
Inductive Analysis of Security
Protocols in Isabelle/HOL with

Applications to Electronic Voting

Denis Frédéric Butin

B.Sc., M.Sc.

A dissertation submitted to Dublin City University in fulfilment of the

requirements for the award of Doctor of Philosophy (Ph.D.) in the

Faculty of Engineering and Computing, School of Computing

Supervisor: Dr. David Gray

September 2012

mailto:denis.butin@gmail.com
http://www.dcu.ie
http://www.computing.dcu.ie

Declaration

I, Denis Frédéric Butin, hereby certify that this material, which I now submit for

assessment on the programme of study leading to the award of Doctor of Philosophy

is entirely my own work, that I have exercised reasonable care to ensure that the work

is original, and does not to the best of my knowledge breach any law of copyright, and

has not been taken from the work of others save and to the extent that such work has

been cited and acknowledged within the text of my work.

Signed Student ID: 58118977 3 September 2012

Contents

Abstract vi

Acknowledgements vii

List of Figures viii

List of Tables ix

1 Introduction 1

1.1 The Need for Network Security . 1

1.2 Cryptography . 5

1.2.1 A Short History of Modern Cryptology 5

1.2.2 Symmetric Cryptography . 6

1.2.3 Asymmetric Cryptography and PKIs 8

1.2.4 One-way Functions and Hash Functions, the SHA Family . . 13

1.2.5 Provable Security of Public-key Schemes 14

1.3 Identity-Based Cryptography . 15

1.3.1 Identity-Based Signatures 15

1.3.2 Identity-Based Encryption 19

1.3.3 Provable Security of IBE and IBS 23

1.4 Protocol Security . 23

1.4.1 Security Protocols . 24

1.5 Motivation . 26

1.6 Outline and Contributions . 27

2 Security Protocol Analysis 29

2.1 Approaches for the Analysis of Security Protocols 29

2.1.1 BAN Logic . 29

2.1.2 Model Checking . 30

2.1.3 Strand Spaces . 30

2.1.4 Process Calculi and Horn Clauses 31

2.1.5 Interactive Theorem Proving 31

2.1.6 Automated Theorem Proving 32

2.2 Tools for the Analysis of Security Protocols 32

2.2.1 FDR, FDR2 and CSP . 32

2.2.2 AVISPA and the AVANTSSAR Platform 32

2.2.3 The NRL Protocol Analyzer and Maude-NPA 33

iii

2.2.4 Scyther . 33

2.2.5 LySatool . 33

2.2.6 ProVerif and AKiSs . 34

2.2.7 tamarin . 35

2.2.8 Tool Synthesis . 35

2.3 Discussion . 35

3 Isabelle/HOL and the Inductive Method 37

3.1 Isabelle/HOL . 38

3.2 The Inductive Method . 39

3.2.1 Main Components . 39

3.2.2 Goal Definition and Proving 52

3.2.3 Common Security Property Formalisations 53

3.2.4 Existing Extensions to the Inductive Method 57

3.2.5 Protocols Verified So Far . 59

3.3 Discussion . 60

4 Protocol Composition Analysis Applied to Public Key Infrastructure 61

4.1 Security Protocol Composition . 61

4.2 Specification and Verification of a Composed Protocol 63

4.2.1 Specification . 64

4.2.2 Results . 67

4.2.3 Details of the Findings . 69

4.3 Other Protocol Composition Configurations 72

4.3.1 Generalised Protocol Sequencing 72

4.3.2 Intertwined Protocols . 74

4.4 Discussion . 75

5 Modelling an ISO/IEC 9798-3 Protocol Using Auditable Identity-Based

Signatures 77

5.1 Auditable Identity-Based Signatures 77

5.2 The ISO/IEC 9798-3 Protocol Suite 79

5.3 Side-by-side Specification of IBS and AIBS Variants of an ISO/IEC

9798-3 Protocol . 80

5.3.1 Specifying the IBS Version 81

5.3.2 Specifying the AIBS Version 82

5.4 Comparative Analysis . 83

5.4.1 Findings for the IBS Version 84

5.4.2 Findings for the AIBS Version 86

5.5 Discussion . 87

6 Formally Analysing an Electronic Voting Scheme Using Blind Signatures 88

6.1 The Spread of Electronic Voting . 90

6.2 Common Properties of Electronic Voting Protocols 91

6.3 Alternative Formal Approach to Voter Privacy Analysis 91

6.3.1 Indistinguishability for E-voting Protocol Analysis 91

6.3.2 Unlinkability . 92

iv

6.4 Modelling Electronic Voting Protocols in the Inductive Method 97

6.5 The FOO Protocol . 100

6.6 Specifying the FOO Protocol and Blind Signatures 101

6.6.1 Blind Signatures . 101

6.6.2 Inductive Protocol Model . 104

6.7 Formal Verification . 106

6.7.1 Main Classic Results . 106

6.7.2 Main Privacy Results . 109

6.7.3 Proof of the Main Theorem 112

6.7.4 Proof of the Supporting Theorems 115

6.8 Comparison . 117

6.9 Discussion . 120

7 Discussion 122

7.1 Domain of Applicability of the Inductive Method 123

7.2 Future Work . 124

7.2.1 Protocol Composition . 124

7.2.2 Electronic Voting . 125

7.2.3 Framework Evolution . 127

7.3 Conclusion . 128

A Isabelle Theories 129

A.1 Proofs for the Protocol Composition Case Study 129

A.1.1 Certification.thy . 129

A.1.2 Cert NS Public.thy . 134

A.2 Proofs for the ISO/IEC 9798-3 Protocol with AIBS 141

A.2.1 Public IBS.thy . 141

A.2.2 ISO IBS.thy . 142

A.2.3 Message AIBS.thy . 149

A.2.4 Event AIBS.thy . 151

A.2.5 Public AIBS.thy . 151

A.2.6 ISO AIBS.thy . 153

A.3 Proofs for the FOO Protocol . 164

A.3.1 Foo.thy . 164

A.3.2 Privacy.thy . 192

Bibliography 219

v

Abstract
Security protocols are predefined sequences of message exchanges. Their uses

over computer networks aim to provide certain guarantees to protocol participants. The

sensitive nature of many applications resting on protocols encourages the use of formal

methods to provide rigorous correctness proofs. This dissertation presents extensions

to the Inductive Method for protocol verification in the Isabelle/HOL interactive theo-

rem prover. The current state of the Inductive Method and of other protocol analysis

techniques are reviewed. Protocol composition modelling in the Inductive Method is

introduced and put in practice by holistically verifying the composition of a certifica-

tion protocol with an authentication protocol. Unlike some existing approaches, we are

not constrained by independence requirements or search space limitations. A special

kind of identity-based signatures, auditable ones, are specified in the Inductive Method

and integrated in an analysis of a recent ISO/IEC 9798-3 protocol. A side-by-side veri-

fication features both a version of the protocol with auditable identity-based signatures

and a version with plain ones. The largest part of the thesis presents extensions for the

verification of electronic voting protocols. Innovative specification and verification

strategies are described. The crucial property of voter privacy, being the impossibility

of knowing how a specific voter voted, is modelled as an unlinkability property be-

tween pieces of information. Unlinkability is then specified in the Inductive Method

using novel message operators. An electronic voting protocol by Fujioka, Okamoto

and Ohta is modelled in the Inductive Method. Its classic confidentiality properties are

verified, followed by voter privacy. The approach is shown to be generic enough to be

re-usable on other protocols while maintaining a coherent line of reasoning. We com-

pare our work with the widespread process equivalence model and examine respective

strengths.

Acknowledgements
I am very grateful to all the people who kindly supported me over the course of

this thesis.

My first thank you goes to my supervisor, David Gray, who always took time for

stimulating discussions, brainstorming and feedback. His assistance, help and experi-

ence were invaluable.

I was very fortunate over the course of this thesis to meet Giampaolo Bella, who

has been deeply involved with the Inductive Method since its early stages. His techni-

cal expertise, enthusiasm and friendship meant a great deal to this work and lifted my

spirits.

My teachers at Université François-Rabelais de Tours, through their clarity of ex-

position, raised my appetite for more science. Pierre Damphousse will be missed by

many; his enthusiasm for science and life in general was contagious. He encouraged

me to go for a PhD, and also organised the exchange semester at Université Laval in

Québec, where Claude Levesque taught excellent cryptography and algebraic number

theory classes and Jean-Marie de Koninck energetically introduced analytical number

theory.

Jean Everson Martina and David Sinclair kindly accepted to examine this thesis.

Thank you for taking the time to evaluate my work.

I enjoyed the inspiring research atmosphere at Università di Catania and inter-

esting conversations with Rosario Giustolisi, Luigi Grillo, Gianpiero Costantino and

Gabriele Lenzini. The Isabelle users mailing list provided a sense of community and

many helpful tips by Lawrence Paulson, Jasmin Blanchette and others. The thorough

documentation available on the Isabelle/HOL website helped me tame The Beast to

some extent. Science Foundation Ireland made this PhD possible through the grant

08/RFP/CMS1347.

My labmates and friends of DCU helped make the lab and campus a fun and en-

gaging place to work. Michèle Péporté and Frantisek Polach welcomed me when I first

arrived at DCU, and the former never stopped providing great conversations and bel-

gian chocolate. I was blessed with great flatmates during my stay on campus: Sharon

Murphy, James Walsh, Ana Barat and Ubaldo Colmenar. I had the pleasure of shar-

ing the crypto lab with Luis Julian Dominguez Perez, Chen Yu, Manuel Charlemagne,

Ezekiel Kachisa and Hyun Sung Kim. Naomi Benger, despite her stellar productivity,

always managed to make time for a tea & language break or fun barbecues and outings

on weekends.

Once the crypto lab became empty, Marija Bezbradica, Karthika Raghavan and

Alina Sı̂rbu prevented me from becoming a full-fledged hermit. Bénédicte Galtier,

Flavie Lacroix, Morgane Croissant left Eire too soon. Phil Lenzenhuber and Andrej

Blagojević made for challenging squash opponents and good friends. Low-cost airlines

allowed me to visit my treasured friends in France and elsewhere unreasonably often.

Thank you to my parents, for being there.

Finally, a very special thank you to Melanie, who was by my side every step of the

way.

List of Figures

4.1 A generic certificate distribution protocol 65

4.2 The full public-key Needham-Schroeder protocol with Lowe’s fix . . 65

4.3 Theory hierarchy for the composed protocol 66

4.4 Protocol step dependencies for the example composed protocol 73

4.5 Protocol step dependencies for an arbitrary sequenced protocol 73

4.6 Protocol step dependencies for two entwined protocols 74

4.7 Protocol step dependencies for two unsoundly entwined protocols . . 75

5.1 Theory hierarchy for the IBS and AIBS versions of the ISO/IEC 9798-

3 protocol . 81

6.1 An example network history . 93

6.2 Individual association sets generated from an example network history 94

6.3 Pairwise association synthesis sets generated from an example net-

work history . 96

6.4 Theory hierarchy for the verification of the FOO protocol with the

privacy framework . 104

viii

List of Tables

1 Protocol notation syntax . x

2.1 Comparison of security protocol analysis tools 36

3.1 Security protocols verified in Isabelle so far 59

6.1 Synthesis of characteristics of mechanised FOO privacy analyses . . . 120

ix

Protocol Notation Syntax

Symbol Meaning

i. ith protocol step

A,B,C . . . Agent names

{| ·, · |} Concatenation

A −→ B : M A sends message M to B
K+

A Public key of agent A
K−

A Private key of agent A
{|M |}K Encryption of message M with key K
SigA(M) Signature of message M by agent A
CI
A Certificate for A, issued by I

CI1...In
A Certificate chain for A, with root certificate I1

Table 1: Protocol notation syntax

x

Chapter 1

Introduction

During the last few decades, computer networks have become the communication tool

of choice for most organisations, independently of companies’ sector of activity. The

number of Internet users throughout the world has expanded dramatically since the

beginning of the century: over 2 billion people enjoyed online access in December

2011 [72], over an hundredfold increase from 1995. Networking is thus pervasive

and omnipresent — not only for business use but also for personal communication,

often of sensitive nature. Internet banking and private correspondence are examples of

common tasks for which users rightfully demand security guarantees.

In many settings, it is hence essential that information be protected, notably from

eavesdropping, forgery and impersonation.

1.1 The Need for Network Security

Cryptography provides families of tools seeking to prevent these attacks and to reach

various security goals, the primary ones being:

• Confidentiality — a message can only be read by its intended recipient(s);

• Integrity — the message has not been altered during the course of its transmis-

sion;

1

• Non-repudiation — ensuring that an agent cannot deny an action (usually, send-

ing a message or generating a digital signature);

• Authentication — guaranteeing the identity of one or several agents.

Often, cryptosystems (sets of cryptographic algorithms) are designed to meet sev-

eral of these goals simultaneously. Recent research in the field has provided many

other solutions, such as zero-knowledge proofs [62] (allowing an entity to prove knowl-

edge of a secret without actually disclosing it) and secret sharing [111] (disseminating

confidential information among several agents, allowing prevention of individual abuse

and implying distribution of trust).

Two paradigms coexist in modern cryptography: the symmetric (secret-key) and

asymmetric (public-key) settings. In symmetric cryptography, agents share a common

key or a pair of keys in which one is easily derived from the other. It is then crucial

that only the two communication partners know the key. In the asymmetric setting,

each agent is associated with a private and a public key pair. The public key is openly

disclosed to all network participants, whereas the private one remains the secret of the

sole agent. Public-key encryption removes the need for an initial key exchange (or key

agreement) found in secret-key settings. It also makes digital signatures possible —

using an agent’s public key, all other agents can verify the authenticity of a message

she created.

Notwithstanding the abundance of research involving public-key cryptography and

our focus on it in this work, it should be stressed that symmetric encryption retains a

major role in contemporary cryptosystems. Since asymmetric encryption is slower

and produces a larger resulting length increase (ciphertext expansion) than symmetric

algorithms, a common method is to encrypt only a key asymmetrically, before using

this key to encrypt a message with a symmetric algorithm. The two approaches are

thus combined.

In most cases, public-key-based systems require a Public Key Infrastructure (PKI).

A PKI is a framework designed to manage the mapping between identities and pub-

2

lic keys. The International Telecommunication Union issued a PKI standard recom-

mendation, called X.509, in 1988 [117]. Certificate standards for X.509 were further

profiled by the Internet Engineering Task Force (IETF) in a series of RFC documents,

such as RFC2510 [71]. Commonly used protocols such as HTTPS, SSH and TLS

implement X.509 certificates.

Despite the benefits they provide, PKIs imply some computational and logistical

overhead. A recent evolution of asymmetric cryptography, called identity-based cryp-

tography, reduces the need for PKIs by changing the way public keys are selected.

Instead of being generated by agents and then requiring certification by a trusted third

party (part of the PKI), public keys are simply derived from agents’ identities by a pro-

cess known to all. Here, identity is usually to be understood as a person’s name, email

address or social security number. Numerous other examples are possible; the point

is that an agent’s public key is directly available to anybody who knows her, without

the need to contact a trusted third party first. Identity-based cryptography branches

into identity-based encryption (IBE) and identity-based signatures (IBS). For IBE, a

message is encrypted with the recipient’s public key (i.e. a string representing his

identity), and only decryptable using the recipient’s secret key. For IBS, a signature is

generated using the sender’s secret key; the signature’s validity can be checked by any

agent aware of the sender’s public key, i.e. her identity. Nevertheless, some form of

infrastructure remains needed to certify the key generation center’s (KGC) public key.

Protocols are predefined message exchanges between a finite set of actors, called

principals or agents. Security protocols are designed to provide security guarantees

through the use of cryptographic primitives. A protocol can be flawed even if the

underlying cryptography is perfect; network communication is often insecure, and

transmitting apparently uncritical unencrypted information can lead to impersonation,

for instance through attacks combining previously transmitted message elements to

create a new, fake one. This particular kind of attack, called a replay attack [63], is

fairly common.

3

When evoking the correctness of security protocols in our work, we thus focus

on flaws which are not due to weaknesses of the underlying cryptographic algorithms

but rather inherent to the structure and contents of the message exchange sequence.

Cryptographic algorithms are seen as black boxes and their security assumed perfect;

this will be the case not only for encryption functions but also, e.g., for hash functions

which will be assumed to be perfect one-way functions.

Protocols have been checked for correctness intuitively for a long time, but the

availability of mechanical tools to carry out this task automatically or semi-automatically

is recent. The two main approaches are model checking, which searches a finite space

of protocol configurations for possible flaws, and (interactive) theorem proving. Due

to computational constraints, model checking applied to security protocol is typically

limited to a small population of agents. If no attack is found, there may still be possi-

ble attack scenarios against a larger system running the protocol. On the other hand,

interactive theorem proving provides mathematical proof of a protocol’s correctness

and does not assume a finite number of message steps or agents.

Electronic voting is an application for which both new cryptographic primitives to

define useful protocols and new techniques to formally analyse them are required. In

many cases, e-voting protocols feature any number of voters interacting with so-called

election officials, entities that gather data about voters and their ballots and perform the

tasks leading to the announcement of election results. Since those protocols are meant

to be used in official elections with far-reaching consequences, rigorous guarantees

of correctness are expected by voters and (some) governments. Formal methods are

invaluable in establishing correctness of protocols in general, and are therefore well-

suited to analyse this particular class of protocols. However, the need to protect the

privacy of voters while still allowing them to check election results calls for the use

of cryptographic building blocks seldom used in protocols in general. Blind signa-

tures and bit commitments are two examples of such cryptographic primitives. Blind

signatures allow a user to sign a message without revealing its contents to the user.

Intuitively, this mirrors the pen-and-paper signing of a carbon-lined envelope.

4

To verify e-voting protocols, new cryptographic primitives must therefore be in-

tegrated into the chosen formal tool. What is more, many properties expected from

e-voting protocols cannot be specified directly using existing frameworks in their cur-

rent state. Privacy-type properties exemplify this issue; this family of properties relates

to the association between a voter and the voter’s ballot. For instance, the first privacy

property is often called voter privacy or ballot secrecy and is defined as the fact that

how a particular voter voted is not revealed to anyone.

This thesis addresses the formal verification of security protocols via the Isabelle

theorem prover, with a number of extensions to the verification framework to account

for novel situations such as e-voting security goals, protocol composition and the use

of new cryptographic primitives.

In the next sections, a more detailed presentation of required cryptographic build-

ing blocks (§1.2) and of identity-based cryptography (§1.3) will be given. An overview

of security layers and protocol security follows (§1.4). The second part of this chapter

will describe our motivations (§1.5), contributions (§1.6) to the subject and an outline

of the thesis.

1.2 Cryptography

Security protocols rely on cryptographic primitives. We now give an overview of

elementary cryptologic concepts and present some major developments of the last

decades.

1.2.1 A Short History of Modern Cryptology

Information hiding techniques date back to centuries before the common era, and

clever attack techniques such as frequency analysis already appeared at the beginning

of the Middle Ages. Nevertheless, sound mathematical foundations for cryptology

were only built in the twentieth century.

In his landmark 1949 paper, Shannon [113] applied information theory, statistics

5

and probability theory to a formalised view of cryptology, marking the beginning of the

field’s modern era. Among other fundamental contributions to the field, the publication

defines the notion of information theoretic security and includes a proof of one-time

pads’ adherence to this strict notion.

In the seventies, the independent discovery of public-key cryptography by Ellis

(at GCHQ, his work was classified at that time [50]) and by Diffie and Hellman [47]

influenced the development of cryptography in profound ways. Two years after Diffie

and Hellman’s paper, the concept of public-key cryptography became a reality through

Rivest, Shamir & Adleman’s RSA algorithm, which is still ubiquitous over thirty years

later.

A parallel development is the advent of quantum cryptography. The first theoretical

step was taken by Wiesner [125], who in 1970 introduced the primitive later to be

known as oblivious transfer (even though his paper was only published a decade later).

In 1994, Shor [114] invented an algorithm making integer factorisation in polynomial

time possible on a quantum computer.

1.2.2 Symmetric Cryptography

Symmetric cryptography involves (at least) two principals sharing a common key.

A symmetric encryption scheme consists of the following algorithms:

1. Keygen:

• Input: Security parameter l

• Output: key K

2. Encrypt:

• Input: Message M ; K

• Output: Ciphertext {|M |}K

3. Decrypt:

6

• Input: {|M |}K ; K

• Output: M

The key feature that remains in black-box modellings of symmetric cryptography

is the fact that the same key is used for encryption and decryption. This raises the issue

of how this key is distributed securely in the first place. The two main symmetric key

exchange techniques are as follows:

1. Using the Diffie-Hellman (DH) key exchange protocol over a possibly insecure

channel. The DH protocol’s security rests on the difficulty of the discrete loga-

rithm problem in the multiplicative subgroup Z∗

p of the field Fp (p prime). While

discrete exponentiation is fast, no efficient algorithm for the inverse computation

is known.

2. Encrypting the symmetric key with an asymmetric algorithm before transmitting

it. The result is called a hybrid cryptosystem, and the process is known as key

encapsulation.

The following two sections deal with the two symmetric ciphers which have been

most widely used during the last decades. Both were defined as standards by the U.S.

National Institute of Standards and Technology (NIST).

Classic symmetric algorithms DES is a symmetric block cipher based on a Feistel

structure, widely used since its publication1 as a standard by NIST in 1977 [90]. After

numerous, increasingly efficient attacks it is now considered obsolete. Notably, in

2006, the COPACABANA FPGA array broke DES by brute force in little more than a

week [77]. It had only stopped being a standard a year before, in 2005.

AES has been a NIST standard (as DES’s successor) since 2001 [91] and has been

implemented, in particular, in IPSec.2 While it is — like DES — a block cipher, its

structure is not a Feistel network but a substitution-permutation (SP) network. A major

1The document referenced in the bibliography is a later version of the standard.
2The Internet Protocol security protocol suite.

7

difference is that all bits are changed during each round. In the former case, only half

of the bits are changed every round; the other half is merely moved. The consequence

is higher diffusion in the SP structure. Indeed, full diffusion is achieved in AES after

only two rounds; this means that after two rounds, every output bit depends on each

input bit.

Differential cryptanalysis Differential cryptanalysis is a potent form of chosen-

plaintext attack. Its focus is to deduce information about the secret key by analysing

differences between ciphertexts resulting from a selection of well-chosen plaintexts.

Biham and Shamir introduced differential cryptanalysis in 1990, in a paper [20] apply-

ing this technique to DES. The same authors also soon successfully used it against the

FEAL block cipher [21].

Message Authentication Codes A Message Authentication Code (MAC) is a short

tag attached to a message to guarantee its authenticity. It is based on symmetric cryp-

tography: the sender and the receiver share a secret key. Most MACs make use of

a hash function (§1.2.4). The corresponding asymmetric technique is called a digital

signature: see §1.2.3 and §1.3.1.

1.2.3 Asymmetric Cryptography and PKIs

Unlike symmetric cryptography, asymmetric (also called public-key) cryptography re-

lies on key pairs, where one key is private and the other is public. A Certificate Au-

thority (CA) is involved — see §1.2.3.

An asymmetric encryption scheme consists of the following algorithms:

1. Keygen: (Run by recipient B)

• Input: Security parameter l

• Output: public key K+
B ; private key K−

B

2. Register: (Run by CA after authenticating recipient B)

8

• Input: K+
B

• Output: Certificate CCA
B

3. Getkey: (Run by sender A)

• Input: CCA...In
B

• Output: {K+
B , INVALID}

4. Encrypt: (Run by sender A)

• Input: K+
B ; plaintext M

• Output: Ciphertext C

5. Decrypt: (Run by recipient B)

• Input: K−

B ; C

• Output: M

The sender A obtains B’s public key K+
B through a certificate chain connecting a

certificate for B to the trusted root CA, and proceeds to create a ciphertext from the

message M and K+
B . B recovers M from the ciphertext using his private key K−

B .

An asymmetric signature scheme consists of the following algorithms:

1. Keygen: (Run by signer A)

• Input: Security parameter l

• Output: public key K+
A ; private key K−

A

2. Register: (Run by CA after authenticating A)

• Input: K+
A

• Output: Certificate CCA
A

3. Sign: (Run by signer A)

• Input: Message M ; K−

A

9

• Output: Signature σ

4. Getkey: (Run by verifier B)

• Input: CCA...In
A

• Output: {K+
A , INVALID}

5. Verify: (Run by verifier B)

• Input: σ; K+
A

• Output: {VALID, INVALID}

A generates a signature on the message M using her private key K−

A . The verifier

B obtains A’s public key K+
A through a certificate chain connecting a certificate for A

to the trusted root CA, and uses K+
A to verify the signature.

RSA In 1978, two years after Diffie and Hellman introduced public-key cryptogra-

phy, the first practical asymmetric cryptosystem was created by Rivest, Shamir and

Adleman [103]. The main theoretical results used are the following:

1. The decision version of the integer factorisation problem is hard; in other words,

multiplication of primes is considered a one-way function.

2. The RSA problem is hard — see below.

3. Fermat’s Little Theorem: if p is prime, then ∀a ∈ N, ap ≡ a (mod p).

Saying that a problem is hard (or intractable), in this context, means that it cannot

be solved efficiently by currently available (non-quantum) computational methods: no

known non-quantum algorithm can solve it in polynomial time.

The first step of the scheme is to pick two large primes p and q, of comparable

size. The resulting product, n = pq, should be at least 2048 bits long to be considered

secure until 2020 and even longer if more lasting security is desired; see Lenstra’s

paper [80] for justifications.

10

Then the public key e is chosen; it has to fit the requirement

[1 < e < ϕ(n)] ∧ [gcd(ϕ(n), e) = 1] (1.1)

Where ϕ(n), Euler’s totient function, is the number of positive integers less than or

equal to n and relatively prime (sharing no common factor except 1) to n. In particular,

when p and q are prime (as in our current example), ϕ(n) = (p− 1)(q − 1).

The (extended) Euclidean algorithm is then used to compute the private key d. It

is the modular inverse of e mod ϕ(n), i.e.

de ≡ 1 (mod ϕ(n)) (1.2)

Suppose Alice wants to send the message x to Bob. First Bob needs to make his

public key e available, along with n. Now Alice sends the encrypted message M = xe

(mod n). Bob uses his private key d to compute Md = xde (mod n). Because of

(1.2) and Fermat’s Little Theorem, this yields x and Bob recovers the message. Indeed,

congruence (mod pq) is equivalent to the conjunction of congruence (mod p) and

congruence (mod q) here, since p and q are prime. It is easy to check each condition

by noticing that de− 1 must be a multiple of ϕ(n) = (p− 1)(q − 1).

Assuming hardness of integer factorisation is one requirement for the scheme to

be secure. Indeed, recovering x from xe involves determining d; d can be computed

using the knowledge of e, but only given (p − 1)(q − 1). Calculating this, in turn, is

only possible when p and q are known, which reduces to factoring n.

The second assumption is hardness of the RSA problem, defined as follows by

Rivest and Kaliski [102]:

Problem (RSA). Given an RSA public key (n, e) and a ciphertext M = xe (mod n),

compute x.

The RSA problem is not harder than the integer factorisation, since we just showed

that being able to find p and q from n yields x. It is not known, however, if integer

11

factorisation is harder than the RSA problem. Notably, in 1998, Boneh and Venkatesan

showed that breaking an RSA system with a low exponent is not equivalent to integer

factorisation [30].

Public Key Infrastructures: Certificate Authorities and Webs of Trust Public

Key Infrastructures (PKI) are frameworks providing the logistics for the use of public-

key cryptography on a large scale. They allow a trusted entity to securely bind a public

key to the name of its owner. Without a PKI, there is no guarantee that a public key

actually belongs to its claimed owner. Two types of PKIs are widely used in practice.

1. The most commonly used system, X.509 [117], is based on certificate chains.

The link between a user and his public key is guaranteed by a certificate belong-

ing to a Certificate Authority (CA); the key/identity binding for this entity (the

CA) is guaranteed by another certificate belonging to a higher-level CA. Every

CA is certificated by its parent CA, until a root CA is reached. This root CA

is either unsigned, or self-certified. Either way, if the root CA is trusted, the

hierarchy of trust implies that its children CA can be trusted. In practice, cer-

tificates are signed with a CA’s private key. The largest root CA as of 2012 is

a commercial company, VeriSign. Certificates can also be cancelled by being

placed on a (dynamic) certificate revocation list, to which the CRL Distribution

Points certificate field points. Reasons for revocation include change of name

and private key compromise. Certificates expire at the end of a validity period.

2. The second PKI paradigm is called a web of trust. It was first found in the

celebrated Pretty Good Privacy (PGP) software, developed by Zimmermann

in 1991 [61]. In contrast with a CA chain, webs of trust are highly decen-

tralised and feature no authorities. Instead, each user possesses a keyring defin-

ing trusted correspondents, or trusted introducers as Zimmermann puts it. Var-

ious levels of trust can be assigned. When checking a certificate for validity, if

the sender is not in the recipient’s keyring, levels of trust assigned to the sender

by other users in the recipient’s keyring are combined to make a decision. In

12

uncertain cases, the recipient has to make an informed choice. Unfortunately,

in practice, this choice is often ill-informed. Unlike X.509, the system is thus

non-deterministic and certificates can be signed by more than one party. PGP

certificates can also be revoked, either by the certificate’s owner or by an entity

explicitly designed as a revoker by the former.

When mentioning PKIs in our work, we always refer to infrastructures of the first

kind.

1.2.4 One-way Functions and Hash Functions, the SHA Family

Hash functions are a commonly used example of one-way functions, i.e. functions

which are easy to compute in one direction and hard to reverse. A hash function takes

as input a bit string of any length, and outputs a fixed length bit string which can

be seen as a digest of the message. An efficient hash function should have several

properties:

1. Hashes can be computed quickly, even for long input messages;

2. It is infeasible to find two different messages resulting in identical hashes (col-

lisions resistance);

3. It is infeasible, given a hash, to find a message yielding this exact hash (preimage

resistance).

Hash functions are part of many cryptosystems, both signing and encrypting ones.

They are also used for the purpose of integrity checking; when a user has finished

downloading a file from a network, he can compute its hash, also known as the file’s

checksum. If the file provider distributes the checksum (for a given hash algorithm)

along with the file, the user can verify if the file he obtained has been transmitted

without errors.

The currently most used hash functions are those of the Secure Hash Algorithm

(SHA) family. All of them were developed under the supervision of the NIST and are

part of the Secure Hash Standard (SHS) [92].

13

SHA-1 SHA-1 is a hash function with an output of 160 bit, a 512 bit block size,

and a Merkle-Damgård construction [42] to chain those blocks. It was specified as

a standard in 1995 and is still widely used and considered usable by NIST despite

numerous attacks, notably the one by de Cannière and Rechberger in 2006 [35].

SHA-2 Rather than being a single hash function, SHA-2 is a family of functions

producing various digest sizes, from 224 to 512 bits. Recent collision attacks have

been realised by Indesteege et al. [69] and Sanadhya & Sarkar [106].

SHA-3 SHA-3 is a new proposed NIST standard. A competition, first announced in

2007, is currently underway to choose the hash algorithm which will become known

as SHA-3. As of August 2012, five finalist algorithms remain. A final decision is

expected before the end of 2012 [93].

1.2.5 Provable Security of Public-key Schemes

For public-key schemes, security is generally proven by relating attacks on the cryp-

tosystem to the resolution of a computational problem which is believed to be hard,

such as integer factoring or the discrete logarithm problem. The most common ap-

proach is to assume that an adversary can break a cryptosystem, and then prove that,

given this assumption, the adversary would be able to solve a classic computational

problem. This is called a security reduction. Security is quantified by an asymptotic

bound on computational power, in function of the key length. A reduction is called

tight if there is little to no loss of efficiency compared to the computational problem;

that is, if breaking the scheme is exactly as hard as solving the problem. In that case,

the security parameter used for the scheme does not need to be larger than the one that

would be used initially.

In the Random Oracle Model, hash functions are modelled by ideal random func-

tions, with the additional condition that this kind of function, or oracle, outputs identi-

cal values for identical inputs. In the Generic Group Model, actual bit string represen-

tations of group elements, such as those of a given elliptic curve group, are modelled

14

by ideal random representations. While proofs in the Random Oracle Model and the

Generic Group Model are useful indications as to a scheme’s security, they do not

constitute ultimate guarantees and have been controversial; see The Random Oracle

Methodology, Revisited [34].

1.3 Identity-Based Cryptography

Identity-based (IB) schemes simplify public-key cryptography infrastructures by giv-

ing universal access to any user’s public key, no longer requiring communication with

a Certificate Authority to obtain it. In IB schemes, the public key of a user is easily

deduced from his identity by a process known to all. This reduces communication

overhead. Despite widespread broadband internet connection, many systems — such

as embedded devices — can greatly benefit from reduced data transfer need. Key

management is also simplified. Shamir’s 1984 seminal article [112] proposed the ba-

sic principle of identity-based encryption (IBE), identity-based signatures (IBS) and

provided a concrete scheme for IBS (based on RSA). A concrete scheme for IBE,

however, appeared only 17 years later in Boneh and Franklin’s scheme based on the

Weil pairing [29]. IB cryptography is now commonly used in the industry. Notably,

companies such as Trend Micro [119] and Voltage [120] distribute IB email encryption

and toolkit software.

1.3.1 Identity-Based Signatures

Identity-based signatures are digital signatures that can be verified if the signer’s iden-

tity is known.

Principles of IBS Alice (A) generates her signature σ (on the message M) from M

and her secret key K−

A , and sends {|M,σ|} to Bob (B) through a (possibly insecure)

communication channel. B validates (or rejects) σ by checking its validity using A’s

public key and the master public key master-key of the KGC.

15

The public key of a principal A is obtained from her (public) identity ID, and from

the public system parameters params. A’s secret key K−

A is derived by the KGC using

her identity ID and master-key, a master secret key only known to the KGC.

There is no key channel between the users, only between each user and the KGC.

A user’s public key is deduced directly from her identity by a public process, and her

secret key is communicated directly to her by the KGC upon proof of identity. A’s

secret key is hence known to exactly two entities: A and KGC.

In contrast, in a secret-key setting, the (secret) key has to be transmitted separately

on a secure channel; and in a public-key setting, the public key is also sent through a

specific channel, although it does not have to be confidential, only possess integrity.

The KGC is responsible for delivering their secret key only to users who prove

their identity to it, else the infrastructure is compromised. The seed has to remain

secret, lest the entity getting a hold of it be able to generate secret keys for any user

identity.

IBS algorithms We now describe the algorithms making up an IBS scheme.

1. Setup: (Run by KGC)

• Input: Security parameter l

• Output: System parameters params; master-key

2. Extract: (Run by KGC)

• Input: params; master-key; ID

• Output: Secret key K−

A (transmitted to the signer)

3. Sign: (Run by signer)

• Input: Message M ; params; ID; K−

A

• Output: Signature σ

4. Verify: (Run by verifier)

16

• Input: σ; ID; M ; params

• Output: {VALID, INVALID}

Properties of IBS

• The public keys of all users are deriveable to all peers, since they are directly

computed (through a publicly known method, sometimes a hash function) from

identities. This is the defining characteristic of IB cryptography. The KGC’s

master public key is also known to all. It therefore has to be published, relying

on some limited form of PKI.

• K−

A is communicated to A by the KGC upon request and authentication.

• It is impossible to sign a message on behalf of A without knowing K−

A .

• The KGC knows all secret keys, since they are all generated directly from the

master secret key and a user’s identity. This is called key escrow.

• Hence, a message that decodes properly using A’s public key (its identity) has

been signed either by A or by the KGC. This provides weak non-repudiation, as

A can refute a signature since it may have been produced by the KGC.

• To check a signature, the recipient needs exactly two additional elements: the

master public key, and the sender’s identity.

IBS implementation When introducing IBS in 1984, Shamir was able to propose

an implementation based on RSA straight away. In 2002, Hess [66] developed an

efficient IBS scheme using elliptic curves. The main mathematical tools used were

the Weil and Tate pairings, maps which are part of a widely-used family of bilinear

applications called pairings.

Shamir’s IBS system To achieve IBS practically, Shamir [112] used RSA in the

following way:

17

• Let i be the user’s identity, m the message to be signed, n the (public) product

of two large primes and e a (public) large prime such that (e, ϕ(n)) = 1. Then

the secret key for i is g, such that ge = i (mod n). If RSA is secure, g can

not be recovered from i. Note that g = id (mod n), where d is an inverse of e

(mod ϕ(n)) and can be computed by the KGC like in the RSA scheme.

• The signer picks a random r and sets t = re (mod n). He also computes

s = g · rf(t,m) (mod n), where f(t,m) is a (public) one-way function. The

signature is (s, t).

• The signature verification condition, then, is se = i · tf(t,m) (mod n). Since

(e, ϕ(n)) = 1, the condition reduces to s = g · rf(t,m) (mod n).

Pairings A pairing is a map e : G1 × G1 7→ G2 between cyclic groups G1 (ad-

ditive) and G2 (multiplicative), both of large prime order q, possessing the following

properties:

1. Bilinearity: ∀ a, b ∈ Z∗

q , ∀ P,Q ∈ G1, e(aP, bQ) = e(P,Q)ab;

2. Non-degeneracy: ∃ P,Q ∈ G1/ e(P,Q) 6= 1;

3. Computability: ∀ P,Q ∈ G1, there is an efficient way to compute e(P,Q).

In practice, G1 is typically a group of points on an elliptic curve over a finite field.

Elliptic curves over which pairings provide efficient and secure schemes are said to be

pairing-friendly. For a detailed definition, see the taxonomy by Freeman, Scott and

Teske [57].

Hess’s IBS system In 2002, Hess [66] proposed a more efficient signature scheme,

following the introduction by Boneh and Franklin (see below) of pairings for identity-

based cryptography. Its security is based on the assumed hardness of the Diffie-

Hellman Problem (DHP); namely:

Problem (Diffie-Hellman). Let g be a generator of a cyclic group G of prime order q,

and a, b ∈ Zq. Given g,ga and gb, find gab.

18

Let e be a non-degenerate, bilinear pairing from G × G to V , where (G,+) and

(V, ·) are cyclic groups of order q, q prime. P is a generator of G, and h, H are (public)

hash functions. The scheme consists of the following algorithms:

1. Setup:

• Input: Security parameter l

• Output: System parameters params: (e, P, tP,H, h); master-key: t (ran-

domly chosen by TA). tP is published.

2. Extract:

• Input: params; master-key; ID

• Output: Secret key SID = tH(ID)

3. Sign:

• Input: Message m; params; ID; SID

• Output: Signature σ = (u, v) ∈ G1 × (Z/qZ)×, with r = e(P1, P)k,

v = h(m, r), u = vSID + kP1 (with P1 and k chosen at random by

Signer)

4. Verify:

• Input: σ = (u, v); ID; m; params

• Output: {VALID if v = h(m, r) with r = e(u, P) ·e(H(ID),−tP)v, else

INVALID}

A concise, efficient and provably secure scheme, it has been widely used and

adapted since.

1.3.2 Identity-Based Encryption

Identity-based encryption works similarly to IBS; here, the identity of one agent is the

encryption key.

19

IBE algorithms A set of four algorithms is used to described IBE schemes. They

were defined in [29] as follows:

1. Setup: (Run by KGC)

• Input: Security parameter l

• Output: System parameters params; master-key

2. Extract: (Run by KGC)

• Input: params; master-key; ID

• Output: Secret key K−

B

3. Encrypt: (Run by sender)

• Input: params; ID; plaintext M

• Output: Ciphertext C

4. Decrypt: (Run by recipient)

• Input: params; K−

B ; C

• Output: M

IBE implementation As mentioned earlier, the path from concept to implementation

was straightforward for IBS but considerably longer for IBE. The two first concrete

IBE schemes both appeared in 2001.

Cocks’ IBE scheme In [37], Cocks described an implementation of IBE based on

the quadratic residuosity problem (QRP). Recall the QRP:

Problem (Quadratic Residuosity). 3 Let n = pq and x be integers, with p and q large

3
(

x

n

)

, the Jacobi symbol of x and n, is equal to the product of the Legendre symbols of x and n’s

factors, i.e. p and q. Furthermore, the Legendre symbol is defined as such (r prime):

(

x

r

)

=

−1 if ∄ t . t2 ≡ x (mod r)

0 if r|x

+1 if ∃ t . t2 ≡ x (mod r)

20

primes and
(

x
n

)

= 1. Is x a square mod n?

The scheme works as follows: let p and q be two primes with p = 3 (mod 4) and

q = 3 (mod 4). Let m = pq be public, but p and q only known to an authority. Also

assume the existence of a public hash function. It is applied to ID until the result is a

value a (mod m) with
(

a
m

)

= 1.

It follows from
(

a
m

)

= 1 that
(

a
p

)

=
(

a
q

)

, hence either a or −a must be a square

(mod m). The authority computes the square root (mod m) of whichever of those

values is a square (mod m), and gives the result r to Alice.

Now Bob generates a transport key, and sends it to Alice bit by bit, encrypted:

Assume without loss of generality that r2 = a (mod m). Bob picks a random t such

that
(

t
m

)

= x, with x being the current bit of the key that Bob wishes to send. Bob

sends Alice s = (t+ a/t) (mod m).

Bob must replicate this process (creating overhead) using a different t because he

cannot know whether Alice has the root of a or of −a.

Alice can recover x by computing
(

s+2r
m

)

, which is equal to
(

t
m

)

= x.

Cocks’ scheme constitutes a proof of concept, but is not widely used because of

the high degree of ciphertext expansion (every bit of plaintext produces a segment of

ciphertext as long as the key). The following scheme is more efficient.

Bohne and Franklin’s IBE scheme In [29], an IBE system using the Weil pairing

is presented. An identity is represented as a point on an elliptic curve. The scheme’s

security is based on the hardness of a variant of the Diffie-Hellman problem:

Problem (Computational Bilinear Diffie-Hellman). Given (P, aP, bP, cP) ∈ G4
1 with

a, b, c ∈ Z∗

q chosen at random, find e(P, P)abc.

Boneh and Franklin present two versions of the scheme in their paper, called Basi-

cIdent and FullIdent. For the sake of simplicity, we present BasicIdent here. Let e be

a non-degenerate, bilinear pairing from G1 ×G1 to G2, where G1 and G2 are groups

of order q, q prime. P is a random generator of G1, and H1, H2 are (public) hash

21

functions. Let {0, 1}n be the message space. BasicIdent consists of the following

algorithms:

1. Setup: (Run by KGC)

• Input: Security parameter k

• Output: System parameters params = (q,G1, G2, e, n, P, sP,H1, H2);

master-key = s (picked at random)

2. Extract: (Run by KGC)

• Input: params; master-key; ID

• Output: Secret key sH1(ID)

3. Encrypt: (Run by sender)

• Input: params; ID; plaintext M

• Output: Ciphertext C = (rP,M +H2(g
r
ID)) with gID = e(H1(ID), sP)

4. Decrypt: (Run by recipient)

• Input: params; dID; C = (U, V)

• Output: M = V +H2(e(dID, U))

BasicIdent is secure in the IND-ID-CPA4 sense in the Random Oracle Model,

with a reduction to the Computational Bilinear Diffie-Hellman Problem. FullIdent,

obtained by applying a transformation due to Fujisaki and Okamoto [59] is secure

in the IND-ID-CCA5 sense. IND-ID-CPA and IND-ID-CCA are based on the stan-

dard notions of Chosen-Plaintext security (IND-CPA) and Chosen Ciphertext security

(IND-CCA), respectively; for detailed technical definitions, see [29].

