes in NF-rB-like protein-DNA 
interactions and modulation of cytokine gene expression. 

Discussion 

HIV-1 infection of PLB-985 blast cells resulted in the gener- 
ation of a chronically infected cell population (PLB-IIIB) pos- 
sessing morphological, immunological, histochemical, and 
molecular characteristics of monocytes. Concomitant with 
HIV infection and myeloid differentiation, dramatic altera- 
tions in the protein-DNA interactions occurring at the NF- 
KB recognition sequence 5'-GGGAAATTCC-3' were ob- 
served. Distinct proteins of 100, 90, and 70 kD were identified 

in PLB-IIIB cells that possessed a higher affinity for the more 
symmetric PRDII binding site than for the HIV enhancer 
sites. These two sequences differ only by the -AA- and -CT 
dinucleotides in the middle of the binding site, resulting in 
a more palindromic recognition sequence. 

NF-rB represents a family of rel-rehted DNA binding poly- 
peptides that include p45, p50, p55, p65, p75, and p85 (c- 
tel). The activities of these proteins are controlled at several 
regulatory levels. Multiple DNA binding NF-KB heterodi- 
mers with distinct affinities for DNA can form in vitro (22, 
42, L. Cohen andJ. Hiscott, manuscript submitted for pub- 
lication), single base changes in the NF-r.B site can significantly 
alter the binding affinity of these heterodimers. Biphasic ki- 
netics of NF-KB induction has been described, characterized 
by rapid appearance of p55 and p75 forms of NF-rB within 
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Figure 6. (A) Competition of NF-gB-binding proteins 
in PLB-985 cells. The protein-DNA comple~as present 
in uninduced (lane I), 5-h TNF-treated (lane 4) or 16-h 
TNF-treated (lane 7) extracts were competed using a 125- 
fold excess of unlabeled P2 oligonucleotide (lanes 2, 5, 
and 8) or unlabeled HIV enhancer oligonucleotide (lanes 
3, 6, and 9). The bracket indicates the position of NF-~B 
complexes; and the arrow indicates the nonspecific (ns) 
complex. (B) Competition NF-~B-binding proteins in 
PLB-IIIB cells. The protein-DNA complexes present in 
uninduced (lane 1), 5-h TNF-treated (Lane 4), or 16-h TNF- 
treated (lane 7) extracts were competed using a 12S-fold 
excess of unlabeled P2 oligonucleotide (lanes 2, 5, and 
8) or unlabeled HIV enhancer oligonucleotide (lanes 3, 
6, and 9). The arrows indicate the position of the slowly 
migrating A complex and the nonspecific complex. 

minutes, and by the delayed induction of p50 and p85 after 
several hours of PMA treatment (32). These observations in- 
dicate that variations in DNA af~nity, heterodimer forma- 
tion, and induction kinetics may contribute to both positive 
and negative transcriptional control. 

With the availability of cloned NF-gB subunits, it is now 
clear that transcription of NF-KB-related genes represents an- 

other important level of regulation. NF-gB p50, IgB, and 
c-rel gene transcription is rapidly induced by phorbol esters 
and mitogens (29, 43-45). Furthermore, a new NF-gB 100- 
kD precursor gene was described recently that is regulated 
by both alternate splicing and proteolytic cleavage to yield 
two forms of a distinct p50 subunit (52). HIV-1 infection 
may have an impact on posttranslational processing of NF-KB 
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Figure 7. Dissociation rate analysis of the P2 complex. The P2 probe 
(0.2 ng) was mixed with protein from TNFqnduced PLB-IIIB cells (10 
~g) in the presence of 5/~g of poly(dI:dC) as nonspecific competitor; at 
To, the amount of complex A was determined. A 125-fold molar excess 
of P2 oligonuclentide or HIV enhancer oligonucleotide was added to the 
reaction, and at 2-min intervals the amount of complex A remaining was 
measured. The rehtive intensity of the bands at different times was quantified 
by laser densitometry and plotted as a function of the amount of complex 
at To. ( e )  P2; (O) HIV. 

since the p105 precursor may be cleaved by the HIV-1 pro- 
tease in vitro (46). 

Several possibilities may account for the dramatic differ- 
ences in DNA binding activity between PLB-985 and PLB- 
IIIB cells. The induction of distinct or NF-KB-related pro- 
teins in PLB-IIIB cells may occur as a result of monocytic 
differentiation. Recent studies indicate that c-rel may be tran- 
scriptionally induced in PLB-IIIB cells (data not shown). Al- 
tered stoichiometry of NF-KB subunits because of changes 
in precursor processing may result in binding of larger, in- 
completely processed subunits. The 100- and 105-kD pS0 
precursors may not be processed efficiently in PLB-IIIB cells, 
resulting in the formation of new combinations of DNA- 
binding heterodimers, possibly via interactions of the ankyrin 
repeat. Overexpression of chromatin-associated proteins may 
stabilize the binding of proteins that would otherwise possess 
an affinity too low to be detected by mobility shift analysis. 

