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Induction of resilience
strategies against biochemical
deteriorations prompted
by severe cadmium stress
in sunflower plant when
Trichoderma and bacterial
inoculation were used
as biofertilizers

Amany H. A. Abeed1*†, Rasha E. Mahdy 2*, Dikhnah Alshehri3,
Inès Hammami4, Mamdouh A. Eissa5,
Arafat Abdel Hamed Abdel Latef6* and
Ghada Abd-Elmonsef Mahmoud1†

1Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, Egypt,
2Agronomy Department, Faculty of Agriculture, Assiut University, Assiut, Egypt, 3Department of
Biology, Faculty of Science, Tabuk University, Tabuk, Saudi Arabia, 4Department of Biology, College
of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia, 5Department of Soils
and Water, Faculty of Agriculture, Assiut University, Assiut, Egypt, 6Department of Botany and
Microbiology, Faculty of Science, South Valley University, Qena, Egypt
Background: Cadmium (Cd) is a highly toxic heavy metal. Its emission is

suspected to be further increased due to the dramatic application of ash to

agricultural soils and newly reclaimed ones. Thereby, Cd stress encountered by

plants will exacerbate. Acute and chronic exposure to Cd can upset plant

growth and development and ultimately causes plant death. Microorganisms as

agriculturally important biofertilizers have constantly been arising as eco-

friendly practices owing to their ability to built-in durability and adaptability

mechanisms of plants. However, applying microbes as a biofertilizer agent

necessitates the elucidation of the different mechanisms of microbe protection

and stabilization of plants against toxic elements in the soil. A greenhouse

experiment was performed using Trichoderma harzianum and plant growth-

promoting (PGP) bacteria (Azotobacter chroococcum and Bacillus subtilis)

individually and integrally to differentiate their potentiality in underpinning

various resilience mechanisms versus various Cd levels (0, 50, 100, and 150

mg/kg of soil). Microorganisms were analyzed for Cd tolerance and biosorption

capacity, indoleacetic acid production, and phosphate and potassium

solubilization in vitro. Plant growth parameters, water relations, physiological

and biochemical analysis, stress markers and membrane damage traits, and

nutritional composition were estimated.
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Results: Unequivocal inversion from a state of downregulation to upregulation

was distinct under microbial inoculations. Inoculating soil with T. harzianum

and PGPB markedly enhanced the plant parameters under Cd stress (150 mg/

kg) compared with control plants by 4.9% and 13.9%, 5.6% and 11.1%, 55.6% and

5.7%, and 9.1% and 4.6% for plant fresh weight, dry weight, net assimilation rate,

and transpiration rate, respectively; by 2.3% and 34.9%, 26.3% and 69.0%, 26.3%

and 232.4%, 135.3% and 446.2%, 500% and 95.6%, and 60% and 300% for some

metabolites such as starch, amino acids, phenolics, flavonoids, anthocyanin,

and proline, respectively; by 134.0% and 604.6% for antioxidants including

reduced glutathione; and by 64.8% and 91.2%, 21.9% and 72.7%, and 76.7% and

166.7% for enzymes activity including ascorbate peroxidase, glutathione

peroxidase, and phenylalanine ammonia-lyase, respectively. Whereas a

hampering effect mediated by PGP bacterial inoculation was registered on

levels of superoxide anion, hydroxyl radical, electrolyte leakage, and

polyphenol oxidase activity, with a decrease of 0.53%, 14.12%, 2.70%, and

5.70%, respectively, under a highest Cd level (150 mg/kg) compared with

control plants. The available soil and plant Cd concentrations were

decreased by 11.5% and 47.5%, and 3.8% and 45.0% with T. harzianum and

PGP bacterial inoculation, respectively, compared with non-inoculated Cd-

stressed plants. Whereas, non-significant alternation in antioxidant capacity of

sunflower mediated by T. harzianum action even with elevated soil Cd

concentrations indicates stable oxidative status. The uptake of nutrients, viz.,

K, Ca, Mg, Fe, nitrate, and phosphorus, was interestingly increased (34.0, 4.4,

3.3, 9.2, 30.0, and 1.0 mg/g dry weight, respectively) owing to the synergic

inoculation in the presence of 150 mg of Cd/kg.

Conclusions: However, strategies of microbe-induced resilience are largely

exclusive and divergent. Biofertilizing potential of T. harzianum showed that,

owing to its Cd biosorption capability, a resilience strategy was induced via

reducing Cd bioavailability to be in the range that turned its effect from toxicity

to essentiality posing well-known low-dose stimulation phenomena (hormetic

effect), whereas using Azotobacter chroococcum and Bacillus subtilis, owing to

their PGP traits, manifested a resilience strategy by neutralizing the potential

side effects of Cd toxicity. The synergistic use of fungi and bacteria proved the

highest efficiency in imparting sunflower adaptability under Cd stress.
KEYWORDS

adaptability, biofertilizers, growth-promoting bacteria, Trichoderma harzianum,
Bacillus subtilis
Abbreviations: PGP, plant growth promoting; HMT, heavy metal tolerant; IAA, indole-3-acetic acid;

Fwt, fresh weight; Dwt, dry weight; PH, plant height; LSA, specific leaf area; NAR, net assimilation rate;

Sc, stomatal conductance; Tr, transpiration rate; WUE, water use efficiency; RWC, relative water

content; TN, total nitrogen content; NR, nitrate reductase; MDA, malondialdehyde; LOX, lipoxygenase;

EL, electrolyte leakage; ROS, reactive oxygen species; H2O2, hydrogen peroxide; •OH, hydroxyl radical;

O·−
2 , superoxide anion; PCs, phytochelatin; GSH, reduced glutathione; ASA, ascorbic acid; CAT, catalase;

SOD, superoxide dismutase; POD, guaiacol peroxidase; APX, ascorbate peroxidase; GPX, glutathione

peroxide; GST, glutathione-S-transferase; PAL, phenylalanine ammonia-lyase; PPO, polyphenol oxidase.
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Introduction

The exceptional change in the environmental conditions due

to population explosion, amplified air and soil pollution,

ecosystem heavy metal (HM) contamination, depletion of soil

quality, and global climate change has considerably impacted the

capability of plants to adapt to changing climactic conditions

(Dimkpa et al., 2009). These changes make agricultural

production systems liable to altering environmental

conditions. Such suboptimal environmental conditions can

prompt damaging the physiological changes which occur

within the plants, called stresses (Raza et al., 2020). Abiotic

stresses such as high temperature, metal toxicity, drought,

salinity, and nutrient imbalance are those environmental

stresses that restrict crop growth and production below the

threshold level.

The sunflower (Helianthus annuus L.) ranks the fourth most

important oilseed crop, following soybean, palm seeds, and

canola seeds as a significant source of oil used in various food

products worldwide (USDA, FAO, 2008). It is a protein source of

great interest for human nutrition, especially due to its sensory,

nutritional, and functional properties (Zorzi et al., 2020). In

Egypt, the shortage of edible oil represents a huge problem due

to the rise in human growth rate with limited oilseed cultivated

area at the same time. Therefore, the government is earnestly

seeking to increase oilseed crop production, which could be

achieved in two ways: horizontal expansion through the

cultivation of large newly reclaimed areas or vertical expansion

by increasing plant growth rates and production by plant

regulators and antioxidants (Hayat et al., 2020). Newly

reclaimed soil is likely to explore numerous environmental

stress situations, such as nutrient deprivation, low water

availability, temperature fluctuations, saline water and soil,

high irradiances, and HM contamination.

Available information on the contamination of urban

agricultural areas and newly reclaimed ones in Egypt by metals

is now widespread (Naggar et al., 2014). According to Lu et al.

(2019) and Singh and Steinnes (2020), the maximum allowable

concentration for Cd is 0.3 mg/kg, and the toxic soil for plants

contains 3–8 mg/kg. However, Naggar et al. (2014) have shown

that many agricultural soils in Egypt exceeded the maximum Cd

allowable concentrations and reached about 30 mg/kg of soil.

This was suspected to be further increased due to the dramatic

application of ash to agricultural soils and newly reclaimed ones.

Using these agricultural soil types for cultivation will exacerbate

the Cd stress encountered by plants; thus, the yield of crops

decreases and the quality of field products gets degraded (Abdel

Latef, 2013; Hakla et al., 2021; Yaashikaa et al., 2022). Acute and

chronic exposure to Cd can induce more damage including

severe disturbance and downregulation in the physiological

processes of plants, such as increased reactive oxygen and

nitrogen species in the cells, which, in turn, act as deleterious

molecules mediating an oxidative/nitrosative burst that could
Frontiers in Plant Science 03
cause growth inhibition, accelerated senescence, and mostly

cause plant death (Noor et al., 2022). To survive severe Cd

stress, the built-in durability and adaptability mechanisms of

plants to withstand metal stress conditions are used to improve

plant resistance against metal stress, furthermore enhancing the

natural role of microorganisms as biofertilizers that will be

beneficial in improving soil health and plant productivity

(Ortiz and Sansinenea, 2022).

Toward a sustainable agricultural vision and fulfilling HM

stress tolerance and better nutritional value, agricultural

practitioners are looking increasingly for environmentally

friendly inputs such as biofertilizers to manage their crops and

cropping systems. Biofertilizers are defined as substances

containing living organisms that, when applied to seeds, plant

surfaces, or soil, colonize the rhizosphere or the interior of the

plant and promote growth by increasing the supply or

availability of primary nutrients to the host (Dimkpa et al.,

2009). Biofertilizer also refers to the different inoculations of

agriculturally beneficial microorganisms (bacteria/fungi) with

certain desirable physiological and behavioral characteristics

that are utilized for crop nutrition management programs

(Zainab et al., 2021). Rhizosphere microorganisms have been

used to underpin resilience strategies against abiotic stress in

many plants, such as Solanum nigrum, Brassica napus, tomato,

and maize (Dell'Amico et al., 2008; Sheng et al., 2008; Chen et al.,

2010; Dourado et al., 2013) mainly achieved by increasing the

bioavailability of phosphorus (P) and nitrogen (N) and other soil

trace elements essential to plant growth. Moreover, the presence

of the symbiotic association also helps to increase plant water

uptake; encompasses the adverse effects of phytopathogens;

modifies plant growth hormone production; and diminishes

the impact of abiotic stresses like drought, salinity, and HM

toxicity (Ortiz and Sansinenea, 2022). Their significant role in

HM stress management is substantially by eliminating the

negative effects of metal on yield quantity and quality (Basu

et al., 2017; Ding et al., 2021). They can also accumulate,

transform, or detoxify HM.

Consequently, the use of microorganisms that primarily

colonizes the rhizosphere/endorhizosphere of plants and hence

favors growth directly or indirectly is gaining priority in stress

management (Ding et al., 2021). Adaptation and acclimatization

of plants for survival under stress conditions due to

microorganism inoculations induced physical and chemical

changes, wherein the term Induced Systemic Tolerance (IST)

has been coined (Basu et al., 2017). This matter catapults them as

natural biofertilizers and bioprotection agents (Ortiz and

Sansinenea, 2022). However, the underlying strategies of

microbe-induced resilience are not well understood, and the

modes of action largely remain elusive and microbe

species-dependent.