4Adaptive Chosen Plaintext security for an Identity-based scheme.
5Adaptive Chosen Ciphertext security for an Identity-based scheme.

22

1.3.3 Provable Security of IBE and IBS

In [121], Waters introduced an efficient IBE scheme, the proof of which doesn’t require

the Random Oracle Model. In [74], Kiltz gives an extensive security comparison of

IBS schemes up to 2008.

1.4 Protocol Security

Network security can be defined at several levels:

1. Hardware: computers, physical network links.

2. Cryptographic primitives. This includes encryption algorithms, hash functions

and digital signatures. Respective examples of these primitives are RSA, SHA-1

and the ElGamal signature scheme.

3. Security protocols: predefined sets of message exchanges, making use of cryp-

tographic primitives. Commonly used ones include the Internet Protocol Suite

(TCP/IP), TLS, Kerberos.

Attacks have been carried out successfully at all of those levels.

The hardware level is vulnerable to so-called side channel attacks. This strategy

is recent, dating back to Kocher’s timing analysis in 1996 [75], which measured cryp-

tographic algorithms’ execution time to deduce critical information about keys. In the

analogue world, similar strategies were already used decades earlier.

Some attacks on cryptographic primitives (DES, FEAL, the SHA hash functions)

were mentioned in §1.2.2and §1.2.4.

The security issues we will focus on are those of security protocols. We are con-

cerned about protocol design weaknesses. Attacks on protocols can succeed even when

the composing cryptographic algorithms are unassailable. For this reason, we will con-

sider cryptographic primitives as theoretical perfect black boxes.

23

1.4.1 Security Protocols

Security protocols are predefined sets of message exchanges that aim to guarantee

specific security properties about the agents involved in them and what they send.

The common syntax for security protocols The most commonly used notation for

discussing security protocols is the one used in Burrows et al.’s seminal paper [32].

We adopt the following conventions (see also Table 1):

• Principals are represented by upper-case letters. A,B, . . . represent normal

users. S is a server or a trusted third party.

• Protocols are written as numbered sequential lists of message transmissions be-

tween sender A and desired recipient B. Each step has the following form:

N. A −→ B : M

Where N is an integer and M is the message.

• Private (K−

A) and public (K+
A) keys of a principal A are distinguished. If A and

S share a symmetric key, it is denoted KAS .

• Concatenation is represented by commas.

• Encryption of a concatenation of items is denoted by placing braces around those

items, and the key as a subscript: {|M,A,B|}KAS
is the encryption of the con-

catenation of the message M and the name of the principals A and B, encrypted

with the shared symmetric key KAS .

• A signed message is represented as a message encrypted with an agent’s pri-

vate key, e.g. {|M |}K−

S

represents a signature on message M by agent S. We

sometimes also write SigA(M).

• Nonces (non-guessable numbers) generated by a principle B are denoted NB .

24

As an example, consider the following line:

2. B −→ S : B,NB, {|A,NA|}KBS

This is the second step of a security protocol, Paulson’s modified version of the Ya-

halom protocol. The principal B sends a message to the server S, consisting of the

conjunction of three elements: the name of the sending principal, a nonce created by

him, and the encryption with a symmetric key shared by B and S of the identity of

another principal, A, and a nonce created by her.

A good catalogue of security protocols is to be found at the Security Protocols

Open Repository (SPORE) [73]. Some example protocols are as follows.

Needham-Schroeder Public-Key The Needham-Schroeder Public-Key protocol, pro-

posed in [94], is meant to provide mutual authentication between two principals. In

[82], Lowe showed that the protocol is susceptible to a replay attack and fixed it by

including the responder’s identity in step 6. Here is the specification of Lowe’s version:

1. A −→ S : A,B

2. S −→ A : {|K+
B , B|}K−

S

3. A −→ B : {|NA,A|}
K

+

B

4. B −→ S : B,A

5. S −→ B : {|K+
B , A|}K−

S

6. B −→ A : {|NA,NB,B|}
K

+

A

7. A −→ B : {|NB|}K+

B

Since steps 1, 2, 4 and 5 are only concerned with obtaining the public key, a core

version of the protocol consisting merely of steps 3, 6 and 7 is often used for formal

verification, notably in Isabelle. In chapter 4, we will compose this protocol with a

certification protocol and verify the resulting composed protocol holistically, i.e. as a

whole.

25

Kerberos In a distributed client-server environment, the Kerberos protocol provides

mutual authentication between clients and servers via a ticket-granting system relying

on a trusted third party. Symmetric cryptography is used to encode tickets in the gen-

eral case. Public-key cryptography (i.e., an RSA variant) can be used via an extension

of the most recent version of the protocol. Kerberos IV and V were formally analysed

with the Isabelle theorem prover — see Table 3.1.

Electronic payment protocols From 1996 to 2000, the standard protocol suite for

online credit card transactions was Secure Electronic Transactions (SET). It was for-

mally analysed with Isabelle, in several stages, by Bella et al. [19]. SET experienced

limited success, and its successor (used by both Visa and MasterCard) is called 3-D

Secure. In practice, most credit card payments on the internet are protected solely by

TLS, which was not designed specifically as an e-commerce protocol.

1.5 Motivation

The motivation for this thesis is twofold. Firstly, existing work using the Inductive

Method [14] (introduced in §3.2) and the nature of its specification in Isabelle/HOL

call for further investigation into the method’s potential and boundaries. Since its fun-

damentals assume little more than the standard Dolev-Yao model [48], a great deal

of applications have not yet been modelled in Isabelle/HOL despite their relevance to

formal correctness study. Because the underlying platform is a theorem prover oper-

ating with higher-order logic and comprehensive extensibility, no intrinsic limitation

prevents the modelling of those applications. This generality is the major difference

between the Inductive Method and automated tools; it is also a strength that should be

exploited.

The second motivation for this work is a pragmatic need for complementary ap-

proaches to security protocol verification. The study of electronic voting protocols

provides a striking example of the need for alternative analysis methods. Significant

research has been done on security guarantees such as voter privacy, but various lim-

26

itations remain. While the Inductive Method may eventually reach limitations of its

own on this topic, a thorough investigation of its capabilities is worthwhile. The same

can be said for protocol composition and support of specific cryptographic primitives,

such as auditable identity-based signatures.

In practice, the work arising from these considerations tends to advance both in-

quiries. Tackling new verification scenarios requires building extensions to the method,

which eventually defines its potential more clearly.

1.6 Outline and Contributions

In this chapter, we have presented the general problem of network security, funda-

mentals of cryptography and the issue of security at the protocol level with blackbox

cryptography. We also presented the motivations for this thesis. We now summarise

the structure of the remainder of the thesis, with a focus on original contributions.

• Chapter 2 is about existing formal approaches to security protocol analysis. Ex-

isting methods are reviewed and compared.

• Chapter 3 presents Isabelle/HOL briefly and the Inductive Method in detail.

• Chapter 4 describes our first contribution [17], a joint work with Giampaolo

Bella. The handling of protocol composition in the Inductive Method is demon-

strated by the verification of a protocol obtained by composing a certification

step with a well-known mutual authentication protocol by Needham and Schroe-

der. The specification of composed protocols, never used before in the Inductive

Method, is shown to be straightforward and applicable in generality. The case

study marks a first phase in the holistic specification of protocols with the PKI

they rely upon.

• Presented in chapter 5, our second contribution is the use of auditable identity-

based signatures [65], specified in conjunction with an ISO/IEC 9798-3 [70]

27

authentication protocol. A side-by-side specification and verification in the In-

ductive Method clarifies the additional guarantees enjoyed by protocols replac-

ing plain signatures with the former. Modelling this specific kind of signatures

required adapting the framework of the Inductive Method at the message opera-

tor level.

• In chapter 6, the most significant contribution [33] of this thesis is presented.

The Inductive Method is extended to deal with the unique characteristics and

properties of electronic voting protocols. This collaboration with Giampaolo

Bella features the specification of blind signatures and of unlinkability, mod-

elling voter privacy. These extensions are then used to verify the FOO [58]

protocol as a case study. Both the extensions to the framework and the privacy

proofs are substantial.

• The last part of this work, in chapter 7, provides a synthesis of the thesis and dis-

cusses both the general findings that emerged from our research and directions

in which future work is proposed.

• In the appendix A, the Isabelle theories for this work are provided.

28

Chapter 2

Security Protocol Analysis

Over the last decades, numerous methods and tools for security protocol analysis have

been developed. Before presenting in detail the method and tool used in the remainder

of the thesis, we give a panoramic view of other existing approaches. Many avail-

able tools combine more than one approach; therefore, we start by listing the main

approaches and detail tools later.

2.1 Approaches for the Analysis of Security Protocols

The field of security protocol analysis has developed quickly over the last twenty years;

the pace of research even seems to be increasing currently [39, 88]. It is difficult to

give a totally exhaustive picture of existing methods and tools; therefore our goal in

this section is to focus on the most significant approaches.

2.1.1 BAN Logic

BAN reasoning, introduced in [32], is one of the earliest approaches to formal verifi-

cation of security protocols. It is also called belief logic, since its formalism is partly

based on what information principals are entitled to believe based on messages they

received. It is now mainly of historical interest, since many flaws found later in proto-

col underwent BAN analysis undetected. The question whether the error resided in the

29

BAN logic itself or in an incorrect idealisation of the protocol provoked some contro-

versy, but is of minor importance today since model checkers and theorem provers are

favoured over BAN reasoning nowadays. Nevertheless, it generated a lot of interest

and development in the field.

2.1.2 Model Checking

Model checking [52] refers to a set of formal methods based on finite state exploration.

If one desires to check a model, for instance a security protocol, the first step is usually

to create a simplified representation of it. Indeed, since all possible configurations

are explored, the initial model is often too complex to be verified in full detail. This

limitation is due to insufficient computing power and intrinsic theoretical constraints.

Since the set of possible configurations often increases exponentially when the size

of the model increases linearly, the only practical solution is to construct a simplified

model which is still faithful to the defining characteristics of the initial one.

While model checkers can often help detecting flaws, they are not capable of guar-

anteeing the security of a protocol since only a simplified version of it is analysed.

Symbolic model checking can reduce computational requirements, but ultimately it

only provides information about the security of a simplified version of the protocol

under scrutiny.

2.1.3 Strand Spaces

In [118], Thayer et al. introduce strand spaces. A strand is the sequence of mes-

sages sent and received by a single principal during a single protocol run. There is a

specific strand for the attacker, capturing her (Dolev-Yao) abilities. A strand space is

then the collection of all strands for a given protocol. Bundles are sets of communi-

cating strands and “portions” of a strand space. A strand space is seen as a graph of

nodes, where the nodes are network events. The security proofs are done by induc-

tion. Authentication is proven using a specific technique, called authentication test.

Automation of the strand spaces method is provided in subsequent work by Song et

30

al [115]. Termination is not guaranteed.

2.1.4 Process Calculi and Horn Clauses

Combining process calculi with the representation of protocols as Horn clauses (finite

disjunctions with one or less positive atoms) has recently proven to be a fruitful re-

search direction. More precisely, cryptographic extensions of process calculi are used,

with the applied pi calculus [1] being most typical.

Observational equivalence is a key notion for analysis of indistinguishability using

process calculi. It can intuitively be described as follows: two processes P and Q

are observationally equivalent if no observer process O can tell P and Q apart. In

the language of process calculi, this is defined as the fact that for any process O,

“the processes P ||O and Q||O are equally able to emit on a given channel” [38]. We

will provide a comparison between our approach and process calculi-based ones when

looking at electronic voting security analysis.

Static Analysis In [28], Bodei et al. define a new process algebra, loosely based on

the pi calculus but without channels. The focus is on the verification of authentication

and secrecy via static analysis based on control flow analysis — originally a technique

to approximate values during the execution of software written in functional languages.

Over-approximation is used.

2.1.5 Interactive Theorem Proving

Theorem proving uses mathematical reasoning to determine if a protocol reaches its

security goals. In most cases, the protocol need not be simplified, unlike in the case of

model checking. One drawback is that significant human assistance is required, hence

the name of interactive theorem proving. After our presentation of existing tools using

the different approaches outlined in this section, we will focus in Chapter 3 on Isabelle,

an interactive theorem prover suitable for security protocol correctness checking.

31

2.1.6 Automated Theorem Proving

While the theorem proving approach we will rely on is based on higher-order logic,

first-order logic methods such as the ones used by Meadows [89] or Weidenbach [122]

must be noted. Note that the SPASS tool used in [122] can be used with the Sledgeham-

mer component in the Isabelle/HOL interactive theorem prover that we will introduce

soon.

2.2 Tools for the Analysis of Security Protocols

2.2.1 FDR, FDR2 and CSP

The model checker FDR [104] was successfully used by Lowe [83] to find flaws in

security protocols. The CSP process calculus [68] is used to model each principal as

a process. An intermediate language, Casper [84], is compiled into CSP before being

checked by FDR. Ryan and Schneider’s book [105] is authoritative on the subject. As

the state space has to be finite for model checking, protocols have to be simplified or

restricted to be checked with FDR. For instance, for the verification of the Needham-

Schroeder public key protocol (see §1.4.1), a single initiator and a single responder are

assumed.

The tool has been continuously developed since its creation, and is now a commer-

cial tool even though it is still freely available for academic use. It has been renamed

to FDR2 [56].

2.2.2 AVISPA and the AVANTSSAR Platform

AVISPA [6], standing for Automated Validation of Internet Security Protocols and

Applications, is a recent “push-button” automatic protocol verification tool. Protocols

and conjectured properties must be specified in a formal language called HLPSL. It is

based on a number of backends that use different analysis techniques, including model-

checkers and tree automata [96]. The On-The-Fly Model-Checker (OFMC) [11], one

of the backends, can also be used independently. Some of these backends, such as pro-

32

tocol falsification ones, operate on a bounded number of sessions. Abstraction-based

verification [7] considers unbounded sessions. A substantial number of results have

been made available in an online library (www.avispa-project.org). Since the

end of the European AVISPA project, the same line of work has been continuing under

the name of the AVANTSSAR platform [5] (www.avantssar.eu).

2.2.3 The NRL Protocol Analyzer and Maude-NPA

Meadow’s NRL Protocol Analyzer (NPA) [89] is a versatile, hybrid interactive tool,

part model checker, part theorem prover, based on unification. Security goals are

proven by showing, via backwards search, that insecure states (configurations break-

ing the goals) cannot be reached. Its successor, Maude-NPA [53], can deal with some

algebraic properties of cryptosystems, such as exponentiation and homomorphic en-

cryption. Sequential protocol composition is also supported [54].

2.2.4 Scyther

Cremer introduced Scyther [41], a recent “push-button” tool. Like NPA and Maude-

NPA, it assumes that a security property is violated and then checks if backwards

search can lead to an admissible initial state. A pattern refinement algorithm is used:

the role of each principal is characterised by a small number of execution patterns,

which are classes of traces. See also §4.1 about Scyther’s capabilities for analysing

composed protocols.

2.2.5 LySatool

The LySatool [31] is based on the static analysis framework described earlier [28]. It

is automated, and analyses protocols modelled in the LySa process calculus. A tool

called Elyjah [97] makes it possible to directly analyse protocols implemented in java

by translating them into LySa.

33

www.avispa-project.org
www.avantssar.eu

2.2.6 ProVerif and AKiSs

Automated tools such as ProVerif [22] or, more recently, AKiSs [36] can be used to

assist with process equivalence analysis. ProVerif is used to check protocols repre-

sented by processes modelled in the applied pi calculus. It does not restrict the number

of protocol sessions. A stronger condition than observational equivalence between

processes is checked. Since the correctness criterion is an under-approximation, spu-

rious attacks may be found in some cases. There is no risk for flawed protocols to be

deemed correct, but correct protocols may be deemed flawed by the tool because of

the approximation. Extensions have been created for ProVerif to support equational

theories using XOR [79] and Diffie-Hellman exponentiation [78].

Automated analysis of voter privacy for electronic voting protocols Various ap-

proaches to checking voter privacy have been presented. Notably, Kremer and Ryan

[76] presented an analysis with some manual parts. In 2008 [46], a fully automatic ver-

ification was done. However, a translation algorithm was used without formal proof of

correctness. The next year, Delaune, Kremer and Ryan published a detailed analysis

in which the number of voters is fixed, with a partially automated privacy proof [44].

New cryptographic primitives can be added easily to the tool via equational theories,

but in some cases the resulting processes fail to terminate.

AKiSs, the most recent automated tool able to check privacy automatically, is also

based on equivalence properties. However, a new kind of cryptographic process calcu-

lus is used and a different type of process equivalence is checked, called trace equiva-

lence. Under- and over-approximations of trace equivalence are used to detect flawed

protocols and verify correct ones, respectively. These equivalences are coarser and

more fine-grained variants of trace equivalence. For detailed technical definitions, re-

fer to [36].

The set of supported cryptographic primitives is broader than in ProVerif. For

a specific class of processes, called determinate, a precise verification can be done.

However, not all e-voting protocols fall in this class, in which case one of the approx-

34

imations must be used. The number of sessions must be bounded as it has critical

impact on the computational cost.

2.2.7 tamarin

Another recent tool, tamarin [108], supports automatic, unbounded verification and

falsification of protocols using Diffie-Hellman exponentiation. It is based on a constraint-

solving algorithm. Equational theories are used to specify cryptography. Termination

is not guaranteed. Unlike tools like ProVerif, tamarin is well-suited to the analysis of

stateful protocols.

2.2.8 Tool Synthesis

Table 2.1 compares a number of key characteristics of the tools discussed in this sec-

tion.

2.3 Discussion

In this chapter, we have given a review of existing security protocol analysis ap-

proaches and tools. A wide diversity exists, but the current trend is clearly in favour

of process-calculi based methods and composite, automated tools. More and more

of them support more exotic constructs such as XOR or Diffie-Hellman exponentia-

tion [108]. The support for composed protocols analysis is spreading too, but most

tools are restricted to sequential composition [54] or to modular protocols that do not

interact strongly [41].

We will go down the road of interactive theorem proving. While it normally re-

quires more analyst interaction, we intend to exploit its greater flexibility to apply an

existing framework to new problems. The next chapter introduces the Isabelle interac-

tive theorem prover and provides a detailed presentation of its application to security

protocol verification, using higher-order logic.

35

Is
ab

el
le

F
D

R
2

A
V

A
N

T
S

S
A

R
M

au
d
e-

N
PA

S
cy

th
er

L
y
S

at
o
o
l

P
ro

V
er

if
A

K
iS

s
ta

m
ar

in

In
te

ra
ct

iv
e

X
×

×
×

×
×

×
×

×

U
n
b
o
u
n
d
ed

v
er

ifi
ca

ti
o
n

X
×

X
X

X
X

X
×

X

X
O

R
su

p
p
o
rt

×
×

X
X

×
×

X
×

X

A
n
al

y
si

s
o
f

co
m

p
o
se

d
p
ro

to
co

ls
X

×
X

X
X

×
×

×
×

C
u
rr

en
tl

y
u
n
d
er

d
ev

el
o
p
m

en
t

X
X

X
X

X
×

X
X

X

T
ab

le
2
.1

:
C

o
m

p
ar

is
o
n

o
f

se
cu

ri
ty

p
ro

to
co

l
an

al
y
si

s
to

o
ls

36

Chapter 3

Isabelle/HOL and the Inductive

Method

We now turn to the approach that will be used for the remainder of this thesis: the

Isabelle theorem prover and the Inductive Method for security protocol verification.

Isabelle is the latest descendant of a long line of theorem provers. A timeline of

this family, starting with Milner’s Logic for Computable Functions (LCF), is provided

by Gordon in [64]. In the early seventies, a team led by Milner developed the LCF

system, based on a type of λ-calculus introduced by Scott a few years earlier [110]. 1

The ML functional programming language was also developed as part of that effort, as

a MetaLanguage of the LCF prover language. During the eighties, successive versions

of HOL were developed internally at Cambridge. Independent versions emerged later,

such as HOL-4 and HOL Light. Isabelle, introduced in 1989 by Paulson [98], uses

theory libraries. Among them, the Higher-Order Logic (HOL) library is based on

Cambridge’s HOL system; LCF libraries are also available.

1Scott’s paper was written in 1969 but only published in 1993.

37

3.1 Isabelle/HOL

Isabelle is a generic interactive theorem prover with a wide range of applications. It has

been used for security protocol verification, but also to prove substantial mathematical

theorems, for instance the prime number theorem stating limx→∞

π(x)
x/ ln(x) = 1 (where

π(x) is the prime-counting function) as well as fundamental results in logic. It is

implemented in ML and features a metalogic supporting a variety of object logics. In

this thesis, we will always talk about Isabelle/HOL, that is Isabelle with the higher-

order logic object logic, which makes quantification over predicates possible.

A theory is a file written in the Intelligible semi-automated reasoning (Isar) proof

language. It contains the detailed steps used by Isabelle to prove theorems. Isabelle

comes with a large set of theories, i.e. existing proofs; those theory files are arranged

in a hierarchy where each node is able to use results proven in parent nodes.

User interaction is needed to specify and prove theorems, even though a number

of automatic tools are available. Isabelle’s Proof General interface builds on Emacs

and includes the X-Symbol package, which automatically formats token commands

such as \<union> for display (in this case, ∪). We will always present the formatted

version of Isar code. Our theory files are written for the Isabelle2011-1 release.

Sledgehammer Isabelle/HOL includes a component, called Sledgehammer [24], al-

lowing the use of Automatic Theorem Provers (ATPs) and satisfiability-modulo-theories

(SMT) solvers on a subgoal. The subgoal is first translated automatically into untyped

first-order logic. Once a proof using the ATPs is found, it is reconstructed in the

metis proof method and minimised. The ATPs that can currently be invoked through

Sledgehammer include the E Equational Theorem Prover [109], SPASS [123], VAM-

PIRE [101] and WALDMEISTER [67]. CVC3 [9], Yices [49] and Z3 [43] are the

available SMT solvers. If internet access is available, the ATPS can be used through

System on TPTP [116] (Thousands of Problems for Theorem Provers), which allows

remote simultaneous querying of many ATPs. The three cited SMT solvers can also be

queried remotely, though on a different server. The possibility of combining Sledge-

38

hammer with SMT solvers is recent and remarkably efficient [26].

Nipick Another handy component in Isabelle/HOL is the Nitpick [27] counter-example

finder. It can be invoked on subgoals or on entire lemmas. Since infinite types admit

no finite model, Nitpick only inspects an approximation. False counter-examples may

then be found. Nitpick uses the Kodkod backend, which builds on a SAT solver. Its

user’s guide is well-detailed [25].

3.2 The Inductive Method

The Inductive Method, created in 1996, is the application of Isabelle to the verifica-

tion of security protocols. It was first applied to small protocols such as Needham-

Schroeder, then developed to real-size ones: Kerberos version 4 and 5, the SET proto-

col suite, the Shoup-Rubin smartcard protocol and others. See Table 3.1 for a full list

of protocols verified in the Inductive Method.

The main idea of the Inductive Method is that by simple mathematical induction,

it is possible to model security protocols and reason about their goals.

The Message theory in the Auth folder provides the starting point for verifying

security protocols.

3.2.1 Main Components

Let us first describe the atomic elements used in the Inductive Method.

Agents Agents are seen as processes. This abstracts away security issues such as

security holes at the human / computer interaction level: agents are not seen as actual

users.

Not only is the number of agents unbounded: every agent is also able to interleave

any number of protocol sessions. Since proofs are carried out inductively, suscepti-

bility to replay attacks is taken into account; this kind of flaw detection was actually

one of the first practical results of the method. Agents can be either the Server (a

39

trusted agent which knows all shared keys and is never compromised), a friendly agent

(identified by a natural number) or the Spy, who embodies the threat model:

datatype

agent = Server | Friend nat | Spy

Compromised agents belong to the bad set. The Spy is always in bad and the

Server never is:

consts

bad :: agent set

specification (bad)

Spy in bad [iff]: Spy ∈ bad

Server not bad [iff]: Server /∈ bad

Messages Messages in the Inductive Method are in practice finite sets built from the

following elements:

• Agent names

• Guessable integers

• Unguessable integers (nonces)

• Cryptographic keys (symmetric or asymmetric, public or private)

• Message digests (hashes)

• Pairs of messages (this can be reused to form compound messages of any length)

• Ciphertexts, taking as arguments a cryptographic key and a message

Here is the corresponding code, to be found in the Message theory:

datatype

msg = Agent agent

| Number nat

40

| Nonce nat

| Key key

| Hash msg

| MPair msg msg

| Crypt key msg

Keys Cryptographic keys in Isabelle have the type key and are modelled as natural

numbers that cannot be guessed:

type synonym key = nat

The invKey function is an involution.2 Its restriction to the domain of symmetric

keys is equal to the identity function. It is useful to specify the properties of key pairs

for asymmetric cryptography (see below).

invKey :: key ⇒ key

specification (invKey)

invKey [simp]: invKey (invKey K) = K

invKey symmetric: all symmetric −→ invKey = id

Symmetric keys are part of the set symKeys. shrK is a long-term key, shared be-

tween an agent and the Server. Symmetric keys are either shared keys (between peers)

or session keys.

definition symKeys :: key set where

symKeys ≡ {K. invKey K = K}

consts

all symmetric :: bool — true if all keys are symmetric

In the case of asymmetric keys, for encryption, key pairs are modelled by priEK

and pubEK. For signature, priSK and pubSK:

datatype keymode = Signature | Encryption

2A function f such that f ◦ f = id.

41

consts

publicKey :: [keymode,agent] ⇒ key

abbreviation

pubEK :: agent ⇒ key where pubEK ≡ publicKey Encryption

pubSK :: agent ⇒ key where pubSK ≡ publicKey Signature

invKey turns an asymmetric key into its associated reciprocal key, for instance

invKey(priEK A) = pubEK A:

privateKey :: [keymode, agent] ⇒ key where privateKey b A ≡ invKey (publicKey b A)

priEK :: agent ⇒ key where priEK A ≡ privateKey Encryption A

priSK :: agent ⇒ key where priSK A ≡ privateKey Signature A

When the distinction is not needed, priK and pubK are used:

pubK :: agent ⇒ key where pubK A ≡ pubEK A

priK :: agent ⇒ key where priK A ≡ invKey (pubEK A)

Generally speaking, encryption and signature keys are specified differently so dis-

tinction between keys with different purposes in a protocol is possible.

Message operators The parts operator, defined inductively, takes as input a message

set and returns another message set. The output set consists of the initial set augmented

with all the elements it contains, up to atomic ones. Even encrypted elements for which

the decryption key is not available appear in the resulting set. parts can therefore be

seen as the total information that an adversary with unlimited computing power could

extract from a message set. More pragmatically, it is used to denote all elements

appearing in network traffic. Its inductive definition from the Message theory is as

follows:

inductive set

parts :: msg set ⇒ msg set

for H :: msg set

where

42

Inj [intro]: X ∈ H =⇒ X ∈ parts H

| Fst: {|X,Y|} ∈ parts H =⇒ X ∈ parts H

| Snd: {|X,Y|} ∈ parts H =⇒ Y ∈ parts H

| Body: Crypt K X ∈ parts H =⇒ X ∈ parts H

Note that cryptographic keys that appear solely as encrypting keys, while not ap-

pearing in any message body, are not extracted. In other words, K ∈ parts (Crypt K X)

if and only if K ∈ parts X.

The analz operator bears close resemblance to the one we just described, but takes

into account cryptography. It also takes as input a message set, and returns the set of

everything that can be decrypted using cryptographic keys present in the set.

inductive set

analz :: msg set ⇒ msg set

for H :: msg set

where

Inj [intro,simp] : X ∈ H =⇒ X ∈ analz H

| Fst: {|X,Y|} ∈ analz H =⇒ X ∈ analz H

| Snd: {|X,Y|} ∈ analz H =⇒ Y ∈ analz H

| Decrypt [dest]: [[Crypt K X ∈ analz H; Key(invKey K) ∈ analz H]] =⇒ X ∈ analz H

As opposed to parts and analz, the synth operator specifies message building rather

than message deconstruction. Taking into account available cryptographic keys, it

inductively defines the set of messages that can be built from an initial message set.

Ciphertexts and message hashes can be generated from available messages. Agent

names and guessable numbers can be synthesised ex nihilo.

inductive set

synth :: msg set ⇒ msg set

for H :: msg set

where

Inj [intro]: X ∈ H =⇒ X ∈ synth H

| Agent [intro]: Agent agt ∈ synth H

43

| Number [intro]: Number n ∈ synth H

| Hash [intro]: X ∈ synth H =⇒ Hash X ∈ synth H

| MPair [intro]: [[X ∈ synth H; Y ∈ synth H]] =⇒ {|X,Y|} ∈ synth H

| Crypt [intro]: [[X ∈ synth H; Key(K) ∈ H]] =⇒ Crypt K X ∈ synth H

Initial knowledge Initial knowledge is data that is available to agents before any

protocol has even begun. It consists of the keys that can reasonably be assumed known

to various protocol participants. Usually, every agent knows all public encryption and

signing keys, his own private encryption and signing keys and his shared key. The

Server additionally knows all shared keys. The Spy additionally knows the private

encryption and signing keys and shared keys of all compromised agents.

primrec initState where

initState Server:

initState Server =

{Key (priEK Server), Key (priSK Server)} ∪

(Key ‘ range pubEK) ∪ (Key ‘ range pubSK) ∪ (Key ‘ range shrK)

| initState Friend:

initState (Friend i) =

{Key (priEK(Friend i)), Key (priSK(Friend i)), Key (shrK(Friend i))} ∪

(Key ‘ range pubEK) ∪ (Key ‘ range pubSK)

| initState Spy:

initState Spy =

(Key ‘ invKey ‘ pubEK ‘ bad) ∪ (Key ‘ invKey ‘ pubSK ‘ bad) ∪

(Key ‘ shrK ‘ bad) ∪ (Key ‘ range pubEK) ∪ (Key ‘ range pubSK)

Events Three event types are initially available:

datatype

event = Says agent agent msg | Gets agent msg | Notes agent msg

The Says event models the sending of a message between agents. For instance,

Says A B {Nonce Na} means that agent A sends agent B a message consisting solely

44

of the nonce Na. It is realistic to assume that not all messages reach their destination,

hence message sending does not imply message reception in general. However, a

sent message can be delivered as intended; this is modelled by the Gets events, which

precisely represents the reception of a message by an agent. The Notes event models

the addition of a message to an agent’s knowledge, for later use. It can be seen as a

private recording of information.

Knowledge The events we just described shape the knowledge of agents. The knowl-

edge that an agent gains from a given event list is modelled as follows:

primrec knows :: agent ⇒ event list ⇒ msg set

where

knows Nil: knows A [] = initState A

| knows Cons:

knows A (ev # evs) =

(if A = Spy then

(case ev of

Says A ′ B X ⇒ insert X (knows Spy evs)

| Gets A ′ X ⇒ knows Spy evs

| Notes A ′ X ⇒ if A ′∈ bad then insert X (knows Spy evs) else knows Spy evs)

else

(case ev of

Says A ′ B X ⇒ if A ′=A then insert X (knows A evs) else knows A evs

| Gets A ′ X ⇒ if A ′=A then insert X (knows A evs) else knows A evs

| Notes A ′ X ⇒ if A ′=A then insert X (knows A evs) else knows A evs))

It can be seen that the knows function accounts both for the knowledge of the Spy

and for the knowledge of ordinary agents. The sharp sign # signifies concatenation.

In the case of ordinary agents, their knowledge only changes if they send, receive or

note something themselves. On the other hand, the Spy learns everything that is sent

by anybody over the network. Gets messages do not influence the Spy’s knowledge

to prevent redundancy; not every Says is followed by a Gets, but there can be no

45

Gets without a corresponding prior Says. Indeed, Gets events can only come from the

Reception rule that we will present soon (§3.2.1). All Notes events from compromised

agents augment the Spy’s knowledge, in line with the idea that they share what they

learn with her. The abbreviation spies stands for knows Spy.

Freshness The used function specifies freshness of message components. A compo-

nent is defined as being fresh if:

1. It is not part of anyone’s initial knowledge;

2. It was not sent as part of any message;

3. It was not noted as part of any message.

primrec used :: event list ⇒ msg set

where

used Nil: used [] = (
⋃

B. parts (initState B))

| used Cons: used (ev # evs) =

(case ev of

Says A B X ⇒ parts {X} ∪ used evs

| Gets A X ⇒ used evs

| Notes A X ⇒ parts {X} ∪ used evs)

Event lists (traces) One key concept is that of an event list, called trace. It can be

seen as the history of network events, i.e. the list of messages exchanged between

peers. Events are listed in reverse chronological order. The agent population is con-

sidered unbounded (mapped to natural numbers).

The set of all admissible traces under a specific protocol represents the formal

protocol model. Proofs are carried out by induction on a generic trace of this model.

Isabelle provides the mechanical support. It is semi-automatic, or interactive: the user

has to specify goals and strategies to reach them, but Isabelle works out the details

and provides easier subgoals if the methods provided are not sufficient to reach the

ultimate goal.

46

The formal protocol model Every protocol step is modelled as an inductive rule,

with preconditions and a postcondition. The protocol model is the set of all admissible

traces built from those steps. The empty trace is also allowed, and modelled by the Nil

event. Furthermore, a Fake rule accounts for message forgery by the Spy.

For a concrete example, we now take a look at the model of a classic protocol,

BAN Kerberos. This is the abstract model of Kerberos that was analysed by Burrows,

Abadi and Needham in [32], not a deployed version.

inductive set bankerb gets :: event list set

This defines the name of the inductive model; here, it is called bankerb gets. event

list is the type of an event trace. bankerb gets is hence a set of event traces. A trace

is modelled as an event list, and therefore the set of all these traces is a model for the

protocol. BKi is the rule corresponding to the i-th protocol step.

Nil: [] ∈ bankerb gets

This is the “base case” of the inductive model; it merely means that the empty

trace, that is to say a network history with no events, is part of the model — i.e., of

possible traces.

| Reception:

[[evsr ∈ bankerb gets; Says A B X ∈ set evsr]] =⇒ Gets B X # evsr ∈ bankerb gets

The Reception rule reflects the possibility for sent messages to be received.

| Fake: [[evsf ∈ bankerb gets; X ∈ synth (analz (knows Spy evsf))]]

=⇒ Says Spy B X # evsf ∈ bankerb gets

This important Fake rule defines the Spy’s properties, i.e. the threat model. The

capacities given to the Spy through it are those of the Dolev-Yao model defined in [48].

The operator analz formalises breaking up messages into their elements. Hence

analz(spies evsf) is the set of all message components that the Spy can obtain from

observing network traffic. This includes decoding ciphertexts when the key is avail-

able to the Spy, but not cryptanalysis. Crypto is seen from a black-box point of view

47

and considered perfect as long as the key does not leak. Furthermore, the operator

synth formalises the creation of new messages from available components. As a con-

sequence, the set synth (analz (spies evsf)) is the set of all messages that the Spy can

build up from her observation of network events, excluding cryptanalysis. In a nut-

shell, this Fake rule means that if a trace evsf is already part of the model, then the

trace obtained by inductively concatenating it with messages that the Spy can synthe-

sise from network traffic observation is also part of the model.

It should be noted that in some different settings, e.g. smartcards, the threat model

is extended beyond this simple rule: for instance, the Spy can additionally obtain the

outputs of illegally usable smartcards [13].

| BK1: evs1 ∈ bankerb gets =⇒ Says A Server {|Agent A, Agent B|}# evs1 ∈ bankerb gets

This models the first BAN Kerberos protocol step:

1. A −→ S : {|A,B|}

In fact, while the above notation suggests that the sending of the message and its

reception occur as one event, in the Inductive Method one event stands for the sending

of a message, without guarantee of delivery, and another for its possible reception.

Keeping with the spirit of the inductive definition of traces, the concatenation of

a trace which is already part of the model with this new protocol step is part of the

model also. Since this is the first protocol step, there are no prerequisites.

| BK2: [[evs2 ∈ bankerb gets; Key K /∈ used evs2; K ∈ symKeys;

Gets Server {|Agent A, Agent B|} ∈ set evs2]]

=⇒ Says Server A (Crypt (shrK A)

{|Number (CT evs2), Agent B, Key K,

(Crypt (shrK B) {|Number (CT evs2), Agent A, Key K|})|})

evs2 ∈ bankerb gets

In this second protocol step, we have two prerequisites. The first one is related to

the key K. Key K /∈ used evs2 means that we require it to be fresh: K has not been used

48

before. It is a session key. It is also a symmetric key. The guessable integer Number

(CT evs2) is a timestamp (see §3.2.4) standing for Current Time, used to control the

validity of a session key. Lifetimes for keys and authenticators are defined in the

protocol prologue (not shown here); if the difference between the current time and the

timestamp is greater than the lifetime, the key or authenticator is considered expired

and rejected.

The second prerequisite is the execution of the previous protocol step. There is a

subtlety here: instead of requiring that A sent Server the message {|A,B|}, we merely

ask that the Server received it from someone. The justification for this is that in our

threat model, the Spy can easily forge messages, and there is no immediate way for

Server to check for A’s identity — indeed, goals such as authentication can only be

provided by the protocol itself. Hence we simply require that an agent — hoping it

was A, but not knowing for sure — sent the first protocol message.

| BK3: [[evs3 ∈ bankerb gets;

Gets A (Crypt (shrK A) {|Number Tk, Agent B, Key K, Ticket|}) ∈ set evs3;

Says A Server {|Agent A, Agent B|} ∈ set evs3; ¬ expiredK Tk evs3]]

=⇒ Says A B {|Ticket, Crypt K {|Agent A, Number (CT evs3)|} |} # evs3 ∈ bankerb gets

The postcondition of step three is a Says event performed by A. Accordingly, A can

check the preconditions. The first one is A’s reception of the message that (presumably)

the Server sent in the second step; the second one is the fact that A indeed started a

session with the Server mentioning the same agent B as the one appearing in the Gets

message. The third precondition is that the timestamp from the Gets message has

not expired yet. If all these requirements are satisfied, the inductive rule associated

with this protocol step enables A to start her communication with B. The message she

sends is built from elements obtained through the Gets event; a new timestamp is also

included.

| BK4: [[evs4 ∈ bankerb gets;

Gets B {|(Crypt (shrK B) {|Number Tk, Agent A, Key K|}),

(Crypt K {|Agent A, Number Ta|}) |}∈ set evs4;

49

¬ expiredK Tk evs4; ¬ expiredA Ta evs4]]

=⇒ Says B A (Crypt K (Number Ta)) # evs4 ∈ bankerb gets

Step four of the protocol model is similar, also featuring non-expiration conditions.

Here B replies to A, provided he received a message matching his expectations.

| Oops: [[evso ∈ bankerb gets;

Says Server A (Crypt (shrK A) {|Number Tk, Agent B, Key K, Ticket|}) ∈ set evso;

expiredK Tk evso]]

=⇒ Notes Spy {|Number Tk, Key K|} # evso ∈ bankerb gets

Finally, the appropriately named “Oops event” models the accidental loss of an

expired (expiredK Tk evso) session key by an agent — see §3.2.4.

Protocol design principles One goal of security protocol formal analysis is to derive

general guidelines which guarantee security. The road towards a set of simple rules

directly guaranteeing security is long, but a number of common conceptual mistakes

can be avoided reasonably easily. Early “robustness principles” were pointed out by

Anderson and Needham [3].

As a concrete example, in the Needham-Schroeder public-key protocol, there is

a lack of explicitness. Indeed, agent B does not quote his own identity in the second

protocol message. Explicitness holds when “each message says exactly what it means

without ambiguity” (Bella [14]). In other words, protocol steps should include all

relevant information, even elements which seem obvious. This often means quoting

the identities of all agents involved in a given step, or quoting associations between

agents and session keys clearly. As few elements as possible should be left open to

agent interpretation. Symbolically, the consequence is additional variable bindings

that can prevent flaws due to unnecessary genericity. Interestingly, explicitness also

makes developing formal proofs easier.

Another important concept is that of viewpoint: a formal guarantee is only useful to

an agent if that agent can verify himself if the theorem assumptions hold. For instance,

an agent can check whether a ciphertext has been encrypted with his public key, but has

50

no means of verifying whether the encryption was performed using a different agent’s

public key. Likewise, an agent knows whether he sent a given message, but cannot

know whether the intended recipient actually obtained it. Thus a security property is

always achieved from an agent’s viewpoint. Sometimes the proof can be conducted

on assumptions verifiable by one agent, but not by another one. In this case, different

conclusions as to its correctness are made depending on whose viewpoint we are con-

sidering. This leads to the principle of goal availability for protocol analysis [15]. A

goal of a security protocol is said to be available to a principal if the protocol’s for-

mal model contains a guarantee for the goal, and if the assumptions for that guarantee

can be verified within the agent’s minimal trust. The principle states that protocols

should provide goal availability to its agents. Noticing lack of goal availability can be

of significant help for discovering protocol weaknesses.

Other principles include avoiding unnecessary encryption, which does not always

increase security, as the Kerberos IV example shows: the subsequent version of the

Kerberos protocol disposes of double encryption, yet the main security properties still

hold [14]. Synchronising network clocks is important too: in our ideal model, network

clocks are considered perfectly coordinated but this is a substantial problem in real-life

situations.

The threat model In the Dolev-Yao (DY) model [48], the Spy has total control over

network traffic. She can prevent delivery, create new messages from past message

components she intercepted during network traffic, note all message contents but can-

not cryptanalyse. Nevertheless, the Spy may gain access to an encrypted message if

an incautious agent leaks a private key.

Whether non-adherence to protocol design principles such as explicitness implies

insecurity of a protocol depends on the chosen threat model. Indeed, the DY model

is quite pessimistic; real-life network conditions can be less drastic. For instance,

sometimes only eavesdropping is possible but no forgery. The threat model can be

defined in Isabelle. For the protocols analysed in [14], the DY model is always used,

51

with the additional threat that the Spy can collaborate with compromised agents.

3.2.2 Goal Definition and Proving

Protocol goals can be mapped to trace properties: a security property is achieved if it

remains true at every step. Indeed, protocol goals are defined as predicates on traces,

and must be true for all trace in the inductive model. Their veracity is checked by

proving statements about the inductive protocol model.

As an example, consider a proof of secrecy for the Needham-Schroeder public key

protocol. This example is presented in [95]. Our goal is to prove that agent A’s private

key remains secret. This is equivalent to stating that A’s private key is known to the

Spy if and only if A belongs to bad (the set of compromised agents).

lemma Spy see priEK [simp]:

evs ∈ ns public =⇒ (Key (priEK A) ∈ parts (spies evs)) = (A ∈ bad)

apply (erule ns public.induct, simp all)

The bracketed [simp] tells Isabelle that the lemma, once proven, shall be saved

as a simplification rule; i.e., it will be reused by Isabelle if necessary when invoking

simplification. The line starting with apply specifies which proving techniques Isabelle

should use. In this case, the basic techniques of induction (induct) and simplification

by rewriting and arithmetic decision (simp all) are used.