Recently a protein capable of interacting with the PRDII 
site but not other NF-KB sites has been described that may 
act as such an accessory protein and, in part, explain the unique 
pattern of NF-gB binding observed only in the PLB-IIIB cells 
(47). The HMG I/Y proteins are chromatin-associated pro- 
teins that bind in the minor groove of DNA to sequences 
that are A-T rich or that possess Oct-1 like recognition sites 

Figure 8. Mutational analysis of the 
NF-KB-binding sites. (A) The protein- 
DNA complexes present in PLB-985 
cells (lane I) and PLB-IIIB cells (lane 
7) were competed using a 125-fold 
e~ess of unlabeled oligonucleotide cor- 
responding to the HIV enhancer (lanes 
2 and 8), the HIV mutated enhancer 
(lanes 3 and 9), the P2 oligonucleodde 
(Lanes 4 and 10), the P2 mutant A (lanes 
5 and 11), and the P2 mutant B (lanes 
6 and 12). The sequence of these oligo- 
nudeotides is shown adjacent to the 
quantification data. Altered nucleotides 
relative to the sequence of wild-type P2 
are indicated by small letters. (B) 
Quantification of mutant competition. 
The amount of DNA binding activity 
remaining after competition was mea- 
sured by laser densitometry and 
quantified relative to the amount of 
binding obtained without competitor. 
The results represent the average of 
duplicate competition experiments. (t~) 
amount of complex remaining from 
PLB-985 extracts; ( I )  amount of com- 
plex remaining from PLB-IIIB extracts. 
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Figure 9. UV crosslinking analysis of pro- 
teins binding to HIV and P2 oligonucleotides. 
(A) Mobility shift analysis of NF-r.B binding 
activities in PLB-985 (lanes I and 2) and PLB- 
IIIB (lanes 3 and 4) after treatment with TNF 
for 5 h using BUdR substituted, szP-labeled 
P2 (lanes 1 and 3) or HIV (lanes 2 and 4) probes. 
The nonspecific complex (ns) was not analyzed. 
(B) The region of the gel containing NF-xB 
complex A was cut from the native gel, ex- 
posed to UV (302 nm) for 30 rain, soaked in 
SDS sample buffer, and analyzed on a 10% SDS 
polyacrylamide gel. The positions of molecular 
mass standards (M) are indicated; the molec- 
uhr masses of crosslinked proteins are indicated 
with arrows. 

(48, 49). Increased H M G  I /Y protein levels have been de- 
tected in undifferentiated, rapidly growing and transformed 
cells (50, 51). HIV-1 infection may be sufficient to increase 
HMG I /Y levels in PLB-IIIB cells. 

In parental PLB-985 cells, PMA treatment resulted in the 
induction of NF-KB binding activity and monocytic differen- 
tiation. These results are in agreement with previous studies 
that showed that NF-KB binding activity, expression of an 

HIV-LTR reporter gene, and monocytic differentiation were 
coordinately inducible in immature myeloid cells (HI.,60 and 
U937). In the more mature P388, THP-1, and P45-1.8 cells, 
and in primary macrophages, binding activity and basal level 
expression of the HIV-LTR reporter gene were constitutive 
and not further inducible, suggesting that NF-KB binding 
activity is induced during the promyelocytic to monocytic 
transition (39). However, in other studies, NF-KB binding 
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Figure 10. Transcription of IFN oL//~ genes. Total RNA was isolated 
from PLB-985 and PLB-IIIB cells after Sendai virus induction for 6 h. 
Reverse transcription and PCR-medhted amplification was carried out using 
1/~g of RNA and 321Mabeled IFN-o~ and IFN-~ consensus primers (12). 
The products of amplification were resolved by denaturating polyacryl- 
amide gel electrophoresis. The relative RNA levels were quantified by laser 
densitometry of autoradiographs and presented as a bar graph. 

activity was not induced by HIV infection of U937 cells. 
It is interesting that these experiments identified but did not 
further characterize a virus induced, slowly migrating protein- 

DNA complex associated with the HIV enhancer (40). In 
primary monocytes, both NF-rB and slowly migrating com- 
plexes were induced in response to HIV infection (40). The 
PLB cell line represents a relevant new myeloid model to in- 
vestigate the relationship between HIV infection, monocytic 
differentiation, and the induction of these novel NF-rB related 

activities. It will nonetheless be important to evaluate the 
results obtained with the cell model in light of findings with 
primary monocytic cells. Given the abundant regulatory levels 
of NF-rB activity, it appears that whether developmentally 
regulated or induced by HIV infection, NF-rB provides a 
range of potent signals for stimulation of HIV gene expres- 
sion and cytokine activation. 
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