Plant growth-promoting bacteria (PGPB) represent a group

of significant microorganisms characterized by plant growth

promotion by secreting important compounds such as
frontiersin.org
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phytohormones (Gupta et al., 2022) or by increasing nutrient

availability of plants (mineralization) (Etesami and Adl, 2020).

There is great potential for use of PGPB as biofertilizer agents for

a wide variety of crop plants in a wide range of climatic and

edaphic conditions. Currently, an array of bacterial inoculates

are commercially available for use as biofertilizers or

bioprotection against abiotic/biotic stresses (Dasgupta et al.,

2021; Kumar et al., 2022). Substantial progress has been

exerted in exploring the molecular, physiological, and

morphological mechanisms underlying bacterially mediated

tolerance to abiotic stresses (Dimkpa et al., 2009; Khan et al.,

2021). Azotobacter and Bacillus species were common plant

growth-promoting (PGP) bacteria (Sheng and Xia, 2006; Abdel-

Hakeem et al., 2019). A single PGP bacterium often has multiple

uses and modes of action (Rojas-Solis et al., 2020). They impart

plant stress tolerance by facilitating the needing resources like

fixing N, P, calcium (Ca), potassium (K), and other essential

mineral solubilizations and altering plant hormone uptake.

Their presence can contribute to the reduction in metal stress

on plants when applied to them as single bioinoculants (Wani

and Khan, 2010).

The free-living N-fixing bacterium Azotobacter secretes

biologically active compounds that promote plant growth,

such as pantothenic acid, nicotinic acid, B vitamins, biotin,

and gibberellin (Patil et al., 2020). Azotobacter could promote

the growth of plant roots, accelerate the intake of minerals, and

compete with other pathogenic microbes (Aasfar et al., 2021). In

addition, these are effective phosphate- and K-solubilizing

bacteria (Diep and Hieu, 2013); according to Hafez et al.

(2016), Azotobacter solubilized up to 43% of Egyptian

phosphate rock. Singh et al. (2010) stated that Azotobacter

species can enhance K uptake by plants. Another PGP

characteristic of Azotobacter is auxin production, which helps

the plants for longer roots and increases root hair number and

lateral roots, cell division, elongation, and fruit development

(Grossmann, 2010; Phillips et al., 2011). In addition, Bacillus

subtilis has the capacity to solubilize soil P, improve N fixation,

and create siderophores that support its growth while inhibiting

that of pathogens (Kuan et al., 2016). By promoting the

expression of stress-response genes, phytohormones, and

stress-related metabolites in their plant hosts, Bacillus subtilis

improves the tolerance of those hosts to stress (Hashem et al.,

2019). According to Kang et al. (2015), Bacillus species secrete

phosphatases and organic acids that help turn inorganic phosphate

into free phosphate by acidifying the environment. Bacillus spp.

produce chemicals that encourage plant growth, such as indole-3-

acetic acid (IAA), gibberellins, cytokinins, and spermidines, and

these compounds enhance root and shoot cell division and

elongation (Radhakrishnan and Lee, 2016). Bacillus species can

be introduced to soil that has been contaminated with HMs to

lessen the metals’ detrimental effects on plant development and

help plants grow by boosting water absorption and lowering

electrolyte leaks to lessen Cd stress (Ahmad et al., 2014).
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Trichoderma has been proven as a potential biofertilization

agent to enhance rice plant growth, physiological traits, nutrient

uptake, and yield under controlled greenhouse conditions (Doni

et al., 2018) when used in the form of a suspension of fungal cells

applied to rice seeds or seedlings. They are presently marketed as

biopesticides, biofertilizers, growth and yield enhancers, nutrient

solubilizers, and organic matter decomposers as well as

phytohormones producers, such as IAA, cytokinin, zeatin, and

gibberellin. Trichoderma species tolerate or detoxify various

HMs, especially those microbes from metal-contaminated sites

(Zafar et al., 2007). Moreover, it has a high aggregation capability

of numerous metals simultaneously, giving it the advantage in

use during the bioremediation of soil contaminated with metals

(Errasquin and Vazquez, 2003).

Researchers have determined that Trichoderma species are

important fungi in the reduction of Cd ions. Bazrafshan et al.

(2016) and Nongmaithem et al. (2016) confirmed that

Trichoderma fungus biosorption of Cd (II) ions was

spontaneous and endothermic in nature, and Trichoderma

isolates IBT-I and UBT-18 can tolerant up to 200 ppm.

Trichoderma asperellum demonstrated a 76.17% effectiveness

in removing Cd as recorded by Mohsenzade and Shahrokhi

(2014). Cd translocation, tolerance, and absorption in barley

have all been linked to T. harzianum. It lessens the detrimental

effects of Cd pollution and decreases Cd uptake in plants that

have received an inoculation of T. harzianum (Ghasemkheili

et al., 2022). Herliana et al. (2018) found that the highest dry

weight of spinach under Cd contamination was recorded in

Trichoderma-treated plants. According to Marchel et al. (2018),

Trichoderma inoculation enhanced plant biomass. In addition,

Li et al. (2019) stated that plant inoculation with Trichoderma

improved loofah roots dry weight to 67% comparing with

control plants.

Trichoderma harzianum represents the most common

species of Trichoderma that is genetically special, establishes

many rhizosphere soils, and could survive in stress conditions

for several months (Kubicek et al., 2003). It represents a strong

antagonist genus with high soil colonization on the target site

and suppresses the other population of pathogenic

microorganisms as a biocontrol agent (Hermosa et al., 2012).

This study applied the aspects and mechanisms of HM

action of HM-tolerant (HMT) and PGP microbes in ensuring

sunflower plant survival and growth in highly Cd-contaminated

soils. Using these microbes and studying their interaction with

plants in reducing accumulated Cd in plants grown in heavily

HM-loaded soil can be the approach for a healthy future. We

ascertain the effectiveness of PGPB (Azotobacter chroococcum

and Bacillus subtilis), HMT fungus Trichoderma harzianum, and

consortium (Mix) treatment on sunflower resurrection, growth,

and mitigation of severe Cd stress in agricultural soil. In

addition, we assessed the physiological and biochemical

sunflower plant responses to the interaction between severe

toxic Cd levels and microbe inoculation on accumulated Cd
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and the performances of a sensitive sunflower cultivar. Thus,

knowledge generated from studies on resilience strategies against

Cd stress will be very useful in decoding signaling cascades

induced by microbial fertilizing agents, resulting in enhanced

tolerance and combat versus HM stress.
Materials and methods

Plant growth-promoting bacteria

Two bacterial microbes were used in this study. Azotobacter

chroococcum 14346 and Bacillus subtilis 642 were kindly

supplemented from Agriculture Research Center, Egypt. The

cultures were maintained on nutrient agar (NA) medium (Atlas,

1993) aerobically, stored at 4°C ± 1°C, and subcultured every 4

weeks. The microbes were tested for antagonistic effect on NA

plates before use (no antagonistic effect was detected). Prior to

the experiments, the bacteria were grown on NA medium at 28°

C ± 1°C for 24 h with rotary shaking (200 rpm) until OD660.

After that, the bacterial mass was harvested, centrifuged at

6,000×g for 15 min, washed, and suspended in new sterilized

water saline with 1 × 106 colony-forming units (CFU)/ml.
In vitro tests for plant growth-promoting
bacteria

IAA production was estimated in a mineral broth medium

fortified with L-tryptophan (0.2 g/L; Mahmoud and Mostafa,

2017). The sterilized medium was inoculated with bacterial

inoculum and incubated for 120 h at 28°C ± 1°C in a rotary

shaking incubator at 200 rpm. After that, bacterial cultures were

harvested and centrifuged at 6,000×g for 15 min; 1.5 ml of

bacterial culture supernatant was mixed with 1 ml of Salkowski

reagent pink to red color, which will appear after 30 min

according to the IAA concentration (Chrastil, 1976). The

developed color was measured using a T60UV split-beam

spectrophotometer with wavelength (190–1,100 nm) at 535

nm against free blank and calculated in micrograms per

milliliter through the standard curve of pure IAA (1–100 µg/

ml). For testing the bacterial ability for phosphate solubilization,

Pikovskaya’s agar medium in sterilized petri dishes was

inoculated with the microbes and incubated for 120 h at 28°C

± 1°C (Pande et al., 2017). Phosphate solubilization was

calculated as the formation of the clear zone (mm) around the

bacterial colony, and this diameter was measured every 12 h. For

testing the bacterial ability for K solubilization, Aleksandrov’s

agar medium in sterilized petri dishes was inoculated with the

microbes and incubated for 120 h at 28°C ± 1°C. K solubilization

was calculated as the formation of the clear zone (millimeters)

around the bacterial colony, and this diameter was measured
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every 12 h. (Khanghahi et al., 2018). Azotobacter chroococcum

N-fixing ability was tested on a N-free medium. The microbe

was grown on N-free medium plates for 1 week at 28°C ± 1°C

incubation temperature; the growth indicated N-fixation

capacity (Doroshenko et al., 2007).
In vitro tests for cadmium-resistant fungi

Trichoderma harzianum was isolated from HM-

contaminated soil on Czapek’s dextrose agar medium

supplemented with 50 ppm Cd chloride, identified according

to its macroscopic and microscopic properties, preserved

aerobically on Czapek’s dextrose agar medium in low

temperature at 4°C ± 1°C until use, and subcultured every 3

weeks. For screening the ability of T. harzianum to grow on

different concentrations of Cd, the agar dilution plate method

was used (Ibrahim et al., 2020). Different concentrations of Cd

chloride including 0, 50, 100, 150, 200, 250, and 300 ppm were

mixed with Czapek’s dextrose agar medium in sterilized petri

dishes and left to solidify. Trichoderma harzianum 6-mm disc of

3 days growing fungus inoculated on the medium center of the

plate and incubated at the moderate temperature at 28°C ± 1°C

for a week, and the growth area of the fungus was detected by

measuring the colony diameter in millimeters with three

replicates. For biosorption activity, T. harzianum was grown

on Czapek’s dextrose agar medium for 3 days at moderate

temperature (28°C ± 1°C); the spores were harvested from the

plate surface, mixed with sterilized 0.1% Triton X-100, and

diluted to 3 × 106 CFU/ml. Czapek’s dextrose broth medium

supplemented with the same Cd concentrations was inoculated

with 1% of the fungal spores and incubated at 28°C ± 1°C for 1

week after the fungal broth was used to measure the Cd

concentration via the Atomic Absorption Spectrophotometer

(Buck model 210 VGP, USA) (Mahmoud et al., 2020).
Experimental design

A greenhouse experiment was performed through a

completely randomized design (CRD) with a 6 × 4 factorial

plan. Six sunflower plant treatments [with or without PGPB, T.

harzianum, and consortium (Mix) inoculation] and four Cd soil

concentrations with a range of 0–150 mg/kg of soil were used.

Four replicates were assessed through each treatment. Each

replicate included four plants. Plants exposed to Cd

concentrations (50, 100, and 150 mg of Cd/kg of soil) without

microbe inoculation underwent severe toxic Cd symptoms

ultimately death occurring within 3 days after Cd treatments.