This induction does not directly prove the goal, but generates several subgoals to

be proven; in this case, one subgoal for each rule in ns public. Since the key is not

transmitted during the protocol steps, only the rule Fake remains to be proven:

1.
∧

evsf X.

[[evsf ∈ ns public;

(Key (priEK A) ∈ parts (knows Spy evsf)) = (A ∈ bad);

X ∈ synth (analz (knows Spy evsf))]]

=⇒ (Key (priEK A) ∈ parts (insert X (knows Spy evsf))) = (A ∈ bad)

This case is proven automatically by the blast automatic prover, a powerful first-

order tool of Isabelle’s classic reasoner:

52

apply blast

The Isabelle tutorial [95] and reference manual [124] provide full information on

syntax and proving techniques.

Proofs are in the “natural” inductive style that would be used manually by humans.

A middle ground is to be found between highly streamlined and compact proofs and

ones that are more linear and easily readable by people. Hence limited use of automatic

proof techniques is preferred to preserve intuition and meaningful semantics. In cases

where automatic proof techniques are used, the subgoal that is solved should be in a

sufficiently clear form, so as to make the implicit reasoning obvious.

3.2.3 Common Security Property Formalisations

We now review the formalisations of the most common security properties to give an

impression of how theorems are expressed in the Inductive Method.

Regularity lemmas Regularity lemmas are statements about the inclusion of a mes-

sage in network traffic. Since network traffic corresponds to the set parts (spies evs),

where evs is a trace of the examined protocol model, regularity lemmas state under

which conditions a given message is in parts (spies evs).

Spy see priEK, which we just saw, is an example of such a lemma: its meaning is

that the private encryption key of an agent appears in network traffic if and only if the

agent is compromised.

Confidentiality of a message Confidentiality lemmas are statements about the avail-

ability of a message to the Spy’s knowledge, denoted by the set analz (spies evs). It

represents the knowledge that the Spy can learn from a trace, possibly decrypting ci-

phertexts for which she knows the decryption key.

evs ∈ ns public =⇒ (Key (priEK A) ∈ analz (spies evs)) = (A ∈ bad)

In this example, for a given trace (this will be implied from now on), the private

encryption key of an agent is confidential if and only if the agent is not compromised.

53

Reliability Reliability statements establish that the protocol model works as ex-

pected. They often describe causality of events.

[[Says A B {|Ticket, Crypt K {|Agent A, Number Ta|}|} ∈ set evs;

A /∈ bad; evs ∈ bankerb gets]]

=⇒ ∃ Tk. Gets A (Crypt (shrK A) {|Number Tk, Agent B, Key K, Ticket|}) ∈ set evs

Here, honest agents behave as expected: if a protocol step requires another step as

a precondition and the former happened, then the latter happened as well.

Freshness of a message component Freshness lemmas describe under which con-

ditions an element appears for the first time. They often state that a nonce appearing

in a particular message was not part of a different message also involving a nonce.

evs ∈ ns public =⇒

Crypt (pubEK C) {|NA ′, Nonce NA, Agent D|} ∈ parts (spies evs) −→

Crypt (pubEK B) {|Nonce NA, Agent A|} ∈ parts (spies evs) −→

Nonce NA ∈ analz (spies evs)

In the above example, if the nonce NA is confidential, then it can not be reused

for some specific protocol steps. In other words, if the nonce appears in the two cited

messages, at the specified spots, then the nonce is known to the Spy.

Unicity of a message up to multiple identical messages This kind of statement

clarifies under which conditions messages with similar structures possess identical

elements.

[[Crypt(pubEK B) {|Nonce NA, Agent A |} ∈ parts(spies evs);

Crypt(pubEK B ′) {|Nonce NA, Agent A ′|} ∈ parts(spies evs);

Nonce NA /∈ analz (spies evs); evs ∈ ns public]]

=⇒ A=A ′∧ B=B ′

If two messages with the quoted structure and with the same nonce appear in traffic,

then either their other components are identical or the nonce is not confidential.

54

Strong unicity Sometimes, we want to express the fact that a given message only

appears once. This strong unicity does not hold if multiple identical messages appear.

For this, we use the dedicated Unique predicate:

[[Says Server A (Crypt (shrK A) {|Number Tk, Agent B, Key K, Ticket|}) ∈ set evs;

evs ∈ bankerb gets]] =⇒

Unique Says Server A (Crypt (shrK A) {|Number Tk, Agent B, Key K, Ticket|}) on evs

Authentication of an agent Authentication of an agent is proven by showing that if

a message with a specific structure appeared at all, it could only have been sent by that

agent.

[[A /∈ bad; B /∈ bad; evs ∈ ns public]] =⇒

Crypt (pubEK A) {|Nonce NA, Nonce NB, Agent B|} ∈ parts (spies evs) −→

Says A B (Crypt(pubEK B) {|Nonce NA, Agent A|}) ∈ set evs −→

Says B A (Crypt(pubEK A) {|Nonce NA, Nonce NB, Agent B|}) ∈ set evs

Here, assuming the involved agents act legally, if the message Crypt (pubEK A)

{|Nonce NA, Nonce NB, Agent B|} appears in the traffic at all, and if the message Crypt

(pubEK B) {|Nonce NA, Agent A|} was sent from A to B, then the former message was

sent by B to A (and not by anyone else).

Order of events Statements about chronology are also possible; specifically, we can

extract subtraces of traces by only considering the part of the trace up to a given event.

Key Kab /∈ used (before (Says Server A (Crypt K {| Na, Agent B, Key Kab, X |})) on evs)

At the moment the Server issues the key Kab, it is still fresh. This uses a special

function, before, which maps an event and a trace to the trace containing all events

happening before said one.

Fair non-repudiation This kind of property is useful for protocols that ensure that

two agents performing it either both obtain what they seek, or none of them do.

55

Quoting from [14], If evs is a generic trace, NRO binds A to the sending of message

m and NRR binds B to the reception of message m, then

NRO ∈ analz (knows B evs) ⇔ NRR ∈ analz (knows A evs)

Notice that the lemma (unlike most others) includes no assumptions about agent

honesty. However, in practice, one would not prove such an equivalence directly. We

would rather establish for each agent a result such as A fairness NRO for the Zhou-

Gollmann protocol [126]:

[[con K ∈ used evs; NRO ∈ parts (spies evs);

con K = Crypt (priK TTP) {|Number f con, Agent A, Agent B, Nonce L, Key K|};

NRO = Crypt (priK A) {|Number f nro, Agent B, Nonce L, Crypt K M|};

NRR = Crypt (priK B) {|Number f nrr, Agent A, Nonce L, Crypt K M|};

A /∈ bad; evs ∈ zg]]

=⇒ Gets A {|Number f nrr, Agent A, Nonce L, NRR|} ∈ set evs

Assume that A is honest. B does not have to be. If non-repudiation of origin

NRO (an item promised to B) and another element con K exist in the trace at all, then

A received his promised non-repudiation of receipt item NRR at some stage. This

guarantees fairness to A.

Key distribution Key distribution is specified by asserting that a key is in the analz

set of the knowledge of the agent it is distributed to.

[[Says A B {|Nonce M, Agent A, Agent B,

Crypt (shrK A) {|Nonce Na, Nonce M, Agent A, Agent B|}|} ∈set evs;

Gets A {|Nonce M, Crypt (shrK A) {|Nonce Na, Key K|}|} ∈ set evs;

A /∈ bad; B /∈ bad; evs ∈ orb]]

=⇒ Key K ∈ analz (knows B evs)

Validity of evidence Validity of evidence means that “an agent is given evidence

sufficient to convince a third party of his peer’s participation in the protocol” [14]. In

practice, if an element was used at some stage, then it was used by a specific agent.

Statements like this can be seen as a special kind of agent authentication.

56

[[con K ∈ used evs;

con K = Crypt (priK TTP) {|Number f con, Agent A, Agent B, Nonce L, Key K|};

evs ∈ zg]]

=⇒ Notes TTP {| Number f con, Agent A, Agent B, Nonce L, Key K, con K |} ∈ set evs

If a given term (here, con K) exists at all in a trace, then it is known to TTP:

3.2.4 Existing Extensions to the Inductive Method

Since its creation, the Inductive Method has been extended in a number of directions.

The following overview roughly respects the chronological order of those develop-

ments.

Higher-level protocols Some security protocols build on existing protocols. Abadi

et al.’s certified e-mail protocol [2], for instance, uses SSL. The strategy adopted by

Bella with the Inductive Method is reducing those protocols to black boxes and mod-

elling their goals. To model authentication without confidentiality, preconditions akin

to Says B A X are used; A can authenticate the sender, but the Spy can still intercept X.

To be more precise, consider a protocol step modelling the sending of a message

by A. Assume her peer B is mentioned somewhere in the preconditions of the step.

Assume a precondition involving a message that A received. Normally, this precon-

dition would be a Gets A X event: A knows what she received, but has no way of

determining the sender. In the case of an authenticated channel, this precondition is a

Says event binding the sender to an agent that A already knows: here, agent B. Hence

the precondition has the form Says B A X.

For confidentiality, the Notes event is used with three arguments, twice. For in-

stance, the event A
SSL
−→ B : M is formalised in two steps. First, the transmission

of the message is modelled by Notes A (Agent A, Agent B,M). This is written as a pre-

condition to the message’s Reception rule, which includes the event Notes B (Agent A,

Agent B,M).

57

Timestamps Timestamps are modelled by a discrete formalisation of time, corre-

sponding to the position of an event in the trace; there is thus an implicit global clock.

The empty trace is associated with the time zero; then, every event increases the clock

by one unit. Since traces are concatenations of non-simultaneous events, the result is

a timeline without ambiguity.

A message component is considered fresh if t − t∗ < l, where t∗ is the time of

creation, t is the current time and l is the component’s lifetime. A non-fresh message

component is said to be expired. Session keys are considered valid exactly within their

lifetime; afterwards, they are also called expired.

Physical properties Basin and his group [10,107] extended the Inductive Method to

support the verification of physical protocols, i.e. protocols that “establish properties

of the network environment” such as physical position and time synchronisation. The

framework was then applied to the analysis of distance bounding protocols and the

TESLA broadcast authentication protocol.

Multicast protocols The event datatype was extended by Martina [85] to allow the

specification of multicast (one-to-many) protocols. The rest of the framework, includ-

ing user knowledge, was adapted to account for this extension. The result can be seen

as a superset of what was previously available: unicast protocols are still specifiable

using the resulting theories, and so are protocols mixing different casting modes.

Secret sharing In the same monograph, Martina presented a formalisation of thresh-

old cryptography. The Nonce message element is used by splitting the set of nonces

in three disjoint classes: shares, session identifiers and standard freshness tokens. In

combination with the specification of multicast, this extension is then used to verify

the Franklin-Reiter auction protocol, a byzantine agreement one.

Provable anonymity Li and Pang [81] analysed the onion routing protocol [100]

using a definition of provable anonymity due to Garcia et al. [60]

58

Ceremonies Security ceremonies [51] are the natural generalisation of security pro-

tocols: what is out of band for a protocol is considered part of ceremonies involving

it. In particular, user behaviour is a crucial part of security ceremonies. Their analy-

sis can therefore be seen as a socio-technical problem. Bella [18] provides a formal

framework in Isabelle/HOL for the human-computer interaction layer, in the spirit of

the Inductive Method, and applies it to an Amazon privacy ceremony.

3.2.5 Protocols Verified So Far

The application of interactive theorem proving to security protocols, via Isabelle, was

started by Paulson in 1996. Table 3.1 summarises, to the best of our knowledge, all

published protocol verifications in this framework as of February 2012. NS means

Needham-Schroeder.

Protocol Class Year Author(s)

Yahalom Key sharing, authentication 1996 Paulson

NS symmetric Key sharing 1996 Paulson & Bella

Otway-Rees (with variants) Authentication 1996 Paulson

Woo-Lam Authentication 1996 Paulson

Otway-Bull Authentication 1996 Paulson

NS asymmetric Authentication 1997 Paulson

TLS Multiple1 1997 Paulson

Kerberos IV Mutual authentication 1998 Bella

Kerberos BAN Mutual authentication 1998 Paulson & Bella

SET suite Multiple1 2000+ Bella et al.

Abadi et al. certified e-mail Accountability 2003 Bella et al.

Shoup-Rubin smartcard Key distribution 2003 Bella

Zhou-Gollmann Non-repudiation 2003 Paulson & Bella

Kerberos V Mutual authentication 2007 Bella

TESLA Broadcast authentication 2009 Schaller et al.

Meadows distance bounding Physical 2009 Basin et al.

Multicast NS symmetric Key sharing 2011 Martina

Franklin-Reiter Byzantine 2011 Martina

Onion routing Anonymising 2011 Li & Pang

Table 3.1: Security protocols verified in Isabelle so far

1Confidentiality, integrity, authentication

59

3.3 Discussion

We presented Isabelle/HOL and introduced all important features of the Inductive

Method. Typical security property formalisations and a review of extensions to the

Inductive Method were also provided. The length of this chapter mirrors the steep

learning curve faced by new practitioners; a couple of months are typically required to

be able to use it productively. However, the diversity of the protocols and goals that

have been tackled successfully in this framework make the case for its continued use

and application to new topics. The three next chapters deal with our contributions and

all extend the Method in various ways.

60

Chapter 4

Protocol Composition Analysis

Applied to Public Key

Infrastructure

While the formal analysis of security protocols is mature and the quest towards mak-

ing it fully automatic is progressing, a number of situations are not yet supported by

automatic tools. In such cases, more interactive tools such as the Inductive Method

can provide a solution. We start with the problem of verifying composed protocols

holistically.

4.1 Security Protocol Composition

The challenges of protocol analysis are still significant, at least upon those protocols

that are run with other protocols. In particular, security protocols are typically se-

quenced, as is the case of protocols for public-key registration, certification and actual

use. They are often executed on top of one another in a stack fashion, as is the case of

an SSL session taking place over an IPSec channel. Protocols may also be interleaved,

perhaps with malicious aims, as is the case of a purchase transaction that is entwined

with a banking session. We advocate that protocol analysis become more precise

61

(hence more reliable) upon these protocols, and therefore make explicit a number of

preconditions whose validity is taken for granted.

We call mix protocol any protocol built by composition through protocol sequenc-

ing, stacking or interleaving. The analysis of mix protocols still appears out of reach

for the automatic protocol analyser ProVerif [22] but not for Scyther [41], which can

handle some. However protocols are composed, their interactions make isolated se-

curity analysis hazardous. Intuitively, protocols sharing components may influence

security guarantees in unforeseen ways. In practice, the risk of maliciously interleav-

ing the sessions of two different protocols was demonstrated by Cremers, the author

of Scyther [40], who exposed a number of multi-protocol attacks.

Thanks to a compositionality theorem, Scyther can analyse two theorems sepa-

rately and conclude that their parallel composition is correct. However, this result is

limited to “specific classes of protocols that can be composed in certain ways” [4],

namely classes whose protocols are “strongly independent”. In fact, “ciphertexts, sig-

natures, and message authentication tags originating in one protocol set will never be

accepted by the other protocol set and vice versa”. For protocols that do not meet these

strong conditions, it is still possible to model their parallel composition and analyse

it using brute force in Scyther in general. The resulting search space may however

become too large for practical purposes.

Our approach can tackle protocols that interact a lot and in fact depend on each

other, such as a public-key authentication protocol depending on a certification proto-

col by using its certificates — notably, the two protocols can be specified and studied

separately, but they can use the same elements, such as keys and certificates. We are

not constrained by search space issues because of the inductive nature of our approach.

The technicalities of ad hoc protocol tools may somewhat hide the operational

features of mix protocols and limit their understanding to non-practitioners of the soft-

ware. This explains the need to reason about these protocols using a mathematically-

rooted and well-understood language such as induction, which is not constrained by

completeness issues.

62

4.2 Specification and Verification of a Composed Protocol

The main finding of this work is how to formally analyse mix protocols using the In-

ductive Method. Although Isabelle requires user specialisation to conduct the proofs,

the findings are intuitive thanks to the simplicity of induction. Therefore, they can

be easily understood, for example, by mathematicians approaching protocol analysis

without interest in learning specialised tools, also because most proofs can be repro-

duced using a pen and paper, depending on their size.

In particular, it is found that mix protocols can be specified holistically by using

more than one inductive protocol definition, precisely one per protocol. In case of

sequencing, a protocol step can be premised with particular conditions about a previous

protocol. Typically, such conditions express the achievement of the main goals of the

previous protocol, such as the distribution of a session key or the authentication of

a peer. In abstract, logical terms, the case of stacking is the same, as the necessary

premise conditions refer to the underlying protocol. In case of interleaving, the two

(n in general) protocols refer to each other using the same mechanism, a feature that

enforces the advancement of a protocol only upon condition that the other protocol

advances too. This approach bears the potential to scale up easily to the specification

of protocols obtained by composition.

This holistic approach is demonstrated here upon a mix protocol built by sequenc-

ing. First, a general certification protocol whereby an agent receives from a certifica-

tion authority a certificate for herself and her peer is defined and studied inductively.

Then, an authentication protocol is tackled. Notably, it is based on its peers’ knowl-

edge of the necessary certificates; hence on the successful completion of the underlying

certification protocol. For the sake of demonstration, we chose the best-known authen-

tication protocol, due to Needham and Schroeder, which has rarely been analysed in

its full version including certification. While Meadows analysed it as a monolithic en-

tity [87], we will treat certification separately from the remaining protocol but derive

holistic guarantees about their sequential combination .

63

The second finding is a general treatment of certification, which can be reused for

all public-key protocols tackled so far. Agents that had to refer to each public key

as if their owner was magically known can now use a public key accordingly to the

corresponding certificate, which is signed by the authority. By reflecting exactly what

happens in the real world, this reaches our aim of a more precise and reliable analysis

of the authentication protocol. The depth of the certificate chain is kept to one level

for simplicity, but it can be naturally generalised to many levels by considering more

modular protocols. Recall the presentation of PKI seen earlier (§1.2.3).

Summary This chapter continues by presenting the certificate distribution and au-

thentication protocols featured in a running example (§4.2.1). The main guarantees

for our case study are discussed (§4.2.2). More details on the formal specifications

and proofs follow (§4.2.3). Some conclusion terminate the treatment, and outline the

potential for future applications arising from the scalability of the approach (§4.4).

4.2.1 Specification

Our research begins with the analysis of the generic certificate distribution protocol in

Figure 4.1. Its function is to tell agents, on request, which public keys are associated

with their peers. The standard protocol notation is adopted, and the reader’s familiarity

with it is assumed. An agent A contacts a certification authority CA to obtain public-

key certificates for her and her intended peer B. In a subsequent protocol, A may

use her certificate to forward it to her peer, and needs her peer’s to meet a very basic

requirement: knowing what public key to use with her peer to ensure that only he can

decrypt her traffic. Public knowledge of the CA’s public key — needed by agents to

validate certificates — is assumed, but could be treated as the outcome of a previous

protocol in the sequence.1 It is also assumed that the CA knows all public keys. For

regular agents, the usual initial knowledge setup was left unchanged, but the protocol

narrative does not rely on it since all main steps depend on the certification distribution

1That process, however, has to stop at some stage and ultimately rely on a locally available certificate.

64

protocol.

1. A −→ S : {|A,B|}
2. S −→ A : {|K+

A , A|}K−

S

, {|K+
B , B|}K−

S

Figure 4.1: A generic certificate distribution protocol

The most published protocol ever is (yet again) quoted in Figure 4.2 for the reader’s

convenience. It is the public-key Needham-Schroeder protocol [94] with Lowe’s fix

[83] of repeating B’s identity next to the nonce pair in a message. This is the full

version that includes the certificate distribution steps, which are, irrespectively of their

importance, usually simplified away. We present the protocol with appropriate line

spacing in order to emphasise that the first two steps provide the initiator with her

peer’s certificate, as the trusted server S is offering the certification service. Then,

steps 4 and 5 are homologous for B.

1. A −→ S : {|A,B|}
2. S −→ A : {|K+

B , B|}K−

S

3. A −→ B : {|Na, A|}K+

B

4. B −→ S : {|B,A|}
5. S −→ B : {|K+

A , A|}K−

S

6. B −→ A : {|Na, Nb, B|}K+

A

7. A −→ B : {|Nb|}K+

B

Figure 4.2: The full public-key Needham-Schroeder protocol with Lowe’s fix

The certificate distribution protocol we model, as shown in Figure 4.1, subsumes

the distribution steps from Figure 4.2 and does a bit more: in addition to the certificate

of an agent’s peer, it also sends the agent its own certificate. It can be studied using

traditional techniques. The inductive specification of its main event is quoted here

(cert is the name of the inductive protocol model).

| Cert2: [[evsc2 ∈ cert; Gets CA {|Agent A, Agent B|} ∈ set evsc2; A 6= B]]

=⇒ Says CA A {|Crypt (priSK CA) {|Key (pubEK A), Agent A|},

Crypt (priSK CA) {|Key (pubEK B), Agent B|}|}

65

evsc2 ∈ cert

It can be seen that upon receiving a valid certificate request, CA replies to the agent

first quoted in the message by sending two certificates: one for each agent quoted. The

authority only checks that it is issuing certificates for two different agents — else, ei-

ther the requesting agent only obtains its own certificate, or it receives no answer (since

the reply is sent to the first agent name quoted in the initial message). A signature by

CA is indicated by Crypt (priSK CA).

The specification phase can now tackle the authentication protocol, and can refer

to the certification one. Figure 4.3 shows the associated Isabelle theory hierarchy.

Figure 4.3: Theory hierarchy for the composed protocol

Let NA be a fresh nonce and assume a certificate mentioning agent B is part of A’s

knowledge derived from the certification protocol. Assume also that A obtained B’s

certificate on some trace of the certification protocol. Then the first message of the

authentication protocol is sent by A to B: the concatenation of NA and of the sender’s

name, all encrypted with the key found in the certificate for B. The inductive model for

the authentication protocol can be found in §A.1.2.

Notably, it is the first time that the specification of a protocol with the Inductive

66

Method needs to make assumptions on traces of two different protocols, here evsca

from the protocol specified by cert, and evs1 from the protocol being specified by

ns public. Precisely, the assumption on evsca serves to bind the key that A uses to

build the new message.

Similarly, if B has received a message of format NS1 and knows a certificate for

A, then he picks another fresh nonce NB and sends it, encrypted, to A, along with the

previously received nonce and B’s identity.

The explicit reference to traces belonging to the two protocols is visible also in the

second step. In line with the previous step, the assumption on evscb serves to bind the

key that B uses to build the new message.

In the third and final step, if A has sent the first message and received the the second

message, he sends a new message to B, quoting the nonce B provided, and using the

same encryption key (“K”) as in the first message. A implicitly decrypts the received

message using her private key priEK A.

According to the principle of guarantee availability [15], only one of the encrypt-

ing keys, pubEK A, can be specified. Because this rule defines an action of A’s, she can

check that the message she gets is sealed under her public key. By contrast, she cannot

check that the message she sent her peer was encrypted with his public key pubEK B:

this must be proven in the model; hence the reference to a generic key K. In fact, such

result holds because the event is traced back to when it was issued in the first protocol

step, when access to the right certificate was assumed (only relying on trusting the

CA). Quoting pubEK B explicitly in the preconditions of this protocol step, as is done

in the initial formalisation, violates guarantee availability because it expects too much

from A in terms of knowledge. A should only assume, at this stage, that she is reusing

the encryption key from step one.

4.2.2 Results

The generic certification protocol (Figure 4.1) has been analysed using the standard

techniques available in the Inductive Method. Despite the presence of an active at-

67

tacker, the standard Dolev-Yao [48], the protocol succeeds in establishing its intended

security properties. The corresponding guarantees are summarised and discussed here,

while their proofs are deferred (§4.2.3).

Theorem 1 (Says CA cert). The certification protocol establishes the following secu-

rity properties.

• A message that the certification authority sends contains two different well-

formed certificates.

• Each certificate contains the public key of the agent that the certificate mentions.

This theorem holds because the authority cannot misbehave (it is assumed that the

keys sent by the authority are the actual public keys of the associated agents). Its struc-

ture is not new because other protocols analysed so far rest on similar assumptions;

however, its significance is innovative. It formalises for the first time that a bitstring

contained in a certificate is the public key of the agent mentioned beside it. Formally,

a generic key K found inside a certificate next to a generic agent name A implies that

K = pubEK A. To enable the protocol participants to appeal to this theorem, another

guarantee is needed.

Theorem 2 (cert authentic agent). The certification protocol establishes the following

security properties.

• A well-formed certificate that a generic agent obtains originated with the certi-

fication authority.

• The authority may have sent it as either first or second component of its message.

By combining this theorem with the previous, a generic agent can conclude that the

mentioned key is the public key of the agent mentioned next to it. Despite the brevity

of the statement, theorems of this form have never been proven before. It generalises

to a generic agent the existing authenticity guarantees [14] confirming the originator

of messages available to the attacker. This generalisation has required novel proof

strategies involving a number of case splits, which are detailed later.

68

The main findings about the authentication protocol stem from each agent’s check

of their peer’s certificate prior to sending the relevant protocol message, as we shall

see (§4.2.3). The main confidentiality guarantees about the exchanged nonces can thus

be expanded by stating the form of the encrypting key via an appeal to Theorem 1.

Theorem 3 (Spy not see NA). The authentication protocol, if executed after the cer-

tification protocol by honest agents, establishes the following security properties.

• The first message that an initiator agent sends to a responder agent is such that:

– it contains a confidential initiator’s nonce;

– it is encrypted by the responder’s public key.

Theorem 4 (Spy not see NB). The authentication protocol, if executed after the cer-

tification protocol by honest agents, establishes the following security properties.

• The reply that a responder agent sends to an initiator agent is such that:

– it contains a confidential responder’s nonce;

– it is encrypted by the initiator’s public key.

These guarantees confirm what happens in the real world. When honest agents

engage in the authentication protocol, each of them does not have to blindly assume

that they are using the right key. By contrast, each inherits a guarantee from the pre-

ceding certification protocol that they precisely are using the public key belonging to

the intended peer. This level of detail was not available before our work.

4.2.3 Details of the Findings

This section outlines the actual theorems proven in Isabelle to support the less formal

versions discussed above (§4.2.2).

Theorem 1 derives from the combination of the two following theorems.

theorem Says CA cert1:

[[Says CA A {|Crypt (priSK CA) {|Key K, Agent A|}, certB|} ∈ set evs; evs ∈ cert]]

=⇒ K = pubEK A

69

The statement can be read as follows. For any sequence of events following the

certification protocol, if CA sends a message containing a specific certificate and an-

other component, then the mentioned key is the public encryption key of the agent

mentioned beside the key. A version for the other certificate can be proven too.

theorem Says CA cert2:

[[Says CA A {|certA, Crypt (priSK CA) {|Key K, Agent B|}|} ∈ set evs; evs ∈ cert]]

=⇒ K = pubEK B ∧ A 6= B

It can be observed that this theorem, contrarily to the previous, specifies the agent pair;

hence it can conclude that they are different by leveraging on the assumption stated by

rule Cert2 seen above.

Theorem 2 rests on the following innovative statement.

theorem cert authentic agent:

[[Crypt (priSK CA) {|Key K, Agent B|} ∈ parts(knows A evs); evs ∈ cert]]

=⇒ (∃ D certB. Says CA D {|certB, Crypt (priSK CA) {|Key K, Agent B|}|} ∈ set evs) ∨

(∃ certB. Says CA B {|Crypt (priSK CA) {|Key K, Agent B|}, certB|} ∈ set evs)

This result requires particular attention because it is the first significant fact proven

upon assuming something about the knowledge of a generic agent. By contrast, ex-

isting proofs only consider the knowledge of the Spy. Here, A can be either the Spy

or a regular agent. As a consequence, the proof features two successive inductions on

the certification protocol model. First, assume A is the Spy. In this case, induction and

simplification leave us with two remaining subgoals: the Fake case, which embodies

the threat model, and the subgoal arising from the second protocol step. Those two

cases are treated by classic methods, spy analz and blast.

If A is an honest agent, that is different from the Spy, the proof is more intricate

and was unexplored before the present effort. We must perform a number of case splits

and reason about how protocol events modify agent knowledge. In existing Inductive

Method theories, simplification lemmas are provided to deal with changes to the Spy’s

knowledge upon occurrence of protocol events, but the case of regular agents is not

spelled out fully. The reasoning is therefore performed along the proof by expanding

70

the definition of knows as appropriate, since available automatic proof techniques only

reason about the Spy’s knowledge.

The case of the Reception case is particularly interesting. We first perform a case

split on whether a certificate for B appeared in the traffic — that is, it exists in the Spy’s

knowledge. If such is the case, a traditional authenticity result about the certificate

(cert authentic, omitted here for brevity) can be applied and allows us to conclude.

Otherwise our subgoal still features the premise Crypt (priSK CA) {Key K, Agent B}

∈ parts (knows A (Gets Ba X # evsr)) and we must differentiate between the scenarios

A6=Ba and A=Ba. In the former case, the Gets event cannot influence A’s knowledge

because honest agent do not see all traffic; hence we obtain a contradiction. Else, Crypt

(priSK CA) Key K, Agent B must be in parts (insert X (knows A evsr)). Since it is not

in parts (knows A evsr), it must be in parts{X}, but X appears in a Says event — hence

it must be known to the Spy, a contradiction.

It is interesting to investigate what happens when we consider a simpler certificate

distribution protocol that only returns one certificate in its second step (namely the

certificate of the agent’s peer, not of the agent itself). It turns out that the proof of

cert authentic agent remains the same. The explanation is that the line of reasoning

does not rely on case splits about the certificates, but rather on the interaction be-

tween the knowledge of agents. The main effect of the aforementioned change is that

Says CA cert1 and Says CA cert2, mentioned earlier, can be collapsed into a single

lemma. Subsequent theorems that relied on those two lemmas then only require the

unified one.

Theorem 3 can now be explained.

theorem Spy not see NA:

[[Says A B (Crypt K {|Nonce NA, Agent A|}) ∈ set evs;

A /∈ bad; B /∈ bad; evs ∈ ns public]]

=⇒ Nonce NA /∈ analz (knows Spy evs) ∧ K = pubEK B

This establishes the confidentiality of the initiator’s nonce in the authentication pro-

tocol. It resembles the guarantee that can be found in the Isabelle repository [16]: if

71

the protocol step NS1 takes place and A and B are honest, then the nonce from NS1

remains secret. In addition, it specifies K to be B’s public key. Notably, this requires

appeals to the guarantees about the other protocol, the certification one. Thanks to the

premise about trace evsca in rule NS1 seen above, theorem cert authentic agent can

be applied. Then, the combination of Says CA cert1 and Says CA cert2 pinpoints the

contents of the certificates.

Similarly, Theorem 4 derives from the following result.

theorem Spy not see NB :

[[Says B A (Crypt K {|Nonce NA, Nonce NB, Agent B|}) ∈ set evs;

A /∈ bad; B /∈ bad; evs ∈ ns public]]

=⇒ Nonce NB /∈ analz (knows Spy evs) ∧ K = pubEK A

This result can be commented similarly to the previous; however, the results about the

certification protocol, starting with cert authentic agent, can be applied thanks to the

premise about trace evscb in rule NS2 described earlier.

4.3 Other Protocol Composition Configurations

So far, we presented a general methodology for analysing composed protocols through

our case study featuring two protocols composed by sequencing. What of other scenar-

ios? Even without additional case studies, some general considerations can be made.

In turn, this section addresses sequences of more than two protocols and intertwined

protocols.

4.3.1 Generalised Protocol Sequencing

In this chapter’s case study, we analysed a composed protocol built by sequencing of

a certificate distribution one and an authentication one. As in the theory files, let us

denote the steps of the certificate distribution protocol by Cert1 and Cert2 and the steps

of the authentication protocol by NS1, NS2 and NS3. The dependencies between the

steps can then be pictured as in Figure 4.4. When two steps are connected by an arrow,

72

the step at the arrow’s head requires the step at its tail to have occurred.

Figure 4.4: Protocol step dependencies for the example composed protocol

The step NS2 could also be said to depend on Cert2 directly. However, since it

also relies on NS1 which depends on Cert2 too, we omit the arrow from Cert2 to NS2.

Dependencies between protocol steps can be seen syntactically as preconditions in the

inductive rules modelling them: for instance, one of the preconditions of the rule for

NS1 requires the reception of a message which can only come from Cert2. In terms of

proofs, the sequenced nature of the protocol composition is reflected by the fact that

all lemmas requiring induction over the cert model can be proven before the model for

ns public is even defined.

It is now quite straightforward to reason about sequencing of more than two proto-

cols. More precisely, consider n protocols P1 . . . Pn, where Pi+1 can only start when

Pi has finished (0 < i < n). We denote pi1 . . . piki the ki steps of Pi (0 < i < n+ 1).

The dependency graph is represented in Figure 4.5.

Figure 4.5: Protocol step dependencies for an arbitrary sequenced protocol

73

When analysing such a protocol, first properties about P1 are proven indepen-

dently. Analysing P2, which depends on P1, is then exactly the configuration of the

case study earlier in this chapter. Once this is done, properties of P2 have been estab-

lished, and P3 can be examined in turn the same way. Proving lemmas about Pn, which

is only possible at the end, is then equivalent to proving properties of the composed

protocol (since it depends implicitly on every other protocol in the sequence).

4.3.2 Intertwined Protocols

One can also consider a composed protocol where dependencies go both ways, as in

Figure 4.6.

Figure 4.6: Protocol step dependencies for two entwined protocols

Here the protocols P1 (with steps p1i) and P2 (with steps p2i) interact to form

an entwined, composed protocol. The dependency shown in Figure 4.6 allows the

completion of the combined protocol run; for instance, the sequence of steps p11 −

p12 − p21 − p22 − p23 − p13 − p14 − p24 is allowed.

This kind of composed protocol can be analysed by exploiting the dependencies;

namely, reliability lemmas (see §3.2.3) can be proven. If a given step has happened,

then the steps it requires must have occurred as well. Nevertheless, in this particular

configuration, both composing protocols can terminate before the other one has. The

fact that two inductive definitions refer to each other causes no intrinsic issue.

Not all dependencies between the steps of two protocols make sense. The obvious

example is when a step from the first protocol and a step from the second one refer to

74

each other. Such circular dependency makes the composed protocol not only impossi-

ble to analyse but, more importantly, meaningless since it can never run to completion.

Another unsoundly composed protocol is pictured in Figure 4.7.

Figure 4.7: Protocol step dependencies for two unsoundly entwined protocols

Neither composing protocol can run to completion: p12 cannot occur before p22

because p12 requires p23, and p22 cannot occur before p12 because p22 requires p12. In

terms of formal analysis, malformed composed protocols can be detected by the fact

that so-called “possibility properties” cannot be proven. Possibility properties refer to

a specific kind of reliability lemma, often proven at the very beginning of a protocol

analysis in the Inductive Method, aiming to establish that a protocol model can yield a

complete protocol run.

Barring such ill-formed dependencies between protocol steps, intertwined com-

posed protocols can be analysed by modelling them as inductive models that refer to

each other. Additional case studies are desirable to support this approach.

4.4 Discussion

We have described the formal modelling of mix protocols and their holistic analysis

in the interactive theorem prover Isabelle/HOL. Sequenced, stacked and interleaved

protocols can be specified and verified in a framework with rigorous foundations us-

ing inductive mathematical reasoning. In our running example, we have analysed a

sequence featuring a generic key certification protocol and a simple authentication

protocol. For the specific case of key certification, our approach is scalable to a full

PKI model featuring multiple levels of trust. The adopted strategy for mix protocol

specification translates into a proving process featuring novel situations. Those could

75

be tackled effectively with the mechanical support of the interactive theorem prover.

While automatic protocol analysers are making progress, more general tools like Is-

abelle/HOL and the Inductive Method provide invaluable flexibility for reasoning in

detail about common and uncommon protocol combinations. Case studies for intricate

protocol interactions and mixes of more than two protocols are our natural next objects

of study. The Isabelle locales [8] system could be used to permit more generic proofs.

Part of this work was published in [17].

76

Chapter 5

Modelling an ISO/IEC 9798-3

Protocol Using Auditable

Identity-Based Signatures

In the previous chapter, we looked at the issue of verifying composed protocols with

the Inductive Method. Another commonly needed feature is the possibility of analysing

protocols that require more exotic cryptographic primitives than the ones specified in

Message. We now consider the case of a special kind of digital signatures: auditable

identity-based signatures (AIBS). After presenting the general features of AIBS (§5.1),

we introduce an ISO protocol that will be adapted to use this cryptographic primitive

(§5.2). A side-by-side specification of AIBS and IBS versions of the protocol (§5.3),

their comparative analysis (§5.4) and a concluding discussion (§5.5) follow.

5.1 Auditable Identity-Based Signatures

AIBS are a type of IBS providing stronger non-repudiation qualities. After presenting

some context, properties of basic IBS and AIBS are listed.

77

Principles of auditable IBS AIBS [65] provide stronger non-repudiation by ad-

dressing the issue of key escrow. The details of the underlying cryptographic scheme

are omitted here and can be found in the aforementioned report. An audit step allows

a third party to verify that a given signature has been issued by the user herself and not

by the KGC. This provides strong non-repudiation.

The audit step is separate from signature validation, and optional. Audit requires

the transmission of additional information — if it became a required part of the validity

check, the scheme wouldn’t be identity-based anymore.

Upon request, thanks to the audit step, the KGC can prove that a signature has

been provided by a user and not created by itself. The scheme rests upon the existence

of a second key pair (A+
ID ,A−

ID), generated by the user ID. The usual key pair

(D+
ID, D

−

ID) exists as for standard IB signatures. The message M is signed by both

secret keys, and the resulting signature is denoted {|M |}D−

ID
,A−

ID

.

A user should only be able to sign with a registered audit key-pair: indeed, she

does not gain direct access to D−

ID, but only to D−

ID ”protected” (which does not mean

encrypted — for details, see [65]) by A+
ID. This requires her to use D−

ID in conjunction

with A−

ID.

Additional properties provided by auditable IBS

• ID cannot sign with the usual secret key D−

ID without using the private audit key

A−

ID in conjunction, through a key package system. The signing key is not made

available explicitly but can be used via the package provided the corresponding

private audit key is known.

• Only ID knows A−

ID; not the KGC.

• ID can sign thanks to the key package {|{|D−

ID|}|}A+

ID

, but never knows D−

ID on

its own.

• The signature validity check does not involve the audit key pair, and is done as

usual. Hence only the message M, its signature {|M |}D−

ID
,A−

ID

and the sender’s

78

public key D+
ID are needed.

• The audit step shows if the resulting signature was produced using A−

ID. If this

is not the case, ID did not sign, since he cannot sign without using A−

ID. If so,

the signature was forged by the KGC, since only these two entities know D−

ID.

To perform the audit step, the acting third party needs M and {|M |}D−

ID
,A−

ID

, as

in the validity check step, but A+
ID instead of D+

ID .

5.2 The ISO/IEC 9798-3 Protocol Suite

In ISO/IEC 9798-3, the International Organization for Standardization presents a num-

ber of authentication protocols. The 2010 amendment [70], to which we refer here,

introduces additional protocols. A good deal of those protocols have been formally

analysed before [12]; however, our focus here is more on the extension of the Induc-

tive Method with new cryptographic primitives than on the protocols themselves.

The specific protocol used in the remainder of this chapter is the first protocol from

the 2010 amendment, Five-pass mutual authentication with TTP, initiated by A, Option

1. It is called 9798-3-6-1 in [12]. Its steps are as follows:

1. A picks a fresh nonce Na and sends B the message {|A,Na, T1|}.

2. Upon reception of A’s message, B picks another fresh nonce Nb and sends A

the message {|B,Na, Nb, T3, SigB(B,Na, Nb, A, T2)|}.

3. Upon reception of B’s reply, A picks yet another fresh nonce N ′

a and sends the

TTP the message {|N ′

a, Nb, A,B, T4|}.

4. Upon reception of A’s message, the TTP sends A the message

{|A,K+
A , B,K+

B , SigTTP (N
′

a, B,K+
B , T6), SigTTP (Nb, A,K

+
A , T5), T7|}

79

5. Upon reception of the TTP’s reply, A sends B the message

{|T9, A,K
+
A , SigTTP (Nb, A,K

+
A , T5), SigA(Nb, Na, B,A, T8)|}

The Ti are text fields, specified in the standard as being optional. They are

not meant to be confidential, and their contents and purpose are not stated in

ISO/IEC 9798-3. Some message components, such as public keys, may be re-

dundant in an IBS setting. We elect to keep them, preferring to risk redundancy

than a lack of explicitness.

5.3 Side-by-side Specification of IBS and AIBS Variants of

an ISO/IEC 9798-3 Protocol

The protocol presented in the previous section is a suitable testbed to compare features

of IBS and AIBS: it is recent, uses digital signatures and is standardised. We set out

to create two formal models of the protocol for the two types of signatures in order to

highlight the benefits of AIBS. The basic goals of the protocol, such as authentication,

are not our focus here.

Figure 5.1 shows the hierarchy of Isabelle/HOL theories arising from this analy-

sis. The AIBS trunk is more independent of existing theories because new message

components are required to account for the key package datatype.

In both the IBS and the AIBS version, the Trusted Third Party (TTP) is simply

what is commonly called the Server:

abbreviation

TTP :: agent where TTP == Server

However, the TTP and the TA are two different entities. Indeed, the TA is specified

as a fixed friendly agent; this way, we can control whether it is honest or not. Recall

that, on the other hand, the Server is never in bad, by definition.

80

Figure 5.1: Theory hierarchy for the IBS and AIBS versions of the ISO/IEC 9798-3

protocol

abbreviation

TA :: agent where TA == Friend 0

5.3.1 Specifying the IBS Version

Rules about the initial knowledge of cryptographic keys are defined in the Public the-

ory. Public IBS is similar to it: the main difference is key escrow, modelled by the

Server’s knowledge of all secret signing keys. Lemmas about initial knowledge, found

in the same theory, were adapted accordingly. The initial knowledge of agents includes

their own secret keys.

Earlier attempts included the modification of Message to account for the fact that

in the context of IBS, identities of agents yield their public keys. Our initial strategy

consisted in adding a CryptID agent msg component to the msg datatype, which then

yielded a agentsFor set, similar to keysFor but returning a set of agents instead of a set

of keys.

This approach was dropped due to its lack of operational significance, especially

for a comparative analysis of signature structure. We are more interested in what

additional information the two kinds of signature convey than in the details of the

81

public keys required to open them. As a consequence, specifying IBS boils down

to formalising signatures with the same operator rules as usual, but different initial

key knowledge: in Public IBS, initState TA notably contains Key ‘ range priSK. The

situation for AIBS is different— see below.

