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Pyroptosis is a gasdermins mediated programmed cell death, which has been widely

studied in inflammatory disease models. Recently, there are growing evidences that

pyroptosis can be chemically induced in cancer cells without any bacterial or viral

infection. Pyroptosis may affect all stages of carcinogenesis and has become a new

topic in cancer research. In this review, we first briefly introduced pyroptosis. In the

subsequent section, we discussed the induction of pyroptosis in cancer and its potential

role as a promising target for cancer therapy. In addition, the biological characteristics of

gasdermin D (GSDMD) and gasdermin E (GSDME), two important pyroptosis substrates,

and their prognostic role in cancer management were reviewed. These results help us

to understand the pathogenesis of cancer and develop new drugs, which based on

pyroptosis modulation, for cancer patients.
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INTRODUCTION

Inflammation is one of the hallmarks of cancer (1). Inflammasomes are the most critical
components of the response to cancer promoting inflammation (2–4). Once activated by diverse
danger signals of pathogenic or non-pathogenic origin, inflammasomes can trigger the maturation
and secretion of pro-inflammatory cytokines, such as interleukin-1β (IL-1β) and IL-18, to influence
the pathogenesis of cancer by modulating innate and adaptive immune responses (5–7). Strong
associations between dysregulation of inflammasomes and malignant diseases highlight the
importance of this pathway in cancer management (8).

Pyroptosis, the inflammasomes-induced programmed cell deathmediated by gasdermins, is first
described in myeloid cells infected by pathogens or bacteria in 1992 (9). Pyroptosis is thought to
play a key role in the clearance of various bacterial and viral infections by removing intracellular
replication niches and enhancing the host’s defensive responses (10). Dysregulation of pyroptosis
may cause lower efficiency of pathogens clearance and dysfunction in the stimulation of adaptive
immune defenses, resulting in tissues damage (11).More recently, growing evidences demonstrated
that pyroptosis could be chemically induced in cancer cells without any bacterial or viral infection
(12). Pyroptosis has become a new topic in cancer research because it may affect all stages of
carcinogenesis. Advances on the morphological characteristics and mechanisms of pyroptosis will
broaden our understanding of cancer and provide new perspectives in cancer management (13, 14).

In thismini-review, we firstly give a brief introduction of pyroptosis. The activation of pyroptosis
in cancer and its prognostic role in cancer management will be discussed subsequently.
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OVERVIEW OF PYROPTOSIS

Pyroptosis is a form of programmed cell death, which is
featured by cell membrane pore formation, cytoplasmic swelling,
membrane rupture and the release of cytosolic contents such as
IL-1β into the extracellular environment, amplifying the local or
systemic inflammatory effects (15, 16).

The pyroptosis can be induced through the canonical
caspase-1 inflammasome pathways (17, 18) and non-canonical
caspase-4/5/11 (caspase-4/5 in human and caspase-11 in
mice) inflammasome pathways (19) (Figure 1). In canonical
pyroptosis, a range of pathogen-associated molecular patterns
(PAMPs) or danger-associated molecular patterns (DAMPs),
including bacterial peptidoglycans, adenosine triphosphate
(ATP), viral dsRNA, and the elevated intracellular reactive
oxygen species (ROS) level (20–27), activate inflammasomes,
such as absent in melanoma 2 (AIM2) (28), Pyrin (29),
and the nucleotide-binding oligomerization domain (NOD)-
like receptor (NLR) family (16, 30–32). In response to the
inflammasomes stimulation, enzyme caspase-1 is recruited to the
protein complex, which includes the inflammasome sensor itself,
adaptor protein apoptosis-associated speck like proteins (ASC),
and caspase activation and recruitment domain (CARD) of
ASC, facilitating dimerization and activation (33). The activated
caspase-1 is then capable of leading to maturation and secretion
of IL-1β and IL-18. At the same time, the activated caspase-
1 also cleaves gasdermin D (GSDMD) into two fragments: the
N-terminal domain and C-terminal domain. The N-terminal
fragment translocates to the inner leaflet of the plasmamembrane
and forms membrane pores with an inner diameter of 10–15 nm
(34, 35). The membrane pores further promote the discharge
of inflammatory factors, cell swelling, membrane rupture, and
eventually lead to pyroptosis.

In contrast to canonical pyroptosis, non-canonical
pyroptosis is mediated by caspases-4/5 in human and caspase-
11 in mice. Caspase-4/5 (caspase 11 in mice) trigger the
activation of pyroptosis through direct recognition of cytosolic
lipopolysaccharide (LPS) via CARD domain (36–38). After that,
the GSDMD protein is cleaved, which induced membrane pore
formation, IL-1βmaturation and release, cell membrane rupture,
and ultimately pyroptosis.

In addition to the caspase-1 in the canonical and caspase-
4/5/11 in the non-canonical inflammasome pathways, recent
studies demonstrated that pyroptosis could also be activated by
other caspases. Transforming growth factor-β (TGF-β)-activated
kinase 1 (TAK1), a key molecule in TGF-β-induced Smad-
independent signaling pathways, has recently been shown to
be crucial for the modulation of nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-κB) signaling pathway.
The inhibition of TAK1 by small-molecule inhibitor or Yersinia
effector protein YopJ elicits caspase-8 dependent cleavage of
GSDMD, which subsequently results in pyroptotic cell death
(39, 40). As an essential modulator of cell apoptosis, caspase-
3 has recently been demonstrated exerting a critical role in
pyroptosis induction. Wang et al. (41) showed that caspase-
3 involved in the regulation of pyroptosis through cleaving
gasdermin E (GSDME).

GASDERMIN PROTEINS IN PYROPTOSIS

Gasdermins are a family of pore-forming proteins which
participate in the activation of pyroptosis. This family contains
six members in human [GSDMA-E and Pejvakin (PJVK)] and
10 members in mice (three homologs of GSDMA (GSDMA1–
3), four homologs of GSDMC (GSDMC1–4) and one homolog
each of GSDMD, GSDME and PJVK) (42). Apart from PJVK, all
of these proteins consist of two conserved domains, N-terminal
effector domain and the C-terminal inhibitory domain (35, 43).
In the resting state, gasdermins oligomerization is maintained
by the intramolecular binding between the N-terminal effector
domain and C-terminal inhibitory domain. In the presence
of various microbial and endogenous stimuli, gasdermins is
cleaved by pyroptotic caspases, the N-terminal domain of certain
gasdermins squeeze into the lipid components, form pores in
the cell membrane and execute the pyroptosis induction role
(34, 35, 44, 45).

GSDMD and GSDME are two molecules that are extensively
studied in pyroptosis. GSDMD, which mainly expressed in
the gastrointestinal tract and skin, is a 53-kDa protein
located downstream of the pyroptotic caspases (46, 47). As
mentioned previously, GSDMD is an executioner of pyroptosis,
which can be cleaved by pyroptotic caspases and form the
cellular membrane pores. In response to the stimulation, the
GSDMD N-terminal domain can bind to phosphatidylinositol
phosphates of the cell membrane (34, 35, 43, 45, 48,
49). And the binding could be further enhanced by the
interaction of GSDMD N-terminal domain and phosphatidic
acid, phosphatidylserine and resulted in pore formation,
cellular osmotic pressure change, cell membrane lysis, and
pyroptosis (34).

GSDME is generally expressed in the fetal cochlea, heart, and
kidney (50, 51). Studies suggest that the mutations of GSDME is
related to the non-syndromic hearing impairment (50, 52, 53).
In the regulation of pyroptosis, GSDME could be triggered by
caspase-3, an important effector in apoptosis process. Activated
caspase-3 cleaves GSDME and forms the N- and C-terminal
domains. The N-terminal fragment of GSDME activated by
caspase-3 is similar to N-terminal domain of GSDMD, resulting
in cell membrane pore formation and pyroptosis (41, 54).
However, the role of GSDME in driving pyroptosis upon
apoptotic stimulation has been challenged by several studies. In
the process of mitochondrial apoptosis, it was found that GSDME
was unnecessary for the channel formation. GSDME played a
non-redundant role in macrophage cell lysis downstream of the
ripoptosome (55). In line with this study, Tixeira et al. (56)
found that GSDME was dispensable for the pyroptosis regulation
of human T cells and monocytes. Lee et al. (57) demonstrated
GSDME was not required for pyroptosis in caspase 1−/− caspase
11−/− bone marrow-derived macrophages treated with flagellin,
cytochrome c or Fas ligand. These results suggest that GSDME-
mediated pyroptosis may only occur under specific conditions
and specific cell types. The same as the GSDME-mediated
pyroptosis, GSDME-independent secondary necrosis may also
have a role in pyroptosis regulation. This new kind of pyroptosis
may represent an interesting new inflammatory pattern of cell
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FIGURE 1 | A schematic diagram of Pyroptosis pathways. Pyroptosis is initiated when DAMPs or PAMPs activate the inflammasomes. Activated inflammasomes can

lead to the cleavage of caspase-1. The activated caspase-1 cleaves Gasdermin D (GSDMD), in turn to form the N-fragment of GSDMD and cell membrane pores,

resulting in pyroptosis. Activated caspase-1 also promotes the maturation and secretion of IL-1β and IL-18, which is also an important molecular event during the

pyroptosis procession. When LPS binds to the precursor of caspase-4/5/11, it can also cause pyroptosis. The other way to activate pyroptosis is caspase-3/

Gasdermin E (GSDME). Caspase-3 can be activated by mitochondrial and death receptor pathway. The activated caspase-3 then cleaves GSDME, to produce

GSDME N-fragments, forming pores in the plasma membrane, causing cell swelling and pyroptosis. DAMPs, danger-associated molecular patterns; PAMPs,

pathogen-associated molecular patterns; IL-1β/IL-18, interleukin-1β/interleukin-18; LPS, lipopolysaccharide.

death, which will require further exploration of the details of its
mechanism and significance in inflammatory diseases.

PYROPTOSIS IN CANCER

Activation of GSDMD-Mediated Pyroptosis
in Cancer
There are some studies indicated that certain drugs or molecules
could trigger GSDMD-mediated pyroptosis in various types of
cancer (Table 1; Figure 2), which suggested this new type of
programmed cell death was involved in the pathogenesis of
cancer and could be a new target in cancer management.

Metformin is a widely used anti-diabetic drug. There are a
great deal of evidences that metformin also have anti-cancer
properties (69, 70). However, the exact mechanisms of the
anti-cancer effect of metformin are still not completely clear.
Recently, Wang et al. (58) showed that metformin could induce
the GSDMD-mediated pyroptosis of esophageal squamous cell
carcinoma (ESCC) in in vitro and in vivo studies. Mechanistic
studies revealed that metformin activated the pyroptosis of ESCC
by targeting miR-497/ Proline-, glutamic acid- and leucine-
rich protein-1 (PELP1) pathway. These data clarify the exact
mechanism of metformin-induced pyroptosis of cancer cells and
provide an opportunity for the development of new drugs to
control ESCC.

Anthocyanin is a kind of water-soluble natural pigment, which
widely exists in plants and belongs to flavonoids. In recent years,
more and more studies have revealed the therapeutic effect of
anthocyanins in cancers (71). Yue et al. (59) investigated the

potential inhibitory effect and underlie molecular mechanisms
of anthocyanin on oral squamous cell carcinoma (OSCC). They
noted that anthocyanin decreased the survival rate of OSCC
cells and inhibited the migration and invasion of these cells via
pyroptosis activation. The activation of pyroptosis was related
to the increased expression of NLRP3, caspase-1 and IL-1β.
Under the action of caspase-1 inhibitor, anthocyanin-activated
pyroptosis was inhibited, and the cell survival rate, migration and
invasion rate were increased.

Docosahexaenoic acid (DHA) is an omega-3 fatty acid with
cancer inhibitory effect (72, 73). DHA inhibits the growth of
breast cancer cells through NF-κB translocation and caspase-
1 activation, which further cleaves GSDMD, promotes the
secretion of IL-1 β, forms membrane pores, and leads to
pyroptosis (60).

Dipeptidyl peptidase 8 and 9 (DPP8/9) are two relatively new
members of the dipeptidyl peptidase IV family. Their role in
regulating immune response and tumor proliferation has been
reported before (74, 75). Johnson et al. (61) found that DPP8/9
inhibitor can induce pyroptosis in acute myeloid leukemia
(AML). As an activator of “inflammasome” sensor CARD8,
DPP8/9 inhibitor stimulates CARD8 dependent activation

of caspase-1. Activated caspase-1 then leads to pyroptotic

programmed cell death in AML. These results highlight the

potential value of this small molecule DPP8/9 inhibitor in the
treatment of AML.

In a recent study, Chen et al. (55) revealed

that chemotherapeutic drugs such as the second

mitochondrial-derived activator of caspases (SMAC) mimetics,
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TAK1 inhibitors and B-cell lymphoma 2 (Bcl-2) Homology
3 (BH3) mimetics could promote caspase-8 or caspase-9-
dependent myeloid cells death. Activated Caspase-8 or caspase-9
could further cleave GSDMD, to promote the pyroptosis. These
results suggest that innate immune cells have the ability to
produce secondary necrosis signals in chemotherapy-induced
apoptosis and play a new role in the regulation of cancer
cell death.

Secretoglobin (SCGB) 3A2 (SCGB3A2) is a member of SCGB
family, which has the function of anti-fibrotic (76). However,
the role of SCGB3A2 in cancer development is unknown. In
a recent study, the authors found that SCGB3A2, worked as
a chaperone, directly interacted with syndecan-1 (SDC1) to
facilitate the delivery of lipopolysaccharide (LPS) into the cytosol
and stimulated pyroptosis in Lewis lung carcinoma (LLC) cells
via up-regulating the caspase-11/NLRP3 pathway. In vivo, the
role of SDC1 in SCGB3A2-mediated inhibition of growth and
metastasis of LLC cells was also evaluated. In addition to the
change of tumor volume, tumor metastasis was also affected

TABLE 1 | Summary of the pyroptosis introductive reagents and the related

cancer.

Reagent Cancer

types

Mechanisms of

pyroptosis activation

References

Metformin ESCC miR-

497/PELP1/GSDMD

Wang et al.

(58)

Anthocyanin OSCC NLRP3/Caspase-1/IL-

1β

Yue et al. (59)

DHA Breast

Cancer

NF-κB/Caspase-

1/GSDMD

Pizato et al.

(60)

DPP8/9

Inhibitor

AML CARD8/Caspase-

1/GSDMD

Johnson et al.

(61)

α-NETA Ovarian

cancer

GSDMD Qiao et al.

(62)

Cisplatin;

Paclitaxel

Lung cancer Caspase-3/GSDME Zhang et al.

(63)

Iron Melanoma Tom

20/Bax/Cytochrome

c/Caspase-9/Caspase-

3/GSDME

Zhou et al.

(64)

L61H10 Lung cancer Cell Cycle Arrest/

NF-κB /GSDME

Chen et al.

(65)

BI2536 and

Cisplatin

ESCC Caspase-3/GSDME Wu et al. (66)

Lobaplatin Colon cancer ROS and JNK

phosphorylation/

Bax/Cytochrome

c/Caspase-9/Caspase-

3/GSDME

Yu et al. (67)

Doxorubicin Melanoma eEF-2K/GSDME Yu et al. (68)

ESCC, esophageal squamous cell carcinoma; PELP1, Proline-, glutamic acid- and

leucine-rich protein-1; GSDMD, gasdermin D; OSCC, oral squamous cell carcinoma;

NLRP3, nod-like receptor protein 3; IL-1β, interleukin-1β; DHA, docosahexaenoic acid;

DDP8/9, dipeptidyl peptidase 8 and 9; CARD8, caspase activation and recruitment

domain 8; α-NETA, 2-(Anaphthoyl)ethyltrimethylammonium iodide; Bax, Bcl-2-associated

X protein; ROS, reactive oxygen species; JNK, c-Jun N-terminal kinase; eEF-2K,

eukaryotic elongation factor-2 kinase.

by the interaction between SCGB3A2 and SDC1. The results
showed that SCGB3A2 combined with LLC-sh-Control cells
could significantly reduce the number ofmetastasis tumors, while
the number of tumors in mice receiving LLC-sh-SDC1 cells and
SCGB3A2 had no significant change compared with the control
group. Mechanism studies demonstrated that the interaction
between caspase-11 and SDC1 triggered the activation of non-
canonical inflammasome pathway and pyroptosis. The effect of
SCGB3A2 on the survival of lung-specific KrasG12D mutant mice
was also evaluated. Based on these results, the authors propose
a new model, that is, SCGB3A2 chaperoned LPS to the cytosol
through SDC1 and then lead to the pyroptosis of cancer cells
driven by caspase-11 (77).

Retinoic acid inducible gene I (RIG-I) is the innate immune
system pattern recognition receptor (PRRs), which plays a key
role in RNA virus recognition (78, 79). It was found that the
activation of RIG-I increased the number of tumor lymphocytes
and reduced tumor growth and metastasis in breast cancer.
The up-regulation of RIGI could stimulate the expression of
pro-inflammatory transcription factors signal transducer and
activator of transcription 1 (STAT1) and NF-κB. The activation
of STAT1 and NF-κB further triggered exogenous apoptosis
and caspase-1/GSDMD-regulated pyroptosis, accompanied
by lymphocyte-recruiting chemokines and type I interferon
release (80).

Resistance to chemotherapy is a major challenge for patients
with ovarian cancer. It is equally important to clarify the
mechanism of chemotherapy resistance in ovarian cancer as
well as to develop new drugs for this kind of cancer. Recently,
it was reported that 2-(Anaphthoyl)ethyltrimethylammonium
iodide (α-NETA), an reversible choline acetylcholine transferase
inhibitor, could inhibit the proliferation of epithelial ovarian
cancer cell by inducing GSDMD/caspase-4 mediated pyroptosis.
These results have also been confirmed in in vivo studies. Taken
together, these findings suggest that induction of pyroptosis
represents a new anticancer strategy for epithelial ovarian cancer
therapy (62).

Long non-coding ribonucleic acid (LncRNAs) is also involved
in the regulation of pyroptosis. Ma et al. (81) showed that
inhibition of IncRNARP1-85F18.6 could promote the pyroptosis
of colorectal cancer cells by modulating the expression level of
1Np63. In addition, IncRNARP1-85F18.6,1Np63, and GSDMD
also have certain value in the prognosis and diagnosis of
colorectal cancer.

Activation of GSDME-Mediated Pyroptosis
in Cancer
Unlike GDSMD-medicated pyroptosis, GSDME-mediated
pyroptosis is usually caused by chemotherapy agents or target
therapy drugs (Table 1; Figure 2).

Wang et al. (41) found the different expression level of
GSDME between cancer cells and many normal tissues.
The GSDME-mediated pyroptosis could be activated by
chemotherapy-induced caspase-3 activation in cancer cells. After
chemotherapy, activated caspase-3 cleaves GSDME, to produce
GSDME-N fragment, which can penetrate the cell membrane
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FIGURE 2 | A schematic diagram shows the induction of pyroptosis in cancers. The main results of the studies on the activation of pyroptosis in cancers are

summarized in the diagram. NLRP3, nod-like receptor protein 3; DDP8/9, dipeptidyl peptidase 8 and 9; CARD8, caspase activation and recruitment domain 8; RIG-I,

retinoic acid inducible gene I; STAT1, signal transducer and activator of transcription 1; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; DHA,

docosahexaenoic acid; IL-1β /IL-18, interleukin-1β/interleukin-18; GSDMD, gasdermin D; GSDME, gasdermin E; SCGB3A2, Secretoglobin (SCGB) 3A2; LPS,

lipopolysaccharide; TNFα, Tumor necrosis factor α; IKKβ, inhibitor of nuclear factor kappa-B kinase subunit beta; Bax, Bcl-2-associated X protein; 5-FU, fluorouracil;

SMAC, second mitochondrial-derived activator of caspases; TAK1, Transforming growth factor-β -activated kinase 1; PELP1, Proline-, glutamic acid- and leucine-rich

protein-1; ROS, reactive oxygen species; JNK, c-Jun N-terminal kinase.

to induce pyroptosis. In addition, the low incidence of normal
tissue damage and weight loss induced by chemotherapy was
found in GSDME−/− mice. Consistent with this, Zhang et al.
(63) demonstrated that both cisplatin and paclitaxel could
induced caspase-3/GSDME-mediated pyroptosis in lung cancer
cells. However, the ability of cisplatin to induce pyroptosis was
significant stronger than that of paclitaxel.

Iron is an important factor in cell regulation and body
homeostasis (82, 83). A recent study has shown the amplification
effect of iron on ROS and its role in the activation of pyroptosis
in melanoma cells. In melanoma cells, iron can significantly
enhance ROS triggered by chemotherapy, resulting in oxidation
and oligomerization of mitochondrial import receptor subunit
Tom20. Activated Tom20 recruits Bax to mitochondria and
causes cytochrome c leakage. Cytochrome c further activates
caspase-3, and eventually induces the cleavage of GSDME and
the pyroptotic death of melanoma cells. To further verify
the role of pyroptosis in the anti-tumor effect, A375 cells
and GSDME-knockdown A375 cells were separately used to
generate xenograft tumors in nude mice. Compared with the
control group, sulfasalazine/ iron dextran solution treatment
significantly decreased the tumor growth of A375 cells, at the

same time, the results also showed that the GSDME cleavage
increased. However, after the GSDME was knocked down, the
efficacy of sulfasalazine/ iron dextran solution in the treatment
of xenograft tumors was reduced. It suggested that iron could
sensitize melanoma cells to ROS-induced drugs through GSDME
and pyroptosis modulated pathways. In addition, because iron
could amplify ROS to induce pyroptosis, it may be a potential
sensitizer for melanoma treatment, which could induce the
pyroptosis function of chemotherapeutic agents. In another
words, the in vivo study suggested that the induction of
pyroptosis might be a valuable approach to increase the efficacy
of cancers (64).

Compound L61H10 is a heterocyclic ketone derivative, which
has a role in cancer treatment. Study showed that L61H10 exerted
the cancer inhibitory effects through arresting the cell cycle in the
G2/M phase and mediating the NF-κB modulated apoptosis to
GSDME-mediated pyroptosis transformation (65).

Serine/threonine protein kinase Polo-like Kinase 1(PLK1)
plays an important role in the key steps of mitosis. PLK1
can inhibit DNA damage by inactivating e ataxia telangiectasia
mutated and Rad3 related (ATR)/checkpoint kinase 1 (CHK1)
pathway and ataxia telangiectasia-mutated gene (ATM)/CHK2
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pathway (84, 85). Wu et al. (66) found that the combination
of low dose PLK1 inhibitor BI2536 and cisplatin could induce
pyroptosis in ESCC and increase the sensitivity of chemotherapy.
In terms of mechanism, the pyroptosis introductive effect of
BI2536 and cisplatin on ESCC cells depends on the caspase-
3/GSDME axis. In vivo, the results showed that the tumor was
successfully controlled according to the combined treatment
of BI2536 and DDP. In addition, Wu et al. (66) showed
that the co-treatment of BI2536 and DDP could induce the
expression of cleaved caspase-3 and accumulate GSDME around
the cytoplasm, resulting in pyroptosis of ESCC cells. It is
further confirmed that BI2536 and DDP could induce pyroptosis
through Bax/caspase-3/GSDME pathway. Furthermore, the
prognostic role of GSDME in ESCC patients has also been
confirmed. These results point to the importance of pyroptosis
induction in cancer treatment, which may have an impact
on clinical practice in the near future. However, the in vivo
consequences of this cellularmechanismmust be verified in order
to predict whether the combination of BI2536 and DPP is an
effective choice for cancer patients (86).

It was found that lobaplatin could induce the pyroptosis
death of colon cancer cells by cleaving GSDME with caspase 3
in a recent study (67). The down-regulation of GSDME could
change the cell death induced by lobaplatin from pyroptosis to
apoptosis. In the mechanism study, the authors further found
that lobaplatin elevated the level of ROS and c-Jun N-terminal
kinase (JNK) phosphorylation. Activated JNK recruited Bax to
mitochondria, which promoted the release of cytochrome c
into the cytosol, and then induced caspase-3/-9 cleavage and
pyroptosis. This study shows that GSDME-dependent pyroptosis
is novel mechanism for the eradication of colon cancer cells by
lobaplatin, which may be of great significance for the clinical
application of anti-cancer therapeutics.

As a negative regulator of protein synthesis, eukaryotic
elongation factor-2 kinase (eEF-2K) exerts a critical role in the
regulation of autophagy and apoptosis in cancer cells (87, 88).
In a recent study, the results revealed that eEF-2K also played
an important role in pyroptosis of human melanoma cells
induced by doxorubicin. Doxorubicin treatment could induce
eEF-2K activation and autophagy in melanoma cells. However,
eEF-2K silencing shifted the doxorubicin-induced autophagy
into GSDME-modulated pyroptotic cell death, thus increasing
the sensitivity of melanoma cells to doxorubicin. The author
highlight that the results of the study provide new insight into
cancer chemotherapy (68).

Recent study showed that pyroptosis was also involved in
the response of target therapy in KRAS-, epidermal growth
factor receptor (EGFR)—or anaplastic lymphoma kinase (ALK)-
driven lung cancer. During target therapy, caspase-3-dependent
GSDME activation can be triggered and lead to cytoplasmic
membrane permeability and pyroptosis. This study provides a
new idea for understanding the mechanism of targeted drugs and
even the molecular mechanism of target therapy resistance (89).

Considering the potential role of pyroptosis in cancer
treatment, some research teams are working to develop new
anti-cancer drugs through induction of pyroptosis. Chalcone
can increase the level of intracellular ROS and exert a wide

range of biological activities in cancers (90, 91). Li et al. (92)
incorporated α, β-unsaturated ketone unit into chalcone and
developed a new compound. Compared with chalcone itself, the
new compound has a better therapeutic effect on lung cancer. The
therapeutic mechanism of this new compound may be related to
the stimulation of caspase-3-mediated pyroptosis via elevating
intracellular ROS levels. These findings lay a good foundation
for the development of anti-cancer drugs based on induction
of pyroptosis.

Effects of Pyroptosis Introduction on the
Cancer Immunity
The immunogenicity of cancer cells is a new determinant of
anti-cancer immunotherapy. In addition to the development
of dendritic cell-based vaccines, immune checkpoint inhibitors
and adoptive T cell transfer, researchers have begun to pay
more attention on the immunobiology of dead cancer cells and
their correlation with the success of cancer immunotherapy
(93, 94). Cell death is a basic biological phenomenon necessary
for the survival and development of organisms. Recent evidence
suggests that cell death contributes to immune defense against
various types of disease (95). Pyroptosis is a programmed cell
death pathway activated by several kinds of caspase, which
can inhibit or increase the immunogenic potential of cancers.
Physical rupture of pyroptotic cells leads to the release of
pro-inflammatory cytokines IL-1β and IL-18, and endogenous
DAMPs, indicating the immunogenic potential of pyroptosis
(10). Additionally, the cytoplasmic contents of pyroptosis cells
may be an effective signal to initiate inflammatory cascade.
Recent studies have shown that IL-1β and IL-18 produced
during pyroptosis can affect the recruitment of neutrophils (96).
GSDMD, which is the most important effector of pyroptosis,
could inhibit the response of cyclic GMP-AMP Synthase (cGAS)-
driven type I interferon to cytoplasmic DNA and Francisella
novicida in macrophages (97). In addition, GSDMD can also play
an anti-inflammatory role by promoting neutrophil death (98). In
a recent study, increased GSDMD cleavage was observed in OT-1
cytotoxic T lymphocytes (CTLs) and human activated CD8+ T
cells. GSDMD also contributed to the cytolytic capacity of CD8+

T cells (99). These studies all support the immunogenic potential
of pyroptosis. However, there is no direct evidence indicate that
pyroptotic cell death can induce cancer immunity. A great deal
of work needs to be done to further understand the role of
pyroptosis in immunogenic in cancer.

The Prognostic Role of GSDMD and
GSDME in Cancer
The prognostic role of gasdermins, especially for GSDMD and
GSDME, were demonstrated in recent studies.

Wang et al. (100) analyzed the role of GSDMD in the
proliferation of gastric cancer. They found that GSDMD
was down-regulated in gastric cancer and contributed to
the occurrence and proliferation of this kind of cancer.
Mechanistically, GSDMD inhibited extracellular signal-regulated
kinase (ERK), STAT3, and phosphatidylinositol 3 kinase/protein
kinase B (PI3K/AKT) signaling pathways in gastric cancer.
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Furthermore, the down-regulation of GSDMD also caused S
to G2 cell cycle stage transition arrest via cyclin-dependent
kinase 2 (CDK-2) and cyclin A2. These data indicated the tumor
suppressor role of GSDMD in gastric cancer.

Oppositely, Gao et al. (101) reported GSDMD was up-
regulated in non-small cell lung cancer. The high expression
of GSDMD was related to larger tumor size, late tumor-
node-metastasis (TNM) stages, and lower survival rate.
However, the prognostic value of GSDMD was only found in
lung adenocarcinoma, but not in squamous cell carcinoma.
In subsequent studies, they found GSDMD induced lung
cancer proliferation and poor prognosis through EGFR/AKT
signaling pathway.

Unlike GSDMD, GSDME has been reported as a tumor
suppressor in several studies. It was found that GSDME deficient
melanoma cells formed and grew larger tumors than their wild-
type counterparts (102). Furthermore, Wang et al. (103) revealed
that GSDME could be cleaved by fluorouracil (5-FU) in a dose-
dependent manner by activating caspase-3 in gastric cancer
SGC-7901 and MKN-45 cells. Reversed the lower expression
of GSDME in gastric cancer by decitabine could improve the
efficacy of chemotherapeutic drugs. In addition, the positive
correlation between GSDME mRNA level and the chemotherapy
sensitivity of melanoma cells was also demonstrated in a recent
study (104).

GSDMD and GSDME are two important pyroptotic
substrates, and they also exert other critical roles in the
pathogenesis and treatment strategies exploit of cancer.
However, so far, we have not been able to conclude whether the
level of gasdermin expression indicates a good or poor prognosis
in cancers. We need more research to evaluate the prognostic
role of Gasdermin in cancers.

CONCLUSION

Pyroptosis, a new form of programmed cell death, has been
widely studied in inflammatory disease models in recent years
(11, 105). However, we are only just beginning to understand
the molecular mechanisms of pyroptosis and its emerging role
in cancer research (106). Although some studies have confirmed
the critical role of pyroptosis in cancer, few cancer-specific
mechanisms for the regulation of pyroptosis have been found.
A great deal of work needs to be done to further understand
the cancer specific regulation mechanisms of pyroptosis. The
failure of treatment of some refractory cancers is largely due
to the development of drug resistance to apoptosis. Therefore,
introduction of non-apoptotic programmed cell death, such as
pyroptosis, may be an effective way to rechallenge the apoptosis-
resistant cancers (69). The identified new mechanisms in cancer
cell pyroptosis may lead to the discovery of new drugs for
cancer treatment in the future. In addition, because of the
important role of GSDMD/GSDME in the regulation of both
pyroptosis and cancer therapy sensitivity, the study which focus
on GSDMD/GSDME and cancer treatment sensitivity will assign
a new role for pyroptosis in the future.
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