Thus, the experiment was completed with plants introduced to

interaction between microbe inoculation and the various Cd

levels (0, 50, 100, and 150 mg of Cd/kg of soil) only.
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Plant and the microbial treatments

Sunflower (Helianthus annuus L) seeds were supplied from

the Agronomy Department, Faculty of Agriculture, Assiut

University, Egypt. The seeds were sterilized as follows: they

were put in 70% ethanol for 2 min and then in 1% NaClO for

10 min, then washed three times with sterilized distilled water,

and transferred for germination on sterilized wet filter paper at

low temperature (4°C) for 48 h for the synchronized

germination; 1-week-old seedlings were further transplanted

for the investigation. Microbial inoculums were prepared as s

follows: 2-day-old bacterial cells were cultivated in nutrient

broth medium, collected by centrifugation at 6,000×g for

15 min, and washed and suspended in new sterilized water

saline with 2 × 108 CFU/ml for use. Four-day-old T. harzianum

cultivated in Czapek’s agar medium was scratched and

suspended in sterilized water saline with 3 × 106 CFU/ml

inoculum for use. PGPB (Azotobacter chroococcum and

Bacillus subtilis) treatment, T. harzianum treatment, and the

consortium (Mix) were used for enhancing the growth rate of

the sunflower plant under different concentrations of Cd stress

(0, 50, 100, and 150 mg of Cd/kg of soil).
Soil accommodation

Mixed soil samples from 0- to 25-cm depth of sandy loam

type were prepared from the surface soil horizon of Assiut

University farm; then, the physicochemical properties of the

soil were assessed, as shown in Table 1. The collected soil was

dried in the open air, sieved through 2-mm sieve pores for

removing inconstant particles, and autoclaved three times at

121°C for 20 min for 3 consecutive days to remove the native

microorganisms. Four Cd concentrations (0, 50, 100, and 150

mg/kg of soil) as Cd dichloride (CdCl2) were mixed into the

soil as a water solution, and samples were incubated at 20°C for

30 days for Cd distribution and stabilization through the

soil layers.
Planting and growth conditions

Pots were then transferred into a greenhouse at 28°C ± 2°C/

18°C ± 2°C day/night cycle, 60%–70% relative humidity, and a

photoperiod of 14 h. The experimental pots were watered using

deionized water once every 3 days to near-field capacity. After

35 days of transplanting, the sunflower plants (42 days old)

were harvested by cutting the shoots at the soil surface, and the

roots were carefully separated from the soil. The shoots and

roots were rinsed with distilled water and wiped with

tissue paper.
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Plant growth parameters

Shoot and root length, fresh shoot, and root weight were

estimated. For dry shoot and root values, harvested plants were

oven-dried at 60°C for 2 days. The leaf area and the net

assimilation values were estimated using the adopted methods

(Dawood et al., 2019).
Water relations

Relative water content (RWC) was calculated following the

equation adopted by Silveira et al. (2009): RWC = [(FW − DW)/

(TW − DW)] × 100, where FW is the fresh weight, TW is the

turgid weight measured after 24 h of saturation on deionized

water at 4°C in the dark, and DW is the dry weight. The

transpiration rate was measured as specified by Bozcuk (1975).

Leaf stomatal conductance was estimated by adopting the

equation recommended by Dawood and Abeed (2020), in

which stomatal conductance is expressed as the reverse of the

stomatal resistance. The stomatal resistance was measured from

the equation displayed by Holmgren et al. (1965) and as

modified by Slatyer and Markus (1968). The water use

efficiency (WUE) according to Larcher (2003) was determined

as follows: WUE (g/kg) = biomass (g/plant)/water use rate

(kg/plant).
Physiological and biochemical analysis

Chlorophyll a, chlorophyll b, and carotenoids were

estimated at 663, 644, and 452 nm following the method by

Lichtenthaler (1987). Carbon metabolism is evaluated through

the detection of glucose and fructose (mg/g DW) as described by

Halhoul and Kleinberg (1972), sucrose (mg/g DW) by Van

Handel (1968), and starch quantification (mg/g DW) by Fales

(1951) and Schlegel (1956). N metabolism was detected by

measuring total N, nitrate reductase (NR) activity, amino

acids, and proteins following Moore and Stein (1948); Lang

(1958); Downs et al. (1993), and Lowry et al. (1951), respectively.

Other metabolic molecules were measured as phenolics,

flavonoids, anthocyanin, and proline following the methods by

Krizek et al. (1993); Kofalvi and Nassuth (1995); Khyade and

Vaikos (2009), and Bates et al. (1973), respectively.
Stress markers and membrane
damage traits

Oxidative stress was monitored by determining stress

markers such as superoxide anion (mg/g FW, O·−
2 ), hydroxyl
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radical (mmol/g FW, •OH), and hydrogen peroxide (mmol/g FW,

H2O2) level in sunflowers leaves, which was quantified as reported

by Mukherjee and Choudhuri (1983). Lipid peroxidation was

assessed as malondialdehyde (MDA) (mmol/g FW) using the

method by Madhava Rao and Sresty (2000). Lipoxygenase (LOX)

activity (LOX/EC.1.13.11.1) was assessed at 234 nm according to

themethod byMinguez-Mosquera et al. (1993). Electrolyte leakage

(EL) was estimated by conduct meter (YSI model 35 Yellow

Springs, OH, USA) as described by Silveira et al. (2009).
Non-enzymatic and enzymatic
antioxidant capacities

Non-enzymatic antioxidants such as ascorbic acid (ASA) and

reduced glutathione (GSH) were assessed following the methods

applied by Jagota andDani (1982) and Ellman (1959), respectively.

Phytochelatins (PCs) are determined by the protocols by Ellman

(1959) and Nahar et al. (2016). The enzymatic potential of leaves

was detected by screening the activities of superoxide dismutase

(SOD/EC.1.15.1.1), catalase (CAT/EC 1.11.1.6), ascorbate

peroxidase (APX/EC1.11.1.11), glutathione peroxidase (GPX/

EC.1.11.1.9), polyphenol oxidase (PPO/EC 1.10.3.1), guaiacol

peroxidase (POD/EC 1.11.1.7), phenylalanine ammonia-lyase

(PAL/EC 4.3.1.5), and glutathione-S-transferase (GST/EC

2.5.1.18) using the adopted methods by Misra and Fridovich

(1972); Nakano and Asada (1981); Kumar and Khan (1983); Aebi

(1984); Flohé andGünzler (1984); Tatiana et al. (1999); Sykłowska-
Baranek et al. (2012), and Ghelfi et al. (2011), respectively.
Element composition of the plants

Sodium and K were determined by the flame emission

technique (Carl-Zeiss DR LANGE M7D flame photometer)

(Havre, 1961). The contents of Ca, Mg, Fe, and Cd were

determined with atomic absorption (Shimadzu, model AA-630-

02). Nitrate contentwas quantified by the protocol by Cataldo et al.

(1975). P content was estimated spectrophotometrically following

the methods by Fogg and Wilkinson (1958).
Statistical analysis

A CRD was utilized for the pot experiments. Obtained data

were expressed as means ± SE. SPSS 10.0 software program was
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used for performing the statistical analysis. Comparisons

between control and treatments were assessed by one-way

ANOVA using the least significant difference (LSD) test.

Difference from control was counted significant at the

probability levels of 0.05 or very significant at the probability

levels of 0.01.
Experimental results

Plant growth-promoting bacteria

Both bacterial strains (Azotobacter chroococcum and Bacillus

subtilis) showed no antagonistic properties with plant growth

promotion capabilities through the production of IAA,

phosphate, and K solubilization (Figures 1, 2). IAA production

starts after 12 h in low quantities for both bacteria and then

increased. By increasing the bacterial growth time, IAA

production increased in harmony until 96 h and then

decreased for both bacteria, giving 78.8 ± 0.98 µg/ml for A.

chroococcum and 84.27 ± 2.7 µg/ml for B. subtilis. However, the

maximum CFU for them was 4.79 ± 0.1 × 107 CFU for A.

chroococcum and 4.36 ± 0.03 ×107 CFU for B. subtilis after 96

and 84 h, respectively (Figures 1A, B). Both bacterial strains

showed high phosphate-solubilizing activities after 24 h of

growth and reached their highest values after 120 h with

phosphate-solubilizing clear zone of 17.33 ± 0.46 mm for A.

chroococcum and of 23.3 ± 1.24 mm for B. subtilis (Figure 2A). K

solubilization also takes the same direction as phosphate

solubilization, reaching its highest values after 120 h with K

solubilizing clear zone of 13.7 ± 0.5 mm for A. chroococcum and

of 20 ± 0.82 mm for B. subtilis (Figure 2B). A. chroococcum was

confirmed as N-fixing bacteria through its growth on a specific

N-free medium; both microbes showed no antagonistic

properties between each other on NA.
Cadmium-resistant Trichoderma

Trichoderma harzianum showed the ability to grow on

different Cd concentrations in the range of 0–300 ppm as high

resistance (Figures 3A, B). The growth of T. harzianum on

Czapek’s agar plates with different Cd concentrations showed

that the fungus is slightly affected after 50 ppm and highly

affected after 200 ppm. At 50 ppm, the fungus showed complete

growth, such as at 0 ppm (90 mm); at 100 ppm, the fungus was
TABLE 1 Physical and chemical characteristics of the used soil.

pH (1:1) ECdS/m (1:1) Soluble cations (ppm) Soluble anions (meq/L) Particle size distribution (%)

Ca++ Mg++ Na+ K+ CO−
3 + HCO−

3 Cl–

7.1 2.25 574 344 186 47 1525 887 Sand 12.4% Silt 30.9% Clay 56.7%
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tiersin.org

https://doi.org/10.3389/fpls.2022.1004173
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Abeed et al. 10.3389/fpls.2022.1004173
slightly affected (89 ± 1.4 mm), and at 200 ppm, it had a growth

of 80 ± 0.82 mm. The highest Cd concentration (300 ppm)

decreased the growth to 67.3 ± 1.2 mm (Figure 3A). The

biosorption pattern of T. harzianum is indicated in Figure 3B;

at 50 ppm, the biosorption percentage was 90.32% ± 0.1%, at 100

ppm was 89.54% ± 0.44%, at 150 ppm was 81.35% ± 0.28%, and

at 300 ppm was 32.17% ± 1.1%.
Plant growth and leaf biochemical
characteristics derived from cadmium
treatments and microbe–soil
inoculations interactions

Influence of Cd and microbe–soil interaction
on morphological and growth attributes of
sunflower plant

All Cd concentrations exposure caused fatal damage to

plants accompanied by toxic symptoms appearance, including

yellowing, chlorosis, stem necrosis, stunting, and wilting.

Chlorosis started to appear on leaves after 3 days of Cd

exposure and progressed until the end of the treatment,

resulting in plant death rather than growth or metabolic

retardation, suggesting that plant detoxification processes are

insufficient to cope with these lethal concentrations; thus, plants

failed to survive the exposure duration. Therefore, the

physiological data were obtained from survivor plants in the

remaining 13 treatments. Soil microbe inoculations presented a

successful approach to reverted plants from distressing to

aliveness, thus performing comparably to unstressed plants

even at elevated soil Cd levels (up to 150 mg/kg of soil). An

initial characterization of the effect of inoculation with microbes

was attempted by measuring growth parameters. The resultant

plant death due to Cd exposure can effectively be held up by

microbe inoculation. Data in Table 2 showed that the

stimulatory effect on plant growth parameters in terms of

plant fresh and dry weights (Fwt and Dwt), plant height (PH),

and leaf-specific area (LSA) induced by PGPB was more

pronounced in non–Cd-stressed plants. Cd stress reduces the

beneficial effect of PGPB; however, values of growth parameters

registered slight percentages of increase amounted as by 13.9%

and 11.1% for plant fresh and dry weights compared with the

levels determined for the non-inoculated plants grown on Cd-

unpolluted soils. Soil inoculation with T. harzianum did not

show a stimulatory impact on of non–Cd-stressed plants;

however, all detected growth parameters in terms of Fwt, Dwt,

PH, and LSA were significantly stimulated by the interaction

between T. harzianum inoculation and Cd soil existence,

particularly in the initial Cd concentration (50 mg/kg of soil).