The inductive model of the IBS version of the ISO/IEC 9798-3 protocol we con-

sider can be found in §A.2.2.1

5.3.2 Specifying the AIBS Version

In the case of AIBS, signature generation requires a key package that hides the signing

key from the signer. The message datatype was therefore extended to include a new

component, the key package. A new datatype is defined first:

datatype pack = Pack key key

Now the following line can be added to the definition of the msg datatype in the

Message theory:

| Pkg pack

The order in which the keys are used in the Pack notation does not matter as long

as it is consistent. We chose to set the second key argument as the hidden signing key.

An initial attempt was made to include all rules governing the behaviour of the new

component directly in Message. The resulting changes to the message operators broke

relationships between them that are required for crucial tactics to work. We finally de-

fined synthesis rules as part of the protocol model itself. The theories Message, Event

and Public still required changes due to the presence of this new message component.2

As for IBS, the initial knowledge of agents is also different from the one found in the

legacy Public theory. As in the IBS case, the TA knows all secret signing keys. On the

other hand, as opposed to the IBS case, agents no longer know their own signing keys

1We omit Nil, Fake and Reception since they were discussed earlier in this thesis and do not change.

We will always do this for the protocols in this thesis. Text fields were modelled as Numbers, which can

always be synthesised (they are “guessable”).
2In the case of Event, no real change was needed; only the import command needed tweaking.

82

in the AIBS version. They only have access to key packages that allow them to sign

while the signing key remains hidden from them. initState was adapted accordingly.

The following inductive rules, part of the protocol model in ISO AIBS, specify

the interaction between keys, key packages and signatures. The KeyPack rule models

the fact that if the attacker knows the KGC’s master secret key, then she is able to

generate any key package. What is meant by “key package” is the element obtained

by protecting an agent’s secret signing key with the corresponding audit key:

| KeyPack: [[evsk ∈ iso; Key(priSK TA) ∈ analz (spies evsk)]]

=⇒ Notes Spy (Pkg (KP A B)) # evsk ∈ iso

The SigGen rule shows the specification of auditable identity-based signatures:

they feature a redundant structure in which the signed message is included twice in the

main signature body: once as is, and once as part of a ciphertext encrypted by a private

audit key. By convention, we arbitrarily specify audit encryption keys as the priEK

type and normal signing keys as the priSK type. The purpose of this rule is to specify

under which conditions the attacker can forge an auditable identity-based signature. A

key package and the corresponding private audit key are the crucial ingredients:

| SigGen: [[evss ∈ iso; X ∈ synth(analz (spies evss)); Key (priEK A) ∈ analz (spies evss);

Pkg (KP A B) ∈ analz (spies evss)]]

=⇒ Notes Spy (Crypt (priSK B) {|Crypt (priEK A) X, X|}) # evss ∈ iso

The rest of the protocol model adapts the one for IBS by replacing the Crypt (priSK

A) M IBS structure by the Crypt (priSK A) {|Crypt (priEK A) M, M|} AIBS structure.

It can be found in §A.2.6.

5.4 Comparative Analysis

Our main aim was to formalise the fact that different signature structures reveal differ-

ent types of information. The main benefit of AIBS is to make the signatures auditable,

83

i.e. provide more fine-grained authentication. Thanks to the audit key-pair, it is pos-

sible to differenciate signatures generated by their legitimate signer from signatures

forged by the TA.

The main tool for the comparison is the function candidates, defined as follows:

definition candidates :: agent ⇒ event list ⇒ agent set where

candidates A evs ≡

{C. C 6= Spy ∧

(∃ Y Z. Crypt (priSK A) Y ∈ parts (knows Spy evs) ∧

(A = C ∨ Key (priSK A) ∈ initState C) ∧

(Crypt (priSK C) Z ∈ parts {Y} ∨ Crypt (priEK C) Z ∈ parts {Y}))}

It takes as input an agent name A and a trace evs and returns a set of agents — the

set of those, different from the Spy, that can sign on A’s behalf and leave a trace as a

ciphertext encrypted with one of their secret keys inside a signature by A on evs.

Note that this definition does not ignore the Spy’s action: she can still produce

signatures using keys from compromised agents.

5.4.1 Findings for the IBS Version

The first result derives directly from the specification of initial knowledge of agents:

if A or the TA are bad, then A’s secret signing key is known to the Spy too. Else, it is

only known to A and the TA:

lemma priSK knowledge:

[[Key (priSK A) ∈ initState D; A /∈ bad; TA /∈ bad]] =⇒ D = TA ∨ D = A

Even though our focus on this chapter is not on the properties of the ISO protocol

itself, we give a glimpse of its authentication properties. The fact that B authenticates

A is expressed as follows:

theorem B auth A:

[[{|Number Text9, Agent A, Key (pubSK A),

Crypt (priSK TTP) {|Nonce Nb, Agent A, Key (pubSK A), Number Text5|},

84

Crypt (priSK A) {|Nonce Nb, Nonce Na, Agent B,

Agent A, Number Text8|}|} ∈ parts (spies evs);

Says B A {|Agent B, Nonce Na, Nonce Nb, Number Text3,

Crypt (priSK B) {|Agent B, Nonce Na, Nonce Nb,

Agent A, Number Text2|}|} ∈ set evs;

A /∈ bad; TA /∈ bad; evs ∈ iso]]

=⇒ Says A B {|Agent A, Nonce Na, Number Text1|} ∈ set evs

The first precondition refers to ISO5, the second one to ISO2, and the postcon-

dition to ISO1. Its proofs requires a few other lemmas, among which is a weaker

authentication result:

lemma sig A origin:

[[Crypt (priSK A) {|Nonce Nb, Nonce Na, Agent B, Agent A,

Number Text8|} ∈ parts (spies evs);

A /∈ bad; TA /∈ bad; evs ∈ iso]]

=⇒ Says A B {|Number Text9, Agent A, Key (pubSK A),

Crypt (priSK TTP) {|Nonce Nb, Agent A, Key (pubSK A), Number Text5|},

Crypt (priSK A) {|Nonce Nb, Nonce Na, Agent B,

Agent A, Number Text8|}|} ∈ set evs

Here, the postcondition refers to ISO5 and the precondition to its second half. If

both A and the TA are assumed to be honest, the candidates function over A returns an

empty set for any trace in the IBS case. This was to be expected: this version features

only plain IBS signatures, the structure of which does not permit any auditing. A

signature generated by A cannot be told apart from a signature forged by the TA, since

both know A’s secret signing key.

theorem candidates IBS none:

[[D ∈ candidates A evs; TA /∈ bad; A /∈ bad; evs ∈ iso]] =⇒ False

As well as an induction over D, the proof requires the lemma signature form,

which states that messages of a given structure never appear in the network traffic:

85

lemma signature form:

[[Crypt (priSK A) Y ∈ parts (spies evs);

Crypt (priSK TA) Z ∈ parts {Y} ∨ Crypt (priEK TA) Z ∈ parts {Y} ∨

Crypt (priSK A) Z ∈ parts {Y} ∨ Crypt (priEK A) Z ∈ parts {Y};

A /∈ bad; TA /∈ bad; evs ∈ iso]]

=⇒ False

Its proof consists of an induction over the protocol steps, combined with classic

methods such as spy analz and force.

5.4.2 Findings for the AIBS Version

In the AIBS version, if candidates contains an element and both the TA and A are

honest, then that element must be A:

theorem candidates AIBS A:

[[D ∈ candidates A evs; TA /∈ bad; A /∈ bad; evs ∈ iso]] =⇒ D = A

If the TA is not required to be honest, we can still quantify the set. In that case,

candidates A may additionally contain TA:

theorem candidates AIBS A TA:

[[D ∈ candidates A evs; A /∈ bad; evs ∈ iso]] =⇒ D = A ∨ D = TA

The proofs of these two theorems rely on the same techniques used for candi-

dates IBS none, as well as the use of the classical reasoner and an additional lemma

about the regularity of key packages:

lemma Pack conf :

[[Pkg (Pack (pubK A) (priSK B)) ∈ parts (knows Spy evs); TA /∈ bad; evs ∈ iso]] =⇒ False

Can a tighter result be obtained? Attempting to prove a variant of the theorem

candidates AIBS A TA in which the conclusion is only D = A leads us to a subgoal

presenting the scenario where a signature by A appears in a trace, with the signature

containing a second signature encrypted with Crypt (priSK TA). This can clearly not

86

be discarded: if the TA is dishonest (which is not forbidden by the preconditions of

candidates AIBS A TA), the Spy knows both the TA’s and A’s secret signing key and

can therefore forge such messages.

Furthermore, the following statement shows that a regular agent can indeed be in

her own candidates set. It analyses an arbitrary trace concatenated with the kind of

structure effectively used in the protocol:

theorem candidates AIBS possible:

[[A 6= Spy; ev = Says A B (Crypt (priSK A) (Crypt (priEK A) X)) # evs]]

=⇒ A ∈ candidates A ev

Finally, the lemma Fake generates AIBS is a possibility result showing that if the

TA is bad, the Spy can indeed forge an AIBS that verifies but does not audit:

lemma Fake generates AIBS:

TA ∈ bad =⇒ ∃ D B N. ∃ evs ∈ iso.

Says Spy D (Crypt (priSK B) {|Crypt (priEK TA) (Number N), Number N|}) ∈ set evs ∧

B 6= TA

5.5 Discussion

This chapter recalls the features of auditable identity-based signatures and features

them in a comparative analysis of a recent ISO/IEC 9798-3 authentication protocol.

Both a version with identity-based signatures and a version with auditable identity-

based signatures are specified and analysed. Using a common framework for trace

analysis allows us to highlight the impact of signature structure choice. The flexibility

of the Inductive Method is confirmed, both for new cryptographic primitives specifi-

cation and for alternative trace analysis methods. A number of approaches were tried

for the modelling of the new cryptographic primitives; shifting their specification from

the imported theory files to the protocol model itself seems to be the most efficient

strategy.

87

Chapter 6

Formally Analysing an Electronic

Voting Scheme Using Blind

Signatures

The use of electronic voting (e-voting) for official elections is on the rise across the

world. Security protocols claiming properties that protect voters and guarantee regular

elections require formal scrutiny because of their sensitive nature. One key objective

of e-voting protocols is to hide the way a particular voter votes. Most recent efforts to

advance formal verification of this property are based on process equivalence. Despite

substantial progress, limitations remain on aspects such as termination of supporting

tools or simplification of protocol models.

The benefits of specifying privacy in an interactive theorem prover have never been

explored until now. Existing research on the topic exploits other tools, which do not

provide comparable levels of interaction. Isabelle [99], a generic theorem prover, is

flexible enough when used with higher-order logic to allow new classes of security

properties to be analysed in the framework provided by the Inductive Method [14]. Its

extensions for dealing with voter privacy are described and demonstrated on a classic

protocol in this chapter. They required new proof techniques and lines of reasoning,

88

whose development in turn demanded substantial effort. Nevertheless, their appli-

cation to other protocols is expected to be straightforward, as has been the case for

the confidentiality argument [86] for example, with most of the proof scripts adapted

for new protocols without significant effort. Automated tools are ideal for checking

conjectures about protocols quickly. However, the interactive nature of the Inductive

Method yields, also with e-voting, greater support to the analyst’s understanding of the

protocol intricacies than the one fully automated tools offer today.

The most notable findings in this area stem from formalising the protocols with a

process algebra and encoding the privacy properties by process equivalence [44]. As

detailed below, process equivalence supports a notion of indistinguishability between

two situations where a voter voted, respectively, for two different candidates. This

implies that an observer cannot discern the two situations being formalised. In line

with the operational semantics of the protocols specified by the Inductive Method, we

develop an operational encoding of privacy based on unlinkability of voter with vote,

focusing on the associations that an active attacker can derive from intercepting the

protocol traffic. For example, if Alice sent her vote for Bob to the election administra-

tor as a clear-text, then the attacker would build the association Alice-Bob.

However, actual protocol messages are complicated nestings of advanced crypto-

graphic operations (which are still assumed to be secure), so that the attacker’s in-

spection is far from straightforward. This inspection is formalised by the innovative

association analyser operator aanalz — naming is consistent with the existing termi-

nology. Also, the attacker can intelligently merge associations when they have at least

one element in common, similarly to an investigator relating Alice to a crime scene

because she wears the same shoe size as that of a shoe print in the scene. This merge

is formalised by the innovative association synthesiser operator asynth. When it is im-

possible to build, by means of analysis and then synthesis, an association that features

both voter and vote, then there is unlinkability of voter with vote, hence the proto-

col enforces voter privacy (about their vote). Conversely, the protocol violates voter

privacy, irrespectively of how many other voters cast that vote.

89

An outline of the indistinguishability and unlinkability approaches to modelling

privacy (§6.3) leads to our extensions to the Inductive Method to account for privacy

specification and analysis (§6.3.2). These extensions are then demonstrated on the

classic FOO [58] e-voting protocol through its inductive specification (§6.6.2) and

verification of voter privacy (§6.7). Conclusions and future work conclude the chapter

(§6.9).

6.1 The Spread of Electronic Voting

When compared to classic methods, electronic voting can offer a number of bene-

fits. The most obvious one is efficiency: automated counting methods can drastically

reduce the time and manpower required to compute election results. Money can be

saved, and the risk of human counting errors eliminated. A different, maybe even

more important advantage is increased monitoring possibilities by the voters them-

selves. Ideally, e-voting protocols aim to give voters sufficient information to check

that their vote was indeed taken into account, while still preserving their privacy. In

many cases, these guarantees should hold even without assumptions about the honesty

of election officials. What is more, outsiders not taking part in the election should be

able to check that the published results reflect the votes that were actually cast.

Severely flawed voting machines from the Diebold company were infamously and

massively used for official elections in the United States [55]. Despite public concern

over these kinds of cases, e-voting is spreading quickly across the world. Ireland

partially used it for the 2002 general election.1 In 2005, Estonia allowed internet

voting for municipal elections nationwide. In 2007, it became the first country in the

world using internet voting for parliamentary elections. Brazil, Canada, the United

Kingdom and Switzerland also use it for official elections. Often, lack of verifiability

means voters have to trust an all-powerful government about the results.

As more people in the world are affected by e-voting, rigorous analysis of such

1However, following analysis of the system to be used, it was decided “not to proceed with the imple-

mentation of electronic voting” in 2009 due to the lack of security guarantees.

90

protocols and their claimed goals is more important than ever. We turn next to some

of the most common properties of e-voting protocols.

6.2 Common Properties of Electronic Voting Protocols

The following four properties are commonly studied in e-voting protocols and are of

particular interest to the protocol we will analyse. Other properties, such as universal

verifiability, are relevant for some e-voting protocols. These definitions are due to

Mark Ryan [44].

Fairness: No early results can be obtained which could influence the remaining vot-

ers.

Eligibility: Only legitimate voters can vote, and only once.

Individual verifiability: A voter can verify that her vote was correctly counted.

Voter privacy: How a particular voter voted is not revealed to anyone.

This property is sometimes called ballot secrecy. Votes may or may not be pub-

lished at the end of an election, so it is not the confidentiality of the vote in itself that

matters but its association with the voter who cast it. In other words, the way a voter

votes should not be discoverable by anyone, even after the count. A caveat on this

definition is the exclusion of the marginal case where all voters vote identically. Sim-

ilarly, we exclude the case where all voters but one voted identically — in that case,

the person who voted differently also knows how everyone else voted.

6.3 Alternative Formal Approach to Voter Privacy Analysis

6.3.1 Indistinguishability for E-voting Protocol Analysis

A common way of modelling privacy involves showing the indistinguishability be-

tween two situations:

91

1. Voter Va votes x and Voter Vb votes y

2. Voter Va votes y and Voter Vb votes x

Indistinguishability here means that when Va and Vb swap their votes, no party (in-

cluding the trusted parties running the election) can distinguish between situations 1

and 2.

We now turn to a new model based on the unlinkability between two pieces of

information.

6.3.2 Unlinkability

In contrast to the indistinguishability modelling of privacy, an operational view reflects

the natural threat model of an attacker monitoring all network traffic and using the data

she can extract to associate a voter with a vote. Initially, the attacker decomposes each

individual message, and records all plaintexts and ciphertexts for which keys are avail-

able. She can also associate these with the intended recipient agent of the message. For

each protocol event whereby an agent sends a message to another agent, this analysis

gives the attacker a set of (components of) messages, namely an association. More-

over, if the communication channel is not anonymous, then the attacker can also extend

the association just gathered by storing the identity of the sender.

However, it is not sufficient to inspect in isolation each of the messages sent in the

traffic. A voter’s identity V may appear “near” an element m that is later to be ex-

tracted again, this time in conjunction with the vote Nv. In this case, such a common

element m provides the link between voter V and vote Nv. An attacker monitoring

the network sees messages as discrete entities and can exploit the shared context of

elements extracted from one given message. This process of combining sets of asso-

ciations builds up an association synthesis. When all possible protocol scenarios are

taken into account, establishing voter privacy boils down to inspecting the synthesised

set for the presence of a voter’s vote.

The only pieces of information that should not be treated as a possible link to

92

synthesise new associations are those that can be linked to all voters, such as the name

of the precise election officials that a protocol prescribes. Because their identities

appear in each and every protocol session, using one of them as a link would lead to

the synthesis of insignificant, that is, privacy-irrelevant, associations. For example, an

investigator will not call up every human being as suspect of murder simply upon the

basis that everyone could pull a trigger. We shall see that with the FOO protocol, the

administrator and the collector are omnipresent, hence must be ruled out to synthesise

significant associations.

Without setting bounds on the number of agents, sessions, or message nesting

depth, the number of different associations that the attacker can synthesise is very

large. Precisely, an unbounded number of associations can be derived by observing a

full trace, due to the fact that its length is unbounded. This size limits the tool support

that traditional finite-state search can offer, since merely having an unbounded number

of agents is already often a problem. As experienced before with other goals [14],

inductive reasoning bypasses the size constraints also with the analysis of associations.

In this model, associations are derived from traces, so more than one protocol may be

involved.

Simple association sets Before specifying unlinkability in the Inductive Method,

let us see how it works on an example trace. Consider the message exchanges (in

chronological order) in Figure 6.1.

1. A −→ B : A,B
2. B −→ A : {|B,A,NB|}K+

A

3. A −→ C : {|A, {|NB|}K , NA|}K−

A

Figure 6.1: An example network history

What associations could an attacker derive when observing this trace? He would,

for each message, list everything he could possibly extract from it, using if necessary

the keys he knows. If a ciphertext is part of a message, it is automatically part of the

association set. Whether the plaintext it contains is also a member of the association set

93

depends on the availability of the decryption key to the attacker. If concatenated data

is in the message, both the concatenation and its elements belong to the association

set. Assume the channels are not anonymous — then the identities of senders and

recipients will be included too.

As a side note, in the more exotic setting of two competing Dolev-Yao attackers,

association sets could quickly become meaningless as each attacker forges artifical

associations to sabotage his rival’s knowledge.

Formally, those rules mirror the analz operator (see §3.2.1):

• X ∈ msg =⇒ X ∈ associations(msg)

• {|X|}K+ ∈ msg ∧K− known =⇒ X ∈ associations(msg)

• {|X,Y |} ∈ msg =⇒ X ∈ associations(msg)

• {|X,Y |} ∈ msg =⇒ Y ∈ associations(msg)

Let A, B and C be three different agents. Assume that the private keys of A and B

are only known to themselves, i.e. they are uncompromised. The resulting association

sets, shown in Figure 6.2, are presented assuming that the message sender and receiver

can be extracted from the message headers, observed as source and destination of

messages on the network.

1. {A,B}
2. {B,A, {|B,A,NB|}K+

A

}

3. {A,C, {|A, {|NB|}K , NA|}K−

A

, {A, {|NB|}K , NA}, {|NB|}K , NA, NB?}

Figure 6.2: Individual association sets generated from an example network history

The first step reveals nothing more than the name of the two peers. In the second

step, the ciphertext is extracted but not its contents since an observer (which is not

A himself since we assumed the agents to be uncompromised!2) cannot normally

inspect a message encrypted with the private key of an honest agent. More information

2Recall we are building association sets from the Spy’s point of view.

94

can be extracted from the third message. On the one hand, what is inside the main

ciphertext is accessible because A’s public key is not confidential. On the other hand,

the question mark after the last element of the third set indicates that the presence of

NB in this association set depends on the confidentiality of the key K. Both the set

{A, {|NB|}K , NA} and its components are part of the association set because messages

are decomposed into their elements inductively.

None of the three association sets feature both B and NB; the first two feature B

and not NB , and the third one does not feature B. It may or may not include NB ,

depending on the confidentiality of K. If K is confidential, then NB is never visible

to an attacker and cannot therefore be linked to anyone. If K is known to the attacker,

she can extract NB from the ciphertext containing it in the third message. Therefore

NB is in the third association set.

Pairwise association synthesis We may now ask whether B can be linked to NB via

pairwise association synthesis. Both the second and the third association set mention

the name of agent A. This element in common provides a link between the elements

in the two sets. B and NB are linked via agent A.

Consider the following definition of a pairwise set synthesis set:

• a1 ∈ ♦ ∧ a2 ∈ ♦ ∧ (∃m | m ∈ a1 ∧m ∈ a2) =⇒ a1 ∪ a2 ∈ pairsynth(♦)

When ♦ is a set of sets, pairsynth(♦) is too. Note that a1 = a2 is allowed, hence

any non-empty set in ♦ ends up in pairsynth(♦).

The sets belonging to the pairwise association synthesis set are shown in Figure

6.3. The first three sets are exactly the ones from 6.2, and the two other ones are 1 ∪ 3

and 2 ∪ 3, respectively.

Transitive association synthesis A more general way of deriving association syn-

theses is to recursively join association sets. Consider the following definition of a

transitive set synthesis set:

• a1 ∈ ♦ =⇒ a1 ∈ transynth(♦)

95

1. {A,B}
2. {B,A, {|B,A,NB|}K+

A

}

3. {A,C, {|A, {|NB|}K , NA|}K−

A

, {A, {|NB|}K , NA}, {|NB|}K , NA, NB?}

4. {A,B,C, {|A, {|NB|}K , NA|}K−

A

, {A, {|NB|}K , NA}, {|NB|}K , NA, NB?}

5. {A,B,C, {|B,A,NB|}K+

A

, {|A, {|NB|}K , NA|}K−

A

, {A, {|NB|}K , NA}, {|NB|}K , NA, NB?}

Figure 6.3: Pairwise association synthesis sets generated from an example network

history

• a1 ∈ transynth(♦) ∧ a2 ∈ transynth(♦) ∧ (∃m | m ∈ a1 ∧ m ∈ a2)

=⇒ a1 ∪ a2 ∈ transynth(♦)

In other words, the number of links between two association sets should not be

limited (but finite). As before, any pairwise union of association sets sharing an ele-

ment should be in the association synthesis set, but additionally unions of sets which

are already in the association synthesis set should be in it as well, provided they have

a common element. In our running example, the largest transitive association synthe-

sis set is equal to the largest pairwise association synthesis set in Figure 6.3 — but,

in general, transitive association synthesis yields bigger sets than pairwise synthesis

and hence models a stronger notion of unlinkability (because more rounds of associa-

tion synthesis are being performed). For instance, there exists a transitive association

synthesis set containing both u and z if the following are association sets:

1. {u, v}
2. {v, w}
3. {w, x}
4. {x, y}
5. {y, z}

Indeed, 1 and 2 share v, so 1 ∪ 2 = {u, v, w} is an association synthesis set. For

a similar reason, 4 ∪ 5 = {x, y, z} also is. Since 3 is an association set, it is also an

association synthesis set. It has an element in common with 1 ∪ 2, namely w. Hence

1 ∪ 2 ∪ 3 = {u, v, w, x} is an association synthesis set. It shares the element x with

4∪5, so finally the union of all those sets is an association synthesis set and it contains

96

both u and z. Conversely, there is no pairwise association synthesis set containing both

u and z, but there is one containing both u and w, another one containing both v and

x, and another one with x and z (and of course y).

6.4 Modelling Electronic Voting Protocols in the Inductive

Method

The analysis of associations requires a new message operator, analzplus. It is built on

the traditional analz message operator, endowed with an external message set provid-

ing extra decryption keys:

inductive set

analzplus :: msg set ⇒ msg set ⇒ msg set

for H :: msg set and ks :: msg set

where

Inj [intro,simp]: X ∈ H =⇒ X ∈ analzplus H ks

| Fst: {|X,Y|} ∈ analzplus H ks =⇒ X ∈ analzplus H ks

| Snd: {|X,Y|} ∈ analzplus H ks =⇒ Y ∈ analzplus H ks

| Decrypt [dest]: [[Crypt K X ∈ analzplus H ks; Key (invKey K) ∈ analzplus H ks]]

=⇒ X ∈ analzplus H ks

| Decrypt2 [dest]: [[Crypt K X ∈ analzplus H ks; Key (invKey K) ∈ ks]]

=⇒ X ∈ analzplus H ks

In particular, the new operator is useful to formalise everything, namely the set of all

message components, that the attacker can extract from a single message sent in the

traffic by hammering it with the entire knowledge she has acquired on an entire trace.

It can be seen as a localised version of analz, and features an additional Decrypt rule.

For a message X and a trace evs, this set can be defined as analzplus {X} (analz(knows

Spy evs)).

Using analzplus, the message association analyser aanalz can be defined induc-

tively. Only Says events influence it. Indeed, each Gets message reception event fol-

lows a message sending event Says, so its message body was already processed by

97

aanalz. Notes events correspond to private recording of data by agents, yielding no

observable information for the attacker.

primrec aanalz :: agent ⇒ event list ⇒ msg set set

where

aanalz Nil: aanalz A [] = {}

| aanalz Cons:

aanalz A (ev # evs) =

(if A = Spy then

(case ev of

Says A ′ B X ⇒

(if A ′∈ bad then aanalz Spy evs

else if isAnms X

then insert ({Agent B} ∪ (analzplus {X} (analz(knows Spy evs)))) (aanalz Spy evs)

else insert ({Agent B} ∪ {Agent A ′} ∪ (analzplus {X} (analz(knows Spy evs))))

(aanalz Spy evs))

| Gets A ′ X ⇒ aanalz Spy evs

| Notes A ′ X ⇒ aanalz Spy evs)

else aanalz A evs)

The definition indicates, among other aspects, that only the attacker can analyse

associations. Regular agents cannot observe the entire traffic, so we focus on the point

of view of a Dolev-Yao Spy who controls the network. Since she has access to more

information, establishing unlinkability from her point of view is necessarily stronger

than proving it from the point of view of an agent who sees less.3

Also, she will neglect the associations created by compromised agents, thus in-

cluding those that she may have created, by sending out specific messages. We are

interested in the information leaked by honest agents in the normal course of the pro-

tocol. The Spy can make up any message, and therefore any association if we were to

extract them from her messages. It can also be seen that the sender identity is extracted

3This situation somewhat conflicts with the usual approach to guarantee availability for regular agents.

We aim to establish a security property enjoyed by regular agents, yet they cannot observe the entire traffic

like the Spy does.

98

only for messages that are not sent anonymously.

The isAnms predicate holds of messages with a specific form that we convention-

ally interpret to signify anonymity:

definition isAnms :: msg ⇒ bool where

isAnms M ≡ (∃ Y. M = MPair (Number anms) Y)

Anonymous channels are specified by defining a function to replace Says when

needed. We are conventionally defining an anonymous message by means of a precise

message format — the actual message is prepended with a constant number:

consts anms :: nat

definition Anms :: [agent, agent, msg] ⇒ event where

Anms A B X ≡ Says A B {|Number anms, X|}

Since the number anms is defined as a constant before, protocols involving mes-

sages with numbers can still use this specification, provided numbers used in other

ways are stated to be different from anms. Creating a new datatype instead would

involve changes to the message operators.

The pairwise association synthesiser asynth can be introduced now. Its definition

is not tied to aanalz, but it will always be used in conjunction with it for our purposes.

Specifically, we will examine the contents of the set asynth (aanalz Spy evs), where

evs is a generic protocol history. The asynth operator introduces a new association as

the union of association sets that share a common element:

inductive set

asynth :: msg set set ⇒ msg set set

for as :: msg set set

where

asynth Build [intro]:

[[a1 ∈ as; a2 ∈ as; m ∈ a1; m ∈ a2; m 6= Agent Adm; m 6= Agent Col]]

=⇒ a1 ∪ a2 ∈ asynth as

99

As noted above, the definition insists that a common element is not a piece of informa-

tion that can be linked to all voters — for instance, the name of election officials since

they appear in every step.4 The version below can be used for protocols that define two

election officials, here called Adm (for administrator) and Col (for collector), in line

with the subsequent case study. In the protocol we will work with, the administrator

and the collector check the validity of ballots and count the resulting votes. We will

generalise asynth to a transitive version later.

6.5 The FOO Protocol

The Fujioka, Okamoto and Ohta (FOO) [58] protocol features two election officials

called administrator and collector and involves bit commitments as well as blind sig-

natures. It features six phases that will give rise to as many protocol steps:

1. Preparation: The voter V picks a vote Nv, builds {|Nv|}c using the commitment

key c, and blinds this vote commitment using the blinding factor b. V then signs

the resulting blinded commitment {|{|Nv|}c|}b and sends it to the administrator

along with V ’s identity.

2. Administration: Upon reception of a signed, blinded commitment, the adminis-

trator extracts the blinded commitment from the signature and checks that the

alongside quoted agent name is equal to the signer of the blinded commitment.

If such is the case and the agent has not voted before, the administrator returns

the message {|{|{|Nv|}c|}b|}K−

Adm

to V , now signed by the former. The adminis-

trator also records V ’s name.

3. Voting: If V obtained the administrator’s reply, V unblinds it to obtain {|{|Nv|}c|}K−

Adm

and sends the resulting plain signature of the commitment to the collector over

an anonymous channel.

4To make the definition of asynth fully generic, we could define a set of such elements, say al-

wayslinked, and reference it in the definition of asynth. The asynth definition would then be constant

across protocols; only the contents of alwayslinked would vary.

100

4. Collecting: The collector checks the signature and publishes the enclosed vote

commitment {|Nv|}c on a bulletin board once all votes have been received.

5. Opening: Once all commitments have been published, V sends c over an anony-

mous channel so that Nv can be revealed.

6. Counting: Upon reception of V ’s key, the collector publishes Nv.

6.6 Specifying the FOO Protocol and Blind Signatures

We are now ready to specify the steps of the protocol in the Inductive Method. The

first step is to model blind signatures, which have not been specified in it before.

6.6.1 Blind Signatures

Blind signatures are a cryptographic primitive often found in e-voting protocols, and

in particular in the FOO protocol. We specify them for the first time in the Induc-

tive Method, as an inductive rule in the protocol model. First, we describe an initial,

unsuccessful attempt to specify blind signatures as a change to the message datatype.

Message datatype modification attempt Since blind signatures constitute a new

cryptographic primitive in the Inductive Method, our initial specification attempt was

based on an extension of the msg datatype with the following line:

| Blind key msg

We were wary of using axioms. This quote from the Isabelle/HOL tutorial [95]

warns user specifically about their dangers:

“The philosophy in HOL is to refrain from asserting arbitrary axioms (such as

function definitions whose totality has not been proven) because they quickly lead

to inconsistencies. Instead, fixed constructs for introducing types and functions are

offered (such as datatype and primrec) which are guaranteed to preserve consistency.”

101

It seemed natural to introduce this new Blind message component and to adapt the

framework theory files — Message, Event and Public — accordingly.

Despite numerous trials, we were not able to obtain a specification in terms of

the message operators for which all usual lemmas from the three theories just quoted

hold. More precisely, extending the message datatype implies extending parts, analz

and synth, the inductive message operators. Adapting their definitions is straightfor-

ward. Proving basic lemmas for each operator also is. The bottleneck appears for

lemmas stating results about the combinations between different message operators.

Specifically, we were not able to prove the following lemma for any specification of

blind signatures:

lemma parts synth [simp]: parts (synth H) = parts H ∪ synth H

This lemma shows properties about the relationship between parts and synth, which

the asymmetric structure of blind signatures broke in all of our trials. Furthermore,

the parts synth lemma can absolutely not be discarded because it is needed to prove

Fake parts insert, which is ultimately needed in the spy analz tactic. The spy analz

tactic itself is generally needed when reasoning about Fake cases, i.e. about the threat

model. parts synth is therefore an essential building block of the framework, and we

cannot afford to lose it.

Let us be more precise about the nature of the issues that we faced by examining

one example specification.

When writing a blind signature (with signing key T, on message X, with blinding

factor K) as Blind K (Crypt T X), 5 the issue arises from the synth rule modelling blind

signature generation from a blinded message and a (signing) key:

[[Blind K X ∈ synth H; Key(T) ∈ H]] =⇒ Blind K (Crypt T X) ∈ synth H

To prove parts synth, we need to show that if Blind K (Crypt T X) is in parts H ∪

synth H, then parts(Blind K (Crypt T X)) also is.

5The same issue appears when blind signatures are written as Crypt T (Blind K X).

102

But we need an analz rule to obtain plain signatures from blinded ones, given the

blinding factor:

[[Blind K X ∈ analz H; Key(K) ∈ analz H]] =⇒ X ∈ analz H

Because of the requirement analz into parts, this implies a corresponding rule in

parts:

Blind K X ∈ parts H =⇒ X ∈ parts H

Now, parts(Blind K (Crypt T X)) = Crypt T X. If Blind K (Crypt T X) is in parts H,

Crypt T X also is by the aforementioned rule. But if Blind K (Crypt T X) is in synth H,

we have a problem. Either it is also in H; in this case it is in parts, and everything is

fine. But if it is not in H, then we can only conclude that Blind K X is in synth H and T

is in H. This does not allow us to prove that Crypt T X is in parts H ∪ synth H. Indeed,

for Crypt T X to be in parts H, we would need a new and counter-intuitive parts rule

yielding it from Blind K X and T; this was tested, and broke other lemmas. And for

Crypt T X to be in synth, we would need X to be in synth; but from Blind K X in synth

H, we can only obtain X in parts H, which does not imply X in H.

It can be concluded that the expected relationships between message operators in

the existing theories imply some level of symmetry in message components. The-

oretical justification of the underlying issues can be provided by noting that adding

new primitives with behaviour akin to blind signatures to the msg datatype can yield a

context-sensitive language.

However, as the next paragraph shows, cryptographic primitives which do not fulfil

these constraints can still be specified at the protocol model level.

Blind signatures as a protocol step The final approach, which proved much sim-

pler, consists in specifying blind signatures as a protocol step. Whereas the blinding

process works just like a normal signature with a symmetric key, the reverse process,

unblinding, exhibits an asymmetry that warrants this extra rule. The Spy gains knowl-

103

edge of a plain signature if she knows the corresponding blinded signature and blinding

factor, modelled as a symmetric key:

| Unblinding:

[[evsb ∈ foo; Crypt (priSK V) BSBody ∈ analz (spies evsb);

BSBody = Crypt b (Crypt c (Nonce N)); b ∈ symKeys; Key b ∈ analz (spies evsb)]]

=⇒ Notes Spy (Crypt (priSK V) (Crypt c (Nonce N))) # evsb ∈ foo

Unblinding is also performed, implicitly, by agents in the third protocol step.

6.6.2 Inductive Protocol Model

Figure 6.4 shows the Isabelle theory hierarchy for FOO and the privacy extensions to

the Inductive Method.

Figure 6.4: Theory hierarchy for the verification of the FOO protocol with the privacy

framework

abbreviation Adm :: agent where Adm ≡ Friend 0

abbreviation Col :: agent where Col ≡ Friend (Suc(0))

Administrator and collector are introduced as translations Adm and Col of specific

agents.

104

The FOO protocol as seen above (§6.5) can then be specified by the six inductive

rules in §A.3.1.

The first protocol step involves a regular agent: he can be compromised, but cannot

be one of the election officials. He picks fresh keys for blinding and commitment. The

ballot, represented by a nonce, must also be fresh. In the conclusion of the predicate,

two Notes event are appended after the Says event. If they are omitted, the keys are

still considered fresh even though they have just been used.6 Hence the Notes events

are simply present to artificially specify the loss of freshness for b and c.

In the second step, the administrator reacts to the voter’s message only if the voter’s

name has not been recorded already. This is specified by the premise Notes Adm (Agent

V) /∈ set evs2. The administrator has received a message containing a ciphertext he

cannot open: it is protected by the blinding factor, which only the voter knows. Hence

the precondition over the structure of the received message only specifies that some

ciphertext of length one was signed by the agent. There can be any number of encryp-

tion layers, but we assume that the administrator can verify that it contains only one

atomic component. This condition is specified by stating that there is no message con-

catenation, denoted MPair, in parts of the ciphertext. Describing the contents of what

the administrator should receive from an honest agent more precisely would not be in

line with what the administrator can actually check. The genericity of this step (and of

step EV4 below) has huge implications in terms of proof complexity, but is necessary

to be realistic about the assumptions that agents can make. In the postcondition of the

rule, the administrator notes the name of the agent, preventing it from voting twice.

The third step features a return to explicitness, because V knows his blinding factor

and can therefore decipher what he receives entirely, provided it follows the prescribed

structure. If the received message does not follow that structure, it is discarded and

yields no reaction. The postcondition includes the first use of the Anms event, which

prevents the collector from extracting V’s identity from the message header.

6This unfortunate fact is due to the definition of used, which builds on parts. Keys used solely for

encryption are not extracted by parts. Session keys are not in any initial knowledge, hence they are not

considered “used” by default in this situation.

105

Message four is similar to the second one in that the collector can only make

generic assumptions about the message usually received from V. It consequently causes

the same proving difficulties as message two. Publication on a bulletin board is spec-

ified by a message sent from an agent, here the collector, to himself. Note that the

inductive nature of the model prevents us from formalising the vote collecting dead-

line: ideally, the collector should only publish commitments once all votes have been

received. This separation of phases is not modelled here.

In step five, if V sees his commitment on the bulletin board, he reveals his com-

mitment key by sending it over an anonymous channel. The condition Key c ∈ analz

(knows V evs5) is a crucial one: without it, nothing prevents the Spy from using this

protocol step to send (and hence know) a key she did not know in the first place! In-

deed, the Spy can act as a regular agent and therefore perform the first protocol step,

thus fulfilling the requirements for step five.

Finally, in the sixth and last message, the collector publishes V’s vote provided this

has not been done already.

6.7 Formal Verification

The inductive model of FOO has been specified. To inspect the security properties of

the protocol, statements about the protocol model must be defined and proven. We

start with a classic treatment.

6.7.1 Main Classic Results

Studying advanced properties of the protocol required starting with a classic confiden-

tiality treatment that was more complex than expected. This section will emphasise

the main results and their proofs.

lemma unique Nv2:

[[Crypt c (Nonce Nv) ∈ parts (spies evs); Crypt c (Nonce Nva) ∈ parts (spies evs);

Key c /∈ analz (spies evs); evs ∈ foo]]

106

=⇒ Nv=Nva

The first lemma is a unicity result about ballots. If two ballot commitments with

the same commitment key c appear in the network traffic, either the commitment key

is not confidential or the ballots are identical.

theorem Spy see c [simp]:

[[Says V Adm {|Agent V, Crypt (priSK V) (Crypt b (Crypt c (Nonce Nv)))|} ∈ set evs;

Anms V Col (Key c) /∈ set evs; V /∈ bad; evs ∈ foo]]

=⇒ Key c /∈ parts (spies evs)

This theorem, Spy see c, tells us that any commitment key used by an honest voter

in an instance of the first protocol step does not appear in the protocol traffic as long

as the voter has not disclosed it to the collector in step 5.

lemma unique c:

[[Crypt c (Nonce Nv) ∈ parts(spies evs); Crypt ca (Nonce Nv) ∈ parts(spies evs);

Nonce Nv /∈ analz (spies evs); evs ∈ foo]]

=⇒ c=ca

As for ballots, we also obtain a unicity result about commitment keys. Assume

two ballot commitments on the same ballot have appeared in the network traffic. Then

either this ballot is known to the Spy, or the commitment keys are equal.

We now turn to a strong confidentiality result about the blinding factor b:

theorem Spy see b2 [simp]:

[[Crypt (priSK V) (Crypt b (Crypt c (Nonce Nv))) ∈ parts (spies evs); V 6= Adm;

V /∈ bad; evs ∈ foo]]

=⇒ Key b /∈ parts (spies evs)

Assume it was used to blind a ballot commitment, which then appeared in the

traffic signed by an honest, regular voter. Then the blinding factor itself was never sent

over the network in any form (even encrypted).

107

The following theorem may seem obscure and not so useful. In fact, it was not

only crucial to prove the strong confidentiality result about Nv (see below), but also

required the greatest proof effort of all the classic results about FOO.

theorem Nonce secrecy:

evs ∈ foo =⇒

(∀KK. KK ⊆ − (range shrK) −→

(∀K ∈ KK. K ∈ symKeys −→ ¬ KeyWithNonce K Nv evs) −→

(Nonce Nv ∈ analz (Key‘KK ∪ (knows Spy evs))) =

(Nonce Nv ∈ analz (knows Spy evs)))

It states that adding keys of a certain class to the Spy’s knowledge does not influ-

ence her knowledge of a ballot. We will be more precise soon.

This theorem was needed because of our strategy of using session keys. The two

different types of implication in the theorem statement, “=⇒” and “−→”, refer to

meta-level implication and object-level implication (see §3.1), respectively. Meta-level

implication represents inference at the theorem level. The KeyWithNonce predicate

used here was inspired by the one used by Paulson in his verification of the Yahalom

theorem. We define it as follows:

definition KeyWithNonce :: [key, nat, event list] ⇒ bool where

KeyWithNonce c Nv evs ≡

∃ V B b. Says V B {|Agent V, Crypt (priSK V) (Crypt b (Crypt c (Nonce Nv)))|} ∈ set evs

It can be seen that stating KeyWithNonce c Nv evs is equivalent to stating that c

and Nv can be found as commitment key and ballot, respectively, in an instance of the

first protocol message. They are thus associated. We can now describe the statement

of Nonce secrecy more clearly: all keys that are not shared keys, that are symmetric

and that do not appear in conjunction with a nonce in an instance of the first protocol

message do not influence the Spy’s knowledge of that nonce.

Once Nonce secrecy is proven, we are able to verify the confidentiality of any

ballot used by an honest voter in the first protocol step as long as the associated com-

mitment key is confidential:

108

theorem Nv secrecy [simp]:

[[Says V Adm {|Agent V, Crypt (priSK V) (Crypt b (Crypt c (Nonce Nv)))|} ∈ set evs;

Key c /∈ analz (spies evs); V /∈ bad; evs ∈ foo]]

=⇒ Nonce Nv /∈ analz (spies evs)

6.7.2 Main Privacy Results

The following theorem, foo V privacy asynth, is the culmination of the entire proof

process and states that the FOO protocol guarantees pairwise unlinkability to all honest

voters that started the protocol.

theorem foo V privacy asynth:

[[Says V Adm {|Agent V, Crypt (priSK V) (Crypt b (Crypt c (Nonce Nv)))|} ∈ set evs;

a ∈ (asynth (aanalz Spy evs));

Nonce Nv ∈ a; V /∈ bad; V 6= Adm; V 6= Col; evs ∈ foo]]

=⇒ Agent V /∈ a

More precisely, assume that the regular, honest voter V sent the administrator a

message in line with the first step of the protocol, containing a blinded commitment

on the vote Nv. Also assume that this very vote is in a message set of association

syntheses. Then the name of V is not in that set.

Before turning to the proof itself, we focus on the most important proof elements,

which are mainly results about associations.

A fundamental result is foo V privacy aanalz, which looks similar to the theorem

foo V privacy asynth.

theorem foo V privacy aanalz:

[[Says V Adm {|Agent V, Crypt (priSK V) (Crypt b (Crypt c (Nonce Nv)))|} ∈ set evs;

a ∈ (aanalz Spy evs); Nonce Nv ∈ a; V /∈ bad; evs ∈ foo]]

=⇒ Agent V /∈ a

However, whereas the latter is a statement about asynth, hence about association

synthesis, the former only considers sets belonging to aanalz, that is associations aris-

109

ing from individual messages. Whenever an honest voter performed the first step of

the protocol, the voter’s identity and vote cannot be found in the same association set.

The lemma called asynth insert is a direct consequence of the definition of asynth

quoted in 6.3.2.

lemma asynth insert:

a ∈ asynth(insert a1 as) =⇒

(a=a1 ∨

a ∈ asynth as ∨

(∃ a2 m. a2 ∈ as ∧ a = a1 ∪ a2 ∧ m ∈ a1 ∧ m ∈ a2 ∧ m 6= Agent Adm ∧ m 6= Agent Col))

By introducing the various cases that an application of asynth may imply, it pro-

vides a useful rewrite rule for expressions involving the operator name.

The next three theorems allow more precise reasoning about messages that contain

encryption. They are all concerned with the situation where a message yields an asso-

ciation set containing at least one ciphertext. They are necessary for dealing with sit-

uations where protocol messages are not completely specified. For instance, an agent

may have to transmit an encrypted commitment without even being able to check that

the commitment is actually about a vote. In those situations, protocol step specification

must model agents’ limited knowledge when dealing with sealed messages. However,

even when the complete contents of a ciphertext are not known, a number of scenarios

can be distinguished. A number of encryption key values and partial knowledge of the

ciphertext contents lead to contradictions. For instance, classic results about the pro-

tocol reveal that a blinding key used by an honest agent always remains confidential.

Possible configurations are therefore made explicit in the following results.

lemma aanalz PR:

[[a ∈ aanalz Spy evs; Crypt P R ∈ a; evs ∈ foo]] =⇒

(Agent Col /∈ a ∨

(Agent V ∈ a −→ V ∈ bad ∨ V = Col) ∨

(Nonce Nv /∈ parts {R})) ∧

((Nonce Nv /∈ a) ∨

110

(Key (invKey P) ∈ analz (spies evs) ∧ Agent V /∈ parts {R}))

Lemma aanalz PR states properties about the possible forms of a generic cipher-

text appearing in any association. Its conclusion is expressed as a conjunction between

two predicates that are themselves disjunctions. The first conjunct relates to the pres-

ence of an agent name in the association. If the name of the collector appears in the

association and any nonce (a vote) is an atomic component of R, then no agents that

are both honest and different from the collector can also be in a. The second conjunct

states that if any nonce is part of the association, then the Spy must be able to decrypt

the ciphertext and no agent name can be an atomic component of R.

lemma aanalz AdmPR V Nparts:

[[a ∈ aanalz Spy evs; Crypt (priSK Adm) (Crypt P R) ∈ a; evs ∈ foo]]

=⇒ Nonce Nv /∈ parts {R} ∨

Key (invKey P) /∈ analz (knows Spy evs) ∨

(Agent V ∈ a −→ V ∈ bad ∨ V = Adm ∨ V = Col)

Then, lemma aanalz AdmPR V Nparts relates to the specific case when a cipher-

text signed by the administrator is in an association. It establishes a disjunction: either

no nonce is an atomic component of the ciphertext’s body, or the Spy cannot open

the ciphertext inside the signature, or there is no regular, honest agent name in the

association.

lemma aanalz Adm:

[[Says V Adm {|Agent V, Crypt (priSK V) (Crypt b (Crypt c (Nonce Nv)))|} ∈ set evs;

a ∈ aanalz Spy evs; Agent Col /∈ a; Agent V ∈ a; V /∈ bad;

Crypt P R ∈ a; Nonce Nv ∈ parts {R}; evs ∈ foo]]

=⇒ (P = priSK V ∨ P = priSK Adm ∨ P = b) ∧

(P 6= priSK Adm ∨ R = Crypt b (Crypt c (Nonce Nv)))

Finally, lemma aanalz Adm is still about associations containing a ciphertext. Like

foo V privacy aanalz, it binds the variables involved in a version of the first step of

the protocol. Assume an association contains the name of an honest agent who already

111

sent a message corresponding to step one. Also assume it contains a ciphertext Crypt

P R, and that the nonce from step one is in parts of R. If the name of the collector is

absent from the association, then the following conclusions hold:

• If P is neither the signing key of the voter mentioned in the precondition nor the

signing key of the administrator, then it must be the blinding factor;

• If P is the administrator’s signing key, then the body of the ciphertext is exactly

the body of the message signed by the voter in the bound first message.

6.7.3 Proof of the Main Theorem

Proving privacy by foo V privacy asynth is done, as usual in the Inductive Method,

by induction on the protocol model. The full proof of this theorem can be found in

§A.3.2.

Every protocol step generates a subgoal. When all subgoals are closed, the theorem

is proven. Developing the proof required considerable effort. After eliminating redun-

dancies and streamlining, its number of step was reduced. It will be shown that despite

its length, the proving strategy is general, hence reusable for different protocols.

Induction and simplification leaves us with seven subgoals: the six protocol steps,

plus Fake. The Fake is closed thanks to the classic reasoner blast. Its proof is simple

because messages sent by dishonest agents do not yield associations. Intuitively, the

goal of the Spy is to extract plausible associations, not make up new ones. However, it

keeps its traditional Dolev-Yao attacker role and influences all usual theorems proven

for the protocol; those are used in the privacy proof. What is more, the Spy indi-

rectly influences the associations by sending forged messages to which agents react.

For instance, in the second step, the administrator is not able to inspect the received

ciphertext and therefore even forwards illegitimate content stemming from messages

from the Spy.

The subgoal arising from EV1 is first simplified by remarking that fresh keys (the

blinding factor and commitment key) can never be known to the Spy — they cannot

112

yet be in the set analz (knows Spy evs1). We then perform a case split about the

agent Va involved in the instance of the first protocol step generated by this subgoal.

If Va is dishonest (a member of the bad set), then the message it sent yields no new

association and the subgoal concludes thanks to the inductive hypothesis. If Va is

an honest agent, we must apply, for the first time, asynth insert. This lemma is of

recurrent use throughout the proof because it allows us to split the asynth set. For

instance, this stage of the proof features the following precondition:

a ∈ asynth (insert

{{|Agent Va, Crypt (priSK Va) (Crypt ba (Crypt ca (Nonce Nva)))|},

Agent Va, Crypt (priSK Va) (Crypt ba (Crypt ca (Nonce Nva))),

Agent Va, Agent Adm, Crypt ba (Crypt ca (Nonce Nva))}

(aanalz Spy evs1))

Let us call X the set such that a ∈ asynth (insert X (aanalz Spy evs1)).

Applying asynth insert leaves us with three possibilities:

1. a = X.

2. a ∈ asynth (aanalz Spy evs1).

3. There exists a2 in aanalz Spy evs1 and an element m such that a is the union of

a2 and X and m is both in X and in a2.

The inductive hypothesis tells us that Nv is in a and X contains no nonces, so

the first disjunction is excluded. The second disjunction is eliminated thanks to the

lemma nv fresh a2, not quoted here, which states that fresh nonces do not appear in

association syntheses.

If a is a union, more precision is required. First, if the agent V from the inductive

hypothesis and the agent Va introduced by the induction are different, then V /∈ X and

therefore V must be in a2. Since Nv is also in a2, foo V privacy aanalz leads us to a

contradiction.

Otherwise, V = Va. If Nv and Nva are equal, Nv must be fresh like Nva. The auxil-

iary lemma aanalz traffic, according to which elements in associations which are not

113

agent names must have appeared in the traffic, solves this case (fresh elements never

appeared in network traffic). On the other hand, if Nv 6= Nva, the element in common

m can be any of the elements in X . We appeal to another lemma, association Nv. It

is specifically tailored for this subgoal, used only here, and shows that an association

containing a nonce cannot additionally contain any of the possibilities for m listed here

except for V. Together with foo V privacy aanalz, that takes care precisely of the case

m = V, this solves the subgoal.

The use of asynth insert to split the association synthesis is a technique used for

all subgoals of the theorem. It turns out that the third disjunction generates the bulk of

the proving work for the remaining subgoals. We will therefore focus on it. It requires

taking a close look at the structure of sets in aanalz.

Subgoals arising from protocol steps two and four are much larger than the other

ones because of the generic specification of the steps. For instance, in the second

protocol step, the administrator has received a signed ciphertext from the voter. The

administrator can extract the ciphertext from the signature, but has no means in general

to look inside. We only assume that it is possible to know that the ciphertext contains

no more than one atomic component, by inspecting its length. However, the precise

nature of the plaintext is unknown in general and this generality in the specification

of the inductive step explains the additional complexity of the proof. It is necessary

if the precondition is to be realistic. Likewise, in step four, the collector receives a

signed ciphertext that he cannot open in general. The concrete consequence in terms

of association syntheses is that potential common elements m are not listed explicitly

in the goal preconditions. Instead of belonging to a finite set of bound variables, only

partial information is known about them. For instance, we may only know that an

element m can be deduced from some ciphertext via analzplus. By contrast, for non-

generic protocol steps, we obtain an explicit set and the proof is much easier.

A number of results about elements in aanalz are available, such as aanalz PR

and aanalz Adm. These theorems are stated with weak premises and offer a number of

conclusions as disjunctions. The most systematic proof strategy is therefore to perform

114

case splits about the ciphertext contained in aanalz. As this is done, one can reason

more precisely about encryption keys and plaintexts until a contradiction is reached

thanks to the aforementioned results. One crucial distinction is whether the name of

the collector appears in the association. If such is the case, the elements in aanalz arose

from the collection step EV4. Conversely, if Agent Col /∈ a2, the association set in the

precondition was generated by another protocol step. The encryption key P from the

ciphertext Crypt P R, assumed to be in an association, is then compared in turn to the

voter’s signing key, the administrator’s signing key, and to the blinding factor. Contra-

dictions are reached in every case. The value of the payload R is also compared with

the voter’s blinded vote commitment Crypt b (Crypt c (Nonce Nv)). Those different

situations obviously refer to various ciphertext values naturally generated by the pro-

tocol steps. In essence, the proving strategy amounts to zooming in sufficiently into

the various possible association configurations to uncover contradictions that are not

apparent at a more general level.

The outline of this proving strategy is not dependent on a given protocol. Let us

recall the important steps:

1. For every subgoal, split the association syntheses set asynth using asynth insert.

2. The subgoals arising from explicit protocol steps are straightforward to close

because the set of potential common elements m becomes explicit as well.

3. For more general subgoals, case splits about the possible values of initially

generic ciphertexts are combined with lemmas describing their structure in as-

sociations in a systematic way.

6.7.4 Proof of the Supporting Theorems

Rather than describing the full proof of every theorem required for the privacy one, we

focus on aanalz PR due to space constraints. It is of repeated use in the privacy proof,

appearing in it eleven times, and its proof exemplifies the kind of reasoning required

for the other supporting theorems. Recall its statement from earlier (6.7.2); it details

115

the form of elements of aanalz that contain a ciphertext.

As expected, complications arise again from the generic steps, namely EV2 and

EV4. As the other subgoals are easier to prove, let us concentrate on EV2, as the proof

for EV4 is similar.

We require the following subsidiary results in addition to standard lemmas from

the existing Inductive Method framework:

• analzplus into parts: Elements in the set analzplus X ks (recall ks is the external

key set) are in parts X.

• no pairs: If a message contains only atomic components and already contains

an agent name in its parts set, a number of other elements cannot be in the parts

set. Specifically:

[[Agent Va ∈ parts{R}; ∀A B. {|A, B|} /∈ parts {R};

Crypt (priSK V) (Crypt ca (Nonce Nv)) ∈ parts {R} ∨

Crypt (priSK V) (Crypt b (Crypt c (Nonce Nv))) ∈ parts {R} ∨

Crypt b (Crypt c (Nonce Nv)) ∈ parts {R} ∨

Number N ∈ parts {R} ∨

Nonce Nv ∈ parts {R} ∨

(Agent T ∈ parts {R} ∧ T 6= Va) ∨

Crypt ca (Nonce Nv) ∈ parts{R}]] =⇒ False

• analzplus Nv: Assume an analzplus Q (analz H) set contains a ciphertext and a

nonce. If parts Q contains only atomic components, then the decryption key of

the ciphertext must be in analz (insert Q H).

We can now describe the proof of the second subgoal. The case where the admin-

istrator (Adm) is dishonest is closed easily using a standard property of analz and the

fact that he is the message sender in EV2. Else, we must distinguish cases on the basis

of the origin of the association in the inductive hypothesis. The first possibility is that

it was generated by the EV2 message introduced by the induction. In that case, the

key P in the aanalz PR theorem statement could either be the administrator’s signing

116

key, or the encryption key of the ciphertext that he signed. A third possibility is that

the entire Crypt P R is embedded deeper in the signed ciphertext. Let us examine each

possibility in turn.

In the first case, we must show that an agent name (either the collector or a regular

voter) and a nonce cannot be present in analzplus R at the same time. This is shown

by combining analzplus into parts and no pairs. In the second case, the ciphertext

Crypt P R from the theorem precondition is exactly the ciphertext Crypt Pa Ra signed

by the administrator in this version of the second protocol step. Disentangling the

precondition conjunction leads to the same scenario and an additional one that entails

proving that if the inverse of key P is known to the attacker in the first place, it is all

the more known to her after getting hold of R.

If Crypt P R is embedded in the ciphertext generated by the administrator, we

must perform a few additional case splits but the line of reasoning is the same, with

the additional use of analzplus Nv which allows us to reason about the properties of

analzplus.

It is clear that even though specifying the possible forms of elements in aanalz

requires inspecting a number of scenarios, the proving process is straightforward once

some crucial building blocks are established. Notably, the three subsidiary results we

listed earlier (analzplus into parts and so on) are stated without any reference to the

FOO protocol — they are protocol-independent and can be reused directly.

6.8 Comparison

In this section, we compare features of our approach with the ones of two established

methods, relying on the ProVerif and AKiSs tools.

Precision Since ProVerif systematically uses under-approximations7, it is not pre-

cise in general. While it will not deem a flawed protocol correct, it may fail to verify

a correct protocol due to the detection of a false attack. For AKiSs, precision depends

7This means that a stronger property than the desired one is checked.

117

on the class of the process modelling the protocol. Those which can be modelled using

determinate processes can be checked directly for observational equivalence and trace

equivalence (≈t) because of their coincidence with coarse trace equivalence (≈ct) in

that class. On the other hand, some e-voting protocols, particularly those using phases

like FOO, must be under-approximated by fine-grained trace equivalence (≈ft) be-

cause they do not lead to determinate processes. In that case, like for ProVerif, the risk

of spurious attack detection remains. Unlinkability in the Inductive Method is treated

by inductive theorem proving, so there can be no false positives: when it doesn’t hold,

lemmas stating it cannot be proven. However, precision requires using the gener-

alised association synthesiser. When unlinkability cannot be established, attacks are

not given explicitly but examination of the remaining subgoal allows the user to trace

back the flaw to the problematic protocol step. This interactivity gives greater insight

into the protocol’s intricacies but requires more effort than the aforementioned tools.

Another aspect of precision is session bounding. While the Inductive Method and

ProVerif both support unlimited protocol sessions, the computational cost of AKiSs

blows up exponentially when more sessions are interleaved.

Automation vs. interaction AKiSs is fully automated. Privacy in ProVerif was

checked by hand in [76]. An automatic verification in ProVerif was presented in [46],

but a translation algorithm is involved and its correctness is not formally proven. In

[44], a ProVerif privacy proof for a fixed number of voters is partially automated. The

Inductive Method is mechanised in Isabelle/HOL, an interactive theorem-prover. As

noted above, this requires user interaction at proof development time, whereas ProVerif

and AKiSs require it at tool development time.

Termination Termination is guaranteed neither in ProVerif nor AKiSs. While ProVerif

features a resolution method that ensures termination for a specific syntactic transfor-

mation of protocol models, this method is limited to secrecy and authentication prop-

erties [23]. Since the Inductive Method is based on induction, there is no termination

issue if the user is sufficiently proficient.

118

Supported cryptographic primitives Associative/commutative (A/C) operators such

as exponentiation or XOR are currently supported by only one of the tools, ProVerif

[79], despite their usefulness for protocol modelling. Blind signatures, which are com-

monly used in e-voting protocols, are supported by all three tools compared in this

chapter. AKiSs supports a larger variety of cryptographic primitives than ProVerif and

the current version of the Inductive Method. In [36], Chadha et al. conjecture that all

primitives that can be modelled in a rewrite system fulfilling a specific convergence

property are supported. Notably, trapdoor commitments can be modelled. By contrast,

supporting new cryptographic primitives in the Inductive Method requires modelling

them through additional rules using existing primitives or changing the underlying

framework. The latter option requires more work since specific assumptions about

the interaction of operators are made in the theory Message, which is always imported.

On the other hand, major modifications have been performed successfully, for instance

in [86], demonstrating the flexibility of the Method. New cryptographic primitives can

be added easily to the applied pi calculus by devising new equational theories, but the

resulting model may be beyond the scope of the tool’s automatic analysis [45].

Efficiency The authors of [36] state that the automated analysis of privacy for FOO

requires a few minutes on a modern laptop. Loading and verifying all FOO theories

in Isabelle/HOL takes a similar time. However, our FOO theory also establishes other

useful security guarantees about the protocol. Another metric is the respective human

effort necessary to formalise protocols and their goals before the actual analysis. This

aspect remains to be quantified precisely in our approach, but the modelling step of the

verification process is clearly the quickest, usually done in a few days. On the other

hand, the actual proof process is a matter of weeks if the framework exists, and the

framework development itself took us months.

Synthesis Table 6.1 summarises our comparison but does not aim for exhaustivity.

1Those that can be modelled in an optimally reducing convergent rewrite system.

119

ProVerif AKiSs Inductive Method

Precision Precise for determi-

nate processes, else

under-approximation

Under-

approximation

Precise for

unbounded asso-

ciation synthesis

Operation Partial automation Full automation Interactive prov-

ing

Unbounded ses-

sions

Yes No Yes

Systematic termina-

tion

No No Yes, assuming

user proficiency

Supported crypto-

graphic primitives

Usual + Blind sig-

natures, bit commit-

ments, proxy reen-

cryption

Large set conjec-

tured1

Usual + Blind sig-

natures, bit com-

mitments

Table 6.1: Synthesis of characteristics of mechanised FOO privacy analyses

6.9 Discussion

We have presented the first interactive theorem proving-based analysis of voter privacy,

to offer an alternative means of investigation to consolidated work based on process

equivalence. Privacy is modelled as an unlinkability property between a voter and

her ballot. Extensions to the Inductive Method are implemented in Isabelle/HOL to

specify associations between elements and combinations of associations that share a

common element.

The initial proof development effort was significant, but a coherent line of rea-

soning emerges from the proof. This general strategy and a number of protocol-

independent results about the new operators support the case of re-usability for other

e-voting protocols. Interactive proofs entail a level of clarity about protocol scenar-

ios that is unavailable from automatic tools. The inductive nature of our specification

eliminates termination issues or inherent size limitations. While the benefits of auto-

mated tools are clear, our approach sheds a complementary light on voter privacy by

its operational view.

Other privacy-type properties such as receipt-freeness and coercion-resistance ought

120

to be specified in the Inductive Method. Additionally, e-voting protocols that are not

amenable to analysis in the process equivalence model must be studied in our frame-

work to investigate its domain of applicability. We would also like to program some

of the recurring proof steps as ML tactics. Part of this work was published in [33].

121

Chapter 7

Discussion

We contributed to the formal analysis of security protocols by extending the Inductive

Method in a number of ways. After outlining the problem of network security and

issues specific to security protocols, we presented a selection of existing protocol anal-

ysis techniques, with an emphasis on the Inductive Method and its implementation in

the Isabelle/HOL theorem prover.

A way to verify composed protocols in the Inductive Method was then presented.

The holistic analysis of a certification protocol composed with a simple authentication

protocol was performed to present empirical evidence.

We then turned to the problem of cryptographic primitive specification, exempli-

fied by a comparative analysis of two versions of an ISO/IEC 9798-3 protocol. One of

these versions featured auditable identity-based signatures.

Our main contribution, the extension of the Inductive Method to deal with elec-

tronic voting protocols, was then introduced. Another new cryptographic primitive,

blind signatures, was specified as a protocol step after an initial attempt to specify it

in the message datatype. Privacy, seen as unlinkability between two pieces of infor-

mation, was introduced and compared to the indistinguishability approach. We then

described our model of the FOO protocol. After proving a number of classic confiden-

tiality properties about the protocol model, we focused on unlinkability.

122

7.1 Domain of Applicability of the Inductive Method

General considerations about the Inductive Method can be made from this work. A

progressive realisation was the difficulty in tailoring the message datatype and oper-

ators in the Message theory to our needs. New applications frequently require mod-

elling cryptographic primitives that were never used before in the framework. The

natural way of specifying additional cryptographic primitives is to adapt the part of

the framework that prescribes the rules governing them: the inductive definitions of

the analz, parts and synth message operators. Those definitions, however, cannot be

changed in isolation: they are all interdependent and many important lemmas describe

their properties. These lemmas are then necessary for the proving process to deal with

the threat model.

To be more specific, the spy analz tactic (very often used when trying to close the

subgoal arising from the Fake protocol rule) relies on lemmas, such as Fake parts insert,

that themselves build upon other lemmas. For instance, Fake parts insert requires the

lemma parts synth which prescribes a specific relationship between parts and synth,

namely parts (synth H) = parts H ∪ synth H. This type of expected relationship be-

tween message operators has often been the decisive bottleneck in our modification

attempts. One cannot simply dispose of lemmas like parts synth, as they provide the

automation that is needed for a reasonably speedy proving process. Programming

substitute tactics for the Fake case could solve this issue, but seems like a major under-

taking. Worse, it may even be impossible to prove security goals that would otherwise

hold if such major changes are made to operator interplay.

The alternative, then, is to only perform changes that preserve operator dependen-

cies. Inevitably, the range of modifications that can be done are limited if one is to

keep the current framework. Empiric evidence is provided by the fact that two of the

new cryptographic primitives that we needed to model in the scope of this thesis did

not preserve these dependencies.

However, as stated earlier, changing imported theories is not the only way of intro-

123

ducing new cryptographic primitives. Specifying them as part of the protocol model,

as we did for blind signatures, can be much easier and greatly limit the risks of un-

wanted side-effects. Determining the range of primitives that can be specified in such

a way remains to be done, but it seems reasonable to try this more straightforward

approach first, before any framework changes. In terms of costs, specifying crypto-

graphic primitives in the protocol model is less aesthetically satisfying: the extension

is less integrated in the framework. We did not encounter other negative consequences.

Integration still seems sufficiently tight for the threat model to be kept intact.

Our work also shows that the Inductive Method can be applied to previously unex-

plored protocol classes, such as composed or electronic voting ones.

7.2 Future Work

Much work remains to make the capabilities of the Inductive Method more compre-

hensive. One task would consist in gathering more formal evidence for the hypothesis

just discussed — that cryptographic primitive specification at the protocol level is not

detrimental to the validity of the threat model. This involves ascertaining that there

are no cases were essential rewriting is not being done due to the less tight integration

between the new cryptographic primitive and the definition of msg.

7.2.1 Protocol Composition

In the case of protocol composition, inductive models involving a larger number of

protocols should be analysed (our case study in Chapter 4 featured only two). To get a

sense of the boundaries of this approach, it would be profitable to focus on composed

protocols that are too complex to be analysed automatically by tools such as Scyther,

and too intricate to benefit from the composition theorem described by Cremers.

124

7.2.2 Electronic Voting

Major work also remains to be done for broader support of electronic voting protocols

and their properties. In this thesis, we only addressed voter privacy; natural avenues for

further research involve considering receipt-freeness and coercion-resistance. Those

properties are similar but are expected to require different modellings. For instance,

in the case of coercion-resistance, the target security property is that a voter cannot

prove to a coercer how he voted, even assuming cooperation of the voter with the

coercer. This cooperation aspect could be modelled by allowing the voter to share

private information with the coercer — here we are reminded of the bad set (agents in

bad share their private knowledge with the Spy).

Furthermore, much light would be shed on the potential of our developments by

analysing other electronic voting protocols. As in the case of protocol composition,

one should focus on what is currently out of reach of existing methods. Since process

equivalence methods are currently the most common, investigating the protocols that

these methods are currently unable to tackle, such as the ones featuring state changes,

would reveal how much complementarity exists between the two strategies.

Generalising the Association Synthesiser The asynth operator should be gener-

alised to take into account unlimited layers of association synthesis. The definition

presented earlier does not account for transitive associations:

• {|Agent V, Number T|} in as and {|Number T, Nonce N|} in as implies {|Agent V,

Number T, Nonce N|} in asynth as (the union is performed for m = Number T).

• However, {|Agent V, Number T|} in as and {|Number T, Crypt K X|} in as and

{|Crypt K X, Nonce N|} in as does not imply {|Agent V, Number T, Crypt K X,

Nonce N|} in asynth as.

A natural generalised definition could be as follows:

inductive set

asynth :: msg set set ⇒ msg set set

125

for as :: msg set set

where

asynth Base [intro]: a ∈ as =⇒ a ∈ asynth as

| asynth Build [intro]: [[a1 ∈ asynth as; a2 ∈ asynth as; m ∈ a1; m ∈ a2;

m 6= Agent Adm; m 6= Agent Col]]

=⇒ a1 ∪ a2 ∈ asynth as

In practice, we cannot prove unlinkability using this definition because statements

over asynth(aanalz) never get broken down to statements over aanalz. The reason is

that any element in asynth may be the union of other elements in asynth. Rewriting

seems to loop for this reason. An alternative definition is therefore needed. Preliminary

tests were more successful with definitions such as this one:

inductive set

asynth2 :: msg set set ⇒ msg set set

for as :: msg set set

where

asynth2 Base [intro]: a ∈ as =⇒ a ∈ asynth2 as

| asynth2 Build [intro]: [[a1 ∈ asynth2 as; a2 ∈ asynth2 as; m ∈ a1; m ∈ a2; ∀ X. as 6= {X};

∼ (a1 ⊆ a2); ∼ (a2 ⊆ a1); m 6= Agent Adm; m 6= Agent Col;

∀ z. z ∈ a1 ∪ a2 −→ (∃ f . f ∈ as ∧ z ∈ f)]]

=⇒ a1 ∪ a2 ∈ asynth2 as

The crucial precondition here is the last one: every element appearing in one of the

association synthesis sets must find its origin somewhere in the initial base set. Another

important precondition (the fifth one) states that the Build rule is not applicable to the

situation where as is a singleton. This behaviour is justified by the fact that there is no

point building unions over a set of sets if that set is a singleton.

While this version of a generalised asynth was fairly successful on simple case

studies, proof complexity grew quickly once we tried more advanced examples. This

was somewhat surprising giving the relative simplicity of the operator. It is not clear

what additional tweaks are needed to obtain a generalised asynth operator that can be

126

used efficiently for unlinkability proofs of full protocols. We plan to continue investi-

gating this question.

7.2.3 Framework Evolution

A number of evolutions of the Inductive Method were suggested by our work. Some

were mentioned earlier in this thesis explicitly, some only in private conversation.

Threat models diversity The Dolev-Yao attacker model should be one available

threat models out of a few, not the only one. The Dolev-Yao model was created at

a time when computer networks were structured very differently from now. Current

network configurations such as the Internet call for a threat model with more than one

attacker. Whether attackers cooperate or compete should also be optional. A more

modern incarnation of the Inductive Method would feature all these threat models, and

allow the analyst to select the one more consistent with the real-life implementations

of the protocol under analysis.

Cryptographic primitives support The question of cryptographic primitives speci-

fication should be settled. Either it is accepted that all new primitives can be modelled

at the protocol level without negative impact, and then this should be the canonical

strategy; or the framework theories should be revamped to include a much broader

selection of cryptographic primitives, to cover at larger fraction of their use in current

protocols. Special constructions like XOR and exponentiation cannot be specified in

the Inductive Method as of now; adding support for them would be one more signifi-

cant improvement.

Specialisation More generally speaking, the way forward for protocol verification

may be a clearer identification of strengths and weaknesses of available methods and

tools, conducive to a more marked specialisation of the latter. For the Inductive

Method, this would mean focusing more narrowly than now on protocols or threat

models that other tools struggle with. The research community of the field would

127

benefit from increased productivity, and the specific benefits of various tools would

become more explicit.

7.3 Conclusion

The formal analysis of security protocols is a broad topic. New applications frequently

appear, bringing with them the need for new security guarantees, models and specifi-

cations. The field has shown much progress recently, but no single tool is capable of

dealing with all protocol classes and properties. A need for specialisation therefore

remains. In this thesis, we extended the Inductive Method’s domain of application to

deal with new cryptographic primitives, protocol composition and aspects of electronic

voting. While requiring more user interaction at the time of proof development than

some other formal methods, interactive theorem proving provides detailed insight into

protocols and their properties. The technicalities of formal methods should not divert

from the concrete, real-world need for security guarantees, especially for sensitive ap-

plications such as electronic voting. With its flexibility and specificity, the Inductive

Method bears potential for further advancements of the field.

128

Appendix A

Isabelle Theories

For adaptations of existing theories such as Message, Event or Public, only the main

modified fragments are shown here.

A.1 Proofs for the Protocol Composition Case Study

A.1.1 Certification.thy

theory Certification imports Public begin

abbreviation

CA :: agent where CA == Server

inductive set cert :: event list set

where

Nil: [] ∈ cert

| Fake: [[evsf ∈ cert; X ∈ synth (analz (knows Spy evsf))]]

=⇒ Says Spy B X # evsf ∈ cert

| Cert1: evsc1 ∈ cert

=⇒ Says A CA {|Agent A, Agent B|} # evsc1 ∈ cert

| Cert2: [[evsc2 ∈ cert; Gets CA {|Agent A, Agent B|} ∈ set evsc2;

A 6= B]]

129

=⇒ Says CA A

{|Crypt (priSK CA) {|Key (pubEK A), Agent A|},

Crypt (priSK CA) {|Key (pubEK B), Agent B|}|}

evsc2 ∈ cert

| Reception:

[[evsr ∈ cert; Says A B X ∈ set evsr]]

=⇒ Gets B X # evsr ∈ cert

lemma A 6= B =⇒ ∃ evs ∈ cert. Says CA A {|Crypt (priSK CA) {|Key (pubEK A), Agent A|},

Crypt (priSK CA) {|Key (pubEK B), Agent B|}|} ∈ set evs

apply (intro exI bexI)

apply (rule tac [2] cert.Nil [THEN cert.Cert1, THEN cert.Reception,

THEN cert.Cert2], possibility)

done

lemma Says CA cert1:

[[Says CA A {|Crypt (priSK CA) {|Key K, Agent A|},

certB|} ∈ set evs; evs ∈ cert]]

=⇒ K = pubEK A

apply (erule rev mp)

apply (erule cert.induct, simp all)

done

lemma Says CA cert2:

[[Says CA A {|certA, Crypt (priSK CA) {|Key K, Agent B|}|}

∈ set evs; evs ∈ cert]]

=⇒ K = pubEK B ∧ A 6= B

apply (erule rev mp)

apply (erule cert.induct, simp all)

done

130

lemma Says CA cert:

[[Says CA A {|Crypt (priSK CA) {|Key K1, Agent A|},

Crypt (priSK CA) {|Key K2, Agent B|}|} ∈ set evs;

evs ∈ cert]]

=⇒ K1 = pubEK A ∧ K2 = pubEK B ∧ A 6= B

apply (blast dest: Says CA cert1 Says CA cert2)

done

declare analz into parts [dest]

declare Fake parts insert in Un [dest]

lemma Spy see priSK [simp]:

evs ∈ cert =⇒ (Key (priSK A) ∈ parts (knows Spy evs)) = (A ∈ bad)

by (erule cert.induct, simp all, force)

lemma Spy analz priSK [simp]:

evs ∈ cert =⇒ (Key (priSK A) ∈ analz (knows Spy evs)) = (A ∈ bad)

by auto

lemma cert authentic:

[[Crypt (priSK CA) {|Key K, Agent A|} ∈ parts(knows Spy evs);

evs ∈ cert]]

=⇒ (∃ certB.

Says CA A {|Crypt (priSK CA) {|Key K, Agent A|}, certB|}

∈ set evs)

∨

(∃ B certB.

Says CA B {|certB, Crypt (priSK CA) {|Key K, Agent A|}|}

∈ set evs)

apply (erule rev mp)

apply (erule cert.induct, simp all)

apply (blast dest: Spy see priSK)

apply blast

done

131

lemma Gets imp Says :

[[Gets B X ∈ set evs; evs ∈ cert]] =⇒ ∃A. Says A B X ∈ set evs

apply (erule rev mp)

apply (erule cert.induct, auto)

done

lemma Gets imp knows Spy:

[[Gets B X ∈ set evs; evs ∈ cert]] =⇒ X ∈ knows Spy evs

apply (blast dest!: Gets imp Says Says imp knows Spy)

done

lemma Gets cert authentic Fake:

[[Gets A (Crypt (priSK CA) {|Key K, Agent B|}) ∈ set evs;

evs: cert]]

=⇒ K = pubEK B

apply (blast dest: Gets imp knows Spy [THEN parts.Inj]

cert authentic

Says CA cert1 Says CA cert2)

done

lemma Says knows:

A 6= Spy =⇒ knows A (Says Spy B X # evs) = knows A evs

apply (unfold knows def)

apply auto

done

lemma Says knows2:

A 6= Spy ∧ A 6= B =⇒ knows A (Says B C X # evs) = knows A evs

apply (unfold knows def)

apply auto

done

132

lemma Gets knows:

A 6= Spy ∧ A6= Ba =⇒ knows A (Gets Ba X # evs) = knows A evs

apply (unfold knows def)

apply auto

done

lemma cert authentic agent:

[[Crypt (priSK CA) {|Key K, Agent B|} ∈ parts(knows A evs);

evs ∈ cert]]

=⇒ (∃ D certB.

Says CA D {|certB, Crypt (priSK CA) {|Key K, Agent B|}|}

∈ set evs)

∨

(∃ certB.

Says CA B {|Crypt (priSK CA) {|Key K, Agent B|}, certB|}

∈ set evs)

apply (erule rev mp)

apply (case tac A = Spy)

apply (erule cert.induct, simp all)

apply spy analz

apply blast

apply (erule cert.induct, simp all)

apply (metis Crypt notin initState)

apply clarsimp

apply (metis Says knows)

apply (case tac Aa6=A)

apply (metis Says knows2)

apply (simp add: knows Says)

apply (case tac A = CA)

133

apply (simp add: knows Says)

apply blast

apply (metis Says knows2)

apply (case tac Crypt (priSK CA) {|Key K, Agent B|} ∈ parts (knows Spy evsr))

apply (drule cert authentic, assumption)

apply blast

apply clarsimp

apply (case tac A 6= Ba)

apply (metis Gets knows)

apply (case tac Crypt (priSK CA) {|Key K, Agent B|} ∈ parts (insert X (knows A evsr)))

apply clarsimp

apply (blast dest: Says imp parts knows Spy parts cut)

apply (metis knows Gets)

done

end

A.1.2 Cert NS Public.thy

theory Cert NS Public imports Certification begin

inductive set ns public :: event list set

where

| NS1: [[evs1 ∈ ns public; Nonce NA /∈ used evs1; evsca ∈ cert;

Crypt (priSK CA) {|Key K, Agent B|} ∈ parts(knows A evsca)]]

=⇒ Says A B (Crypt K {|Nonce NA, Agent A|}) # evs1 ∈ ns public

| NS2: [[evs2 ∈ ns public; Nonce NB /∈ used evs2; evscb ∈ cert;

Gets B (Crypt (pubEK B) {|Nonce NA, Agent A|}) ∈ set evs2;

Crypt (priSK CA) {|Key K, Agent A|} ∈ parts(knows B evscb)]]

=⇒ Says B A (Crypt K {|Nonce NA, Nonce NB, Agent B|}) # evs2 ∈ ns public

| NS3: [[evs3 ∈ ns public;

Says A B (Crypt K {|Nonce NA, Agent A|}) ∈ set evs3;

134

Gets A (Crypt (pubEK A) {|Nonce NA, Nonce NB, Agent B|}) ∈ set evs3]]

=⇒ Says A B (Crypt K (Nonce NB)) # evs3 ∈ ns public

declare knows Spy partsEs [elim]

declare knows Spy partsEs [elim]

declare analz into parts [dest]

declare Fake parts insert in Un [dest]

declare image eq UN [simp]

lemma Spy see priEK [simp]:

evs ∈ ns public =⇒ (Key (priEK A) ∈ parts (knows Spy evs)) = (A ∈ bad)

by (erule ns public.induct, auto)

lemma Spy analz priEK [simp]:

evs ∈ ns public =⇒ (Key (priEK A) ∈ analz (knows Spy evs)) = (A ∈ bad)

by auto

lemma no nonce NS1 NS2 [rule format]:

evs ∈ ns public =⇒

Crypt (pubEK C) {|NA ′, Nonce NA, Agent D|}

∈ parts (knows Spy evs) −→

Crypt (pubEK B) {|Nonce NA, Agent A|}

∈ parts (knows Spy evs) −→

Nonce NA ∈ analz (knows Spy evs)

apply (erule ns public.induct, simp all)

apply (blast intro: analz insertI)+

done

lemma unique NA:

[[Crypt(pubEK B) {|Nonce NA, Agent A|} ∈ parts(knows Spy evs);

Crypt(pubEK C) {|Nonce NA, Agent D|} ∈ parts(knows Spy evs);

Nonce NA /∈ analz (knows Spy evs); evs ∈ ns public]]

=⇒ A=D ∧ B=C

135

apply (erule rev mp, erule rev mp, erule rev mp)

apply (erule ns public.induct, simp all)

apply (blast intro: analz insertI)+

done

lemma Says A pubEK B:

[[Says A B (Crypt K {|Nonce NA, Agent A|}) ∈ set evs;

A /∈ bad; evs ∈ ns public]]

=⇒ K = pubEK B

apply (erule rev mp)

apply (erule ns public.induct, simp all, spy analz)

apply (case tac Says A B (Crypt K {|Nonce NA, Agent A|}) ∈ set evs1)

apply blast

apply clarsimp

apply (drule cert authentic agent, assumption)

apply (erule disjE)

apply (blast dest: Says CA cert1 Says CA cert2)+

done

lemma Says B pubEK A:

[[Says B A (Crypt K {|Nonce NA, Nonce NB, Agent B|}) ∈ set evs;

B /∈ bad; evs ∈ ns public]]

=⇒ K = pubEK A

apply (erule rev mp)

apply (erule ns public.induct, simp all, spy analz)

apply (case tac Says B A (Crypt K {|Nonce NA, Nonce NB, Agent B|}) ∈ set evs2)

apply blast

apply clarsimp

apply (drule cert authentic agent, assumption)

apply (erule disjE)

apply (blast dest: Says CA cert1 Says CA cert2)+

done

136

theorem Spy not see NA:

[[Says A B (Crypt K {|Nonce NA, Agent A|}) ∈ set evs;

A /∈ bad; B /∈ bad; evs ∈ ns public]]

=⇒ Nonce NA /∈ analz (knows Spy evs) ∧ K = pubEK B

apply (erule rev mp)

apply (erule ns public.induct, simp all, spy analz)

apply (case tac Says A B (Crypt K {|Nonce NA, Agent A|}) ∈ set evs1)

apply blast

apply clarsimp

apply (case tac Ba=B)

apply clarsimp

apply (case tac Ka = pubK B)

apply clarsimp

apply blast

apply clarsimp

apply (drule cert authentic agent, assumption)

apply (blast dest: Says CA cert1 Says CA cert2)

apply blast

apply clarsimp

apply (case tac NA = NB)

apply clarsimp

apply blast

apply clarsimp

apply (case tac Aa = A)

apply clarsimp

apply (case tac K = pubK A)

apply clarsimp

apply (drule cert authentic agent, assumption)

apply (blast dest: Says CA cert1 Says CA cert2)

apply (blast dest: unique NA)

apply (blast dest: no nonce NS1 NS2)

done

137

lemma A trusts NS2 lemma [rule format]:

[[A /∈ bad; B /∈ bad; evs ∈ ns public]]

=⇒ Crypt (pubEK A) {|Nonce NA, Nonce NB, Agent B|} ∈ parts (knows Spy evs) −→

Says A B (Crypt(pubEK B) {|Nonce NA, Agent A|}) ∈ set evs −→

Says B A (Crypt(pubEK A) {|Nonce NA, Nonce NB, Agent B|}) ∈ set evs

apply (erule ns public.induct, simp all)

apply clarsimp

apply (drule Fake parts insert in Un, assumption)

apply (blast dest: Spy not see NA)

apply blast

apply (blast dest: Spy not see NA unique NA)

done

theorem A trusts NS2:

[[Says A B (Crypt(pubEK B) {|Nonce NA, Agent A|}) ∈ set evs;

Says B ′ A (Crypt(pubEK A) {|Nonce NA, Nonce NB, Agent B|}) ∈ set evs;

A /∈ bad; B /∈ bad; evs ∈ ns public]]

=⇒ Says B A (Crypt(pubEK A) {|Nonce NA, Nonce NB, Agent B|}) ∈ set evs

by (blast intro: A trusts NS2 lemma)

lemma B trusts NS1 [rule format]:

evs ∈ ns public

=⇒ Crypt (pubEK B) {|Nonce NA, Agent A|} ∈ parts (knows Spy evs) −→

Nonce NA /∈ analz (knows Spy evs) −→

Says A B (Crypt (pubEK B) {|Nonce NA, Agent A|}) ∈ set evs

apply (erule ns public.induct, simp all)

apply (blast intro!: analz insertI)

apply auto

apply (drule cert authentic agent) apply assumption

apply safe

apply (blast dest: Says CA cert2)

apply (blast dest: Says CA cert1)

done

138

lemma unique NB [dest]:

[[Crypt(pubEK A) {|Nonce NA, Nonce NB, Agent B|} ∈ parts(knows Spy evs);

Crypt(pubEK A ′) {|Nonce NA ′, Nonce NB, Agent B ′|} ∈ parts(knows Spy evs);

Nonce NB /∈ analz (knows Spy evs); evs ∈ ns public]]

=⇒ A=A ′∧ NA=NA ′∧ B=B ′

apply (erule rev mp, erule rev mp, erule rev mp)

apply (erule ns public.induct, simp all)

apply (blast intro: analz insertI)+

done

theorem Spy not see NB [dest]:

[[Says B A (Crypt K {|Nonce NA, Nonce NB, Agent B|}) ∈ set evs;

A /∈ bad; B /∈ bad; evs ∈ ns public]]

=⇒ Nonce NB /∈ analz (knows Spy evs) ∧ K = pubEK A

apply (erule rev mp)

apply (erule ns public.induct, simp all, spy analz)

apply blast

apply (case tac Says B A (Crypt K {|Nonce NA, Nonce NB, Agent B|}) ∈ set evs2)

apply clarsimp

apply (case tac Key (invKey K) ∈ analz (knows Spy evs2))

apply clarsimp

apply (blast dest: no nonce NS1 NS2)

apply clarsimp

apply clarsimp

apply (case tac Key (invKey Ka) ∈ analz (knows Spy evs2))

apply clarsimp

apply (case tac K = pubK A)

apply clarsimp

apply (blast dest: Says CA cert1 Says CA cert2 cert authentic agent)

apply clarsimp

apply (case tac K = pubK A)

139

apply clarsimp

apply blast

apply (blast dest: Says CA cert1 Says CA cert2 cert authentic agent)

apply (blast dest: Says imp analz Spy Spy not see NA)+

done

lemma B trusts NS3 lemma [rule format]:

[[A /∈ bad; B /∈ bad; evs ∈ ns public]] =⇒

Crypt (pubEK B) (Nonce NB) ∈ parts (knows Spy evs) −→

Says B A (Crypt (pubEK A) {|Nonce NA, Nonce NB, Agent B|}) ∈ set evs −→

Says A B (Crypt (pubEK B) (Nonce NB)) ∈ set evs

by (erule ns public.induct, auto)

theorem B trusts NS3:

[[Says B A (Crypt (pubEK A) {|Nonce NA, Nonce NB, Agent B|}) ∈ set evs;

Says A ′ B (Crypt (pubEK B) (Nonce NB)) ∈ set evs;

A /∈ bad; B /∈ bad; evs ∈ ns public]]

=⇒ Says A B (Crypt (pubEK B) (Nonce NB)) ∈ set evs

by (blast intro: B trusts NS3 lemma)

theorem B trusts protocol:

[[A /∈ bad; B /∈ bad; evs ∈ ns public]] =⇒

Crypt (pubEK B) (Nonce NB) ∈ parts (knows Spy evs) −→

Says B A (Crypt (pubEK A) {|Nonce NA, Nonce NB, Agent B|}) ∈ set evs −→

Says A B (Crypt (pubEK B) {|Nonce NA, Agent A|}) ∈ set evs

by (erule ns public.induct, auto)

end

140

A.2 Proofs for the ISO/IEC 9798-3 Protocol with AIBS

A.2.1 Public IBS.thy

theory Public IBS

imports Event

abbreviation

TA :: agent where

TA == Friend 0

overloading

initState ≡ initState

begin

primrec initState where

initState Server:

initState Server =

{Key (priEK Server), Key (priSK Server)} ∪

(Key ‘ range pubEK) ∪ (Key ‘ range pubSK) ∪ (Key ‘ range shrK)

| initState Friend:

initState (Friend i) =

(if (i = 0)

then {Key (priEK TA), Key (shrK TA)} ∪

(Key ‘ range pubEK) ∪ (Key ‘ range pubSK) ∪ (Key ‘ range priSK)

else {Key (priEK(Friend i)), Key (priSK(Friend i)), Key (shrK(Friend i))} ∪

(Key ‘ range pubEK) ∪ (Key ‘ range pubSK))

| initState Spy:

initState Spy =

(if (TA ∈ bad)

141

then (Key ‘ invKey ‘ pubEK ‘ bad) ∪

(Key ‘ range pubEK) ∪ (Key ‘ range pubSK) ∪ (Key ‘ shrK ‘ bad) ∪

(Key ‘ range priSK)

else (Key ‘ invKey ‘ pubEK ‘ bad) ∪

(Key ‘ invKey ‘ pubSK ‘ bad) ∪ (Key ‘ shrK ‘ bad) ∪

(Key ‘ range pubEK) ∪ (Key ‘ range pubSK))

A.2.2 ISO IBS.thy

theory ISO IBS imports Public IBS begin

abbreviation

TTP :: agent where TTP == Server

abbreviation Text1 :: nat where Text1 == 1

abbreviation Text2 :: nat where Text2 == 2

abbreviation Text3 :: nat where Text3 == 3

abbreviation Text4 :: nat where Text4 == 4

abbreviation Text5 :: nat where Text5 == 5

abbreviation Text6 :: nat where Text6 == 6

abbreviation Text7 :: nat where Text7 == 7

abbreviation Text8 :: nat where Text8 == 8

abbreviation Text9 :: nat where Text9 == 9

| ISO1: [[evs1 ∈ iso; Nonce Na /∈ used evs1]]

=⇒ Says A B {|Agent A, Nonce Na, Number Text1|} # evs1 ∈ iso

| ISO2: [[evs2 ∈ iso; Nonce Nb /∈ used evs2; A 6= TA; B 6= TA;

Gets B {|Agent A, Nonce Na, Number Text1|} ∈ set evs2]]

=⇒ Says B A {|Agent B, Nonce Na, Nonce Nb, Number Text3,

Crypt (priSK B) {|Agent B, Nonce Na, Nonce Nb, Agent A,

Number Text2|}|} # evs2 ∈ iso

| ISO3: [[evs3 ∈ iso; Nonce Na ′ /∈ used evs3; A 6= TA; B 6= TA;

Says A B {|Agent A, Nonce Na, Number Text1|} ∈ set evs3;

142

Gets A {|Agent B, Nonce Na, Nonce Nb, Number Text3,

Crypt (priSK B) {|Agent B, Nonce Na, Nonce Nb, Agent A,

Number Text2|}|} ∈ set evs3]]

=⇒ Says A TTP {|Nonce Na ′, Nonce Nb, Agent A, Agent B, Number Text4|}

evs3 ∈ iso

| ISO4: [[evs4 ∈ iso; A 6= B; A 6= TA; B 6= TA;

Gets TTP {|Nonce Na ′, Nonce Nb, Agent A, Agent B, Number Text4|} ∈ set evs4]]

=⇒ Says TTP A {|Agent A, Key (pubSK A), Agent B, Key (pubSK B),

Crypt (priSK TTP) {|Nonce Na ′, Agent B,

Key (pubSK B), Number Text6|},

Crypt (priSK TTP) {|Nonce Nb, Agent A,

Key (pubSK A), Number Text5|},

Number Text7|} # evs4 ∈ iso

| ISO5: [[evs5 ∈ iso; A 6= TA; B 6= TA;

Says A B {|Agent A, Nonce Na, Number Text1|} ∈ set evs5;

Gets A {|Agent A, Key (pubSK A), Agent B, Key (pubSK B),

Crypt (priSK TTP) {|Nonce Na ′, Agent B,

Key (pubSK B), Number Text6|},

Crypt (priSK TTP) {|Nonce Nb, Agent A,

Key (pubSK A), Number Text5|},

Number Text7|} ∈ set evs5]]

=⇒ Says A B {|Number Text9, Agent A, Key (pubSK A),

Crypt (priSK TTP) {|Nonce Nb, Agent A,

Key (pubSK A), Number Text5|},

Crypt (priSK A) {|Nonce Nb, Nonce Na,

Agent B, Agent A, Number Text8|}|} # evs5 ∈ iso

declare knows Spy partsEs [elim]

declare knows Spy partsEs [elim]

declare analz into parts [dest]

declare Fake parts insert in Un [dest]

declare image eq UN [simp]

143

lemma A 6= TA ∧ B 6= TA ∧ A 6= B =⇒ ∃Nb Na. ∃ evs ∈ iso.

Says A B {|Number Text9, Agent A, Key (pubSK A),

Crypt (priSK TTP) {|Nonce Nb, Agent A, Key (pubSK A), Number Text5|},

Crypt (priSK A) {|Nonce Nb, Nonce Na, Agent B, Agent A, Number Text8|}|}

∈ set evs

apply (intro exI bexI)

apply (rule tac [2] iso.Nil [THEN iso.ISO1, THEN iso.Reception, THEN iso.ISO2,

THEN iso.Reception, THEN iso.ISO3, THEN iso.Reception,

THEN iso.ISO4, THEN iso.Reception, THEN iso.ISO5], possibility)

apply auto

done

lemma Spy see priSK [simp]:

evs ∈ iso =⇒ (Key (priSK A) ∈ parts (spies evs)) = (A ∈ bad ∨ TA ∈ bad)

apply (erule iso.induct, auto)

by (metis parts insertI)

lemma Spy analz priSK [simp]:

evs ∈ iso =⇒ (Key (priSK A) ∈ analz (spies evs)) = (A ∈ bad ∨ TA ∈ bad)

by (metis Spy see priSK Spy spies bad privateKey analz.Inj

analz into parts initState subset knows priSK initState3 subsetD)

lemma prikeys: evs ∈ iso =⇒ Key (priSK A) ∈ parts(knows TA evs)

apply (metis initState subset knows parts.Inj priSK initState subsetD)

done

lemma priSK knowledge:

[[Key (priSK A) ∈ initState D; A /∈ bad; TA /∈ bad]] =⇒ D = TA ∨ D = A

apply (induct D)

apply auto

apply (case tac nat = 0)

144

apply auto

done

lemma sig B origin:

[[Crypt (priSK B) {|Agent B, Nonce Na, Nonce Nb, Agent A, Number Text2|} ∈ parts (spies

evs);

B /∈ bad; TA /∈ bad; evs ∈ iso]]

=⇒ Says B A {|Agent B, Nonce Na, Nonce Nb, Number Text3,

Crypt (priSK B) {|Agent B, Nonce Na, Nonce Nb,

Agent A, Number Text2|}|} ∈ set evs

apply (erule rev mp)

apply (erule iso.induct)

apply simp all

apply spy analz

done

lemma sig A origin:

[[Crypt (priSK A) {|Nonce Nb, Nonce Na, Agent B, Agent A, Number Text8|} ∈ parts (spies

evs);

A /∈ bad; TA /∈ bad; evs ∈ iso]]

=⇒ Says A B {|Number Text9, Agent A, Key (pubSK A),

Crypt (priSK TTP) {|Nonce Nb, Agent A, Key (pubSK A), Number Text5|},

Crypt (priSK A) {|Nonce Nb, Nonce Na, Agent B,

Agent A, Number Text8|}|} ∈ set evs

apply (erule rev mp)

apply (erule iso.induct)

apply simp all

apply spy analz

done

lemma sig TTP origin:

[[Crypt (priSK TTP) {|Nonce Na ′, Agent B, Key (pubSK B), Number Text6|} ∈ parts (spies evs);

TA /∈ bad; evs ∈ iso]]

=⇒ ∃ A Nb. Says TTP A {|Agent A, Key (pubSK A), Agent B, Key (pubSK B),

Crypt (priSK TTP) {|Nonce Na ′, Agent B,

145

Key (pubSK B), Number Text6|},

Crypt (priSK TTP) {|Nonce Nb, Agent A,

Key (pubSK A), Number Text5|},

Number Text7|} ∈ set evs

apply (erule rev mp)

apply (erule iso.induct)

apply simp all

apply spy analz

apply blast

done

lemma ISO5 imp ISO1:

[[Says A B {|Number Text9, Agent A, Key (pubSK A),

Crypt (priSK TTP) {|Nonce Nb, Agent A, Key (pubSK A), Number Text5|},

Crypt (priSK A) {|Nonce Nb, Nonce Na, Agent B,

Agent A, Number Text8|}|} ∈ set evs;

A /∈ bad; evs ∈ iso]]

=⇒ Says A B {|Agent A, Nonce Na, Number Text1|} ∈ set evs

apply (erule rev mp)

apply (erule iso.induct)

apply simp all

apply spy analz

done

lemma Fake insert:

[[Crypt (priSK A) Y ∈ parts (insert X (knows Spy evs));

X ∈ synth (analz (knows Spy evs));

A /∈ bad; TA /∈ bad; evs ∈ iso]]

=⇒ Crypt (priSK A) Y ∈ parts (spies evs)

apply spy analz

done

theorem A auth B:

146

[[{|Agent B, Nonce Na, Nonce Nb, Number Text3,

Crypt (priSK B) {|Agent B, Nonce Na, Nonce Nb,

Agent A, Number Text2|}|} ∈ parts (spies evs);

Says A B {|Agent A, Nonce Na, Number Text1|} ∈ set evs;

B /∈ bad; TA /∈ bad; evs ∈ iso]]

=⇒ Says B A {|Agent B, Nonce Na, Nonce Nb, Number Text3,

Crypt (priSK B) {|Agent B, Nonce Na, Nonce Nb,

Agent A, Number Text2|}|} ∈ set evs

apply (blast dest: sig B origin)

done

theorem B auth A:

[[{|Number Text9, Agent A, Key (pubSK A),

Crypt (priSK TTP) {|Nonce Nb, Agent A, Key (pubSK A), Number Text5|},

Crypt (priSK A) {|Nonce Nb, Nonce Na, Agent B,

Agent A, Number Text8|}|} ∈ parts (spies evs);

Says B A {|Agent B, Nonce Na, Nonce Nb, Number Text3,

Crypt (priSK B) {|Agent B, Nonce Na, Nonce Nb,

Agent A, Number Text2|}|} ∈ set evs;

A /∈ bad; TA /∈ bad; evs ∈ iso]]

=⇒ Says A B {|Agent A, Nonce Na, Number Text1|} ∈ set evs

apply (erule rev mp, erule rev mp)

apply (erule iso.induct)

apply simp all

apply (case tac B=Spy)

apply (case tac A=B, clarsimp)

apply (case tac {|Agent Spy, Nonce Na, Nonce Nb, Number Text3,

Crypt (priSK Spy) {|Agent Spy, Nonce Na, Nonce Nb,

Agent A, Number Text2|}|} = X)

apply clarsimp

apply (metis sig A origin ISO5 imp ISO1 One nat def)

apply (blast dest: Fake insert sig A origin)+

done

147

definition candidates :: agent ⇒ event list ⇒ agent set where

candidates A evs ≡

{C. C 6= Spy ∧

(∃ Y Z. Crypt (priSK A) Y ∈ parts (knows Spy evs) ∧

(A = C ∨ Key (priSK A) ∈ initState C) ∧

(Crypt (priSK C) Z ∈ parts {Y} ∨ Crypt (priEK C) Z ∈ parts {Y}))}

lemma signature form:

[[Crypt (priSK A) Y ∈ parts (spies evs);

Crypt (priSK TA) Z ∈ parts {Y} ∨ Crypt (priEK TA) Z ∈ parts {Y} ∨

Crypt (priSK A) Z ∈ parts {Y} ∨ Crypt (priEK A) Z ∈ parts {Y};

A /∈ bad; TA /∈ bad; evs ∈ iso]]

=⇒ False

apply (erule rev mp)

apply (erule iso.induct)

apply simp all

apply spy analz

apply force+

done

theorem candidates IBS none:

[[D ∈ candidates A evs; TA /∈ bad; A /∈ bad; evs ∈ iso]] =⇒ False

apply (unfold candidates def)

apply (induct D)

apply (force intro: Server not bad dest!: signature form)

apply (case tac nat = 0)

apply (force dest!: signature form)

apply (force dest!: signature form)

apply simp

done

148

end

A.2.3 Message AIBS.thy

Message AIBS

imports Main

abbreviation

TA :: agent where

TA == Friend 0

datatype pack = Pack key key

datatype

msg = Agent agent — Agent names

| Number nat — Ordinary integers, timestamps, ...

| Nonce nat — Unguessable nonces

| Key key — Crypto keys

| Hash msg — Hashing

| MPair msg msg — Compound messages

| Crypt key msg — Encryption, public- or shared-key

| Pkg pack — Key package (second key is hidden SK)

abbreviation

KP :: [agent, agent] => pack where

KP A B == Pack (pubEK A) (priSK B)

inductive set

parts :: msg set => msg set

for H :: msg set

where

Inj [intro]: X ∈ H ==> X ∈ parts H

| Fst: {|X,Y|} ∈ parts H ==> X ∈ parts H

| Snd: {|X,Y|} ∈ parts H ==> Y ∈ parts H

| Body: Crypt K X ∈ parts H ==> X ∈ parts H

149

lemma Protect image eq [simp]: (Pkg x ∈ Pkg‘A) = (x∈A)

by auto

lemma Protect Key image eq [simp]: (Pkg R /∈ Key ‘ A)

by auto

lemma keysFor insert Pkg [simp]:

keysFor (insert (Pkg R) H) = keysFor H

by (unfold keysFor def , blast)

lemma parts insert Protect [simp]:

parts (insert (Pkg S) H)

= insert (Pkg S) (parts H)

inductive set

analz :: msg set => msg set

for H :: msg set

where

Inj [intro,simp] : X ∈ H ==> X ∈ analz H

| Fst: {|X,Y|} ∈ analz H ==> X ∈ analz H

| Snd: {|X,Y|} ∈ analz H ==> Y ∈ analz H

| Decrypt [dest]:

[|Crypt K X ∈ analz H; Key(invKey K): analz H|] ==> X ∈ analz H

lemma analz insert Protect [simp]:

analz (insert (Pkg (KP R T)) H) =

insert (Pkg (KP R T)) (analz H)

apply (rule analz insert eq I)

by (erule analz.induct, auto)

inductive set

synth :: msg set => msg set

for H :: msg set

150

where

Inj [intro]: X ∈ H ==> X ∈ synth H

| Agent [intro]: Agent agt ∈ synth H

| Number [intro]: Number n ∈ synth H

| Hash [intro]: X ∈ synth H ==> Hash X ∈ synth H

| MPair [intro]: [|X ∈ synth H; Y ∈ synth H|] ==> {|X,Y|} ∈ synth H

| Crypt [intro]: [|X ∈ synth H; Key(K) ∈ H|] ==> Crypt K X ∈ synth H

inductive simps synth simps [iff]:

Nonce n ∈ synth H

Key K ∈ synth H

Hash X ∈ synth H

{|X,Y|} ∈ synth H

Crypt K X ∈ synth H

Pkg R ∈ synth H

A.2.4 Event AIBS.thy

This theory is the same as the traditional Event.thy — the only difference is that it

importes Message AIBS.thy instead of Message.thy.

A.2.5 Public AIBS.thy

theory Public AIBS

imports Event AIBS

overloading

initState ≡ initState

begin

primrec initState where

initState Server:

initState Server =

{Key (priEK Server)} ∪

151

(Key ‘ range pubEK) ∪ (Key ‘ range pubSK)

| initState Friend:

initState (Friend i) =

(if (i = 0)

then {Key (priEK TA)} ∪

(Key ‘ range pubEK) ∪ (Key ‘ range pubSK) ∪ (Key ‘ range priSK)

else {Key (priEK(Friend i))} ∪

(Key ‘ range pubEK) ∪ (Key ‘ range pubSK))

| initState Spy:

initState Spy =

(if (TA ∈ bad)

then (Key ‘ invKey ‘ pubEK ‘ bad) ∪

(Key ‘ range pubEK) ∪ (Key ‘ range pubSK) ∪

(Key ‘ range priSK)

else (Key ‘ invKey ‘ pubEK ‘ bad) ∪

(Key ‘ range pubEK) ∪ (Key ‘ range pubSK))

end

lemma TA knows nil : initState (TA) = {Key (priEK TA)} ∪

(Key ‘ range pubEK) ∪ (Key ‘ range pubSK) ∪ (Key ‘ range priSK)

by auto

lemma priK in initState [iff]: Key (privateKey Encryption A) ∈ initState A

by (cases A, auto)

lemma priSK initState [iff]: Key (privateKey Signature A) ∈ initState TA

by (cases A, auto)

lemma priSK initState2 [iff]: A 6= TA ∧ A 6= Spy =⇒ Key (privateKey Signature A) /∈ initState

A

by (cases A, auto)

152

lemma priSK initState3 [iff]: TA : bad =⇒ Key (privateKey Signature A) : initState Spy

by (cases A, auto)

lemma publicKey in initState [iff]: Key (publicKey b A) ∈ initState B

apply (cases b, auto)

apply (cases B, auto)+

done

lemma Spy spies bad privateKey [intro!]:

A ∈ bad ==> Key (privateKey Encryption A) ∈ spies evs

apply (induct tac evs)

apply (auto simp add: imageI knows Cons split add: event.split)

done

lemma Spy spies bad privateKeyTA [intro!]:

TA ∈ bad ==> Key (privateKey Signature A) ∈ spies evs

apply (induct tac evs)

apply (auto simp add: imageI knows Cons split add: event.split)

done

lemma privateKey into usedTA [iff]: TA : bad =⇒ Key (privateKey Signature A) ∈ used evs

apply (rule initState into used)

apply auto

done

A.2.6 ISO AIBS.thy

theory ISO AIBS imports Public AIBS begin

abbreviation

TTP :: agent where TTP == Server

abbreviation Text1 :: nat where Text1 == 1

abbreviation Text2 :: nat where Text2 == 2

153

abbreviation Text3 :: nat where Text3 == 3

abbreviation Text4 :: nat where Text4 == 4

abbreviation Text5 :: nat where Text5 == 5

abbreviation Text6 :: nat where Text6 == 6

abbreviation Text7 :: nat where Text7 == 7

abbreviation Text8 :: nat where Text8 == 8

abbreviation Text9 :: nat where Text9 == 9

inductive set iso :: event list set

where

| KeyPack: [[evsk ∈ iso; Key(priSK TA) ∈ analz (spies evsk)]]

=⇒ Notes Spy (Pkg (KP A B)) # evsk ∈ iso

| SigGen: [[evss ∈ iso; X ∈ synth(analz (spies evss)); Key (priEK A) ∈ analz (spies evss);

Pkg (KP A B) ∈ analz (spies evss)]]

=⇒ Notes Spy (Crypt (priSK B) {|Crypt (priEK A) X, X|}) # evss ∈ iso

| ISO1: [[evs1 ∈ iso; Nonce Na /∈ used evs1; A 6= TA; B 6= TA]]

=⇒ Says A B {|Agent A, Nonce Na, Number Text1|}

evs1 ∈ iso

| ISO2: [[evs2 ∈ iso; Nonce Nb /∈ used evs2; A 6= TTP; B 6= TTP; A 6= TA; B 6= TA;

Gets B {|Agent A, Nonce Na, Number Text1|} ∈ set evs2]]

=⇒ Says B A {|Agent B, Nonce Na, Nonce Nb, Number Text3,

Crypt (priSK B) {|Crypt (priEK B) {|Agent B, Nonce Na, Nonce Nb, Agent A, Number Text2|},

{|Agent B, Nonce Na, Nonce Nb, Agent A, Number Text2|}|} |}

evs2 ∈ iso

| ISO3: [[evs3 ∈ iso; Nonce Na ′ /∈ used evs3; A 6= TTP; B 6= TTP; A 6= TA; B 6= TA;

Says A B {|Agent A, Nonce Na, Number Text1|} ∈ set evs3;

Gets A {|Agent B, Nonce Na, Nonce Nb, Number Text3,

Crypt (priSK B) {|Crypt (priEK B) {|Agent B, Nonce Na, Nonce Nb, Agent A, Number Text2|},

{|Agent B, Nonce Na, Nonce Nb, Agent A, Number Text2|}|} |}

∈ set evs3]]

=⇒ Says A TTP {|Nonce Na ′, Nonce Nb, Agent A,

Agent B, Number Text4|} # evs3 ∈ iso

| ISO4: [[evs4 ∈ iso; A 6= B; A 6= TA; B 6= TA;

154

Gets TTP {|Nonce Na ′, Nonce Nb, Agent A, Agent B, Number Text4|} ∈ set evs4]]

=⇒ Says TTP A {|Agent A, Key (pubSK A), Agent B, Key (pubSK B),

Crypt (priSK TTP) {|Crypt (priEK TTP) {|Nonce Na ′, Agent B, Key (pubSK B),

Number Text6|},

{|Nonce Na ′, Agent B, Key (pubSK B), Number Text6|}|},

Crypt (priSK TTP) {|Crypt (priEK TTP) {|Nonce Nb, Agent A, Key (pubSK A),

Number Text5|},

{|Nonce Nb, Agent A, Key (pubSK A), Number Text5|}|},

Number Text7|} # evs4 ∈ iso

| ISO5: [[evs5 ∈ iso; A 6= TTP; B 6= TTP; A 6= TA; B 6= TA;

Says A B {|Agent A, Nonce Na, Number Text1|} ∈ set evs5;

Gets A {|Agent A, Key (pubSK A), Agent B, Key (pubSK B),

Crypt (priSK TTP) {|Crypt (priEK TTP) {|Nonce Na ′, Agent B, Key (pubSK B), Number

Text6|},

{|Nonce Na ′, Agent B, Key (pubSK B), Number Text6|}|},

Crypt (priSK TTP) {|Crypt (priEK TTP) {|Nonce Nb, Agent A, Key (pubSK A), Number

Text5|},

{|Nonce Nb, Agent A, Key (pubSK A), Number Text5|}|},

Number Text7|} ∈ set evs5]]

=⇒ Says A B {|Number Text9, Agent A, Key (pubSK A),

Crypt (priSK TTP) {|Crypt (priEK TTP) {|Nonce Nb, Agent A, Key (pubSK A),

Number Text5|},

{|Nonce Nb, Agent A, Key (pubSK A), Number Text5|}|},

Crypt (priSK A) {|Crypt (priEK A) {|Nonce Nb, Nonce Na, Agent B, Agent A,

Number Text8|},

{|Nonce Nb, Nonce Na, Agent B, Agent A, Number Text8|}|}

|}

evs5 ∈ iso

declare knows Spy partsEs [elim]

declare knows Spy partsEs [elim]

declare analz into parts [dest]

declare Fake parts insert in Un [dest]

declare image eq UN [simp]

155

lemma A 6= TTP ∧ B 6= TTP ∧ A 6= B ∧ A 6= TA ∧ B 6= TA =⇒ ∃Nb Na. ∃ evs ∈ iso.

Says A B {|Number Text9, Agent A, Key (pubSK A),

Crypt (priSK TTP) {|Crypt (priEK TTP) {|Nonce Nb, Agent A, Key (pubSK A),

Number Text5|},

{|Nonce Nb, Agent A, Key (pubSK A), Number Text5|}|},

Crypt (priSK A) {|Crypt (priEK A) {|Nonce Nb, Nonce Na, Agent B, Agent A,

Number Text8|},

{|Nonce Nb, Nonce Na, Agent B, Agent A, Number Text8|}|}

|} ∈ set evs

apply (intro exI bexI)

apply (rule tac [2] iso.Nil [THEN iso.ISO1, THEN iso.Reception, THEN iso.ISO2,

THEN iso.Reception, THEN iso.ISO3, THEN iso.Reception,

THEN iso.ISO4, THEN iso.Reception, THEN iso.ISO5], possibility)

apply auto

done

lemma Spy see priSK [simp]:

evs ∈ iso =⇒ (Key (priSK A) ∈ parts (spies evs)) = (TA ∈ bad)

apply (erule iso.induct)

apply auto

done

lemma Spy see priEK [simp]:

evs ∈ iso =⇒ (Key (priEK A) ∈ parts (spies evs)) = (A ∈ bad)

apply (erule iso.induct)

apply auto

done

lemma Pack conf :

[[Pkg (Pack (pubK A) (priSK B)) ∈ parts (knows Spy evs); TA /∈ bad; evs ∈ iso]] =⇒ False

apply (erule rev mp)

apply (erule iso.induct)

apply simp all

156

apply auto

done

lemma TA never:

[[Crypt (priSK TA) Z ∈ parts (spies evs) ∨ Crypt (priEK TA) Z ∈ parts (spies evs);

TA /∈ bad; A 6= TA; evs ∈ iso]]

=⇒ False

apply (erule rev mp)

apply (erule iso.induct)

apply simp all

defer

apply (rule conjI)

apply clarsimp

apply force

apply force

apply (rule conjI)

apply clarsimp

defer

apply (rule conjI)

apply clarsimp

apply (smt Crypt synth eq Fake parts insert in Un Spy see priSK UnE analz disj parts)

apply clarsimp

apply (rule conjI)

apply clarsimp

apply (metis Spy see priEK not parts not analz)

apply clarsimp

apply (smt Crypt synth eq Fake parts insert in Un Spy see priEK UnE analz disj parts)

apply (blast dest: Pack conf)

done

lemma Spy analz priSK [simp]:

evs ∈ iso =⇒ (Key (priSK A) ∈ analz (spies evs)) = (TA ∈ bad)

by auto

157

lemma prikeys: evs ∈ iso =⇒ Key (priSK A) ∈ parts(knows TA evs)

apply (metis initState subset knows parts.Inj priSK initState subsetD)

done

lemma priSK knowledge:

[[Key (priSK A) ∈ initState D]] =⇒ D = TA ∨ D ∈ bad

apply (induct D)

apply force

apply (case tac nat = 0)

apply clarsimp

apply clarsimp

apply force

done

lemma sig B origin:

[[Crypt (priSK B) {|Crypt (priEK B) {|Agent B, Nonce Na, Nonce Nb, Agent A, Number Text2|},

{|Agent B, Nonce Na, Nonce Nb, Agent A, Number Text2|}|} ∈ parts (spies evs); B /∈ bad;

TA /∈ bad; evs ∈ iso]]

=⇒ Says B A {|Agent B, Nonce Na, Nonce Nb, Number Text3,

Crypt (priSK B) {|Crypt (priEK B) {|Agent B, Nonce Na, Nonce Nb, Agent A, Number

Text2|},

{|Agent B, Nonce Na, Nonce Nb, Agent A, Number Text2|}|}|} ∈ set evs

apply (erule rev mp)

apply (erule iso.induct)

apply simp all

apply auto[1]

apply spy analz

done

lemma sig A origin:

[[Crypt (priSK A) {|Crypt (priEK A) {|Nonce Nb, Nonce Na, Agent B, Agent A, Number Text8|},

158

{|Nonce Nb, Nonce Na, Agent B, Agent A, Number Text8|}|} ∈ parts (spies evs);

A /∈ bad; TA /∈ bad; evs ∈ iso]]

=⇒ Says A B {|Number Text9, Agent A, Key (pubSK A),

Crypt (priSK TTP) {|Crypt (priEK TTP) {|Nonce Nb, Agent A, Key (pubSK A),

Number Text5|},

{|Nonce Nb, Agent A, Key (pubSK A), Number Text5|}|},

Crypt (priSK A) {|Crypt (priEK A) {|Nonce Nb, Nonce Na, Agent B, Agent A, Number

Text8|},

{|Nonce Nb, Nonce Na, Agent B, Agent A, Number Text8|}|}|} ∈ set evs

apply (erule rev mp)

apply (erule iso.induct)

apply simp all

apply auto[1]

apply spy analz

done

lemma sig TTP origin:

[[Crypt (priSK TTP) {|Crypt (priEK TTP) {|Nonce Na ′, Agent B, Key (pubSK B), Number

Text6|},

{|Nonce Na ′, Agent B, Key (pubSK B), Number Text6|}|} ∈ parts (spies evs);

TA /∈ bad;

evs ∈ iso]]

=⇒ ∃ A Nb. Says TTP A {|Agent A, Key (pubSK A), Agent B, Key (pubSK B),

Crypt (priSK TTP) {|Crypt (priEK TTP) {|Nonce Na ′, Agent B, Key (pubSK

B), Number Text6|},

{|Nonce Na ′, Agent B, Key (pubSK B), Number Text6|}|},

Crypt (priSK TTP) {|Crypt (priEK TTP) {|Nonce Nb, Agent A, Key (pubSK A),

Number Text5|},

{|Nonce Nb, Agent A, Key (pubSK A), Number Text5|}|},

Number Text7|} ∈ set evs

apply (erule rev mp)

apply (erule iso.induct)

apply simp all

159

apply auto[1]

apply spy analz

apply blast

done

lemma ISO5 imp ISO1:

[[Says A B {|Number Text9, Agent A, Key (pubSK A),

Crypt (priSK TTP) {|Crypt (priEK TTP) {|Nonce Nb, Agent A, Key (pubSK A), Number

Text5|},

{|Nonce Nb, Agent A, Key (pubSK A), Number Text5|}|},

Crypt (priSK A) {|Crypt (priEK A) {|Nonce Nb, Nonce Na, Agent B, Agent A, Number

Text8|},

{|Nonce Nb, Nonce Na, Agent B, Agent A, Number Text8|}|}|} ∈ set evs;

A /∈ bad; evs ∈ iso]]

=⇒ Says A B {|Agent A, Nonce Na, Number Text1|} ∈ set evs

apply (erule rev mp)

apply (erule iso.induct)

apply simp all

apply spy analz

done

lemma Fake insert:

[[Crypt (priSK A) Y ∈ parts (insert X (knows Spy evs));

X ∈ synth (analz (knows Spy evs));

TA /∈ bad; evs ∈ iso]]

=⇒ Crypt (priSK A) Y ∈ parts (spies evs)

apply spy analz

done

theorem A auth B:

[[{|Agent B, Nonce Na, Nonce Nb, Number Text3,

Crypt (priSK B) {|Crypt (priEK B) {|Agent B, Nonce Na, Nonce Nb, Agent A, Number Text2|},

{|Agent B, Nonce Na, Nonce Nb, Agent A, Number Text2|}|}|} ∈ parts (spies evs);

160

Says A B {|Agent A, Nonce Na, Number Text1|} ∈ set evs;

TA /∈ bad; B /∈ bad; evs ∈ iso]]

=⇒ Says B A {|Agent B, Nonce Na, Nonce Nb, Number Text3,

Crypt (priSK B) {|Crypt (priEK B) {|Agent B, Nonce Na, Nonce Nb, Agent A, Number Text2|},

{|Agent B, Nonce Na, Nonce Nb, Agent A, Number Text2|}|} |} ∈ set evs

apply (blast dest: sig B origin)

done

lemma signature form:

[[Crypt (priSK A) Y ∈ parts (spies evs);

Crypt (priSK TA) Z ∈ parts {Y} ∨ Crypt (priEK TA) Z ∈ parts {Y};

A /∈ bad; TA /∈ bad; evs ∈ iso]]

=⇒ False

apply (erule rev mp)

apply (erule iso.induct)

apply simp all

apply (metis Pack conf not parts not analz)

apply spy analz

apply auto

done

lemma not in msg A:

[[Crypt (priSK A) Y ∈ parts (spies evs);

∃ Z. (Crypt (priSK TA) Z ∈ parts {Y} ∨

Crypt (priEK TA) Z ∈ parts {Y} ∨

Crypt (pubK TA) Z ∈ parts {Y} ∨

Crypt (pubSK TA) Z ∈ parts {Y}) ∨

Agent TA ∈ parts{Y};

TA /∈ bad; evs ∈ iso]]

=⇒ False

apply (erule rev mp)

apply (erule iso.induct)

apply simp all

161

apply (blast dest: Pack conf not parts not analz)

apply spy analz

apply force+

done

lemma possible:

[[TA ∈ bad; evs ∈ iso]] =⇒ Key (priSK A) ∈ analz (spies evs)

apply auto

done

lemma TA can generate sig:

[[TA ∈ bad; evs ∈ iso]]

=⇒ Crypt (priSK A) {|Crypt (priEK TA) (Number N), Number N|} ∈ synth(analz (spies evs))

apply auto

done

lemma Fake generates AIBS:

TA ∈ bad =⇒ ∃ D B N. ∃ evs ∈ iso.

Says Spy D (Crypt (priSK B) {|Crypt (priEK TA) (Number N), Number N|}) ∈ set evs ∧ B 6=

TA

apply (intro exI bexI)

apply (rule tac [2] iso.Nil [THEN iso.Fake], possibility)

apply auto

done

definition candidates :: agent ⇒ event list ⇒ agent set where

candidates A evs ≡

{C. C 6= Spy ∧

(∃ Y Z. Crypt (priSK A) Y ∈ parts (knows Spy evs) ∧

(A = C ∨ Key (priSK A) ∈ initState C) ∧

(Crypt (priSK C) Z ∈ parts {Y} ∨ Crypt (priEK C) Z ∈ parts {Y}))}

162

theorem candidates AIBS none:

[[D ∈ candidates A evs; TA /∈ bad; A 6= TTP; A 6= TA; A /∈ bad; evs ∈ iso]] =⇒ False

oops

theorem candidates AIBS A:

[[D ∈ candidates A evs; TA /∈ bad; A /∈ bad; evs ∈ iso]] =⇒ D = A

apply (unfold candidates def)

apply (induct D)

apply force

apply (case tac nat = 0)

apply (force dest!: signature form)

apply auto

done

theorem candidates AIBS A TA:

[[D ∈ candidates A evs; A /∈ bad; evs ∈ iso]] =⇒ D = A ∨ D = TA

apply (unfold candidates def)

apply (induct D)

apply auto

done

theorem candidates AIBS possible:

[[A 6= Spy; ev = Says A B (Crypt (priSK A) (Crypt (priEK A) X)) # evs]]

=⇒ A ∈ candidates A ev

apply (unfold candidates def)

apply auto

done

end

163

A.3 Proofs for the FOO Protocol

A.3.1 Foo.thy

theory Foo imports Public begin

abbreviation

Adm :: agent where

Adm ≡ Friend 0

abbreviation

Col :: agent where

Col ≡ Friend (Suc(0))

consts anms :: nat

definition Anms :: [agent, agent, msg] ⇒ event where

Anms A B X ≡ Says A B {|Number anms, X|}

definition isAnms :: msg => bool where

isAnms M ≡ (∃ Y. M = MPair (Number anms) Y)

lemma isAnms check:

isAnms {|Number anms, X|} ∧ ¬ isAnms (Crypt K Y) ∧ ¬ isAnms {|Agent V, Z|}

by (unfold isAnms def , auto)

inductive set foo :: event list set

where

| Unblinding:

[[evsb ∈ foo; Crypt (priSK V) BSBody ∈ analz (spies evsb);

BSBody = Crypt b (Crypt c (Nonce N));

b ∈ symKeys; Key b ∈ analz (spies evsb)]]

=⇒ Notes Spy (Crypt (priSK V) (Crypt c (Nonce N))) # evsb ∈ foo

| EV1:

[[evs1 ∈ foo; V 6= Adm; V 6= Col; c ∈ symKeys; Key c /∈ used evs1;

b ∈ symKeys; Key b /∈ used evs1; b 6=c; Nonce Nv /∈ used evs1]]

164

=⇒ Says V Adm {|Agent V, Crypt (priSK V) (Crypt b (Crypt c (Nonce Nv)))|}

Notes V (Key c) # Notes V (Key b) # evs1 ∈ foo

| EV2:

[[evs2 ∈ foo; V 6= Adm; V 6= Col; Notes Adm (Agent V) /∈ set evs2;

Gets Adm {|Agent V, Crypt (priSK V) BSBody|} ∈ set evs2;

BSBody = Crypt P R; ∀ X Y. MPair X Y /∈ parts{BSBody}]]

=⇒ Says Adm V (Crypt (priSK Adm) BSBody)

Notes Adm (Agent V) # evs2 ∈ foo

| EV3:

[[evs3 ∈ foo; Says V Adm {|Agent V,

Crypt (priSK V) (Crypt b (Crypt c (Nonce Nv)))|} ∈ set evs3;

Gets V (Crypt (priSK Adm) (Crypt b (Crypt c (Nonce Nv)))) ∈ set evs3]]

=⇒ Anms V Col (Crypt (priSK Adm) (Crypt c (Nonce Nv))) # evs3 ∈ foo

| EV4:

[[evs4 ∈ foo; V 6= Adm; V 6= Col; Says Col Col CX /∈ set evs4;

Gets Col {|Number anms, Crypt (priSK Adm) CX|} ∈ set evs4;

CX = Crypt P R; ∀ X Y. MPair X Y /∈ parts{CX}]]

=⇒ Says Col Col CX # evs4 ∈ foo

| EV5:

[[evs5 ∈ foo; Says V Adm {|Agent V,

Crypt (priSK V) (Crypt b (Crypt c (Nonce Nv)))|} ∈ set evs5;

Gets Col (Crypt c (Nonce Nv)) ∈ set evs5; Key c ∈ analz (knows V evs5);

c /∈ range shrK; c ∈ symKeys]]

=⇒ Anms V Col (Key c) # evs5 ∈ foo

| EV6:

[[evs6 ∈ foo; Gets Col {|Number anms, Key c|} ∈ set evs6;

Gets Col (Crypt c (Nonce Nv)) ∈ set evs6; Says Col Col (Nonce Nv) /∈ set evs6]]

=⇒ Says Col Col (Nonce Nv) # evs6 ∈ foo

declare knows Spy partsEs [elim]

declare analz into parts [dest]

declare Fake parts insert in Un [dest]

declare image eq UN [simp]

165

declare Anms def [simp]

definition KeyWithNonce :: [key, nat, event list] => bool where

KeyWithNonce c Nv evs ≡

∃ V B b.

Says V B {|Agent V, Crypt (priSK V) (Crypt b (Crypt c (Nonce Nv)))|}

∈ set evs

lemma Gets imp Says:

[[Gets B X ∈ set evs; evs ∈ foo]] =⇒ ∃D. Says D B X ∈ set evs

apply (erule rev mp)

apply (erule foo.induct)

apply auto

done

lemma Gets imp knows Spy:

[[Gets B X ∈ set evs; evs ∈ foo]] =⇒ X ∈ knows Spy evs

apply (blast dest!: Gets imp Says Says imp knows Spy)

done

lemma Gets imp parts knows Spy [dest]:

[[Gets D X ∈ set evs; evs ∈ foo]] =⇒ X ∈ parts(spies evs)

apply (drule Gets imp Says, simp)

by (blast dest: Says imp knows Spy parts.Inj)

lemma Gets imp knows:

[[Gets B X ∈ set evs; evs ∈ foo]] =⇒ X ∈ knows B evs

apply (case tac B=Spy)

by (blast dest: Gets imp knows Spy Gets imp knows agents)+

lemma CX analz:

[[Gets (Friend (Suc 0)) {|Number anms, Crypt (priSK Adm) CX|} ∈ set evs; evs ∈ foo]]

=⇒ CX ∈ analz (spies evs)

166

apply (drule Gets imp Says, auto)

by (drule Says imp analz Spy, auto)

lemma new keys not used [simp]:

[[Key K /∈ used evs; K ∈ symKeys; evs ∈ foo]]

=⇒ K /∈ keysFor (parts (spies evs))

apply (erule rev mp, erule foo.induct)

apply (simp all,auto)

apply (force dest!: keysFor parts insert)

apply (blast dest: Crypt imp keysFor)

apply (drule Gets imp parts knows Spy, assumption)

apply (blast dest: Crypt imp keysFor)

apply (drule Gets imp parts knows Spy, assumption)

apply auto

apply (force dest: parts cut eq)

apply (blast dest: Crypt imp keysFor)

apply (drule Gets imp parts knows Spy, assumption)

apply auto

apply (force dest: parts cut eq)

apply (blast dest: Crypt imp keysFor)

apply (blast dest: CX analz Crypt imp keysFor)

apply (force dest!: Gets imp parts knows Spy)

done

lemma V struct [simp]:

[[Says V A {|Agent V, Crypt (priSK V) BSBody |} ∈ set evs;

V /∈ bad; evs ∈ foo]]

=⇒ ∃ b c Nv. BSBody = Crypt b (Crypt c (Nonce Nv))

∧ c ∈ symKeys ∧ b ∈ symKeys

by (erule rev mp, erule foo.induct, simp all, spy analz)

lemma Spy see priK [simp]:

evs ∈ foo =⇒ (Key (priSK V) ∈ parts (spies evs)) = (V ∈ bad)

167

apply (erule foo.induct, simp all)

apply (blast dest: parts cut eq)

apply (blast dest: parts cut eq)

apply (drule Gets imp parts knows Spy, assumption)

apply auto

apply (force dest: parts cut eq)

apply (blast dest: parts cut eq)+

done

lemma priSKV nosynth:

[[Crypt (priSK V) X ∈ synth (analz (knows Spy evs));

V /∈ bad; evs ∈ foo]]

=⇒ Crypt (priSK V) X ∈ analz (knows Spy evs)

by auto

lemma EV2 analz:

[[Gets Adm {|Agent V, Crypt (priSK V) (Crypt K X)|} ∈ set evs;

evs ∈ foo]]

=⇒ (X /∈ analz(spies evs) ∧ Key(invKey(K)) /∈ analz(spies evs)) ∨

(X ∈ analz(spies evs)) ∨

(∃ c Nv. X = Crypt c (Nonce Nv) ∧ K ∈ symKeys ∧ c ∈ symKeys)

apply (metis Gets imp knows Spy analz.simps invKey invKey K spies pubK)

done

lemma Crypt used imp spies:

[[Crypt K X ∈ used evs; evs ∈ foo]] =⇒ Crypt K X ∈ parts (spies evs)

apply (erule rev mp, erule foo.induct)

apply (simp all add: parts insert knows A)

apply (blast dest: parts cut parts insertI)

done

lemma EV2 an:

[[Gets Adm {|Agent V, Crypt (priSK V) X|} ∈ set evs; evs ∈ foo]] =⇒ X ∈ parts (spies evs)

168

by (drule Gets imp Says, auto)

lemma new keys not analzd:

[[K ∈ symKeys; evs ∈ foo; Key K /∈ used evs]]

=⇒ K /∈ keysFor (analz (knows Spy evs))

by (blast dest: new keys not used intro: keysFor mono [THEN subsetD])

lemma unique Nv2:

[[Crypt c (Nonce Nv) ∈ parts (spies evs);

Crypt c (Nonce Nva) ∈ parts (spies evs);

Key c /∈ analz (spies evs); evs ∈ foo]]

=⇒ Nv=Nva

apply (erule rev mp,erule rev mp,erule rev mp)

apply (erule foo.induct, simp all)

apply (blast dest: analz insertI)

apply (blast dest: Crypt imp keysFor new keys not used)

apply (blast dest: Crypt imp keysFor new keys not used analz insertI)

apply (rule conjI, clarsimp, rule conjI, clarsimp, rule conjI)

apply (force, clarsimp, rule conjI, force, clarsimp)

apply (drule Gets imp parts knows Spy, assumption)

apply (case tac Key c /∈ analz (knows Spy evs2), clarsimp)

apply (case tac Crypt c (Nonce Nva) ∈ parts (knows Spy evs2), clarsimp)

apply (metis parts cut eq spies partsEs(2), clarsimp)

apply (metis parts cut eq spies partsEs(2), clarsimp)

apply (blast dest: analz insertI)

apply (clarsimp, rule conjI, clarsimp, force, clarsimp, rule conjI)

apply (force, clarsimp)

apply (drule Gets imp parts knows Spy, assumption)

apply (metis MPair parts parts cut eq spies partsEs(2))

apply (clarsimp, rule conjI, clarsimp, rule conjI, force, clarsimp)

apply (rule conjI, force, clarsimp)

apply (drule EV2 an, assumption)

apply (metis analz insertI parts cut eq spies partsEs(2))

169

apply (clarsimp, rule conjI, force, clarsimp, rule conjI, force, clarsimp)

apply (drule EV2 an, assumption)

apply (metis parts cut eq spies partsEs(2))

apply (force, clarsimp, rule conjI, clarsimp, rule conjI, force)

apply (clarsimp, rule conjI, force, clarsimp)

apply (drule CX analz, assumption)

apply (metis analz.Decrypt analz insertI analz into parts parts cut eq)

apply (clarsimp, rule conjI, force, clarsimp, rule conjI, force, clarsimp)

apply (drule CX analz, assumption)

apply (metis analz into parts parts cut eq spies partsEs(2))

by (blast dest: analz insertI)

lemma unique Nv:

[[Crypt c (Nonce Nv) ∈ parts (spies evs);

Crypt c (Nonce Nva) ∈ parts (spies evs);

Key c /∈ parts (spies evs); evs ∈ foo]]

=⇒ Nv=Nva

by (blast dest: unique Nv2 analz into parts)

lemma b fixed:

[[Says V Adm {|Agent V, Crypt (priSK V) (Crypt b (Crypt c (Nonce Nv)))|} ∈ set evs;

Key b /∈ parts (knows Spy evs); V /∈ bad; evs ∈ foo]]

=⇒ Crypt b (Nonce Nv ′) /∈ parts (spies evs)

apply (erule rev mp,erule rev mp)

apply (erule foo.induct)

apply simp all

apply (case tac V = Spy)

apply blast

apply clarsimp

apply (drule Fake parts insert [THEN subsetD], simp)

apply clarsimp

apply (blast dest: parts insertI)

apply (blast dest: Crypt imp keysFor new keys not used)

170

apply (blast dest: Crypt imp keysFor new keys not used)

apply (drule Gets imp parts knows Spy, assumption)

apply (metis MPair parts parts cut eq spies partsEs(2))

apply (clarsimp, blast)

apply clarsimp

apply auto

apply (blast dest: parts insertI)

apply (case tac Crypt (priSK Adm) (Crypt P R) ∈ parts (spies evs4))

apply (blast dest: parts cut eq)+

done

theorem Spy see b [simp]:

[[Says V Adm {|Agent V, Crypt (priSK V) (Crypt b (Crypt c (Nonce Nv)))|} ∈ set evs;

V /∈ bad; evs ∈ foo]]

=⇒ Key b /∈ parts (spies evs)

apply (erule rev mp, erule foo.induct, simp all)

apply spy analz

apply (blast dest: Crypt imp keysFor new keys not used)

apply (drule Gets imp parts knows Spy, assumption)

apply (rule conjI, force, force)

apply (blast dest: parts cut eq)

apply (blast dest: b fixed)

done

theorem b secrecy [dest]:

[[Says V Adm {|Agent V, Crypt (priSK V) (Crypt b (Crypt c (Nonce Nv)))|} ∈ set evs;

V /∈ bad; evs ∈ foo]]

=⇒ Key b /∈ analz (spies evs)

by (blast dest: Spy see b)

lemma EV1 alternative:

[[Says Va Adm {|Agent Va, Crypt (priSK Va) (Crypt ba (Crypt c (Nonce Nv)))|} ∈ set evs;

Says V Adm {|Agent V, Crypt (priSK V) (Crypt b (Crypt c (Nonce Nv)))|} ∈ set evs;

171

Key c /∈ parts (spies evs); V /∈ bad; evs ∈ foo]]

=⇒ Va = V ∨ Va = Spy

apply (erule rev mp, erule rev mp,erule rev mp)

apply (erule foo.induct, simp all)

apply (blast dest: parts insertI)+

done

theorem Spy see c [simp]:

[[Says V Adm {|Agent V, Crypt (priSK V) (Crypt b

(Crypt c (Nonce Nv)))|} ∈ set evs;

Anms V Col (Key c) /∈ set evs;

V /∈ bad; evs ∈ foo]]

=⇒ Key c /∈ parts (spies evs)

apply (erule rev mp,erule rev mp,erule rev mp)

apply (erule foo.induct, simp all)

apply spy analz

apply auto

apply (blast dest: Crypt imp keysFor new keys not used)

apply (blast dest: Crypt imp keysFor new keys not used)

apply (frule EV2 an, assumption)

apply (drule Gets imp parts knows Spy, assumption)

apply auto

apply (frule EV2 an, assumption)

apply (blast dest: parts cut eq)

apply (blast dest: parts cut eq)

apply (blast dest: EV1 alternative unique Nv)

done

theorem c secrecy [simp]:

[[Says V Adm {|Agent V, Crypt (priSK V) (Crypt b

(Crypt c (Nonce Nv)))|} ∈ set evs;

Anms V Col (Key c) /∈ set evs; V /∈ bad; evs ∈ foo]]

=⇒ Key c /∈ analz (spies evs)

172

by (blast dest: Spy see c)

lemma double fresh insert:

[[Nonce Nv ∈ analz (insert (Key c) (insert (Key b) (spies evs)));

Key b /∈ used evs; b ∈ symKeys; Key c /∈ used evs; c ∈ symKeys;

evs ∈ foo]]

=⇒ Nonce Nv ∈ analz (knows Spy evs)

apply (drule new keys not analzd, assumption, assumption)+

by auto

lemma unique c:

[[Crypt c (Nonce Nv) ∈ parts(spies evs);

Crypt ca (Nonce Nv) ∈ parts(spies evs);

Nonce Nv /∈ analz (spies evs); evs ∈ foo]]

=⇒ c=ca

apply (erule rev mp, erule rev mp, erule rev mp)

apply (erule foo.induct, simp all)

prefer 4

apply (frule Gets imp parts knows Spy, assumption)

apply (clarsimp, rule conjI, clarsimp)

apply (metis analz insertI parts cut eq spies partsEs(2))

apply (metis analz insertI parts cut eq spies partsEs(2))

prefer 5

apply (rule conjI)

apply (drule CX analz, assumption)

apply (metis analz conj parts analz insertI parts cut eq spies partsEs(2))

apply (drule CX analz, assumption)

apply (metis analz conj parts parts cut eq spies partsEs(2))

by (blast dest: analz insertI parts cut eq)+

lemma EV5 msg in parts spies:

[[Says V A {|Agent V, Crypt (priSK V) (Crypt b X)|} ∈ set evs]]

=⇒ X ∈ parts (spies evs)

173

by auto

lemma pushing3:

Key K ∈ analz (insert X (insert (Agent V) (Key ‘ KK ∪ knows Spy evs))) =⇒

Key K ∈ analz (insert X (Key ‘ KK ∪ knows Spy evs))

by (metis analz insert Agent insertE insert commute msg.simps(12))

lemma analz image freshK [rule format]:

evs ∈ foo =⇒

∀K KK. KK ⊆ −(range shrK) −→

(Key K ∈ analz (Key‘KK ∪ (spies evs))) =

(K ∈ KK ∨ Key K ∈ analz (spies evs))

apply (erule foo.induct) prefer 8

apply (thin tac CX = Crypt P R) prefer 7

apply (thin tac BSBody = Crypt P R)

apply (unfold Anms def)

apply analz freshK

defer defer

apply spy analz defer

apply (drule CX analz, assumption)

apply (metis analz cut analz image freshK simps(61) analz insertI)

apply (case tac Adm /∈ bad)

apply (drule Gets imp knows Spy, assumption)

apply (case tac BSBody ∈ analz (spies evs2))

apply (metis analz cut analz image freshK simps(61) analz insertI)

apply (case tac Crypt (priSK V) BSBody ∈ analz (spies evs2))

apply (metis analz.Decrypt analz spies pubK invKey)

apply (metis MPair analz analz.Inj)

apply (auto simp del: image insert image eq UN

simp add: analz image freshK simps)

apply (case tac BSBody ∈ analz (spies evs2))

apply (metis analz cut analz image freshK simps(61) analz insertI pushing3)

174

by (metis Gets imp knows Spy MPair analz analz.Decrypt analz.Inj analz spies pubK in-

vKey)

lemma analz insert freshK:

[[evs ∈ foo; KAB /∈ range shrK]] =⇒

(Key K ∈ analz (insert (Key KAB) (spies evs))) =

(K = KAB ∨ Key K ∈ analz (spies evs))

by (simp only: analz image freshK analz image freshK simps)

lemma c sym:

[[Crypt c (Nonce Nv) ∈ parts(spies evs);

Nonce Nv /∈ analz (spies evs); evs ∈ foo]]

=⇒ c ∈ symKeys

apply (erule rev mp,erule rev mp, erule foo.induct, simp all)

apply spy analz

apply (blast dest: parts cut eq analz insertI)

apply (blast dest: parts cut eq analz insertI)

defer

apply (blast dest: parts cut eq analz insertI)

apply (blast dest: parts cut eq analz insertI)

apply (blast dest: parts cut eq analz insertI)

apply (frule EV2 an, assumption)

apply (drule Gets imp parts knows Spy, assumption)

apply (rule conjI, clarsimp, rule conjI, clarsimp, rule conjI)

apply (blast dest: analz insertI, clarsimp)

apply (metis analz insertI parts cut eq spies partsEs(2))

apply clarsimp

apply (metis parts cut eq spies partsEs(2))

apply (metis analz insertI parts cut eq spies partsEs(2))

done

lemma Nonce secrecy lemma:

P −→ (X ∈ analz (G Un H)) −→ (X ∈ analz H) =⇒

175

P −→ (X ∈ analz (G Un H)) = (X ∈ analz H)

by (blast intro: analz mono [THEN subsetD])

lemma KeyWithNonceI:

[[Says V B {|Agent V, Crypt (priSK V) (Crypt b (Crypt c (Nonce Nv)))|} ∈ set evs]]

=⇒ KeyWithNonce c Nv evs

by (unfold KeyWithNonce def , blast)

lemma KeyWithNonce Says [simp]:

KeyWithNonce c Nv (Says V B X # evs) =

(∃ b. X = {|Agent V, Crypt (priSK V) (Crypt b (Crypt c (Nonce Nv)))|}

∨ KeyWithNonce c Nv evs)

by (simp add: KeyWithNonce def , blast)

lemma KeyWithNonce Notes [simp]:

KeyWithNonce c Nv (Notes B X # evs) = KeyWithNonce c Nv evs

by (simp add: KeyWithNonce def)

lemma KeyWithNonce Gets [simp]:

KeyWithNonce c Nv (Gets B X # evs) = KeyWithNonce c Nv evs

by (simp add: KeyWithNonce def)

A fresh key cannot be associated with any nonce (with respect to a given trace).

New argument wrt Yahalom because of new freshness argument on commitment key

lemma fresh not KeyWithNonce:

[[Key c /∈ used evs; c ∈ symKeys; evs ∈ foo]] =⇒ ¬ KeyWithNonce c Nv evs

apply (simp add: KeyWithNonce def)

by (blast dest: Crypt imp keysFor new keys not used)

lemma EV1 analz:

[[Gets Adm {|Agent V, Crypt (priSK V) (Crypt b (Crypt c (Nonce N)))|}

∈ set evs; evs ∈ foo]]

=⇒ Crypt b (Crypt c (Nonce N)) ∈ analz (spies evs)

176

by (force dest: Gets imp Says Says imp analz Spy)

lemma Notes analz c lemma:

Crypt c (Nonce Nv) ∈ analz (knows Spy evs) =⇒

Crypt c (Nonce Nv) ∈ analz (insert (Key c) (knows Spy evs))

by (blast dest: analz insertI)

lemma Notes analz c lemma2:

Crypt c (Crypt c (Nonce Nv)) ∈ analz (knows Spy evs) =⇒

Crypt c (Crypt c (Nonce Nv)) ∈ analz (insert (Key c) (knows Spy evs))

by (blast dest: analz insertI)

lemma Notes analz c lemma3:

Crypt b (Crypt c (Nonce Nv)) ∈ analz (knows Spy evs) =⇒

Crypt b (Crypt c (Nonce Nv)) ∈ analz (insert (Key b) (knows Spy evs))

by (blast dest: analz insertI)

lemma Notes analz c:

[[Gets V (Crypt c (Nonce Nv)) ∈ set evs; evs ∈ foo]]

=⇒ Nonce Nv ∈ analz (insert (Key c) (spies evs))

apply (case tac Crypt c (Nonce Nv) ∈ analz (spies evs))

prefer 2

apply (blast dest: Gets imp knows Spy)

apply (case tac c ∈ symKeys)

apply (metis analz.Inj analz Decrypt ′ analz insertI insertI1)

apply (drule Gets imp parts knows Spy, assumption)

apply (blast dest: analz insertI c sym)

done

lemma KWN Nv:

[[KeyWithNonce K Nv evs; Key K /∈ analz (spies evs); Nva 6= Nv; evs ∈ foo]]

=⇒ ¬ KeyWithNonce K Nva evs

apply (unfold KeyWithNonce def)

177

by (blast dest: EV5 msg in parts spies unique Nv2)

lemma KWN K:

[[KeyWithNonce K Nv evs; K 6= K ′; Nonce Nv /∈ analz (spies evs); evs ∈ foo]]

=⇒ ¬ KeyWithNonce K ′ Nv evs

apply (unfold KeyWithNonce def)

by (blast dest: EV5 msg in parts spies unique c)

lemma EV2 Nv analz:

[[evs ∈ foo;

Gets Adm {|Agent V, Crypt (priSK V) (Crypt b (Crypt c (Nonce N)))|} ∈ set evs;

c ∈ symKeys; b ∈ symKeys; Key c ∈ analz (knows Spy evs)]]

=⇒ Nonce N ∈ analz (insert (Key b) (knows Spy evs))

apply (drule EV1 analz, assumption)

by (blast dest: analz insertI analz Decrypt ′)

lemma EV2 Nv analzbis:

[[evs ∈ foo;

Gets Adm {|Agent V, Crypt (priSK V) (Crypt b (Crypt c (Nonce N)))|} ∈ set evs;

c ∈ symKeys; b ∈ symKeys; Key b ∈ analz (knows Spy evs)]]

=⇒ Nonce N ∈ analz (insert (Key c) (knows Spy evs))

apply (drule EV1 analz, assumption)

by (blast dest: analz insertI analz Decrypt ′)

lemma EV2 Nv analzter:

[[evs ∈ foo;

Gets Adm {|Agent V, Crypt (priSK V) (Crypt b (Crypt c (Nonce N)))|} ∈ set evs;

c ∈ symKeys; b ∈ symKeys]]

=⇒ Nonce N ∈ analz (insert (Key c) (insert (Key b) (knows Spy evs)))

apply (drule EV1 analz, assumption)

by (blast dest: analz insertI analz Decrypt ′)

lemma Nonce analz cut:

178

[[Nonce Nv ∈ analz (Key ‘ insert c KK ∪ knows Spy evs); Key c ∈ analz (spies evs)]] =⇒

Nonce Nv ∈ analz (Key ‘ KK ∪ knows Spy evs)

by (auto, blast dest:analz cut analz image freshK simps(61))

lemma pushing:

(Nonce Nv ∈ analz (insert X (insert (Agent V) (Key ‘ KK ∪ knows Spy evs))))

= (Nonce Nv ∈ analz (insert X (Key ‘ KK ∪ knows Spy evs)))

apply auto

apply (metis analz insert Agent insertE insert commute msg.simps(11))

by (drule analz insertI, simp only: insert commute)

lemma pushing bis:

(Nonce Nv ∈ analz (insert X (insert (Agent V) (knows Spy evs)))) =

(Nonce Nv ∈ analz (insert X (knows Spy evs)))

apply safe

apply (metis analz insert Agent insertE insert commute msg.simps(11))

by (drule analz insertI, simp only: insert commute)

lemma Nv extract:

[[Gets Adm {|Agent V, Crypt (priSK V) (Crypt K (Crypt c (Nonce Nv)))|} ∈ set evs;

K ∈ symKeys; c ∈ symKeys; evs ∈ foo]]

=⇒ Nonce Nv ∈ analz (insert (Key K) (insert (Key c) (knows Spy evs)))

apply (drule EV2 Nv analzter, assumption+)

by (simp only: insert commute)

lemma Nv extract2:

[[Gets Adm {|Agent V, Crypt (priSK V) (Crypt K (Crypt c (Nonce Nv)))|} ∈ set evs;

K ∈ symKeys; c ∈ symKeys; Key c ∈ analz (knows Spy evs); evs ∈ foo]]

=⇒ Nonce Nv ∈ analz (insert (Key K) (knows Spy evs))

by (blast dest: EV2 Nv analz)

lemma Nv extract3 lemma:

[[Gets Adm {|Agent V, Crypt (priSK V) (Crypt K X)|} ∈ set evs; evs ∈ foo]]

179

=⇒ X ∈ analz (insert (Key (invKey K)) (spies evs))

apply (drule Gets imp knows Spy, assumption)

apply (case tac Crypt K X ∈ analz (knows Spy evs))

prefer 2

apply (metis analz.simps analz spies pubK invKey)

apply (case tac Crypt K X ∈ analz (insert (Key (invKey K)) (knows Spy evs)))

apply auto

by (blast dest: analz insertI)

lemma Nv extract3:

[[Gets Adm {|Agent V, Crypt (priSK V) (Crypt K X)|} ∈ set evs;

Nonce Nv ∈ analz (insert X (Key ‘ KK ∪ knows Spy evs)); evs ∈ foo]]

=⇒ Nonce Nv ∈ analz (insert (Key (invKey K)) (Key ‘ KK ∪ knows Spy evs))

apply (drule Nv extract3 lemma, assumption)

apply (erule analz.induct, auto)

by (erule analz.induct, blast+)

lemma priSKV nosynth2:

[[parts (insert X (knows Spy evs)) ⊆ synth (analz (knows Spy evs)) ∪ parts (knows Spy evs);

Crypt (priSK V) (Crypt P R) ∈ parts (insert X (knows Spy evs));

V /∈ bad; evs ∈ foo]]

=⇒ Crypt (priSK V) (Crypt P R) ∈ parts (knows Spy evs)

by (force dest: priSKV nosynth)

lemma b fixed2:

[[Crypt (priSK V) (Crypt b (Crypt c (Nonce Nv))) ∈ parts (spies evs);

Key b /∈ parts (knows Spy evs); V 6= Adm; V /∈ bad; evs ∈ foo]]

=⇒ Crypt b (Nonce Nv ′) /∈ parts (spies evs)

apply (erule rev mp, erule rev mp, erule foo.induct, simp all)

apply (case tac V = Spy, blast, clarsimp)

apply (case tac Key b /∈ parts (knows Spy evsf), clarsimp)

apply (case tac Crypt (priSK V) (Crypt b (Crypt c (Nonce Nv))) ∈ parts (knows Spy evsf))

apply (clarsimp, blast, clarsimp)

180

apply (force dest!: Fake parts insert priSKV nosynth2)

apply (clarsimp, blast dest: parts insertI)

apply (blast dest: Crypt imp keysFor new keys not used)

apply (blast dest: Crypt imp keysFor new keys not used)

apply (safe, simp all)

apply (drule Gets imp parts knows Spy, assumption+)

apply (blast dest: parts insertI)

defer defer

apply (drule Gets imp parts knows Spy, assumption+)

apply (metis MPair parts parts cut eq spies partsEs(2))

prefer 5

apply (drule Gets imp parts knows Spy, assumption+)

apply (metis parts.Fst parts.Snd parts cut eq spies partsEs(2))

by (blast dest: parts insertI CX analz parts cut eq)+

theorem Spy see b2 [simp]:

[[Crypt (priSK V) (Crypt b (Crypt c (Nonce Nv))) ∈ parts (spies evs); V 6= Adm;

V /∈ bad; evs ∈ foo]]

=⇒ Key b /∈ parts (spies evs)

apply (erule rev mp, erule foo.induct, simp all)

apply (drule Fake parts insert, clarsimp)

apply (case tac Crypt (priSK V) (Crypt b (Crypt c (Nonce Nv))) ∈ parts (knows Spy evsf))

apply (clarsimp, blast, clarsimp)

apply (blast dest: priSKV nosynth2)

apply (metis Crypt imp invKey keysFor invKey K new keys not used spies partsEs(2) usedI)

apply (drule Gets imp parts knows Spy, assumption, clarsimp)

apply (rule conjI, clarsimp, rule conjI, clarsimp, force)

apply (clarsimp, metis parts cut eq spies partsEs(2))

apply (clarsimp, rule conjI, force)

by (blast dest: parts cut eq b fixed2)+

theorem b secrecy2 [dest]:

[[Crypt (priSK V) (Crypt b (Crypt c (Nonce Nv))) ∈ parts(spies evs); V 6= Adm;

181

V /∈ bad; evs ∈ foo]] =⇒ Key b /∈ analz (spies evs)

by (blast dest: Spy see b2)

lemma forme:

[[Crypt (priSK V) X ∈ parts (spies evs); V 6= Adm; evs ∈ foo]]

=⇒ V ∈ bad ∨ (∃ b c N. X = Crypt b (Crypt c (Nonce N)) ∧ c ∈ symKeys ∧ b ∈ symKeys)

apply (erule rev mp, erule foo.induct, simp all)

apply (force dest!: Fake parts insert in Un priSKV nosynth)

defer apply blast defer apply blast defer apply blast

apply (case tac Adm ∈ bad, clarsimp, rule conjI)

apply (clarsimp, blast, clarsimp)

apply (drule Gets imp parts knows Spy, assumption)

apply force

by (blast dest: parts cut eq)+

lemma EV1 analz bis:

[[Gets Adm {|Agent V, Crypt (priSK V) X|} ∈ set evs; evs ∈ foo]]

=⇒ X ∈ analz (knows Spy evs)

apply (drule Gets imp knows Spy, assumption)

apply (case tac Crypt (priSK V) X ∈ analz (spies evs))

apply force

by (metis analz.simps)

lemma uniq2:

[[Gets Adm {|Agent V, Crypt (priSK V) (Crypt P R)|} ∈ set evs; V 6= Adm; evs ∈ foo]]

=⇒ (∃ c N. R = Crypt c (Nonce N) ∧ Key P /∈ analz (knows Spy evs) ∧ P ∈ symKeys ∧ c ∈

symKeys)

∨ V ∈ bad

apply (erule rev mp, erule foo.induct, auto)

apply (spy analz, blast dest: forme)

apply (case tac P = c)

apply (blast dest: Crypt imp keysFor EV1 analz bis new keys not analzd)

apply (case tac P = b)

182

apply (blast dest: Crypt imp keysFor EV1 analz bis new keys not analzd)

apply (case tac Key P ∈ analz (insert (Key b) (knows Spy evs1)))

apply (metis Crypt imp keysFor EV1 analz bis analz insert Key insertE new keys not analzd)

apply (drule Gets imp parts knows Spy, assumption)

apply (case tac Key P ∈ parts (insert (Key c) (insert (Key b) (knows Spy evs1))))

prefer 2 apply (blast, force)

apply (case tac R : analz (insert (Key (invKey Pa)) (spies evs2)))

prefer 2 apply (blast dest: Nv extract3 lemma)

apply (metis analz insert Agent analz insert eq insertCI insertE msg.simps(12))

apply (blast dest: Nv extract3 lemma analz insert eq)

apply (blast dest: CX analz analz cut)

apply (case tac P=c, clarsimp)

by (blast dest: Spy see b2 b fixed2, blast dest: analz insert freshK)

lemma b fixed3:

[[Crypt (priSK V) (Crypt b R) ∈ parts (spies evs);

Key b /∈ parts (knows Spy evs); Nonce Nv ∈ parts{R}; V 6= Adm;

V /∈ bad; evs ∈ foo]] =⇒ Crypt b (Nonce Nv ′) /∈ parts (spies evs)

apply (erule rev mp,erule rev mp, erule rev mp, erule foo.induct)

apply (simp all, case tac V = Spy, blast, clarsimp)

apply (case tac Key b /∈ parts (knows Spy evsf), clarsimp)

apply (case tac Crypt (priSK V) (Crypt b R) ∈ parts (knows Spy evsf))

apply (clarsimp, blast, clarsimp)

apply (blast dest: Fake parts insert priSKV nosynth2)

apply (clarsimp, blast dest: parts insertI)

apply (case tac Nonce Nv ∈ parts {R}, clarsimp)

apply (case tac Crypt (priSK V) (Crypt b R) ∈ parts (knows Spy evsb), clarsimp)

apply (force dest!: analz into parts)

apply clarsimp

apply (case tac Nv 6= Nv ′)

apply (blast dest: unique Nv, blast)

apply (blast dest: new keys not used)

apply (blast dest: Crypt imp keysFor new keys not used)

183

apply (case tac Adm ∈ bad, clarsimp)

apply (drule Gets imp parts knows Spy, assumption)

apply (rule conjI, clarsimp, rule conjI, force, clarsimp)

apply (metis parts cut eq spies partsEs(2))

apply (clarsimp, rule conjI, force, clarsimp)

apply (metis parts.Body parts cut eq)

apply (metis EV2 an parts cut eq spies partsEs(2))

apply (blast dest: CX analz parts cut eq parts insertI)

apply (clarsimp, rule conjI, clarsimp, rule conjI, clarsimp)

apply (blast dest: CX analz)

apply (metis CX analz analz into parts parts cut eq parts insertI spies partsEs(2))+

done

theorem Spy see b3 [simp]:

[[Crypt (priSK V) (Crypt b R) ∈ parts (spies evs);

Nonce Nv ∈ parts{R}; V 6= Adm; V /∈ bad; evs ∈ foo]]

=⇒ Key b /∈ parts (spies evs)

apply (erule rev mp, erule rev mp, erule foo.induct, simp all)

apply (drule Fake parts insert, clarsimp)

apply (blast dest: priSKV nosynth2, blast)

apply (case tac Va ∈ bad, clarsimp)

apply (blast dest: Crypt imp keysFor new keys not used)

apply (clarsimp, blast)

apply (metis EV2 an Gets imp parts knows Spy parts.Fst parts cut eq spies partsEs(2))

by (blast dest: parts cut eq EV5 msg in parts spies b fixed3)+

lemma b sym:

[[Crypt (priSK V) (Crypt b R) ∈ parts (spies evs); V 6= Adm;

V /∈ bad; evs ∈ foo]] =⇒ b ∈ symKeys

apply (erule rev mp, erule foo.induct, simp all)

apply (blast dest: Fake parts insert priSKV nosynth2, blast)

apply (metis EV2 an Gets imp parts knows Spy parts.Fst parts cut eq spies partsEs(2))

by (blast dest: parts cut eq)

184

lemma V unique:

[[Crypt (priSK V) (Crypt b (Crypt c (Nonce Nv))) ∈ parts (spies evs);

Crypt (priSK V) X ∈ parts (spies evs); Nonce Nv ∈ parts {X};

X 6= Crypt b (Crypt c (Nonce Nv));

V /∈ bad; V 6= Adm; evs ∈ foo]] =⇒ False

apply (erule rev mp, erule rev mp, erule foo.induct, simp all)

apply (force dest!: Fake parts insert in Un analz into parts)

apply (clarsimp, blast)

apply (rule conjI, force)

apply (force dest!: parts cut)

apply (metis Gets imp parts knows Spy MPair parts parts cut eq spies partsEs(2))

apply (metis EV5 msg in parts spies)

apply (metis parts.Snd Gets imp parts knows Spy parts cut eq spies partsEs(2))

done

lemma EV1 Key alternative:

[[Says V Adm {|Agent V, Crypt (priSK V) (Crypt b (Crypt P (Nonce Nv)))|} ∈ set evs;

evs ∈ foo]]

=⇒ V = Spy ∨ (V /∈ bad) ∨ (V ∈ bad ∧ Key P ∈ analz (knows Spy evs))

apply (erule rev mp, erule foo.induct, auto)

by (blast dest: analz insertI)+

lemma analz insert Key3 [simp]:

K /∈ keysFor (analz H) ∧ L /∈ keysFor (analz H) =⇒

analz (insert (Key K) (insert (Key L) H)) = insert (Key K) (insert (Key L) (analz H))

by auto

theorem Nonce secrecy:

evs ∈ foo =⇒

(∀KK. KK ⊆ − (range shrK) −→

(∀K ∈ KK. K ∈ symKeys −→ ¬ KeyWithNonce K Nv evs) −→

(Nonce Nv ∈ analz (Key‘KK ∪ (knows Spy evs))) =

185

(Nonce Nv ∈ analz (knows Spy evs)))

apply (erule foo.induct) prefer 8

apply (thin tac CX = Crypt P R) defer

apply (unfold Anms def)

apply (safe del: impI intro!: Nonce secrecy lemma [THEN impI])

prefer 4

apply (simp del: image eq UN add: analz image freshK simps)

apply (metis analz.Decrypt analz Decrypt ′ analz image freshK simps(61) analz spies pubK

invKey)

apply (simp all del: image insert image eq UN

add: analz image freshK analz image freshK simps fresh not KeyWithNonce)

apply spy analz

apply fast defer

apply (frule EV5 msg in parts spies)

apply (metis KeyWithNonceI c sym invKey K)

prefer 2

apply (drule CX analz, assumption)

apply (metis analz cut analz image freshK simps(61) analz insertI)

apply (case tac Nv=Nva)

apply (drule Notes analz c, assumption)

apply (simp del: image insert image eq UN add: insert Key singleton)

apply (case tac Nonce Nv ∈ analz(spies evs5))

apply (metis analz insertI insert Key singleton)

apply (case tac Key c ∈ analz(spies evs5))

apply (blast dest: Nonce analz cut)

apply (drule KeyWithNonceI, drule KWN Nv)

apply (simp del: image insert image eq UN)+

apply (case tac Adm ∈ bad)

186

apply (simp all del: image insert image eq UN add: fresh not KeyWithNonce)

apply (case tac Key (invKey P) ∈ analz (knows Spy evs2))

apply (simp all del: image insert image eq UN add: pushing)

apply (case tac R ∈ analz (knows Spy evs2))

apply (simp all del: image insert image eq UN add: analz image freshK simps)

apply (drule Nv extract3 lemma, assumption, metis analz insert eq)

defer

apply (case tac Key (invKey P) ∈ analz (knows Spy evs2))

apply (simp all del: image insert image eq UN)

apply (case tac R ∈ analz (knows Spy evs2))

apply (simp all del: image insert image eq UN add: analz image freshK simps)

apply (blast dest: EV1 analz bis)

apply (frule tac EV2 analz, assumption)

apply (elim disjE exE)

apply (simp all del: image insert image eq UN add: analz image freshK analz image freshK simps)

defer

apply safe

apply (simp all del: image insert image eq UN)

apply (drule Nv extract, assumption+)

apply (simp del: image insert image eq UN add: analz image freshK simps)

apply (case tac {c, P} ⊆ − range shrK, blast, blast)

apply (drule Nv extract2, assumption+)

apply (simp all del: image insert image eq UN add: analz image freshK simps)

apply (case tac {P} ⊆ − range shrK, blast, blast)

apply (frule tac EV2 analz, assumption)

apply (simp all del: image insert image eq UN)

apply (drule Nv extract3, assumption+)

apply (simp all del: image insert image eq UN add: analz image freshK simps)

apply (simp add: insert absorb)

apply (drule Nv extract3, assumption+)

apply (simp all del: image insert image eq UN add: analz image freshK simps)

by (auto simp add: insert absorb)

187

theorem single Nonce secrecy:

evs ∈ foo =⇒

(¬ KeyWithNonce c Nv evs −→

c /∈ range shrK −→

(Nonce Nv ∈ analz (insert (Key c) (knows Spy evs))) =

(Nonce Nv ∈ analz (knows Spy evs)))

by (simp del: image insert image eq UN

add: analz image freshK simps Nonce secrecy)

lemma single Nonce secrecy 2:

[[Says V Adm {|Agent V, Crypt (priSK V) (Crypt b (Crypt c (Nonce Nv)))|} ∈ set evs;

Nonce Nv /∈ analz (spies evs);

V /∈ bad; ca /∈ range shrK; ca 6= c; evs ∈ foo]]

=⇒ (Nonce Nv ∈ analz (insert (Key ca) (knows Spy evs))) =

(Nonce Nv ∈ analz (knows Spy evs))

by (blast dest: KeyWithNonceI single Nonce secrecy KWN K)

theorem Spy see Nv [simp]:

[[Says V Adm {|Agent V, Crypt (priSK V) (Crypt b (Crypt c (Nonce Nv)))|} ∈ set evs;

Key c /∈ parts (spies evs); V /∈ bad; evs ∈ foo]]

=⇒ Nonce Nv /∈ analz (spies evs)

apply (erule rev mp,erule rev mp,erule rev mp)

apply (erule foo.induct, simp all)

apply (drule Fake analz eq, blast dest: parts insertI)

apply (metis analz.Decrypt analz spies pubK invKey invKey K)

apply (blast dest: analz insertI double fresh insert)

apply (drule EV1 analz bis, assumption)

apply (simp add: pushing bis)

apply (metis analz.Decrypt analz insert eq parts insertI)

apply (clarsimp, case tac c=ca, clarsimp)

apply (case tac c ∈ symKeys, force)

188

apply (blast dest: c sym, blast dest: unique c)

apply (drule CX analz, assumption)

apply (metis analz.Decrypt analz insert eq parts insertI)

apply (case tac Nv=Nva)

apply (blast dest: EV5 msg in parts spies unique c)

apply (blast dest: KWN K single Nonce secrecy KeyWithNonceI)

apply (drule Gets imp knows Spy, assumption)

apply (drule Notes analz c, assumption)

apply (auto simp add: insert absorb)

apply (case tac Key ca ∈ analz (spies evs6))

apply (blast dest: analz cut)

apply (case tac {|Number anms, Key ca|} ∈ analz (spies evs6))

by force+

theorem Nv secrecy [simp]:

[[Says V Adm {|Agent V, Crypt (priSK V) (Crypt b (Crypt c (Nonce Nv)))|} ∈ set evs;

Key c /∈ analz (spies evs); V /∈ bad; evs ∈ foo]]

=⇒ Nonce Nv /∈ analz (spies evs)

apply (erule rev mp,erule rev mp,erule rev mp)

apply (erule foo.induct, simp all)

apply (blast dest: Fake analz eq analz insertI)

apply (metis analz.Decrypt analz spies pubK invKey invKey K)

apply (blast dest: analz insertI double fresh insert)

apply (drule EV1 analz bis, assumption)

apply (simp add: pushing bis)

apply (blast dest: analz cut analz insertI)

apply (clarsimp, case tac c=ca, clarsimp)

apply (case tac c ∈ symKeys, force)

189

apply (blast dest: c sym, blast dest: unique c)

apply (drule CX analz, assumption)

apply (metis analz.Decrypt analz insert eq)

apply (case tac Nv=Nva) apply auto

apply (blast dest: analz insertI) apply (blast dest: KWN K KeyWithNonceI)

apply (blast dest: analz insertI) apply (drule KeyWithNonceI)

apply (blast dest: KWN Nv analz insert eq single Nonce secrecy)

apply (drule Gets imp knows Spy, assumption)

apply (drule Notes analz c, assumption)

apply (case tac {|Number anms, Key ca|} ∈ analz (spies evs6))

by (blast dest: analz cut, force)

theorem Nv secrecy relaxed [simp]:

[[Says V Adm {|Agent V, Crypt (priSK V) (Crypt b (Crypt c (Nonce Nv)))|} ∈ set evs;

Anms V Col (Key c) /∈ set evs; V /∈ bad; evs ∈ foo]]

=⇒ Nonce Nv /∈ analz (spies evs)

by (blast dest: Nv secrecy c secrecy)

definition

Unique :: [event, event list] ⇒ bool (Unique on [0, 50] 50)

where (Unique ev on evs) = (ev /∈ set (tl (dropWhile (% z. z 6= ev) evs)))

lemma Notes Unique:

[[Notes Adm (Agent V) ∈ set evs; evs ∈ foo]]

=⇒ Unique (Notes Adm (Agent V)) on evs

apply (erule rev mp, erule foo.induct)

by (simp all add: Unique def , blast)

lemma EV2 Notes:

190

[[Says Adm V (Crypt (priSK Adm) (Crypt b (Crypt c (Nonce N)))) ∈ set evs;

evs ∈ foo]]

=⇒ Notes Adm (Agent V) ∈ set evs

by (erule rev mp, erule foo.induct, simp all)

lemma unique fwd:

[[Unique (Notes Adm (Agent V)) on evs;

Says Adm V (Crypt (priSK Adm) (Crypt b (Crypt c (Nonce N)))) ∈ set evs;

evs ∈ foo]]

=⇒ Unique (Says Adm V (Crypt (priSK Adm) (Crypt b (Crypt c (Nonce N))))) on evs

apply (erule rev mp, erule rev mp, erule foo.induct)

by (simp all add: Unique def , blast dest: EV2 Notes)

lemma no two votes:

[[Says Adm V (Crypt (priSK Adm) (Crypt b (Crypt c (Nonce N)))) ∈ set evs;

Says Adm V (Crypt (priSK Adm) (Crypt d (Crypt e (Nonce Nv)))) ∈ set evs;

evs ∈ foo]] =⇒ Nv = N ∧ c = e ∧ b = d

apply (erule rev mp, erule rev mp, erule foo.induct)

apply (simp all, auto)

by (blast dest: EV2 Notes)+

lemma Adm sign once:

[[Says Adm V (Crypt (priSK Adm) (Crypt b (Crypt c (Nonce N)))) ∈ set evs;

evs ∈ foo]] =⇒

Unique (Says Adm V (Crypt (priSK Adm) (Crypt b (Crypt c (Nonce N))))) on evs

by (blast dest: unique fwd Notes Unique EV2 Notes)

theorem verifiability lemma:

[[Says V Adm {|Agent V, Crypt (priSK V) (Crypt b (Crypt c (Nonce Nv)))|} ∈ set evs;

Anms V Col (Key c) ∈ set evs;

V /∈ bad; evs ∈ foo]]

=⇒ Gets Col (Crypt c (Nonce Nv)) ∈ set evs

apply (erule rev mp, erule rev mp, erule rev mp, erule foo.induct)

191

apply (simp all, spy analz, auto)

apply (drule Says imp analz Spy)

apply auto

apply (case tac Key c ∈ analz (spies evs5), simp)

apply (frule EV5 msg in parts spies)

by (blast dest: unique Nv2)

theorem verifiability:

[[Anms V Col (Crypt (priSK Adm) (Crypt c (Nonce Nv))) ∈ set evs;

Anms V Col (Key c) ∈ set evs; V 6= Col;

V /∈ bad; evs ∈ foo]]

=⇒ Gets Col (Crypt c (Nonce Nv)) ∈ set evs

apply (erule rev mp, erule rev mp, erule rev mp, erule foo.induct)

apply (simp all, spy analz, auto)

apply (drule verifiability lemma)

apply auto

apply (frule EV5 msg in parts spies)

apply (frule unique Nv2, assumption)

apply (force dest: c secrecy, assumption)

apply auto

apply (case tac Key c /∈ analz (spies evs5))

apply (blast dest: unique Nv2, force)

done

end

A.3.2 Privacy.thy

theory Privacy imports Foo begin

inductive set

analzplus :: msg set ⇒ msg set ⇒ msg set

for H :: msg set and ks :: msg set

192

where

Inj [intro,simp]: X ∈ H =⇒ X ∈ analzplus H ks

| Fst: {|X,Y|} ∈ analzplus H ks =⇒ X ∈ analzplus H ks

| Snd: {|X,Y|} ∈ analzplus H ks =⇒ Y ∈ analzplus H ks

| Decrypt [dest]: [[Crypt K X ∈ analzplus H ks; Key (invKey K) ∈ analzplus H ks]]

=⇒ X ∈ analzplus H ks

| Decrypt2 [dest]: [[Crypt K X ∈ analzplus H ks; Key (invKey K) ∈ ks]]

=⇒ X ∈ analzplus H ks

lemma analzplus mono: G ⊆ H =⇒ analzplus G ks ⊆ analzplus H ks

apply auto

apply (erule analzplus.induct)

apply (auto dest: analzplus.Fst analzplus.Snd)

done

lemma MPair analzplus [elim!]:

[[{|X,Y|} ∈ analzplus H ks;

[[X ∈ analzplus H ks; Y ∈ analzplus H ks]] =⇒ P

]] =⇒ P

by (blast dest: analzplus.Fst analzplus.Snd)

lemma analzplus increasing: H ⊆ analzplus H ks

by blast

lemma analz analzplus: analz H ⊆ analzplus H ks

apply auto

apply (erule analz.induct)

apply auto

done

lemma analzplus empty [simp]: analzplus {} ks = {}

193

apply safe

apply (erule analzplus.induct, blast+)

done

lemmas analzplus insertI =

subset insertI [THEN analzplus mono, THEN [2] rev subsetD, standard]

lemma analzplus insert: insert X (analzplus H ks) ⊆ analzplus(insert X H) ks

by (blast intro: analzplus mono [THEN [2] rev subsetD])

lemmas analzplus insert eq I = equalityI [OF subsetI analzplus insert]

lemma analzplus insert Agent [simp]:

analzplus (insert (Agent agt) H) ks = insert (Agent agt) (analzplus H ks)

apply (rule analzplus insert eq I)

apply (erule analzplus.induct, auto)

done

lemma analzplus insert Nonce [simp]:

analzplus (insert (Nonce N) H) ks = insert (Nonce N) (analzplus H ks)

apply (rule analzplus insert eq I)

apply (erule analzplus.induct, auto)

done

lemma analzplus insert Number [simp]:

analzplus (insert (Number N) H) ks = insert (Number N) (analzplus H ks)

apply (rule analzplus insert eq I)

apply (erule analzplus.induct, auto)

done

lemma analzplus insert Hash [simp]:

analzplus (insert (Hash X) H) ks = insert (Hash X) (analzplus H ks)

apply (rule analzplus insert eq I)

194

apply (erule analzplus.induct, auto)

done

lemma analzplus insert Key [simp]:

K /∈ keysFor (analzplus H ks) =⇒

analzplus (insert (Key K) H) ks = insert (Key K) (analzplus H ks)

apply (unfold keysFor def)

apply (rule analzplus insert eq I)

apply (erule analzplus.induct, auto)

done

lemma analzplus insert MPair [simp]:

analzplus (insert {|X,Y|} H) ks =

insert {|X,Y|} (analzplus (insert X (insert Y H)) ks)

apply (rule equalityI)

apply (rule subsetI)

apply (erule analzplus.induct, auto)

apply (erule analzplus.induct)

apply (blast intro: analzplus.Fst analzplus.Snd)+

done

lemma analzplus insert Crypt:

[[Key (invKey K) /∈ analzplus H ks; Key (invKey K) /∈ ks]]

=⇒ analzplus (insert (Crypt K X) H) ks = insert (Crypt K X) (analzplus H ks)

apply (rule analzplus insert eq I)

apply (erule analzplus.induct, auto)

done

lemma lemma1 analzplus: Key (invKey K) ∈ analzplus H ks =⇒

analzplus (insert (Crypt K X) H) ks ⊆

insert (Crypt K X) (analzplus (insert X H) ks)

apply (rule subsetI)

apply (erule tac x = x in analzplus.induct, auto)

195

done

lemma lemma2 analzplus: Key (invKey K) ∈ analzplus H ks =⇒

insert (Crypt K X) (analzplus (insert X H) ks) ⊆

analzplus (insert (Crypt K X) H) ks

apply auto

apply (erule tac x = x in analzplus.induct, auto)

apply (blast intro: analzplus insertI analzplus.Decrypt)

done

lemma analzplus insert Decrypt:

Key (invKey K) ∈ analzplus H ks =⇒

analzplus (insert (Crypt K X) H) ks =

insert (Crypt K X) (analzplus (insert X H) ks)

by (intro equalityI lemma1 analzplus lemma2 analzplus)

lemma lemma1 analzplus2: Key (invKey K) ∈ ks =⇒

analzplus (insert (Crypt K X) H) ks ⊆

insert (Crypt K X) (analzplus (insert X H) ks)

apply (rule subsetI)

apply (erule tac x = x in analzplus.induct, auto)

done

lemma lemma2 analzplus2: Key (invKey K) ∈ ks =⇒

insert (Crypt K X) (analzplus (insert X H) ks) ⊆

analzplus (insert (Crypt K X) H) ks

apply auto

apply (erule tac x = x in analzplus.induct, auto)

apply (blast intro: analzplus insertI analzplus.Decrypt2)

done

lemma analzplus insert Decrypt2:

Key (invKey K) ∈ ks =⇒

196

analzplus (insert (Crypt K X) H) ks =

insert (Crypt K X) (analzplus (insert X H) ks)

by (intro equalityI lemma1 analzplus2 lemma2 analzplus2)

lemma analzplus Crypt if [simp]:

analzplus (insert (Crypt K X) H) ks =

(if (Key (invKey K) ∈ analzplus H ks) ∨ (Key (invKey K) ∈ ks)

then insert (Crypt K X) (analzplus (insert X H) ks)

else insert (Crypt K X) (analzplus H ks))

by (simp add: analzplus insert Crypt

analzplus insert Decrypt analzplus insert Decrypt2)

lemma analzplus image Key [simp]: analzplus (Key‘N) ks = Key‘N

apply auto

apply (erule analzplus.induct, auto)

done

lemma

parts

{{|Agent V, Nonce Nv|}}

= {{|Agent V, Nonce Nv|}, Agent V, Nonce Nv}

by auto

lemma

analz

{{|Agent V, Nonce Nv|}}

= {{|Agent V, Nonce Nv|}, Agent V, Nonce Nv}

by auto

lemma

analzplus

{{|Agent V, Nonce Nv|}}

ks = {{|Agent V, Nonce Nv|}, Agent V, Nonce Nv}

197

by auto

lemma

analzplus

{{|Agent V, Crypt c (Nonce Nv)|}} ks =

(if (Key (invKey c) ∈ analzplus {{|Agent V, Crypt c (Nonce Nv)|}} ks)

∨ (Key (invKey c) ∈ ks)

then {{|Agent V, Crypt c (Nonce Nv)|},

Agent V, Crypt c (Nonce Nv), Nonce Nv}

else {{|Agent V, Crypt c (Nonce Nv)|},

Agent V, Crypt c (Nonce Nv)})

by auto

lemma analz subset analzplus: analz {X} ⊆ analzplus {X} ks

apply (rule subsetI) apply (erule analz.induct, blast+)

done

lemma analzplus subset parts: analzplus {X} ks ⊆ parts {X}

apply (rule subsetI) apply (erule analzplus.induct, blast+)

done

lemmas analzplus into parts = analzplus subset parts [THEN subsetD, standard]

lemmas analz into analzplus = analz subset analzplus [THEN subsetD, standard]

primrec aanalz :: agent => event list => msg set set

where

aanalz Nil: aanalz A [] = {}

| aanalz Cons:

aanalz A (ev # evs) =

(if A = Spy then

(case ev of

198

Says A ′ B X ⇒

(if A ′∈ bad then aanalz Spy evs

else if isAnms X

then insert ({Agent B} ∪ (analzplus {X} (analz(knows Spy evs)))) (aanalz Spy

evs)

else insert ({Agent B} ∪ {Agent A ′} ∪ (analzplus {X} (analz(knows Spy evs)))) (aanalz

Spy evs)

)

| Gets A ′ X ⇒ aanalz Spy evs

| Notes A ′ X ⇒ aanalz Spy evs)

else aanalz A evs)

lemma aanalz empty [simp]: aanalz A [] = {}

by simp

lemma aanalz Says [simp]: aanalz Spy (Says A B X # evs) =

(if A∈bad then aanalz Spy evs else

if isAnms X

then insert ({Agent B} ∪ (analzplus {X} (analz(knows Spy evs)))) (aanalz Spy

evs)

else insert ({Agent B} ∪ {Agent A} Un (analzplus {X} (analz(knows Spy evs)))) (aanalz

Spy evs))

by simp

lemma aanalz Gets [simp]: aanalz Spy (Gets A X # evs) = aanalz Spy evs

by simp

lemma aanalz Notes [simp]: aanalz Spy (Notes A X # evs) =

aanalz Spy evs

by simp

lemma aanalz priSK:

[[a ∈ aanalz Spy evs; Crypt (priSK A) X ∈ a; X /∈ a; evs ∈ foo]]

199

=⇒ False

by (erule rev mp, erule foo.induct, auto simp add: isAnms def)

inductive set

asynth :: msg set set ⇒ msg set set

for as :: msg set set

where

asynth Build [intro]: [[a1 ∈ as; a2 ∈ as; m ∈ a1; m ∈ a2;

m 6= Agent Adm; m 6= Agent Col]]

=⇒ a1 ∪ a2 ∈ asynth as

lemma asynth empty [simp]: asynth {} = {}

apply safe

apply (erule asynth.induct, simp+)

done

lemma asynth emptyE [elim!]: X ∈ asynth {} =⇒ P

by simp

lemma asynth insert:

a ∈ asynth(insert a1 as) =⇒

(a=a1 ∨

a ∈ asynth as ∨

(∃ a2 m. a2 ∈ as ∧ a = a1 ∪ a2 ∧ m ∈ a1 ∧ m ∈ a2 ∧

m 6= Agent Adm ∧ m 6= Agent Col))

by (erule asynth.induct, blast)

lemma not says:

[[Says A Adm X ∈ set evs; A = Col ∨ A = Adm; evs ∈ foo]] =⇒ False

by (erule rev mp, erule foo.induct, auto)

200

lemma no pairs nonces:

[[Nonce N ∈ parts {R}; N 6= Nva; ∀A B. {|A, B|} /∈ parts {R};

Crypt b (Crypt c (Nonce Nva)) ∈ parts {R} ∨

Crypt (priSK V) (Crypt b (Crypt c (Nonce Nva))) ∈ parts {R}]]

=⇒ False

by (induct R, auto)

lemma no pairs:

[[Agent Va ∈ parts{R}; ∀A B. {|A, B|} /∈ parts {R};

Crypt (priSK V) (Crypt ca (Nonce Nv)) ∈ parts {R} ∨

Crypt (priSK V) (Crypt b (Crypt c (Nonce Nv))) ∈ parts {R} ∨

Crypt b (Crypt c (Nonce Nv)) ∈ parts {R} ∨

Number N ∈ parts {R} ∨

Nonce Nv ∈ parts {R} ∨

(Agent T ∈ parts {R} ∧ T 6= Va) ∨

Crypt ca (Nonce Nv) ∈ parts{R}]] =⇒ False

by (induct R, auto)

lemma analzplus Nv:

[[Nonce Nv ∈ analzplus {Q} (analz H);

Key (invKey P) /∈ analz (insert Q H);

Crypt P R ∈ analzplus {Q} (analz H);

∀X Y. {|X, Y|} /∈ parts {Q}]]

=⇒ False

apply (induct Q, auto, case tac Key (invKey nat) ∈ analz H)

by (force intro: analz insertI)+

lemma analzplus embed:

[[Agent V ∈ analzplus {Q} (analz H);

Nonce Nv ∈ parts {R};

Crypt (priSK Adm) (Crypt P R) ∈ analzplus {Q} (analz H) ∨

Crypt P R ∈ analzplus {Q} (analz H);

201

∀X Y. {|X, Y|} /∈ parts {Q}]]

=⇒ False

apply (induct Q, auto)

apply (case tac Key (invKey nat) ∈ analz H)

apply (force intro: analz insertI, force intro: analz insertI)

apply (case tac Key (invKey nat) ∈ analz H, clarsimp)

apply (blast dest: analzplus into parts no pairs, force)

done

lemma aanalz Col Adm:

[[a ∈ aanalz Spy evs; Agent Col /∈ a; Agent Adm /∈ a; evs ∈ foo]] =⇒ False

by (erule rev mp, erule foo.induct, auto simp add: isAnms def)

lemma aanalz traffic:

[[a ∈ aanalz Spy evs; X /∈ parts (spies evs); X ∈ a; ∀ A. X 6= Agent A; evs ∈ foo]]

=⇒ False

apply (erule rev mp, erule rev mp, erule foo.induct, simp all add: isAnms def)

apply (blast dest: analzplus into parts parts cut parts insertI)+

done

theorem foo V privacy aanalz:

[[Says V Adm {|Agent V, Crypt (priSK V) (Crypt b (Crypt c (Nonce Nv)))|} ∈ set evs;

a ∈ (aanalz Spy evs); Nonce Nv ∈ a; V /∈ bad; evs ∈ foo]]

=⇒ Agent V /∈ a

apply (erule rev mp, erule rev mp, erule foo.induct, simp all add: isAnms def)

apply force

apply (blast dest: aanalz traffic)

apply auto

apply (blast dest: not says analzplus into parts no pairs)

apply (drule Gets imp parts knows Spy, assumption)

apply (drule analzplus into parts)

apply (case tac P ∈ symKeys)

apply (force dest!: Spy see b3)

202

apply (blast dest: b sym)

apply (blast dest: not says analzplus into parts no pairs)+

done

theorem foo privacy aanalz:

[[a ∈ (aanalz Spy evs); Nonce Nv ∈ a; evs ∈ foo]]

=⇒ (V /∈ bad ∧ V 6= Col ∧ V 6= Adm −→ Agent V /∈ a)

apply (erule rev mp, erule foo.induct, simp all add: isAnms def)

apply force

apply auto

apply (drule Gets imp parts knows Spy, assumption)

apply (drule analzplus into parts)

apply (case tac P ∈ symKeys)

apply force

apply (blast dest: b sym)

by (blast dest: not says analzplus into parts no pairs)+

lemma nv fresh a2:

[[Nonce Nv /∈ used evs; a ∈ asynth(aanalz Spy evs); evs ∈ foo]] =⇒ Nonce Nv /∈ a

apply (erule rev mp, erule rev mp, erule foo.induct, simp all add: isAnms def)

apply (blast dest: analzplus into parts asynth insert aanalz traffic)+

done

lemma association Nv:

[[a ∈ aanalz Spy evs; Nonce Nv ∈ a; m ∈ a; Nv 6= Nva;

m ∈ {{|Agent V, Crypt (priSK V) (Crypt b (Crypt c (Nonce Nva)))|},

Crypt (priSK V) (Crypt b (Crypt c (Nonce Nva))),

Crypt b (Crypt c (Nonce Nva))}; evs ∈ foo]]

=⇒ False

apply (erule rev mp, erule foo.induct, simp all add: isAnms def)

apply blast

apply clarsimp

203

apply (rule conjI)

apply clarsimp

apply (erule disjE, clarsimp)

apply (erule disjE, clarsimp)

apply (case tac Key (invKey c) ∈ analz (knows Spy evs2))

apply clarsimp apply clarsimp

apply clarsimp

apply (erule disjE, clarsimp)

apply (blast dest: analzplus into parts no pairs nonces)

apply (erule disjE, clarsimp)

apply (erule disjE, clarsimp)

apply (erule disjE, clarsimp)

apply (case tac Key (invKey b) ∈ analz (knows Spy evs2))

apply clarsimp

apply (case tac Key (invKey c) ∈ analz (knows Spy evs2))

apply clarsimp apply clarsimp apply clarsimp

apply (blast dest: analzplus into parts no pairs nonces)

apply (erule disjE, clarsimp)

apply (erule disjE, clarsimp)

apply (case tac Key (invKey c) ∈ analz (knows Spy evs2))

apply clarsimp apply clarsimp

apply (blast dest: analzplus into parts no pairs nonces)

apply (blast dest: analzplus into parts no pairs nonces)

apply blast

apply (rule conjI, clarsimp)

apply (erule disjE, clarsimp)

apply (erule disjE, clarsimp)

apply (blast dest: analzplus into parts no pairs)

apply (erule disjE, clarsimp)

apply (erule disjE, clarsimp)

apply (case tac Key (invKey b) ∈ analz (knows Spy evs4))

apply clarsimp

204

apply (case tac Key (invKey c) ∈ analz (knows Spy evs4))

apply clarsimp apply clarsimp

apply clarsimp

apply clarsimp

apply (case tac Key (invKey c) ∈ analz (knows Spy evs4))

apply clarsimp apply clarsimp

apply (blast dest: analzplus into parts no pairs nonces)

apply (blast dest: analzplus into parts no pairs nonces)

apply blast+

done

lemma association Nv 2:

[[a ∈ aanalz Spy evs; Agent V ∈ a; m ∈ a;

V 6= Col; V 6= Adm; V /∈ bad;

m ∈ {{|Number anms, Crypt (priSK Adm) (Crypt c (Nonce Nv))|}, Number anms,

Crypt (priSK Adm) (Crypt c (Nonce Nv)), Crypt c (Nonce Nv)};

evs ∈ foo]] =⇒ False

apply (erule rev mp, erule foo.induct, simp all add: isAnms def)

apply (blast, erule disjE, case tac Key (invKey P) ∈ analz (knows Spy evs2))

apply clarsimp

apply (erule disjE)

apply clarsimp

apply (force dest!: uniq2)

apply (blast dest: analzplus into parts no pairs)

apply (clarsimp, rule conjI, clarsimp, erule disjE)

apply (force dest!: uniq2)

apply (blast dest: analzplus into parts no pairs)

apply (force dest!: uniq2)

apply (blast dest: analzplus into parts no pairs)+

done

lemma Double crypt used:

[[a ∈ aanalz Spy evs; Key P /∈ used evs; P ∈ symKeys;

205

Crypt (priSK Adm) (Crypt P R) ∈ a; evs ∈ foo]]

=⇒ False

by (blast dest: Crypt imp keysFor new keys not used aanalz traffic)

lemma m crypt1:

[[Nonce Nv ∈ parts {R}; ∀X Y. {|X, Y|} /∈ parts {R};

(m ∈ parts {R} ∧ (∀A B. m 6= Crypt A B) ∧ m 6= Nonce Nv) ∨

(Crypt A B ∈ parts {R} ∧ Nonce Nv /∈ parts {B})]]

=⇒ False

by (induct R, auto)

lemma m crypt2:

[[Agent V ∈ parts {R}; ∀X Y. {|X, Y|} /∈ parts {R};

(m ∈ parts {R} ∧ m 6= Agent V ∧ (∀A B. m 6= Crypt A B)) ∨

(Crypt A B ∈ parts {R} ∧ Agent V /∈ parts {B})]]

=⇒ False

by (induct R, auto)

lemma aanalz Adm:

[[Says V Adm {|Agent V, Crypt (priSK V) (Crypt b (Crypt c (Nonce Nv)))|} ∈ set evs;

a ∈ aanalz Spy evs; Agent Col /∈ a; Agent V ∈ a; V /∈ bad;

Crypt P R ∈ a; Nonce Nv ∈ parts {R}; evs ∈ foo]]

=⇒ (P = priSK V ∨ P = priSK Adm ∨ P = b) ∧

(P 6= priSK Adm ∨ R = Crypt b (Crypt c (Nonce Nv)))

apply (erule rev mp,erule rev mp, erule foo.induct, simp all add: isAnms def)

apply spy analz

apply (case tac Key ca ∈ analz (knows Spy evs1), clarsimp)

apply (blast dest: new keys not used)

apply (case tac Key ba ∈ analz (knows Spy evs1), clarsimp)

apply (blast dest: new keys not used)

apply clarsimp

apply (rule conjI)

apply force

206

apply clarsimp

apply (rule conjI)

apply (force dest: EV5 msg in parts spies not says)

apply (blast dest: aanalz traffic parts cut)

apply (rule conjI)

apply clarsimp

apply (erule disjE)

apply (blast dest: not says)

apply (erule disjE)

apply clarsimp

apply (erule disjE)

apply (force dest!: uniq2)

apply (blast dest: analzplus into parts m crypt2)

apply (erule disjE)

apply (force dest!: uniq2)

apply (erule disjE)

apply (blast dest: analzplus into parts m crypt2)

apply (blast dest: analzplus embed)

apply clarsimp

apply (erule disjE)

apply (blast dest: not says)

apply (erule disjE, clarsimp)

apply (case tac Crypt (priSK V) (Crypt P R) ∈ parts (spies evs2) ∧

Crypt (priSK V) (Crypt b (Crypt c (Nonce Nv))) ∈ parts (spies evs2))

apply (force dest!: V unique)

apply blast

apply (rule conjI)

apply (case tac Crypt (priSK V) (Crypt P R) ∈ parts (spies evs2) ∧

Crypt (priSK V) (Crypt b (Crypt c (Nonce Nv))) ∈ parts (spies evs2))

apply (force dest!: V unique)

apply blast

apply (case tac Crypt (priSK V) (Crypt P R) ∈ parts (spies evs2) ∧

Crypt (priSK V) (Crypt b (Crypt c (Nonce Nv))) ∈ parts (spies evs2))

207

apply (force dest!: V unique)

apply blast+

done

lemma aanalz EV1 AdmPR:

[[Says V Adm {|Agent V, Crypt (priSK V) (Crypt b (Crypt P (Nonce Nva)))|} ∈ set evs;

a ∈ aanalz Spy evs; Crypt (priSK Adm) (Crypt P R) ∈ a; Va 6= Adm; Va 6= Col;

Agent Va ∈ a; V /∈ bad; Nonce Nv ∈ parts {R};

evs ∈ foo; Va /∈ bad]] =⇒ False

apply (erule rev mp, erule rev mp, erule foo.induct, simp all add: isAnms def)

apply blast

apply (force dest!: Double crypt used)

apply (case tac Key (invKey Pa) ∈ analz (knows Spy evs2), clarsimp)

apply (erule disjE, clarsimp, erule disjE, clarsimp)

apply (force dest!: uniq2)

apply (blast dest: analzplus into parts no pairs)

apply (erule disjE, clarsimp, erule disjE, clarsimp)

apply (force dest!: uniq2, force dest!: uniq2)

apply (erule disjE, clarsimp)

apply (case tac Key(invKey P) ∈ analz (knows Spy evs2))

apply (force dest!: analzplus into parts no pairs)

apply (force dest: analzplus into parts no pairs)

apply (blast dest: analzplus embed)

apply (blast dest: uniq2 Spy see b2 b fixed2)

apply blast

apply (blast dest: analzplus embed)

apply blast+

done

lemma aanalz PR:

[[a ∈ aanalz Spy evs; Crypt P R ∈ a; evs ∈ foo]] =⇒

(Agent Col /∈ a ∨

(Agent V ∈ a −→ V ∈ bad ∨ V = Col) ∨

208

(Nonce Nv /∈ parts {R})) ∧

((Nonce Nv /∈ a) ∨

(Key (invKey P) ∈ analz (spies evs) ∧ Agent V /∈ parts {R}))

apply (erule rev mp, erule foo.induct, simp all add: isAnms def)

apply (blast dest: analz insertI)

apply (blast dest: analz insertI)

apply clarsimp

apply (rule conjI)

apply (blast dest: analz insertI)

apply clarsimp

apply (rule conjI)

apply clarsimp

apply (erule disjE)

apply clarsimp

apply (blast dest: analzplus into parts no pairs)

apply (erule disjE)

apply (blast dest: analzplus into parts no pairs analz insertI)

apply (rule conjI)

apply clarsimp

apply (blast dest: analzplus into parts no pairs parts cut)

apply (rule conjI)

apply clarsimp

apply (blast dest: analzplus into parts no pairs parts cut)

apply (rule conjI)

apply (blast dest: analzplus into parts no pairs)

apply (case tac Key (invKey P) ∈ analz (insert Ra (knows Spy evs2)))

apply clarsimp

apply (blast dest: analzplus into parts no pairs parts cut)

apply (blast dest: analzplus Nv)

apply (blast dest: analz insertI)

apply force

209

apply clarsimp

apply (rule conjI)

apply clarsimp

apply (blast dest: analz insertI)

apply clarsimp

apply (case tac a ∈ aanalz Spy evs4)

apply clarsimp

apply (blast dest: analz insertI)

apply clarsimp

apply (erule disjE)

apply (blast dest: analzplus into parts no pairs analz insertI)

apply (rule conjI)

apply clarsimp

apply (blast dest: analzplus into parts no pairs parts cut)

apply clarsimp

apply (rule conjI)

apply (blast dest: analzplus Nv)

apply clarsimp

apply (blast dest: analzplus into parts no pairs parts cut)

apply (blast dest: analz insertI)

apply clarsimp

done

lemma aanalz AdmPR V Nparts:

[[a ∈ aanalz Spy evs; Crypt (priSK Adm) (Crypt P R) ∈ a; evs ∈ foo]]

=⇒ Nonce Nv /∈ parts {R} ∨

Key (invKey P) /∈ analz (knows Spy evs) ∨

(Agent V ∈ a −→ V ∈ bad ∨ V = Adm ∨ V = Col)

apply (erule rev mp, erule foo.induct, simp all add: isAnms def)

apply spy analz

apply (case tac Key c ∈ analz (knows Spy evs1) ∨ Key b ∈ analz (knows Spy evs1))

apply (blast dest: new keys not used, clarsimp)

210

apply safe

apply auto defer

apply (frule EV1 analz bis, assumption)

apply (drule Gets imp knows Spy, assumption)

apply (case tac Crypt (priSK V) (Crypt P R) ∈ parts (spies evs2))

apply (case tac P ∈ symKeys)

apply (force dest!: Spy see b3)

apply (blast dest: b sym)

apply (blast dest: parts.Inj)

apply (blast dest: analzplus into parts no pairs)

apply (case tac Key (invKey P) ∈ analz (knows Spy evs2), clarsimp)

apply (force dest!: uniq2)

apply clarsimp

apply (case tac Key (invKey P) ∈ analz (knows Spy evs2), clarsimp)

apply (blast dest: analzplus into parts no pairs)

apply clarsimp

apply (force dest!: uniq2)

apply (blast dest: analzplus embed)

apply (case tac Key (invKey P) ∈ analz (insert Ra (knows Spy evs2)))

apply (blast dest: Nv extract3 lemma analz cut)

apply (case tac Agent Va ∈ analz (spies evs2))

apply (case tac Ra ∈ analz (insert (Key (invKey Pa)) (spies evs2)))

apply (simp add: analz insert eq)

apply (blast dest: Nv extract3 lemma)

apply (blast dest: Gets imp Says Says imp analz Spy)

apply (force dest!: uniq2)

apply (blast dest: analzplus embed)

apply (blast dest: Nv extract3 lemma analz cut)

apply (case tac Key (invKey P) ∈ analz (knows Spy evs4), clarsimp)

apply (blast dest: analzplus into parts no pairs)

apply clarsimp

apply (blast dest: analzplus embed)

apply (blast dest: CX analz analz cut)

211

apply (blast dest: analzplus embed)

apply (blast dest: CX analz analz cut)

apply (case tac P=c, clarsimp)

apply (blast dest: EV1 Key alternative aanalz EV1 AdmPR)

apply (case tac Key c /∈ used (evs5))

apply (blast dest: KeyWithNonceI fresh not KeyWithNonce)

apply (simp add: analz insert freshK, force)

apply (case tac P=c)

apply (blast dest: Double crypt used)

apply (case tac P=b)

apply (blast dest: Double crypt used)

apply (simp add: new keys not analzd)

apply force

done

lemma aanalz Vabad V imp Notes:

[[a ∈ aanalz Spy evs; Va 6= Adm; V 6= Adm; V 6= Col; V /∈ bad;

Agent Va ∈ a; Agent V ∈ a; Va ∈ bad; evs ∈ foo]]

=⇒ Notes Adm (Agent Va) ∈ set evs

apply (erule rev mp, erule foo.induct, simp all add: isAnms def)

apply (blast dest: uniq2 analzplus into parts no pairs)+

done

lemma aanalz V Nv imp Notes:

[[a ∈ aanalz Spy evs; V 6= Col; V 6= Adm; Agent V ∈ a; Nonce Nv ∈ a; evs ∈ foo]]

=⇒ Notes Adm (Agent V) ∈ set evs

apply (erule rev mp, erule foo.induct, simp all add: isAnms def)

apply (blast dest: uniq2 analzplus into parts no pairs)+

done

Main privacy theorem

theorem foo V privacy asynth:

[[Says V Adm {|Agent V, Crypt (priSK V) (Crypt b (Crypt c (Nonce Nv)))|} ∈ set evs;

212

a ∈ (asynth (aanalz Spy evs));

Nonce Nv ∈ a; V /∈ bad; V 6= Adm; V 6= Col; evs ∈ foo]]

=⇒ Agent V /∈ a

apply (erule rev mp, erule rev mp, erule foo.induct, simp all add: isAnms def)

apply blast

apply (case tac Key ca ∈ analz (knows Spy evs1) ∨ Key ba ∈ analz (knows Spy evs1))

apply blast

apply clarsimp

apply (case tac Va ∈ bad)

apply clarsimp

apply clarsimp

apply (drule asynth insert, erule disjE)

apply simp

apply (erule disjE)

apply (blast dest: nv fresh a2)

apply (case tac V 6=Va)

apply (blast dest: foo V privacy aanalz)

apply (case tac Nv=Nva)

apply (blast dest: aanalz traffic)

apply (blast dest: association Nv foo V privacy aanalz)

apply (case tac b ∈ symKeys)

apply (case tac a ∈ asynth (aanalz Spy evs2), simp)

apply clarsimp

apply (case tac Key (invKey P) ∈ analz (knows Spy evs2))

apply (case tac Va /∈ bad ∨ Va=V)

apply (force dest!: uniq2)

apply clarsimp

apply (drule asynth insert, erule disjE)

apply (blast dest: analzplus into parts no pairs)

apply (erule disjE, blast)

213

apply clarsimp

apply (erule disjE)

apply (erule disjE)

apply (blast dest: analzplus into parts no pairs)

apply (erule disjE)

apply (blast dest: analzplus into parts aanalz AdmPR V Nparts)

apply (erule disjE)

apply clarsimp

apply (simp add: aanalz Vabad V imp Notes)

apply (erule disjE)

apply clarsimp

apply (case tac Agent Col ∈ a2)

apply (blast dest: aanalz PR analzplus into parts)

apply (case tac P 6= priSK V)

apply (case tac P = b, clarsimp)

apply force

apply (case tac P = priSK Adm)

apply (case tac R = Crypt b (Crypt c (Nonce Nv)), clarsimp)

apply (case tac Key (invKey b) ∈ analz (knows Spy evs2), clarsimp)

apply force

apply force

apply (case tac ∃ A B. R = Crypt A B, clarsimp)

apply (case tac Key (invKey A) ∈ analz (knows Spy evs2), clarsimp)

apply (blast dest: analzplus into parts aanalz AdmPR V Nparts)

apply (force dest: analzplus into parts aanalz AdmPR V Nparts)

apply (blast dest: aanalz Adm analzplus into parts)

apply (blast dest: analzplus into parts aanalz Adm)

apply clarsimp

apply (case tac R = Crypt b (Crypt c (Nonce Nv)), clarsimp)

apply (case tac Key (invKey b) ∈ analz (knows Spy evs2), clarsimp)

apply force

apply clarsimp

214

apply (blast dest: analzplus into parts V unique)

apply (case tac ∃ A B. m = Crypt A B, clarsimp)

apply (case tac Nonce Nv ∈ parts {B})

apply (case tac Agent Col ∈ a2)

apply (blast dest: analzplus into parts aanalz PR)

apply (case tac A = priSK V, clarsimp)

apply (case tac B = Crypt b (Crypt c (Nonce Nv)), clarsimp)

apply (drule EV1 analz bis, assumption)

apply (case tac Crypt b (Crypt c (Nonce Nv)) ∈ analzplus {R} (analz (knows Spy evs2)))

apply (case tac Key (invKey b) /∈ analz (insert R (spies evs2)))

apply (blast dest: analzplus Nv)

apply force

apply (drule analzplus.Decrypt2, force, simp)

apply (blast dest: V unique aanalz traffic)

apply (case tac A = b, clarsimp)

apply (case tac R ∈ analz (insert (Key (invKey P)) (spies evs2)))

apply (case tac Key (invKey b) /∈ analz (insert R (spies evs2)))

apply (blast dest: analzplus Nv)

apply clarsimp

apply (blast dest: analz cut)

apply (blast dest: Nv extract3 lemma)

apply (case tac A = priSK Adm)

apply (case tac B = Crypt b (Crypt c (Nonce Nv)))

apply (clarsimp, drule EV1 analz bis, assumption)

apply (case tac Key (invKey b) /∈ analz (insert R (spies evs2)))

apply (blast dest: analz cut analzplus Nv)

apply (force dest: analz insert eq)

apply (force dest!: aanalz Adm)

apply (force dest!: aanalz Adm)

apply (blast dest: analzplus into parts m crypt1)

apply clarsimp

apply (blast dest: foo V privacy aanalz analzplus into parts m crypt1)

apply (erule disjE)

215

apply (erule disjE)

apply (blast dest: aanalz PR aanalz priSK analzplus into parts)

apply (erule disjE)

apply (simp add: aanalz V Nv imp Notes)

apply (erule disjE)

apply (blast dest: aanalz PR analzplus into parts)

apply (case tac ∃ A B. m = Crypt A B, clarsimp)

apply (blast dest: aanalz PR analzplus into parts m crypt2)

apply clarsimp

apply (blast dest: foo V privacy aanalz analzplus into parts m crypt2)

apply (blast dest: foo V privacy aanalz)

apply clarsimp

apply (drule asynth insert)

apply (blast dest: aanalz priSK aanalz PR foo V privacy aanalz)

apply (blast dest: b sym)

apply (case tac Key (invKey ca) /∈ analz (knows Spy evs3), clarsimp)

apply (blast dest: asynth insert foo V privacy aanalz)

apply (clarsimp, drule asynth insert)

apply (blast dest: association Nv 2 foo V privacy aanalz)

apply (case tac b ∈ symKeys)

apply (case tac Key (invKey P) ∈ analz (knows Spy evs4), clarsimp)

apply (drule asynth insert, erule disjE)

apply (blast dest: analzplus into parts no pairs)

apply (erule disjE, blast)

apply clarsimp

apply (erule disjE)

apply (erule disjE)

apply (blast dest: analzplus into parts no pairs, erule disjE)

apply clarsimp

apply (case tac R = Crypt b (Crypt c (Nonce Nv)))

216

apply (case tac Key (invKey b) ∈ analz (knows Spy evs4))

apply force

apply simp

apply (case tac Agent Col ∈ a2)

apply (blast dest: aanalz PR analzplus into parts)

apply (case tac P = priSK Adm)

apply (blast dest: aanalz Adm analzplus into parts)

apply (case tac P = priSK V)

apply (blast dest: V unique analzplus into parts)

apply (case tac P = b)

apply force

apply (blast dest: aanalz Adm analzplus into parts)

apply (case tac ∃ A B. m = Crypt A B, clarsimp)

apply (case tac Nonce Nv ∈ parts {B})

apply (case tac Agent Col ∈ a2)

apply (blast dest: aanalz PR)

apply (case tac A = priSK V, clarsimp)

apply (case tac B = Crypt b (Crypt c (Nonce Nv)), clarsimp)

apply (case tac Key (invKey b) /∈ analz (insert R (spies evs4)))

apply (blast dest: analz cut analzplus Nv CX analz)

apply (force dest!: CX analz)

apply (blast dest: aanalz traffic V unique)

apply (case tac A = b, clarsimp)

apply (case tac Key (invKey b) /∈ analz (insert R (spies evs4)))

apply (blast dest: analzplus Nv)

apply clarsimp

apply (blast dest!: analz cut CX analz)

apply (case tac A = priSK Adm)

apply (case tac B = Crypt b (Crypt c (Nonce Nv)))

apply (case tac Key (invKey b) /∈ analz (insert R (spies evs4)))

apply (blast dest: analz cut analzplus Nv CX analz)

apply (force dest!: CX analz)

217

apply (blast dest: aanalz Adm)

apply (blast dest: aanalz Adm)

apply (blast dest: analzplus into parts m crypt1)

apply clarsimp

apply (blast dest: analzplus into parts m crypt1 foo V privacy aanalz)

apply (erule disjE)

apply (erule disjE)

apply (blast dest: analzplus into parts aanalz PR)

apply (case tac ∃ A B. m = Crypt A B, clarsimp)

apply (blast dest: aanalz PR analzplus into parts m crypt2)

apply clarsimp

apply (blast dest: foo V privacy aanalz analzplus into parts m crypt2)

apply (blast dest: foo V privacy aanalz)

apply (blast dest: asynth insert aanalz PR)

apply (blast dest: b sym)

apply (blast dest: asynth insert foo V privacy aanalz)

apply (force dest!: asynth insert foo V privacy aanalz)

done

end

218

Bibliography

[1] M. Abadi and C. Fournet. Mobile Values, New Names, and Secure Communi-

cation. In Proc. of the 28th ACM SIGACT-SIGPLAN Symposium on Principles

of Programming Languages (POPL’01), pages 104–115. ACM Press, 2001.

[2] M. Abadi, N. Glew, B. Horne, and B. Pinkas. Certified Email with a Light

On-line Trusted Third Party: Design And Implementation, 2002.

[3] R. Anderson and R. M. Needham. Programming Satan’s Computer. In

J. Van Leeuwen, editor, Computer Science Today: Recent Trends and Devel-

opments, LNCS 1000, pages 426–441. Springer, 1995.

[4] S. Andova, C. Cremers, K. Gjøsteen, S. Mauw, S. Mjølsnes, and

S. Radomirović. A framework for compositional verification of security pro-

tocols. Information and Computation, 206:425–459, February 2008.

[5] A. Armando, W. Arsac, T. Avanesov, M. Barletta, A. Calvi, A. Cappai, R. Car-

bone, Y. Chevalier, L. Compagna, J. Cuéllar, G. Erzse, S. Frau, M. Minea,

S. Mödersheim, D. von Oheimb, G. Pellegrino, S. E. Ponta, M. Rocchetto,

M. Rusinowitch, M. T. Dashti, M. Turuani, and L. Viganò. The AVANTSSAR

Platform for the Automated Validation of Trust and Security of Service-

Oriented Architectures. In C. Flanagan and B. König, editors, TACAS, volume

7214 of Lecture Notes in Computer Science, pages 267–282. Springer, 2012.

[6] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuellar,

P. Hankes Drielsma, P.-C. Heám, J. Mantovani, S. Mödersheim, D. von Ohe-

219

imb, M. Rusinowitch, J. Santiago, M. Turuani, L. Viganò, and L. Vigneron.

The AVISPA Tool for the Automated Validation of Internet Security Protocols

and Applications. In K. Etessami and S. K. Rajamani, editors, Proceedings of

the 17th International Conference on Computer Aided Verification (CAV’05),

volume 3576 of Lecture Notes in Computer Science. Springer, 2005.

[7] A. Armando and L. Compagna. Abstraction-Driven SAT-based Analysis of Se-

curity Protocols. In E. Giunchiglia and A. Tacchella, editors, Theory and Ap-

plications of Satisfiability Testing, volume 2919 of Lecture Notes in Computer

Science, pages 301–302. Springer, 2004.

[8] C. Ballarin. Tutorial to Locales and Locale Interpretation, 2012.

http://www.cl.cam.ac.uk/research/hvg/isabelle/dist/

Isabelle2012/doc/locales.pdf [Accessed 31 August 2012].

[9] C. Barrett and C. Tinelli. CVC3. In Proceedings of the 19th international

conference on Computer aided verification, CAV’07, pages 298–302. Springer-

Verlag, 2007.

[10] D. Basin, S. Capkun, P. Schaller, and B. Schmidt. Let’s Get Physical: Models

and Methods for Real-World Security Protocols. In Proceedings of the 22nd In-

ternational Conference on Theorem Proving in Higher Order Logics, TPHOLs

’09, pages 1–22, Berlin, Heidelberg, 2009. Springer.

[11] D. Basin, S. Mödersheim, and L. Viganò. An On-the-Fly Model-Checker for

Security Protocol Analysis. In E. Snekkenes and D. Gollmann, editors, Proc. of

the 8th European Symposium on Research in Computer Security (ESORICS’03),

volume 2808 of Lecture Notes in Computer Science, pages 253–270. Springer,

2003.

[12] D. A. Basin, C. J. F. Cremers, and S. Meier. Provably Repairing the ISO/IEC

9798 Standard for Entity Authentication. In P. Degano and J. D. Guttman, ed-

220

http://www.cl.cam.ac.uk/research/hvg/isabelle/dist/Isabelle2012/doc/locales.pdf
http://www.cl.cam.ac.uk/research/hvg/isabelle/dist/Isabelle2012/doc/locales.pdf

itors, POST, volume 7215 of Lecture Notes in Computer Science, pages 129–

148. Springer, 2012.

[13] G. Bella. Inductive Verification of Smart Card Protocols. Journal of Computer

Security, 11(1):87–132, 2003.

[14] G. Bella. Formal Correctness of Security Protocols. Information Security and

Cryptography. Springer, 2007.

[15] G. Bella. The principle of guarantee availability for security protocol analysis.

Int. J. Inf. Secur., 9:83–97, April 2010.

[16] G. Bella, F. Blanqui, and L. C. Paulson. Theory libraries for Isabelle2012,

2012. http://isabelle.in.tum.de/library/HOL/Auth [Ac-

cessed 21 August 2012].

[17] G. Bella, D. Butin, and D. Gray. Holistic Analysis of Mix Protocols. In 7th

International Conference on Information Assurance and Security (IAS 2011),

pages 338–343, 2011.

[18] G. Bella and L. Coles-Kemp. Layered Analysis of Security Ceremonies. In

Proc. of The 27th IFIP International Information Security and Privacy Confer-

ence (IFIP SEC2012). Springer, 2012.

[19] G. Bella, F. Massacci, and L. C. Paulson. An Overview of the Verification of

SET. International Journal of Information Security, 4(1-2):17–28, 2005.

[20] E. Biham and A. Shamir. Differential Cryptanalysis of DES-like Cryptosys-

tems. In A. Menezes and S. A. Vanstone, editors, CRYPTO, volume 537 of

Lecture Notes in Computer Science, pages 2–21. Springer, 1990.

[21] E. Biham and A. Shamir. Differential Cryptoanalysis of FEAL and N-Hash. In

EUROCRYPT, pages 1–16, 1991.

221

http://isabelle.in.tum.de/library/HOL/Auth

[22] B. Blanchet. An Efficient Cryptographic Protocol Verifier Based on Prolog

Rules. In Proc. of the 14th IEEE Computer Security Foundations Workshop

(CSFW’01), pages 82–96. IEEE Press, 1998.

[23] B. Blanchet and A. Podelski. Verification of Cryptographic Protocols: Tagging

Enforces Termination. Theoretical Computer Science, 333(1-2):67–90, