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Abstract
Aims/hypothesis IL-1β and TNF-α contribute to pancreatic
beta cell death in type 1 diabetes. Both cytokines activate the
transcription factor nuclear factor-κB (NF-κB), but recent
observations suggest that NF-κB blockade prevents IL-1β +
IFN-γ- but not TNF-α + IFN-γ-induced beta cell apoptosis.
The aim of the present study was to compare the effects of
IL-1β and TNF-α on cell death and the pattern of NF-κB
activation and global gene expression in beta cells.
Methods Cell viability was measured after exposure to IL-
1β or to TNF-α alone or in combination with IFN-γ, and

blockade of NF-κB activation or protein synthesis. INS-1E
cells exposed to IL-1β or TNF-α in time course experi-
ments were used for IκB kinase (IKK) activation assay,
detection of p65 NF-κB by immunocytochemistry, real-
time RT-PCR and microarray analysis.
Results Blocking NF-κB activation protected beta cells
against IL-1β + IFNγ- or TNFα + IFNγ-induced apoptosis.
Blocking de novo protein synthesis did not increase TNF-α-
or IL-1β-induced beta cell death, in line with the observations
that cytokines induced the expression of the anti-apoptotic
genes A20, Iap-2 and Xiap to a similar extent. Microarray
analysis of INS-1E cells treated with IL-1β or TNF-α
showed similar patterns of gene expression. IL-1β, howev-
er, induced a higher rate of expression of NF-κB target
genes putatively involved in beta cell dysfunction and death
and a stronger activation of the IKK complex, leading to an
earlier translocation of NF-κB to the nucleus.
Conclusions/interpretation NF-κB activation in beta cells
has a pro-apoptotic role following exposure not only to IL-
1β but also to TNF-α. The more marked beta cell death
induced by IL-1β is explained at least in part by higher
intensity NF-κB activation, leading to increased transcrip-
tion of key target genes.
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LMA NG-methyl-L-arginine
NF-κB nuclear factor κB
NO nitric oxide

Introduction

Proinflammatory cytokines such as IL-1β, TNF-α and IFN-γ
are secreted by activated macrophages and T cells in the
vicinity of beta cells during insulitis, contributing to beta cell
dysfunction and death [1–3]. Beta cell exposure to IL-1β in
vitro induces functional impairment and, in combination
with IFN-γ and/or TNF-α, causes cell death, mostly by
apoptosis [2, 3]. Apoptosis is regulated by extracellular sig-
nals, intracellular ATP levels, phosphorylation cascades and
expression of diverse pro- and anti-apoptotic gene networks.
Although both cytokines activate the same key transcription
factor, namely, nuclear factor-κB (NF-κB), IL-1β has a
more pronounced pro-apoptotic effect than TNF-α in beta
cells [4]. NF-κB activation plays an important role in
cytokine-induced beta cell death, since NF-κB inhibition in
vitro protects against IL-1β+IFN-γ [5–7], while conditional
and beta cell-specific NF-κB blockade in vivo prevents the
development of diabetes in response to multiple low doses
of streptozotocin [7]. In beta cells, NF-κB controls diverse
gene networks that modulate its phenotype, attract and
activate immune cells, and contribute to apoptosis by ER
stress [8–11] and other, as yet unknown, mechanisms [3]. Of
note, NF-κB has mostly anti-apoptotic effects in other cell
types [4, 12, 13], and recent data suggest that TNF-α-
induced activation of NF-κB in beta cells is protective [14].

Each NF-κB complex is composed of one or twomembers
of a family of five proteins that form homo- or heterodimers
in a cell type- and stimulus-specific manner [15–18]. These
dimers are usually kept in the cytoplasm bound to a group
of inhibitor κB proteins (IκBs) [17, 18]. Stimulation by
proinflammatory cytokines results in IκB phosphorylation
mediated by the IκB kinase (IKK) complex, leading to IκB
degradation and translocation of NF-κB to the nucleus [17,
18]. The frequency and duration of activation of specific
NF-κB dimers, together with their transactivation capacity,
determine the regulation of specific sets of genes and
particular cellular responses [4, 15, 16]. The effect of NF-κB
on transcription is also modulated by post-translational
mechanisms, such as phosphorylation of the p65 subunit
by mitogen-activated protein kinases, IKK, Akt and NF-κB-
activating kinase [17–19]. In beta cells, extracellular signal-
regulated kinase (ERK), which is activated by IL-1β but not
TNF-α [4, 20], increases the transactivation capacity of NF-
κB via phosphorylation of the p65 subunit [21].

Since TNF-α and IL-1β activate NF-κB and, in combina-
tion with IFN-γ, induce beta cell death [2], they are believed

to trigger similar signal transduction pathways and target
genes. These cytokines, however, act via different receptors,
recruiting distinct adaptor molecules and kinase cascade
pathways [17]. The TNF-α receptor can also induce apop-
tosis via the caspase pathway, but this is usually prevented
by the expression of NF-κB-dependent anti-apoptotic genes
[22–24].

In the present study we used array analysis and biological
studies of key pathways to determine the pattern of NF-κB
activation and gene expression induced by IL-1β and TNF-α
in beta cells, to clarify the molecular mechanisms underlying
the different effects produced by these cytokines.

Methods

Cell culture Pancreatic islets were isolated from adult Wistar
rats (Charles River Laboratories, Brussels, Belgium) and used
in accordance with the Belgian Regulations for Animal Care
and the Ethics Committee for Animal Experiments of the
ULB. Beta cells were purified by FACS (FACStar; Becton-
Dickinson, Sunnyvale, CA, USA) [25, 26]. After purification,
preparations contained 93±3% beta cells (n=6). Experi-
ments requiring large number of cells were performed with
the well-differentiated INS-1E cells [27], kindly provided by
C. Wolheim (Center Medical Universitaire, Geneva, Switzer-
land). Cytokines induce a similar pattern of gene expression
in INS-1E cells as in primary beta cells, but INS-1E cells are
more sensitive to cytokine-induced cell death [28, 29]. INS-
1E (passage 57-73) and rat fibroblast 208F cells (European
Collection Cell Cultures [ECACC], Salisbury, UK) were
cultured as previously described [4].

Cell treatment The following cytokine concentrations were
used, based on previous dose–response experiments [2, 4,
28]: recombinant human IL-1β (a kind gift from C. W.
Reinolds, National Cancer Institute, Bethesda, MD, USA)
at 50 U/ml (rat primary beta cells), 10 or 100 U/ml (INS-1E
and 208F cells); recombinant murine TNF-α (Innogenetics,
Gent, Belgium) at 1,000 U/ml, and recombinant rat IFN-γ
(R&D systems, Abingdon, UK) at 0.036 μg/ml. In some
experiments cells were preincubated with cycloheximide
(1 μg/ml) for 2 h, which inhibits 90% of protein synthesis
[30]. Cell medium was collected for nitrite determination
[28, 31]. The inducible nitric oxide synthase (iNOS)
blocker NG-methyl-L-arginine (LMA; Sigma, Steinheim,
Germany) was used at a concentration of 1 mmol/l [28].

Infection with recombinant adenoviruses Cells were left
uninfected (control) or infected either with AdLUC (lucifer-
ase-expressing virus) or AdIκB(SA)2 (a virus expressing an
NF-κB super repressor protein) [6, 8, 32]. Cells were
infected for 2 h at 37°C with a multiplicity of infection
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(MOI) of ten for purified rat beta cells and 6.5 for INS-1E
cells. The MOIs were selected based on lowest toxicity by
viral infection combined with highest blockade of NF-κB
activation. After infection (24–48 h), cells were treated with
cytokines. We have previously shown that infection of beta
cells with AdIκB(SA)2 at the MOIs used in the present study
does not change its function [6].

Assessment of cell viability and caspase-3 activity The
percentages of viable, necrotic and apoptotic cells were
determined by staining with Hoechst 33342/propidium
iodide [4, 28, 33], and the apoptotic index calculated [4].
NunView 488 Caspase-3 Kit for live cells (Biotium, Hay-
ward, CA, USA) was used for determination of caspase-3
activation. Cellular DNA was stained with Hoechst 342
(20 μg/ml) [33] and then cells were incubated with caspase-3
substrate for at least 15 min. Caspase-3 substrate cleavage
stains the nucleus of positive cells green (ultraviolet
excitation at 450–490 nm). Caspase-3-positive cells were
calculated as a percentage of total number of Hoechst-
stained cells (ultraviolet excitation at 365–380 nm).

Determination of NF-κB activation by immunofluorescence
Cells were fixed with 4% (vol./vol.) paraformaldehyde,
permeabilised with 70% acetone/30% methanol (vol./vol.),
and incubated for 1 h with anti-p65 (Santa Cruz Biotechnol-
ogy, Santa Cruz, CA, USA) or the negative control anti-
haemagglutinin (Roche Diagnostics, Mannheim, Germany)
at 1:500 dilution. Secondary antibody FITC-conjugated anti-
rabbit IgG (Jackson ImmunoResearch, West Grove, PA, USA;
diluted 1/200) was used for visualisation by inverted fluo-
rescence microscopy (Axiovert 200, Zeiss, Oberkochen,
Germany). NF-κB activation was evaluated by the presence of
p65 in the nucleus; the percentage of positive cells was deter-
mined in at least 500 cells for each experimental condition.

Microarray analysis Total RNA was isolated from INS-1E
and 208F cells using the RNeasy Mini Kit (Qiagen, Venlo,
the Netherlands). The aminoallyl antisense-cRNA was
obtained from total RNA, then coupled to one of two
fluorophores—indocarbocyanine (Cy3) or indodicarbocya-
nine (Cy5) (Amersham, Diegem, Belgium)—and prepared
for hybridisation [34]. Hybridisation using the APOCHIP
array [34] was performed in duplicate, with dye swapping,
as previously described [35]. Microarray scanning and
quantification using the GenePix Pro 5.0 image analysis
software (Axon Instruments, Union City, CA, USA), gene
expression Log2 ratios calculated from the spot intensities,
and normalisation of the data were performed as previously
described [35]. Means for the three independent experiments
were used for a one sample Student’s t test. Gene expression
was considered as changed by cytokines when p≤0.01 and
fold change (up- or downregulated) ≥1.2.

Real-time quantitative RT-PCR analysis Cells were har-
vested and the reverse transcriptase reaction was performed
using poly(A) RNA [9]. Expression of the NF-κB target
genes Mcp-1, Iκbα, Cd40, A20, Xiap (also known as Ccl2,
Nfkbia, Tnfrsf5, Tnfaip3, Birc4, respectively) and Iap-2 was
determined by real-time RT-PCR [9]. Expression values are
corrected for Gapdh, a housekeeping gene, and values are
shown as fold induction relative to control (no cytokine)
[4]. Cytokines do not modify Gapdh expression in insulin-
producing cells [9, 28, 29]. Primer sequences and their
respective PCR fragment lengths are provided in Table 1 of
the Electronic supplementary material (ESM).

IKK immunoprecipitation and kinase assay Cells (106) were
lysed in buffer containing 25 mmol/l HEPES pH 7.9;
150 mmol/l NaCl; 0.5% Triton X-100; 10% glycerol;
1 mmol/l dithiothreitol (DTT); 1 mmol/l Na3VO4;
25 mmol/l β-glycerophosphate; 1 mmol/l NaF and protease
inhibitor cocktail (Roche Diagnostics). Total protein (500–
700 μg) was rotated for 2 h at 4°C in the presence of 1.2 μg
of either anti-IKKγ (Santa Cruz Biotechnology) or anti-
haemagglutinin (Roche Diagnostics) antibodies, followed by
a 2 h incubation with protein A-sepharose CL-4B beads (GE
Healthcare, Uppsala, Sweden). Beads were washed twice
with lysis buffer, once with kinase buffer (25 mmol/l HEPES,
pH 7.9, 10 mmol/l MgCl2, 25 mmol/l β-glycerophosphate,
1 mmol/l DTT, 1mmol/l Na3VO4), and then incubated at 30°C
in kinase buffer containing 1 μg of glutathione-S-transferase
(GST)-IκBα recombinant protein and 5 mmol/l ATP. After
30 min, the reaction was stopped by heat denaturation in the
presence of 1% (wt/vol.) SDS. Proteins were subjected to
SDS-PAGE through a 10% (wt/vol.) gel and transferred onto a
nitrocellulose membrane. Immunoblot analysis was performed
with anti-phospho (P)-IκBα and anti-IKKα (Santa Cruz
Biotechnology). Primary antibodies were detected with anti-
rabbit horseradish peroxidase-labelled anti-IgG (Pierce Protein
Research Products; Thermo Scientific, Rockford, IL, USA).

Promoter reporter assays Cells were co-transfected using
lipofectamine 2000 (Invitrogen, Baesley, UK) with the
internal control pRL-CMV encoding Renilla luciferase
(Promega, Madison, WI, USA) and with either the pNF-
κB-Luciferase (BD Biosciences, Palo Alto, CA, USA), or the
control vector pTAL [4]. Luciferase activities and values
correction performed as described previously [10]. After
transfection (16 h), cells were exposed to cytokines for 4 h.

Statistical analysis Data are shown as means±SEM, and
comparisons between groups were carried out either by
paired Student’s t test (two-tailed) or by ANOVA followed
by paired Student’s t test with the Bonferroni correction, as
indicated. A p value of ≤0.05 was considered statistically
significant.
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Results

IL-1β- and TNF-α-induced NF-κB activation is pro-
apoptotic in beta cells Blocking NF-κB activation by
infection with AdIκBα(SA)2 protected purified rat beta cells
and INS-1E cells against both IL-1β + IFN-γ- and TNF-α +
IFNγ-induced cell death (Fig. 1a,b), but protection was
more marked in primary beta cells than in INS-1E cells.
Consistent with this, infection with AdIκBα(SA)2 provided
more effective prevention of NF-κB nuclear localisation in
primary beta cells than in INS-1E cells (Fig. 1c,d). In beta
cells, cytokine-induced expression of the gene encoding
iNOS is regulated by NF-κB [36], and in line with the
findings for viability and NF-κB nuclear localisation,
inhibition of nitric oxide (NO) production in response to
AdIκBα(SA)2 infection was more pronounced in primary

beta cells than in INS-1E cells (Fig. 1e,f). Cytokine-induced
beta cell death (Fig. 1a,b), NF-κB nuclear localisation
(Fig. 1c,d) and NO formation (Fig. 1e,f) were not prevented
in the control cells infected with AdLUC, confirming that the
findings in the AdIκBα(SA)2-infected cells were due to
blockade of NF-κB activation.

IL-1β + IFN-γ and TNF-α + IFN-γ induced INS-1E cell
death mostly via apoptosis, with a minor necrotic component.
Prevention of NO production by LMA decreased the
apoptosis induced by both treatments (ESMFig. 1a), although
this did not return to control levels, in spite of near-complete
inhibition of nitrite production (ESM Fig. 1b). Prevention of
cell death by LMA was more pronounced for the cells
treated with IL-1β + IFN-γ (ESM Fig. 1a), in agreement
with the higher NO production induced by this treatment
(ESM Fig. 1b).
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Fig. 1 NF-κB inhibition prevents cytokine-induced beta cell apopto-
sis. FACS-purified rat beta cells (a, c, e) or insulin-producing INS-1E
cells (b, d, f) were left uninfected (control, white bars), or infected with
recombinant adenoviruses expressing either luciferase (AdLUC, grey
bars) or the NF-κB non-degradable inhibitor IκB(SA)2 [AdIkB(SA)2,
black bars]. a, b Viability assay: cells were left untreated or exposed to
cytokines for 4 days (purified rat beta cells, a) or 48 h (INS-1E cells,
b) and viability was measured as described in Methods. Results are
expressed as apoptotic index [4] vs respective control (not cytokine-
treated). The percentages of apoptotic cells in controls (not cytokine-

treated) were 13±1.3%, 14±1% and 17±2% for beta cells, and 5.5±
0.5%, 7±1% and 9±1% for INS-1E cells for uninfected, AdLUC-
infected and AdIκBα(SA)2-infected cells, respectively. c, d Immuno-
fluorescence assay for the NF-κB p65 subunit after 1 h of exposure to
IL-1β or TNF-α; the figures represent the percentage of nuclear
NF-κB-positive cells. e, f Nitrite production measured in the medium
collected from cells used in the viability assay shown in a and b.
Results are the mean±SEM of four to nine experiments. *p<0.05 vs
uninfected cells (paired Student’s t test)
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Role of protein synthesis in cytokine-induced beta cell death
and caspase-3 activation Blocking protein synthesis in-
duced primary beta cell and INS-1E cell apoptosis, but this
effect was not, or only marginally, increased by IL-1β or
TNF-α (Fig. 2a,b). Similar findings were observed when
the effect of the two cytokines on caspase-3 activation was
measured (Fig. 2c,d). When these experiments were repeat-
ed in 208F cells, in which NF-κB is anti-apoptotic [4],
TNF-α+cycloheximide treatment induced a significant in-
crease in cell death (19.5%±0.8; n=4, p≤0.001 vs TNF-α
alone) compared with TNF-α (2.9%±0.5, n=4) or cyclo-
heximide alone (5.4%±1.1, n=4).

Identification of genes modulated by IL-1β and TNF-α by
microarray analysis Three independent time course experi-
ments using INS-1E or 208F cells treated with IL-1β or
TNF-α were used for array analysis. In total, the analysis
detected 490 (INS-1E) and 479 genes (208F cells),
represented by 875 spots (each spot containing a different
probe) and flagged as ‘good’ for the GenePix Pro 5.0
software. These genes were clustered in 14 groups [29]
according to their putative biological function (ESM Tables
2 and 3). Cytokines modified the expression of 39 genes in
INS-1E cells (Table 1). Most of these genes are related to
cytokine processing and signal transduction or to transcrip-
tion factors. Comparison of these data with the available
information on IL-1β-induced gene expression in purified
rat beta cells ([29] and Beta Cell Gene Expression Bank at
http://t1dbase.org/page/BCGB_Enter/display/, accessed 18
March 2008), showed 78% similarity. The gene expression
patterns induced by IL-1β and TNF-α were similar
(Table 1), but the expression of the majority of upregulated
genes, particularly the putative NF-κB target genes, was

higher following IL-1β treatment (Table 1, Fig. 3a–d).
Interestingly, the converse was seen in 208F cells, i.e.
induction of these genes was greater in response to TNF-α
than to IL-1β (ESM Table 3, Fig. 3e–h). Real-time RT-PCR
was performed on independent time course experiments in
INS-1E cells to confirm the APOCHIP results for some of
the cytokine-modulated genes (Fig. 4). The qualitative
changes in gene expression observed by real-time RT-
PCR were in good agreement with the observed results for
the APOCHIP. Thus, the cytokines increased Iκbα and
Mcp-1 expression, IL-1β to a greater extent than TNF-α
(Figs 3 c,d and 4 a,b), and no significant induction of Xiap
or Iap-2 (ESM Table 2, Fig. 4c,d). The quantitative
changes, however, were lower in the APOCHIP than those
observed by real-time RT-PCR (Figs 3 and 4). These
differences were reported in previous array analyses [35,
37], and may be an innate limitation of the array
technology. The expression of additional NF-κB target
genes that were not present (A20) or detected (Cd40) in the
APOCHIP was also analysed. Induction of these genes was
again greater in INS-1E cells following IL-1β treatment
compared with TNF-α treatment (Fig. 4e,f). Of note, A20,
Xiap and Iap-2 are anti-apoptotic genes regulated by NF-
κB [24].

IL-1β induces an earlier and more pronounced NF-κB
translocation to INS-1E cell nucleus than TNF-α Exposure
of INS-1E cells to IL-1β or TNF-α induced p65 (a NF-κB
member present in the cytokine-activated complex in INS-
1E cells [4]) translocation to the nucleus (Fig. 5); this was
more marked for IL-1β at the earlier time points (between
10 and 30 min). Between 45 min and 2 h, NF-κB nuclear
localisation tended to be similar between the two treat-

0

5

10

15

20

25

Control IL TNF Control IL

IL

TNF

A
p
o
p
to

si
s 

(%
)

0
10
20
30
40
50
60
70

Control IL TNF Control TNF

C
as

p
as

e-
3
 a

ct
iv

it
y
 (

%
)

0

5

10

15

20

25

C
as

p
as

e-
3
 a

ct
iv

it
y
 (

%
)

0

5

10

15

20

25

A
p
o
p
to

si
s 

(%
)

a b

*
* **

c d

*

* *

**

Fig. 2 Apoptosis induction in
beta cells exposed to IL-1β (IL)
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ments, but at later time points, i.e. between 4 and 48 h, IL-
1β again induced greater NF-κB nuclear localisation.

Differential IKK activation induced by cytokines in INS-1E
cells In INS-1E cells, IKK activation by IL-1β was
stronger and longer than that by TNF-α (Fig. 6a), as measured
by the capacity of the immunoprecipitated IKK complex to
phosphorylate the GST-IκBα substrate. On the other hand,
and in line with the array data (Fig. 3), IKK activation by
TNF-α was more marked in 208F cells (Fig. 6b). The
absence of phosphorylation when lysates were immunopre-
cipitated by anti-haemagglutinin antibody, used as a negative
control, confirmed that the GST-IκBα substrate is specifi-

cally phosphorylated by the IKK complex (Fig. 6a,b).
Immunoprecipitation of the IKK complex was confirmed
by western blotting using anti-IKKα antibody, indicating a
similar amount of IKKα protein (a key member of the IKK
complex) as immunoprecipitated by anti-IKKγ (Fig. 6a,b).
In agreement with these findings, IL-1β induced a stronger
NF-κB activation, as evaluated by a NF-κB reporter assay
(fold increase: 32.6±5.7, p≤0.05 vs control, paired Student’s
t test, n=4) compared with TNF-α (fold increase: 12.2±1.8,
p≤0.05 vs control, paired Student’s t test, n=3). In contrast,
TNF-α and IL-1β induced similar NF-κB activation in 208F
cells, with a tendency for a higher degree of activation with
TNF-α (fold increase: 2.4±0.5, p≤0.05 vs control, paired
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Student’s t test, n=9) compared with IL-1β (fold increase:
1.9±0.3, p≤0.05 vs control, paired Student’s t test, n=9).

Discussion

Understanding the mechanisms by which IL-1β and TNF-α
trigger beta cell death is important for the development of

novel strategies to protect these cells in type 1 diabetes. In
pancreatic beta cells, IL-1β has a more pronounced pro-
apoptotic effect than TNF-α, but both cytokines activate the
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transcription factor NF-κB [4]. Recent observations suggest
that NF-κB activation by IL-1β or TNF-α may lead to
different beta cell outcomes, with a pro-apoptotic role for
IL-1β [5–7] and an apparent anti-apoptotic role, perhaps
mediated by de novo synthesis of A20 [38], for TNF-α
[14]. In the present study we evaluated the mechanisms
regulating IL-1β- and TNF-α-induced beta cell apoptosis,
focusing on NF-κB. Neither IL-1β nor TNF-α induces
primary beta cell death on its own, and these cytokines
usually act in synergy with IFN-γ during insulitis [1, 2].
Thus, most experiments aiming to determine beta cell death
were performed in the presence of IFN-γ. Blockade of
NF-κB activation by AdIκBα(SA)2 protected beta cells from
both IL-1β + IFN-γ- and TNF-α + IFN-γ-induced
apoptosis. Protection was, however, partial, indicating the
presence of additional non-NF-κB-mediated mechanisms of
cell death. The increase in apoptosis stimulated by blockade
of protein synthesis was not further increased in the presence
of IL-1β or TNF-α in beta cells, but was markedly increased
by TNF-α in fibroblasts. In line with these findings, the two
cytokines failed to induce expression of the anti-apoptotic
NF-κB target genes Iap-2 and Xiap, and induced only a
transient expression of A20 in INS-1E cells (Fig. 4).

In other cell types, TNF-α induces an anti-apoptotic re-
sponse that is dependent on NF-κB activation and de novo
gene expression/protein production [22–24]. This explains
why inhibition of protein synthesis sensitises fibroblasts to
TNF-α-induced cell death ([22–24], present data). In beta
cells, however, this anti-apoptotic response is either of
minor magnitude or is overshadowed by the pro-apoptotic
signals. Thus, there was no increase in cell death when beta
cells were exposed to TNF-α or IL-1β in the presence of
cycloheximide. The discrepancy between the present
observations and previous data, showing increased cell
death in the insulinoma cell line β-TC3 [38], may be due to

the use of tumoral cells in these previous experiments.
Indeed blocking of protein synthesis in combination with
TNF-α in INS-1E cells (an insulinoma cell line) induced a
minor increase in cell death as compared to cycloheximide
alone, while no such effect was observed in primary beta
cells (Fig. 2a).

The present findings are in agreement with previous
studies underlying the deleterious effects of TNF-α in beta
cells [2, 39] but do not support the suggestion that TNF-α-
induced NF-κB activation has a protective role against beta
cell death [14]. It is conceivable that the discrepant results
between this and previous studies may be, at least in part,
related to the use of different experimental models.
Prevention of NF-κB activation induces a clearer protection
against cytokine-induced cell death in primary beta cells
than in INS-1E cells (present data). INS-1E cells have a
doubling time of 66–72 h, while purified primary beta cells
have very limited proliferative capacity in vitro. INS-1E
cells were exposed to cytokines 48 h after viral infection
and viability was measured after an additional 48 h in
culture; this timing is sufficient for 1.4 cycles of cell division,
which might have “diluted” the viral vector. In line with this
possibility we observed a higher inhibition of NF-κB nuclear
localisation in INS-1E cells analysed 24 h after infection
(82%) compared with 48 h (57%) (data not shown).

Activation of NF-κB in beta cells in vivo may also have a
pro- or anti-apoptotic function depending on the animal model
of diabetes and time window utilised. Thus, there is a pro-
apoptotic effect of NF-κB in the case of multiple low doses of
streptozotocin [7] while NF-κB has an apparent anti-
apoptotic effect in the case of NOD mice [14]. Duration of
NF-κB inhibition may also be relevant, since protection
against diabetes was reported with temporary and condition-
al inactivation [7] while prolonged and constitutive inhibi-
tion aggravated the disease [14]. Since there are different
mediators of beta cell death in vivo [2], it is difficult to
define from these experiments which pathway(s) (e.g. IL-1β,
TNF-α, Fas, iNOS) is being modulated by NF-κB.

IL-1β + TNFα + IFNγ induces NF-κB activation in whole
human islets [40], and it will be of interest to study this in
individual humans beta cells. Moreover, and taking into
account the growing interest in beta cell neogenesis, it will
be of relevance to evaluate whether NF-κB has a similar
pro-apoptotic role in proliferating/differentiating beta cells.

We next explored the reason(s) for the more intense pro-
apoptotic effect of IL-1β compared with TNF-α, even though
it was used at a tenfold lower concentration [4]. We first
analysed the role of NO and then examined the global
pattern of gene expression induced by TNF-α and IL-1β.
The enzyme responsible for NO formation, iNOS, is
induced by proinflammatory cytokines in beta cells and con-
tributes to beta cell death in rodents [2, 3]. IL-1β + IFN-γ
induces higher NO production than TNF-α + IFN-γ ([2],
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Fig. 7 Proposed model for IL-1β- and TNF-α-induced cell death in
beta cells in the presence of IFN-γ. The figure is described and
discussed in the main text. The number of grey arrows is an indicator
of the relative level of induction
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present data). Blocking iNOS activity with LMA only
partially prevented the cell death induced by both treat-
ments, which was more marked for IL-1β + IFN-γ (40%)
than for TNF-α + IFN-γ (15%). This suggests that both IL-
1β + IFN-γ- [28, 41] and TNF-α + IFN-γ-induced INS-1E
cell death have NO-dependent and independent compo-
nents. The NO-independent component is apparently more
relevant for TNF-α + IFN-γ-induced cell death.

The global pattern of gene expression induced by TNF-α
and IL-1β was compared in INS-1E cells, using our ‘home-
made’APOCHIP array [34]. IL-1β and TNF-α modified the
expression of similar sets of genes, and the majority of the
modified genes were either related to cytokine expression,
processing and signal transduction (30%) or were transcrip-
tion factors (18%). IL-1β, however, induced a higher
expression of genes related to beta cell dysfunction and death,
and most of these genes have been previously described as
NF-κB targets [8, 42]. The opposite was observed in
fibroblast 208F cells, where gene expression was induced
to a greater extent by TNF-α than IL-1β. The APOCHIP is a
focused array, designed to include apoptosis-related and/or
cytokine-regulated genes [34]. Thus, we cannot exclude the
possibility that relevant genes that were not included in the
APOCHIP are differentially regulated by IL-1β and TNF-α.

Previous experiments have shown that IL-1β-induced
NF-κB activation in INS-1E cells is more rapid, intense and
sustained than in fibroblasts, leading to a more pronounced
activation of key downstream genes such as iNOS and Fas
[4]. This indicates that the intensity of NF-κB activation
and the cell type involved are important for the pro- or anti-
apoptotic outcome. This is supported by the observation
that transient and limited activation of NF-κB induced by
extracellular matrix favours preservation of rat beta cell
function and survival [43]. In the present experiments, the
higher expression of IL-1β- compared with TNF-α-induced
genes was paralleled by an earlier and more marked nuclear
localisation of NF-κB. This is probably secondary to the
stronger IKK activation induced by IL-1β. Both IL-1β and
TNF-α induce NF-κB activation through the IKK-IκB
signalling pathway [17, 18]. They act, however, via
different receptors and recruit different protein adaptors
[17]. The IKK complexes are heterogeneous [44], and the
different responses of INS-1E cells to IL-1β and TNF-α
may be related to kinetically distinct pathways of IKK acti-
vation and IκBα degradation, as shown in monocytes [45].
TNF-α signalling via TNF receptor 1 in other cells results
in the rapid activation of IKK and nearly complete
degradation of IκBα within 10 min [17]. In 208F cells
(present data), IKK activation was increased to a greater
extent by TNF-α than IL-1β, demonstrating that INS-1E
cells possess a specific pattern of cytokine-induced IKK
activation. IKK augments the transcriptional activity of NF-
κB via phosphorylation of the p65 subunit in some cell

types [19]. Post-translational modifications modulate both
the strength and duration of the NF-κB response [46], and
in INS-1E cells transcriptional activity is higher following
exposure to IL-1β than TNF-α, as observed in reporter gene
assays ([4], present data). IL-1β treatment also increases
the activation of ERK1/2 [4], which regulates the trans-
activating capacity of NF-κB in insulin-producing cells [21]
and contributes to cytokine-induced beta cell death [47].

Figure 7 provides an overview of the main findings of this
study. Some of the differences between the deleterious effects
of IL-1β and TNF-α in beta cells might be explained by the
higher intensity of IKK activation and consequent NF-κB
nuclear migration induced by IL-1β. This leads to increased
NO production, in parallel with the augmented expression of
other genes, such as Fas and Mcp-1, which will contribute to
both increased apoptosis and attraction of immune-competent
cells [2]. Beta cell sensitivity to cytokines is aggravated by its
absent/feeble and/or transitory induction of protective genes
such as Xiap [48], Bcl-6 [49] and A20 [38] (present
observations). Overall, our findings allow the following
conclusions: (1) IL-1β and TNF-α share a main common
pathway of signal transduction in beta cells, namely, NF-κB
activation; (2) NF-κB activation is mostly pro-apoptotic in beta
cells exposed to either IL-1β or TNF-α; (3) the effects of IL-1β
on NF-κB are more intense than those of TNF-α, which may
explain why IL-1β induces more apoptosis. However, we
cannot exclude the possibility that other, yet to be discovered,
pathways also contribute to the effects of these cytokines.
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