The elevated Cd concentration slightly reduced growth

parameters levels compared with those of 50 mg/kg of soil

contaminated plants; however, they were still in an acceptable

range compared with the control and by percentages of increase
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amounted as by 4.9% and 5.6% for plant fresh and dry weights.

The beneficial effect of soil microbe inoculation was maximized

when microbes were in consortium; hence, the highest growth

parameters were recorded in the absence or presence of Cd.
Influence of Cd and microbe–soil interaction
on water relations attributes of sunflower plant

Alleviated Cd toxicity along with soil inoculations can be

assessed by analyzing plant–water relation–related factors

(Table 2). The exhibited trend among the various treatments

regarding net assimilation rate (NAR) was increased in food

factory units (LSAs). NAR was stimulated by soil inoculated with

PGPB in non–Cd-stressed conditions, whereas soil inoculation

with T. harzianum exhibited stimulatory impact when only Cd

existed. Whatever elevated Cd levels were encountered by plants,

NAR values were maintained near the levels determined for the

non-inoculated plants grown on Cd-unpolluted soils by soil

inoculation. The synergistic use of fungi and bacteria in a

consortium proved the highest efficiency in enhancing NAR of

sunflower plants. Visual toxic appearance including severe

wilting resulted in plant death indicated lethal doses

encountered by non-inoculated plants. Inoculated soil with

PGPB, T. harzianum, or in consortium markedly re-stabilized

cell water status in terms of RWC (RWC%) that was

accompanied by normal transpiration rate and stomatal

conductance; thus, efficient water economy in terms of WUE

even under elevated Cd levels in the soil indicated effectiveness

action of the used microbes under severe Cd stress condition.
Influence of Cd and microbe–soil interaction
on pigment content and primary and
secondary metabolites of sunflower plant

Cd-induced inhibitory effect on photosynthetic machinery

via depletion of chlorophyll synthesis advocated by apparent

chlorosis was significantly ameliorated by the microbe’s

inoculation. Microbes’ inoculations reverted chlorophyll

contents to those measured for the non-inoculated control

even under elevated Cd concentrations (Table 3). PGPB-

inoculated plants exhibited significant photosynthetic pigment

increase under non-Cd stress conditions, whereas the

stimulatory effect of T. harzianum–inoculated soil was attained

by the interaction between T. harzianum inoculation and Cd soil

existence. Inoculated soil with microbes in consortium posed the

highest increase in the level of the photosynthetic pigment in

both Cd absence and existence. Carbon metabolism analyzed by

quantification of glucose, fructose, and starch was significantly

prompted by soil inoculation with PGPB and microbe

consortium by increasing the foliar content of glucose,

fructose, and starch in both Cd-stressed or non-stressed plants

compared with non-inoculated control plants (Table 3).

Whereas T. harzianum–inoculated soil was able to maintain

the levels comparable to those determined for non-inoculated
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B

A

FIGURE 1

Bacterial growth curve (CFU × 107) (A) and indoleacetic acid (IAA) time course production (µg/ml) (B) of plant growth-promoting Azotobacter
chroococcum and Bacillus subtilis on nutrient broth medium.
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B

A

FIGURE 2

Phosphate solubilization time course as growth diameter (mm) on Pikovskaya’s agar (A) and K solubilization on Aleksandrov’s agar (B) mediums
by the plant growth-promoting (PGP bacteria) Azotobacter chroococcum and Bacillus subtilis.
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A

FIGURE 3

Growth (mm) (A) and biosorption percentage (%) (B) of cadmium resistance Trichoderma harzianum on different concentrations of Czapek’s
cadmium medium with cadmium concentrations range from 0 to 300 ppm.
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control whatever elevated Cd concentrations. Visual Cd toxic

symptoms such as necrosis are due to depletion in N uptake in

non-inoculated Cd-stressed plants. Plants inoculated with PGPB

and consortium registered well-furnished metabolizable N to

their body in terms of augmented levels of protein and amino

acid as well as enhanced NR activity. However, plants inoculated

with T. harzianum kept these parameters near the levels of

control under Cd-stressed or non-stressed conditions. Low–

molecular weight molecules, viz., phenolics, flavonoids,

anthocyanin, and proline, were significantly increased by the

interaction between Cd stress and microbe inoculation

individually or in consortium indicating their role in cellular

damage restriction under Cd stress (Table 3). The percent of

increase accounted as 26.3% and 232.4%, 135.3% and 446.2%,

500% and 95.6%, and 60% and 300%, in the levels of phenolics,

flavonoids, anthocyanin, and proline for T. harzianum and

PGPB, respectively.

Influence of Cd and microbe–soil interaction
on oxidative injury and non-enzymatic and
enzymatic antioxidants of sunflower plant

The data of reactive oxygen species (ROS) denoted in Table 4

revealed a decline in superoxide anion and hydroxyl radical by

soil microbe inoculation individually or in the consortium,

whereas hydrogen peroxide (H2O2) quietly prompted whatever

the dose of Cd applied by PGPB or in the consortium. For

example, the decrese is approximately 0.53%, 14.12%, 2.70%,

and 5.70% for the levels of superoxide anion ( O·−
2 ), hydroxyl

radical (•OH), EL, and PPO activities, respectively, by the action

of PGPB. Non-significant alternation in H2O2 level was

mediated by T. harzianum action even with elevated soil Cd

concentrations. The oxidative burst of ROS to cellular

membranes was assessed via lipid peroxidation in terms of

MDA content and LOX, as well as membrane leakage assay of

microbe-inoculated Cd-stressed plants, which were found to be

similar to the control plants and within the range ensured

healthy growth. The upregulation effect of microbe inoculation

against Cd stress appeared from low–molecular weight

antioxidant metabolism as represented in Table 4, where the

exacerbation of PCs, ASA, and GSH along with elevated Cd

levels in addition to activation of secondary metabolites pathway

is illustrated by the overproduction of phenolics, flavonoids, and

anthocyanin contents, owing to microbes application. The

maintenance of cell oxidative status by enzymatic antioxidants

may be due to the increase of superoxide radical dismutation

enzyme and SOD, in addition to the prompting of hydrogen

peroxide quenching enzymes such as CAT, POD, GPX, APX,

and GST, where the maximal activity of these antioxidant

enzymes was manifested for plants inoculated with PGPB and

in the consortium (Table 4). Whereas all antioxidant enzyme

activities in leaves of Cd-exposed plants and inoculated with T.

harzianum exhibited a similar pattern in response to Cd stress

and generally showed no significant difference versus the control
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at 50 and 100 mg/kg, they were slightly stimulated by the highest

Cd level (150 mg/kg) in the soil. Plants vastly elicited secondary

metabolite-activating enzyme and PAL with microbe

inoculation individually or in the consortium by percent

increase of 76.7% and 166.7% for T. harzianum and PGPB,

respectively (Table 4). On the other hand, PPO was highly

significantly reduced (Table 4) for PGPB and in consortium-

inoculated plants and non-significantly for T. harzianum–

inoculated plants relative to non-inoculated control plants.

Influence of Cd and microbe–soil interaction
on leaf nutrient content of sunflower plant

Cd in the nutrient medium was deleterious to nutrient

uptake, viz., K, Ca, Mg, Fe, nitrate, and P; however, data

illustrated in Table 5 showed that microbe inoculation, even in

the presence of Cd, increased all of these parameters to be more

than or very close to those of the control.

Influence of Cd and microbe–soil interaction
on Cd concentrations in soil and sunflower
plant

Data depicted in Table 6 showed that, by increasing the Cd

concentration, the available soil and plant Cd increase. However,

microbial fortification decreases the Cd soil and plant availability

compared with control samples (free from applied

microorganisms) by 11.5% and 47.5%, and 3.8% and 45.0%

with T. harzianum and PGP bacterial inoculation, respectively,

compared with non-inoculated Cd-stressed plants. The

microbial consortium was the most efficient treatment that

decreases Cd availability in soil.
Discussion

The potential of PGPB (Azotobacter chroococcum and

Bacillus subtilis) and Trichoderma harzianum was investigated

individually or synergistically for the first time regarding their

capability to impart tolerance in sunflower plant for

withstanding and survival to severe Cd dose up to 150 mg of

Cd/kg of soil. Excessive concentrations of HMs upset various

biochemical pathways in plants, such as inhibition of

chlorophyl l synthesis , photosynthes is , respirat ion,

transpiration rates, N metabolism, uptake of nutrient elements,

cell elongation, changes in photoassimilates translocation,

hormone balance via a diminution of the endogenous level of

growth-promoting hormone auxin, which happened due to

boosted activity of the auxin-degrading enzyme, and alteration

of water relations, which further enhance the metal-induced

growth reduction; consequently, plant death was the result

(Kumar and Trivedi, 2016; Eissa and Abeed, 2019; Zhu et al.,

2020). Evidence indicates the fatal stress imposed by the applied

doses upon sunflower plant resulted in plant death rather than

limited growth or even reduced cell performance. Pretreatment
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of soil with microbes lessen the applied dose toxicity and enables

sunflower plant to adjust its metabolism to overcome the fatal

stress, manifesting evident plant liveliness, and prompted safely

leaf characteristics (e.g., aliveness, greenness, and moisture

profile) and also neutralized all growth and physiological

parameters, leading to values comparable with those of the

control. A trend of Azotobacter chroococcum– and Bacillus

subtilis–inoculated soil submitted higher improving impact on

sunflower plant than Trichoderma harzianum–inoculated soil

under Cd-stressed or non-stressed conditions, whereas

consortium treatment assures the highest improving impact

along with elevated Cd doses. However, the imparted tolerance

mechanism mediated by the two different inoculations (PGPB

and HMT fungus) was distinct from each other according to

their PGR traits and Cd biosorption capacities, whereas the

consortium exhibited dual benefits.
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The current findings revealed that the tolerance mechanism

mediated by Azotobacter chroococcum and Bacillus subtilis was

due to PGR traits. PGR traits regarding growth hormone (IAA)

production and their high ability to solubilize P and K,

displaying growth enrichment and intensified 1ry and 2ry

metabolite production that was pronounced in the presence

and absence of Cd. The high production level of IAA was

actively maintained during Cd exposure as a responded

hormone in Azotobacter chroococcum and Bacillus subtilis.

This accomplished a continuous supply of IAA to sunflower

along with elevated Cd doses that promoted photosynthetic

pigments and plant biomass acquisition in terms of dry/fresh

weights, PH, LSA, and NAR in sunflower plants under Cd stress.

Consistent with our findings, Azotobacter and Bacillus species

proved their ability to enhance plant growth by producing

significant compounds such as IAA (Ahmad et al., 2008).
TABLE 2 Average values of Fwt, g/plant; Dwt, g/plant; PH, cm; LSA, cm2; NAR, µg/cm2/d; Sc, mol/m2/s; Tr, water loss/leaf area; WUE, g DW/kg
H2O; RWC, % of sunflower inoculated and non-inoculated with PGP bacteria, T. harzianum, and Consortium and affected by different levels of Cd
(0, 50, 100, and 150 mg/kg dry soil).

Cd dose (mg/
kg)

Inoculation with
microbes

Fwt Dwt PH LSA NAR Sc Tr WUE RWC

0 Non-inoculated 1.44 ± 0.03 0.36 ± 0.001 29.5 ± 1.1 93.33 ± 3.1 0.018 ±
0.002

1.1 ± 0.02 0.022 ±
0.003

3.4 ± 0.4 84 ± 2.1

PGP bacteria 2.7 ±
0.04d**

0.58 ±
0.001c**

39 ± 1.5c** 110.1 ±
9.1c**

0.032 ±
0.002c**

1.8 ±
0.01c*

0.034 ±
0.002c**

4.5 ±
0.3c**

89 ±
1.9b**

T. harzianum 1.38 ±
0.02a

0.38 ±
0.003a

31.5 ± 2.3a 95.21 ± 5.5a 0.016 ±
0.002a

1.2 ±
0.02a

0.021 ±
0.004a

3.1 ±
0.2a

84 ±
3.1a

Consortium 2.04 ±
0.03c**

0.46 ±
0.004b*

37 ±
3.3cb**

101.03 ±
11b*

0.044 ±
0.003d**

1.6 ±
0.02b*

0.027 ±
0.005b*

4 ± 0.3b* 90 ±
2.2b**

50 Non-inoculated — — — — — — — — —

PGP bacteria 2.17 ±
0.02c**

0.49 ±
0.001b**

37 ±
1.5cb**

98.67 ±
7.5ab*

0.025 ±
0.001b*

1.6 ±
0.02b*

0.027 ±
0.004b*

4.2 ±
0.2b*

87 ±
5.1ab*

T. harzianum 1.86 ±
0.02b*

0.46 ±
0.003b*

35 ± 1.4b* 100.91 ±
10.5b*

0.030 ±
0.003c**

1.7 ±
0.02bc*

0.031 ±
0.006cb*

4.1 ±
0.3b*

86 ±
3.4ab*

Consortium 2.50 ±
0.01d**

0.51 ±
0.002cb**

39 ± 2.1c* 107.11 ±
11c**

0.041 ±
0.004d**

2.0 ±
0.03d**

0.034 ±
0.005c**

4.6 ±
0.2c**

90 ±
4.3b**

100 Non-inoculated — — — — — — — — —

PGP bacteria 1.95 ±
0.01b*

0.48 ±
0.001b*

36 ±
1.5b**

95.66 ± 8.7a 0.022 ±
0.002b*

1.4 ±
0.01ab*

0.027 ±
0.003b*

3.9 ±
0.4b*

86 ±
1.7ab*

T. harzianum 1.82 ±
0.01b*

0.42 ±
0.002ab*

31 ± 1.3a 99.03 ±
10.4ab*

0.027 ±
0.003b*

1.5 ±
0.01b*

0.028 ±
0.004b*

3.8 ±
0.3b*

86 ±
2.5ab*

Consortium 2.24 ±
0.03c**

0.50 ±
0.003cb**

37.5 ±
2.2cb**

100.12 ±
10.3b*

0.037 ±
0.004c**

1.8 ±
0.02c*

0.03 ±
0.005cb*

4.4 ±
0.1cb*

89 ±
2.3b**

150 Non-inoculated — — — — — — — — —

PGP bacteria 1.64 ±
0.02ab

0.40 ±
0.005a

29.5 ± 2.5a 93.11 ± 6.4a 0.019 ±
0.001a

1.1 ±
0.00a

0.023 ±
0.005a

3.2 ±
0.1a

85 ±
3.7a

T. harzianum 1.51 ±
0.03ab

0.38 ±
0.004a

29.7 ± 0.9a 94.56 ± 7.7a 0.028 ±
0.002b*

1.3 ±
0.01ab*

0.024 ±
0.003a

3.3 ±
0.1a

84 ±
4.2a

Consortium 1.95 ±
0.01b*

0.47 ±
0.002b*

34 ± 3.0b* 97.84 ±
6.6a*

0.025 ±
0.004b*

1.5 ±
0.01b*

0.026 ±
0.003b*

4.2 ±
0.2b*

86 ±
1.1ab*
fronti
Fwt,fresh weight; Dwt:dry weight; PH,plant height; LSA,specific leaf area; NAR,net assimilation; Sc,stomatal conductance; Tr,transpiration rate; WUE,water use efficiency rate; RWC,
relative water content. Each value represents an average value of three replicates ± SE and averages were compared by LSD at p ≤ 0.05. * and ** denote the difference significantly from the
control (0 Cd and non-inoculated) at the probability levels of 0.05 and 0.01,respectively. abc,different letters within columns denote significant differences (P ≤ 0.05) between inoculations
with PGP bacteria,T. harzianum, or Consortium in each external Cd level.
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TABLE 3 Average values of photosynthetic pigments (Chl a, Chl b, and carotenoids; mg/g FW); sugar metabolism (glucose, sucrose, and starch; mg/g DW); nitrogen metabolism (TN, total nitrogen,
mg/g DW; NR, nitrate reductase, mmolNO2/g/h; amino acids, mg/g DW; and proteins, mg/g DW) and metabolic molecules (phenolics, mg/g; FW, flavonoids, mg/g FW; anthocyanin, mg/g FW; and
proline, mg/g DW) of sunflower inoculated and non-inoculated with PGP bacteria, T. harzianum, and Consortium and affected by different levels of Cd (0, 50, 100, and 150 mg/kg dry soil).

n metabolism Secondary metabolite molecules

Amino
acids

Proteins Phenolics Flavonoids Anthocyanin Proline

.2 22.86 ± 119 ± 7 3.4 ± 0.7 1.3 ± 0.06 0.45 ± 0.003 2.5 ± 0.3

±
*

58.41 ±
2.1d**

134.02 ±
5b*

7.1 ± 0.9d* 2.5 ± 0.03b* 0.55 ± 0.005b* 4 ± 0.3c*

± 25.02 ±
1.4a

122 ± 6a 3.6 ± 0.5a 1.7 ± 0.05a 0.43 ± 0.004a 2.1 ±
0.2a

*
42.33 ±
2.1c*

134.89 ±
8b*

4.7 ± 0.4b* 2.4 ± 0.08b* 0.51 ± 0.008b* 3.7 ±
0.2b*

— — — — — —

±
*

50.70 ±
2.2d*

139 ± 8b* 7.8 ±
0.6ed**

4.9 ± 0.1d* 0.57 ± 0.008b* 6 ±
0.3e**

±
*

33.46 ±
1.5b*

128 ± 5ab 5.6 ± 0.5c* 3.5 ± 0.08c* 0.870.009e** 2.5 ±
0.1a

*
47.12 ±
1.2c*

136 ± 3b* 5.1 ± 0.7c* 2.5 ± 0.07b* 0.61 ± 0.006c* 4.4 ±
0.1c*

— — — — — —

*
44.09 ±
1.4c*

148 ± 7c** 9.31 ± 0.6f** 5.53 ± 0.07e* 0.67 ± 0.007c* 7.6 ±
0.2f**

*
32.77 ±
1.7b*

130 ± 5b* 6.6 ± 0.4d** 3.9 ± 0.06c** 1.9 ± 0.06f** 2.9 ±
0.2a

*
48.05 ±
1.5c*

135 ± 3b* 5.5 ± 0.6c* 2.7 ± 0.05b* 0.68 ± 0.005c* 5.3 ±
0.1d*

— — — — — —

*
38.64 ±
1.9b*

162 ± 8d** 11.3 ±
0.9g**

7.1 ± 0.2f** 0.88 ± 0.007e** 10.1 ±
0.5g**

.3a 28.87 ±
1.8a

118 ± 2a 8 ± 0.6e** 4.2 ± 0.05d** 2.7 ± 0.07g** 4 ± 0.2c*

45.32 ±
1.5c*

130 ± 3b* 6.7 ± 0.5d** 3.6 ± 0.06c* 0.76 ± 0.006d* 6.1 ±
0.3e**

from the control (0 Cd and non-inoculated) at the probability levels of 0.05 and 0.01,respectively. abc,
external Cd level.
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Cd dose
(mg/kg)

Inoculation with
microbes

Photosynthetic pigments Sugar metabolism Nitroge

Chl a Chl b Caro Glucose Sucrose Starch Total
nitrogen

NR

0 Non-inoculated 0.54 ±
0.02

0.11 ±
0.007

0.66 ±
0.02

17 ± 1.3 51.12 ±
2.5

86 ± 6 30 ± 1.4 60 ±

PGP bacteria 0.89 ±
0.03d**

0.28 ±
0.004d*

1.42 ±
0.1e**

25 ± 1.7b* 78.76 ±
4.5c*

130 ±
9b**

58 ± 1.5d* 110
5.6e

T. harzianum 0.50 ±
0.02a

0.13 ±
0.008a

0.76 ±
0.03b

15 ± 1.1a 55.09 ±
3.3a

89 ± 7.7a 31 ± 0.9a 67.09
1.2

Consortium 0.71 ±
0.02cb*

0.24 ±
0.009c*

0.95 ±
0.05d*

20 ±
1.8ab*

69.65 ±
2.4b*

150 ±
11.1c**

46 ± 1.1c* 88
1.6c

50 Non-inoculated — — — — — — — —

PGP bacteria 0.79 ±
0.01c*

0.28 ±
0.01d*

1.22 ±
0.2ed**

23 ± 2.1b* 74.23 ±
3.2c*

122 ±
10ab**

50 ± 0.9d* 86.77
2.2c

T. harzianum 0.65 ±
0.01b

0.19 ±
0.006b

0.95 ±
0.05d*

16.03 ±
2.1a

57.12 ±
2.6a

99 ±
6.6a*

40 ± 1.7c* 76.76
1.8b

Consortium 0.87 ±
0.02d*

0.31 ±
0.008d*

0.99 ±
0.06d*

26 ± 2.2b* 77.33 ±
4.1c**

220 ±
12.6d**

66 ± 2.2e* 95
1.7d

100 Non-inoculated — — — — — — — —

PGP bacteria 0.68 ±
0.02b

0.20 ±
0.009b*

0.86 ±
0.05c*

21 ± 1.5b* 70.21 ±
3.1c*

116 ±
10.6a*

44 ± 1.4c* 80
3.2c

T. harzianum 0.55 ±
0.01a

0.16 ±
0.007ab

0.77 ±
0.04b

18 ± 1.1a 63.95 ±
2.6b**

132 ±
10.1b*

34 ± 0.8ab 72
1.7b

Consortium 0.79 ±
0.01c*

0.28 ±
0.008d*

0.89 ±
0.05c*

28 ±
2.2cb*

75.11 ±
2.5c

181 ±
11d*

52 ± 1.7d* 89
1.7c

150 Non-inoculated — — — — — — — —

PGP bacteria 0.56 ±
0.005a

0.16 ±
0.009ab

0.73 ±
0.04b

18 ±
2.3ab

61 ±
4.4b*

96 ±
5.5a*

36 ± 0.7b 76
2.1b

T. harzianum 0.51 ±
0.006a

0.12 ±
0.008a

0.65 ±
0.03a

16.76 ±
1.1a

50 ± 2.6a 88 ± 5.7a 31 ± 1.1a 64 ± 1

Consortium 0.74 ±
0.01c*

0.20 ±
0.001b*

0.81 ±
0.05c*

30 ±
3.4c**

66 ±
3.7b*

140 ±
7.5cb**

41 ± 0.8c* 81 ±
3.4c*

Each value represents an average value of three replicates ± SE,and averages were compared by LSD at p ≤ 0.05. * and ** denote the difference significantl
different letters within columns denote significant differences (P ≤ 0.05) between inoculations with PGP bacteria, T. harzianum ,or Consortium in eac
2

*

a

±

±

±

±

±

±

y
h

https://doi.org/10.3389/fpls.2022.1004173
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Abeed et al. 10.3389/fpls.2022.1004173
Khan et al. (2009) and Kumar et al. (2001) revealed that

Azotobacter chroococcum can solubilize phosphate and

produce phytohormones as kinetin, gibberellin, and IAA P

solubilization. Zaidi et al. (2006) stated that Bacillus subtilis

produces IAA in addition to its ability to mineralize the

unavailable phosphate in the soil. Most Azotobacter species

can convert the state of atmospheric N to plant-usable

(ammonia) through biological N fixation (Kim and Rees,

1994). A marked increase in plant germination, length, and

weight was achieved by applying phosphate-solubilizing and N-

fixing Azotobacter species (Widawati, 2018). Soil application

with Azotobacter chroococcum increased cotton seed yield by

21% and PH by 5% (Anjum et al., 2007), in addition to

protecting Brassica juncea from HM toxicity by increasing

plant growth (Wu et al., 2006). Fortification of soil by PGP

Bacillus species significantly boosted chickpea plant growth,

chlorophyll, and yield and reduced metal uptake (Wani and

Khan, 2010). Bacillus subtilis increased tomato biomass by 31%,

okra by 36%, and spinach by 83% (Adesemoye et al., 2008).

On the other hand, Trichoderma harzianum has the

unequivocal capacity to bind Cd (efficient Cd biosorption)

counted for about 81.35% ± 0.28% at the highest Cd soil

existence (150 mg of Cd/kg of soil; Figure 3B). Metal

bioavailability is an important factor for metal uptake in

plants. Reducing Cd bioavailability percentage in the rooting

portion via the retention of HMs by fungal mycelia involves

adsorption to cell walls or immobilizing them by insoluble metal

oxalate formation or chelation on melanin-like polymers (Khan

et al., 2017). Consequently, a minor amount of exposed Cd will

be encountered by the plant, thus minimizing metal root uptake

and low translocation level to the shoots. This hypothesis was

corroborated by Kapoor and Bhatnagar (2007), who

demonstrated that fungal mycelia had a high metal sorption

capacity. Mycelia attenuate the toxic effect of metals via retaining

them in the fungal structure with the subsequent restriction of

metal transfer to the plant (Joner et al., 2000). Biosorption

includes surface adsorption, ion chelation, ion exchange, and

micro-precipitation (Lim et al., 2008). Fungal cell surfaces

contain functional groups like carboxyl, amino, hydroxyl, and

phosphate, which play a critical role in Cd ion uptake (Lim et al.,

2008). Mohsenzade and Shahrokhi (2014)found that T.

harzianum could adsorb Cd from 1 to 100 mg/L. T.

harzianum could grow on different Cd concentrations (0–300

ppm) with huge tolerance, especially in high concentrations; in

addition, it can absorb high quantities of Cd to reach 90%

removal efficiency. Consistent with our results, Lima et al. (2011)

demonstrated the T. harzianum potentiality of Cd removal,

which increased by increasing the Cd concentration from 1 to

3 mM. The tolerance of Trichoderma to HMs can be explained

by biosorption or bioaccumulation processes (Mahmoud, 2021)

and metal binding to microbial biomass (Nair et al., 2008).

Hence, T. harzianum application alleviated the toxic effects of

Cd by accumulating and/or immobilizing most Cd in their
Frontiers in Plant Science 15
biomass extracellularly, resulting in developing trace soil Cd

concentration that remains free and available for plant roots

after T. harzianum action witnessed in our study by the reduced

total amount of Cd accumulated per plant (Table 6). Therefore,

the bioprotective effect of T. harzianum on sunflower growth

was due to a reduced amount of Cd uptake owing to biosorption

property rather than the PGP traits; hence, the promoter effect of

T. harzianum was sounded only in the presence of Cd in soil

medium. Here, the positive effect on plant growth could be due

to the low bioavailable Cd concentration, posing well-known

low-dose stimulation phenomena (hormetic effect) .

Documented promoted growth was shown because of 10 mg

of Cd/kg of soil (Jia et al., 2012; Jia et al., 2015) and 125 mg of

Cd/kg of soil (Liu et al., 2012) in Lonicera japonica. This

significant stimulating effect on growth parameters regarding

PH, fresh and dry weights, and the specific leaf area after T.

harzianum action was realized up to 150 mg of Cd/kg of soil

(Table 2), indicating the ability of T. harzianum to tolerate Cd

and acting actively even at lethal doses for the plant

(Nongmaithem et al., 2016; Hoseinzadeh et al., 2017). A

positive effect on plant growth at low Cd concentration has

also been registered in plants, such as barley (Wu et al., 2003),

miscanthus (Arduini et al., 2004), soybean (Sobkowiak and

Deckert, 2003), and rice (Aina et al., 2007).

In the presence of Cd, chlorosis symptom appearance

indicating chlorophyll degradation and plant death was

registered in our study. Moreover, necrosis might have been

caused by ROS production and membrane dysfunction, which

eventually results in programmed cell death. Moreover, the

enhanced chlorophyll content and function in inoculated Cd-

stressed plants witnessed by high photoassimilates content and

subsequent Cd stress recovery indicated that Cd stress tolerance

herein may be attained through chlorophyll restoration against

elevated Cd supplementation, which could be a promising

mechanism to trigger sunflower tolerance against severe Cd

stress mediated by microbe inoculation, and the main

sensitivity criterion of the current tested sunflower cultivar was

photosynthetic depletion under Cd stress and enhanced

chlorophyll function and composition linked with a reversed

plant from distressed to aliveness. This might be attributed to

adequate Mg uptake due to the link between chlorophyll content

and Mg uptake as an important part of the chlorophyll molecule

(Sheng et al., 2008). Thus, for enhanced Chl a and b contents in

PGPB- and T. harzianum–inoculated plants, the subsequent

recovery of Cd-stressed plants could be accounted for by the

effect of these microbes on Mg uptake (Shahabivand et al., 2017).

Jia et al. (2015) reported that the stimulating effect of Cd (10 mg/

kg) on plant biomass could be ascribed to the increment

recorded in photosynthetic carbon assimilation, and the low

doses of Cd induced some beneficial effects on the

photosynthetic system and increased pigment contents,

demonstrating that low doses of Cd induced some beneficial

effects on the photosynthetic apparatus. Moreover, Zhou and
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TABLE 4 Average values of some biochemical indices of sunflower inoculated and non-inoculated with PGP bacteria, T. harzianum, and Consortium and affected by different levels of Cd (0, 50, 100,
and 150 mg/kg of soil).

tioxi- Enzymatic antioxidant capacities

GSH SOD CAT POD APX GPX GST PAL PPO

4 ± 0.8 30 ±
0.9

66 ±
1.4

90 ± 4.4 91 ± 3.4 132 ±
10

110 ± 5.9 30 ±
2.1

35 ±
1.9

±
7**

44 ±
1.8*

80 ±
3.1*

147 ±
7.7*

114 ±
4.4*

159 ±
10*

100 ± 6.5 55 ±
4.3*

20 ±
1.1*

± 1.3 33 ±
1.1

67 ±
2.5

89 ± 4.3 88 ± 5.6 130 ±
11

108 ± 6.9 28 ±
1.4

32 ±
1.2

±
3**

40 ±
1.7*

85 ±
2.6*

100 ±
7.7*

94 ± 6.4 164 ±
9*

111 ± 10 46 ±
2.2*

18 ±
0.9*

— — — — — — — —

±
4**

48 ±
2.1*

89 ±
4.3*

160 ±
8.5*

133 ±
9.9*

179 ±
10*

170 ±
12.4**

59 ±
3.1*

23 ±
1.3*

± 1.8 32 ±
1.7

66 ±
2.1

90 ± 5.5 87 ± 6.4 131 ±
9

100 ± 7.9 35 ±
2.1

25 ±
1.8*

±
1**

50 ±
2.4*

87 ±
2.3*

102 ±
6.1*

96 ± 5.7 166 ±
11*

155 ±
9.4*

61 ±
4.3*

16 ±
0.9*

— — — — — — — —

.98 ±
3**

52 ±
2.3*

97 ±
4.3*

161 ±
5.4*

153 ±
10.9*

194 ±
11*

190 ±
11.1**

68 ±
4.1*

29 ±
1.7

± 1.5 33 ±
1.1

67 ±
3.5

88 ± 3.3 80 ± 5.5 133 ±
9

117 ±
10.9

34 ±
3.0

28 ±
1.9

±
7**

54 ±
1.3*

92 ±
3.5*

100 ±
9.9*

99 ± 6.4 157 ±
10*

179 ±
12**

69 ±
4.0*

20 ±
1.1*

— — — — — — — —

.23 ±
4**

61 ±
2.8*

126 ±
5.3*

188 ±
12.2*

174 ±
11*

228 ±
12*

233 ±
14**

80 ±
5.0*

33 ±
2.1

±
2**

39 ±
1.3

78 ±
2.3*

100 ±
8.7*

150 ±
6.8*

161 ±
10*

140 ±
11*

53 ±
4.1*

34 ±
1.5

±
1**

59 ±
2.5*

90 ±
3.3*

123 ±
10.1*

110 ±
9.9

170 ±
11*

181 ±
12**

76 ±
5.0*

23 ±
1.2*

; GSH,reduced glutathione; ASA,ascorbic acid; CAT,catalase; SOD,superoxide dismutase; POD,
enol oxidase. Each value represents an average value of three replicates ± SE,and averages were
,respectively. abc,different letters within columns denote significant differences (P ≤ 0.05) between

A
b
e
e
d
e
t
al.

10
.3
3
8
9
/fp

ls.2
0
2
2
.10

0
4
173

Fro
n
tie

rs
in

P
lan

t
Scie

n
ce

fro
n
tie

rsin
.o
rg

16
Cd dose
(mg/kg)

Inoculation with
microbes

Membrane integrity
traits

Reactive oxygen species Non- enzymatic an
dant

MDA LOX EL H2O2
•OH O·−

2 PCs ASA

0 Non-inoculated 53.97 ±
2.3

4.53 ± 0.2 32.91 ±
1.2

170.08 ±
10.1

10.98 ±
0.9

39.44 ±
2.2

20.06 ±
1.1

35 ± 1.1 9

PGP bacteria 40.54 ±
2.1*

1.89 ±
0.09**

20.75 ±
1.1*

115.13 ±
9.8*

6.51 ±
0.8*

22.12 ±
2.3*

18.67 ±
1.2

49 ± 2.1* 2
1

T. harzianum 51.33 ±
1.4

4.09 ± 0.1 30.23 ±
2.0

165.43 ±
12.2

9.56 ±
0.8

33.06 ±
3.3

23.12 ±
1.4

37 ± 2.4 1

Consortium 43.22 ±
1.1*

2.57 ±
0.2*

22.07 ±
1.2*

120.12 ±
13.1*

5.64 ±
0.4*

21.23 ±
1.3*

20.43 ±
1.1

43 ± 2.4* 2
2

50 Non-inoculated — — — — — — — — —

PGP bacteria 51.76 ±
1.2

2.66 ±
0.1*

29.11 ±
1.1

190 ±
13.1*

7.43 ±
0.5*

32.21 ±
1.4

40.56 ±
2.2*

56.77 ±
2.1*

4
3

T. harzianum 41.21 ±
2.4*

2.01 ±
0.1*

21.43 ±
1.1*

173 ± 12.1 9.32 ±
0.6

37.65 ±
2.1

19.65 ±
1.3

44 ± 1.9* 1

Consortium 40.43 ±
2.2*

4.04 ± 0.1 25.76 ±
1.3*

120 ± 9.3* 5.43 ±
0.3*

20.32 ±
1.1*

22.21 ±
1.5

49 ± 1.8* 3
2

100 Non-inoculated — — — — — — — — —

PGP bacteria 53.32 ±
1.5

3.87 ± 0.1 30.09 ±
2.2

185 ±
13.1*

9.65 ±
0.8

37.65 ±
2.1

52.33 ±
2.1**

67.98 ±
3.2**

5
2

T. harzianum 47.65 ±
1.4

4.32 ± 0.8 22.65 ±
1.1

173 ± 11.1 9.98 ±
0.9

25.44 ±
1.5*

20.24 ±
1.1

46 ± 1.8* 1

Consortium 44.56 ±
1.1*

3.87 ± 0.2 27.33 ±
2.1

144 ± 9.7* 6.02 ±
0.7*

22.76 ±
1.1*

30.11 ± 55 ± 2.3* 3
1

150 Non-inoculated — — — — — — — — —

PGP bacteria 54.45 ±
1.5

4.65 ± 0.9 32.01 ±
1.1

223 ±
17.9*

9.43 ±
0.6

39.23 ±
2.3

58.97 ±
1.9**

87.55 ±
4.3**

6
2

T. harzianum 58.22 ±
1.7

4.08 ± 0.8 34.98 ±
1.7

192 ±
11.4*

10.15 ±
0.8

41.05 ±
2.2

40.12 ±
2.1**

53 ± 2.5* 2
1

Consortium 46.56 ±
1.3

3.77 ± 0.5 29.11 ±
2.1

166 ± 10.9 6.99 ±
0.4*

26.65 ±
1.1*

25.66 ±
1.1

50 ± 1.9* 3
2

MDA,malondialdehyde; LOX,lipoxygenase; EL,electrolyte leakage; H2O2,hydrogen peroxide; OH,hydroxyl radical; O2,superoxide anion; PCs,phytochelati
guaiacol peroxidase; APX,ascorbate peroxidase; GPX,glutathione peroxide; GST,glutathione-S-transferase; PAL,phenylalanine ammonia-lyase; PPO,polyph
compared by LSD at p ≤ 0.05. * and ** denote the difference significantly from the control (0 Cd and non-inoculated) at the probability levels of 0.05 and 0.01
inoculations with PGP bacteria,T. harzianum,or Consortium in each external Cd levels.
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Qiu (2005) manifested the main explanation of the increase in

chlorophyll content at a low Cd level due to a Cd-induced

increase in Fe uptake. The other mechanism that may be

mediated by T. harzianum inoculation as a biofertilizer to

confer metal stress tolerance herein is via an increase in

nutrient uptake under Cd stress. On the other hand, Bashri

and Prasad (2015) reported that IAA liberated by PGPB could

prompt the downregulation of pigment degradation, causing

substantial preservation of pigment content (Abeed et al., 2020;

Li et al., 2021).

Stomatal conductance and transpiration rate displayed

adequate levels and comparable values of control due to T.

harzianum that has high Cd-binding capacity, resulting in low

available soil Cd. Similar results were submitted for corn plants

exposed to 25 mM Cd (Chaneva et al., 2010). Furthermore, the

adequate NAR along with Cd treatments submitted by T.

harzianum inoculation could be ascribed to a high net

photosynthetic rate. Ying et al. (2010) cited that increased

photosynthesis could be due to elevated Rubisco content at low

levels of Cd treatment, evidencing the positive effect of Cd by T.

harzianum interaction. Moreover, data from water relations

indicated that the concentration of HMs in inoculated soil was

efficiently lowered to reach a level that causes no osmotic

disturbances in plants. Thus, adequate soil–water relation leads

to improved water uptake and economic use of water evidenced by

adequate water status of the cell regarding RWC and high value of

WUE. In different way and apart from T. harzianum, the
Frontiers in Plant Science 17
IAAproducing microbe, enhanced root systems, including root

hairs, are the most common phenotypic phenomena observed

related to the secretion of phytohormones by PGP microbes. Thus,

IAA enhanced the capability of plants to exploit the water from the

soil in the highest concentration of soil Cd. Consequently,

enhanced root growth and performance lead to improved water

uptake and economic water use evidenced by adequate water status

of the cell regarding RWC and high value of WUE.

Carbon and N resource use and photoassimilate production

can be assessed by adopting some carbon and N metabolites and

their related enzymes. In the current study, microbe’s soil

inoculations manifested adequate carbon and N metabolism

that was reflected in starch and protein contents. As sucrose is

the famous exported form of organic carbon transport from the

photosynthetic source to sink organ in turn, high accumulation

of starch indicated high efficiency of using carbon resources and

photoassimilate production in favor of plant architecture, and

this process is crucial for survival and healthiness as submitted in

current investigated plants (Koch, 2004). NR is one of the

coordinative enzymes that regulated the level of N in plants.

The activity of this enzyme is downregulated by the presence of

Cd (Gouia et al., 2000) as evident herein by minimized inducible

rate (Table 3), resulting in an alternation in protein metabolism

that negatively affected plant architecture witnessed by stunted

plants (Table 2). Inoculated with PGPB, T. harzianum,

individually and in the consortium, can significantly increase

N metabolism as evidenced by the increased total N in shoots
TABLE 5 Average values of Leaf Nutrient content (K, Mg, Ca, Fe, nitrate, and phosphorus) of sunflower inoculated and non-inoculated with PGP
bacteria, T. harzianum, and Consortium and affected by different levels of Cd (0, 50, 100, and 150 mg/kg dry soil).

Cd doses (mg/kg) Inoculation with microbes Leaf Nutrient content (mg/g DW)

K Ca Mg Fe Nitrate Phosphorus

0 Non-inoculated 22 ± 1.9 4.0 ± 0.2 3.3 ± 0.1 9 ± 0.6 29 ± 2.5 0.81 ± 0.02

PGP bacteria 45 ± 3.3d** 7.8 ± 0.5e** 4 ± 0.1b* 12 ± 0.8g* 34 ± 2.4f* 1.6 ± 0.08b**

T. harzianum 33 ± 2.6b* 5.1 ± 0.4c 2.9 ± 0.1a 6 ± 0.5a* 28 ± 1.8a 0.95 ± 0.03a*

Consortium 39 ± 1.5c** 5.9 ± 0.3c* 3.8 ± 0.3b 9.3 ± 0.5d 33 ± 3.5e* 2 ± 0.1c**

50 Non-inoculated — — — — — —

PGP bacteria 41 ± 1.1cd** 5 ± 0.1c 4 ± 0.2b* 11 ± 0.8f* 32 ± 1.9d* 1.5 ± 0.08b**

T. harzianum 34 ± 2.1b* 6.5 ± 0.2d** 3.5 ± 0.1ab 7.5 ± 0.6b* 33 ± 1.3e* 1.2 ± 0.06ab*

Consortium 43± 1.7d** 5.5 ± 0.2c* 4.4 ± 0.2b* 10 ± 0.9e 32 ± 2.4d* 1.9 ± 0.09cb**

100 Non-inoculated — — — — — —

PGP bacteria 39 ± 1.7c** 4 ± 0.1b 5 ± 0.3c** 9 ± 0.5d 29 ± 1.5a 1 ± 0.08a*

T. harzianum 37 ± 1.3c** 6.8 ± 0.1d** 3.1 ± 0.1a 10 ± 0.6e 31 ± 1.7c* 0.92 ± 0.05a*

Consortium 40 ± 2.3cd** 5 ± 0.1c 4 ± 0.1b* 9 ± 0.4d 30 ± 1.7b 2.2 ± 0.1c**

150 Non-inoculated — — — — — —

PGP bacteria 40 ± 2.6cd** 3 ± 0.2a 3 ± 0.2a 8.2 ± 0.5c 31 ± 1.1c* 0.82 ± 0.04a

T. harzianum 44 ± 2.7d** 7.2 ± 0.1 e** 5.3 ± 0.3 c** 12 ± 0.6 g* 34 ± 1.4 f* 1.2 ± 0.06 a*

Consortium 34 ± 2.1b* 4.4 ± 0.2b 3.3 ± 0.2a 9.2 ± 0.5 d 30 ± 1.0 b 1. 0 ± 0.06 a*
Each value represents an average value of three replicates ± SE,and averages were compared by LSD at p ≤ 0.05. * and ** denote the difference significantly from the control (0 Cd and non-
inoculated) at the probability levels of 0.05 and 0.01,respectively. abc,different letters within columns denote significant differences (P ≤ 0.05) between inoculations PGP bacteria, T.
harzianum,or Consortium in each external Cd levels. * and ** denote the difference significantly from the control (0 Cd and non-inoculated) at the probability levels of 0.05 and 0.01,
respectively. abc,different letters within columns indicate significant differences (P ≤ 0.05) between inoculations PGP bacteria, T. harzianum,or Consortium in each external Cd levels.
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reflected in the total N yield of inoculated plants because all fixed

N is incorporated into the plants, resulting in high protein

content as N is an integral part of proteins in Cd-stressed and

non-stressed plant. In well-adapted plants, enhanced primary

metabolism goes along with secondary metabolism

augmentation. In the current study, the activation of the

secondary metabolite pathway, as proved by the exacerbation

of phenolics, flavonoids, and anthocyanin, was a significant

feature of tolerance mechanism and adaptation in sunflower

plant attained by microbe inoculations, hence providing

powerful free-radical quenching antioxidants and larger

antioxidant defense pools to restraint ROS toxicity, thereby no

membrane dysfunction. The upregulation of the main

biosynthetic pathways of these antioxidants was joined with

the enhanced activity of secondary metabolites, regulating

enzymes and PAL, and this was vastly sounded by microbe

inoculation rather than non-inoculated control plants.

The correlation of proline in Cd stress tolerance is a major

biochemical adaptation, membrane stabilization, and ROS

scavenging involved in the chelation of Cd (Ahmad et al.,

2016). The mediation inoculation with microbes remarkably

increased proline content in sunflowers. In the current study, the

exacerbation of proline was accompanied by the increment of

amino acids and soluble protein production. This obvious

proline accumulation was certainly to be profitable, not due to

a harmful impact. Thus, it could be concluded that proline

accumulation was a plant response associated with conferring

metal tolerance, not a reaction to high Cd exposure, confirming
Frontiers in Plant Science 18
the protective effect of microbe inoculation in neutralizing toxic

ROS, therefore contributing to better growth under Cd exposure.

Similar to our results, Hui et al. (2015) also recorded an increase

in proline accumulation in Nicotiana tabacum due to P. indica

inoculation under Cd stress conditions.

One vital strategy of avoidance of Cd-induced oxidative

stress is via Cd complexation either by glutathione or PCs.

They dropped the free availability of Cd in the cytosol, causing

significant tolerance against Cd toxicity (Yamazaki et al., 2018).

This was efficiently mediated by IAA-producing microbes. IAA

enhanced the level of PCs in the cytosol as reported by Khare

et al. (2022). Moreover, the improved nutritional status that

was registered by improving Fe uptake after bacterial

inoculation indicates possible action of PGPB in Cd

deposition out of important metabolic processes (in

vacuoles), which may clarify the reduction of Cd phytotoxic

impact despite the increased Cd accumulation; hence, the total

amount of Cd accumulated per plant in PGPB-inoculated

plants was significantly higher than that in T. harzianum–

inoculated plants (Table 6); however, no phytotoxic

appearance was recorded. The Fe-dependent transporters

that are responsible for transporting PC-Cd-S complex to

vacuoles (Hall and Williams, 2003) are adequately available

herein owing to improving Fe uptake due to PGP bacteria

application. Furthermore, the abundance in PC biosynthesis

can be explained by abundant glutathione as registered in the

current study because glutathione is the substrate for PC

biosynthesis (Yamazaki et al., 2018).
TABLE 6 Cadmium concentrations in soil and sunflower plants inoculated and non-inoculated with PGP bacteria, T. harzianum, and Consortium
after being affected by different doses of Cd (0, 50, 100, and 150 mg/kg of soil).

Cd dose (mg/kg) Inoculation with microbes Available Cd concentration (mg/kg)

Soil Plant

0 Non-inoculated 0.05 ± 0.001a 0.42 ± 0.01c

PGP bacteria 0.06 ± 0.001a 0.32 ± 0.01b

T. harzianum 0.03 ± 0.000a 0.24 ± 0.02a

Consortium 0.04 ± 0.001a 0.20 ± 0.02a

50 Non-inoculated 4.5 ± 0.06c 20 ± 0.21d

PGP bacteria 3.6 ± 0.08b 16 ± 0.22c

T. harzianum 3.0 ± 0.07a 10 ± 0.12b

Consortium 3.2 ± 0.08a 6 ± 0.16a

100 Non-inoculated 10.2 ± 0.21d 27 ± 0.62c

PGP bacteria 8.4 ± 0.11b 18 ± 0.22b

T. harzianum 7.4 ± 0.23a 14 ± 0.24a

Consortium 9 ± 0.22c 13 ± 0.33a

150 Non-inoculated 13.3 ± 0.12c 40 ± 0.67c

PGP bacteria 12.5 ± 0.13bc 22 ± 0.87b

T. harzianum 11.5 ± 0.11b 21 ± 0.55b

Consortium 10.2 ± 0.11a 13 ± 0.64a
Each value represents an average value of three replicates ± SE,and averages were compared by LSD at p ≤ 0.05. abc,different letters within columns indicate significant differences (P ≤ 0.05)
between inoculations PGP bacteria, T. harzianum ,or Consortium in each external Cd level.
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The abatement of both ROS and their toxic byproducts

(oxidized proteins and lipid hydroperoxides) is a prerequisite for

the survival of plants in the existence of toxic metals. The

produced IAA by PGPB was demonstrated to alleviate H2O2

and O·−
2 under Cd stress; hence, decreased lipid peroxidation

(protection of cell membrane) was observed (Bashri and Prasad,

2015). This was postulated by elevated antioxidant enzyme

activities joined with abatement of H2O2,
•OH, and O·−

2

contents, indicating an IAA-induced ameliorating effect

inducing the expression of stress-responsive genes and

enhanced the antioxidant levels (Khare et al., 2022). The

strong activation of GST in the case of PGPB-inoculated

plants advocates the crucial role of PGPB in the Cd-induced

stress response, in which IAA might play an important signaling

role in participating in the activation of GST. Previously, it has

been shown that the expression of many GSTs is strongly

activated by IAA (Boč ová et al., 2013). The increment of

proteins and free amino acids due to PGPB-inoculated soil

may be attributed to the activation of stress proteins that

include several antioxidant enzymes (Lamhamdi et al., 2011)

witnessed by elevated activity of ROS-metabolizing enzymes

under either Cd-stressed or non-stressed plants; thus,

stimulating the defense system machinery helped the plant to

orchestrate itself from damage up to threshold; in addition,

eliciting the expression of low–molecular weight proteins

comprised the metal ion homeostasis that is assumed to

shoulder role in their detoxification, viz., ASA, GSH (acting as

a substrate of APX and GPX, respectively), and tocopherol (Patel

et al., 2012). PPO is related to stress conditions and involves the

cell wall cross-linking and lignification process resulting in a

reduction in cell wall extensibility, which restricts cell growth,

revealing exhausted plant tissues (Bruce and West, 1989; Abeed

and Salama, 2022). PPO oxidatively breaks up phenolic

compounds included in the synthesis of quinines and ROS;

thus, the promotion of PPO activity exacerbates oxidative stress.

In the current investigation, fortunately, the data for the PPO

activity were divergent from the other antioxidant enzymes.

PPO, an oxidizer of phenolic compounds (Queiroz et al., 2008;

Abeed et al., 2021), is not induced by IAA-producing microbe

inoculation but rather dropped in its content compared with

non-inoculated control plants; thus, the upregulation of PPO

due to soil inoculation under Cd stress diminishes PPO activity

in sunflower plant that offered to promote resistance to abiotic

stress (Sánchez-Rodrı́ guez et al., 2011).
On the other hand, regarding T. harzianum action, much

more sensitive parameters, such as biochemical parameters,

should be analyzed to evaluate the stimulatory effect induced

by the developed low Cd concentration by soil inoculation with

Trichoderma harzianum. As no quantity or quality of toxic

symptoms was noticed, what was the mechanism of the

corresponding alterations in redox status in the inoculated

plants? The stress causative agents (free radical components)

were progressively decreased in the available soil Cd
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concentration by T. harzianum action (Table 4), indicating

that no oxidative stress was imposed by the remaining

concentrations of Cd in the soil (counted by about 14%

reduction from non-inoculated control plant, Figure 3B) due

to T. harzianum action that advocated by low MDA content and

LOX activity that reflected on membrane stability and integrity

evidenced by low electric leakage value. Similar findings were

detected by Lin et al. (2007) and Maksymiec et al. (2007).

Consequently, well-functional membranes with adequate

integrity and tight controlled permeability can be maintained,

thus efficiently reducing water loss and providing high turgidity

and firmness and optimum water status for metabolic activities

that are evidenced by values of WUE and RWC comparable with

that of control (Table 2). Furthermore, no changes in ROS

quenching enzymes activities, viz., SOD, CAT, POD, APX,

GPX, and GST activities under the developed low Cd

concentrations, displayed similar responses to Cd treatments,

probably due to their co-regulation, indicating no excess

accumulation of ROS in sunflower plants inoculated by T.

harzianum because their activity is mediated by generated

ROS level. Somashekaraiah et al. (1992) documented that the

SOD activity mediated by superoxide level exhibited a slight

drop or no change linked with no excess accumulation of

superoxide anion in mung bean seedlings under low levels of

Cd stress. Wu et al. (2003) also found a slight decrease in

antioxidant capacities accompanied by a decrement in barley

lipid peroxidation products with a low-level Cd dose. The

abatement of H2O2 and
•OH and stabilization of O·−

2 production

in the Cd stress plant inoculated with T. harzianum reflected that

the Cd levels remained in the soil owing toT. harzianum action are

in an acceptable extent that harmfully impact plants. Thismay also

suggest that the stimulatory effects of low concentrations of Cd on

the growth of sunflower plants may be joined with a limited degree

of free radical accumulation and restricted oxidative stress (Lin

et al., 2007). However, when organisms are subjected to low Cd

concentrations, their intrinsic GSH might be rapidly consumed

because of a high cellular prerequisite for SH compounds to resist

stress by prompting PC synthesis (Yamazaki et al., 2018), which

may explain the increasing PCs content in our study owing to T.

harzianum action. On the basis of the results of the current study

regarding oxidative status corresponding to the available Cd

concentration (mg/kg) in soil and plant, we propose that the

toxic critical value of soil Cd in inducing oxidative stress in

sunflower plant is 10.2 and 13 mg/kg for soil and plant (Table 6),

respectively. This was efficiently achieved by soil supplementation

withmicrobes. Similar resultswere registered forwheat seedlingsby

Lin et al. (2007).

The enhanced nutritional status of sunflower plant due to T.

harzianum inoculation can be explained by the observation of

Liu et al. (2011), who demonstrated that there is a synergistic

interaction in accumulation and translocation between Cd and

Fe, Zn, Mn, and Mg uptake in L. japonica plant. They have been

improved at low Cd concentrations. The competition for the same
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uptake systems between Cd and other divalent ions required for

plant development is minimized in low Cd soil existence (Liu et al.,

2011). However, the nourishment of the nutrient content of plant

leaves due to PGP inoculation could be ascribed to the IAA

generated by PGPB that modifies membrane permeability (Mir

et al., 2022),which, in turn,might have facilitated theuptakeofN,P,

Mg, Zn, and Fe, resulting in the exacerbation of their levels, even in

the plants exposed to Cd stress.
Conclusions

Applying microbes as a biofertilizer agent necessitates the

elucidation of the different mechanisms of microbe protection

and stabilization of plants against toxic elements in the soil that

may be varied according to their PGR traits and/or Cd-binding

capacities.Overall, ourfindings indicate that the twomicrobeshave

differentially established andmaintained healthy physiological and

biochemical properties of plants cultivated in severe Cd doses

(divergent imparted upregulation mechanisms displayed by the

twomicrobes used on sunflower plant adaptation). The high ability

of PGPB toproduce IAA,whichwas activelymaintained duringCd

exposure as a responded hormone, accomplished a continuous

supply of IAA to sunflower alongwith elevated Cd doses (extended

for 5 days giving values of 78.8 µg/ml for Azotobacter chroococcum

andof 84.27 µg/ml forBacillus subtilis) that subsequentlypromoted

photosynthetic pigments and plant biomass acquisition in terms of

dry/freshweights, PH, LSA, andNAR aswell as improved the other

assessed physiological traits in sunflower plants under Cd stress.

Thus, the resilience strategymediated by PGPB was via recovering

the potential side effects of Cd toxicity. Whereas, the highly Cd-

tolerant Trichoderma harzianum with high Cd biosorption

capacity (counted as 81.35% at the highest Cd soil existence)

induced a resilience strategy via reducing Cd bioavailability to be

in the range that turned its effect from toxicity to essentiality (the

available soil and plant Cd concentrations were decreased by 11.5%

and 47.5%, respectively), posing well-known low-dose stimulation

phenomena (hormetic effect). However, the consortium exhibited

dual benefits, achieving the highest efficiency in the resurrection of

sunflower under severe Cd levels.
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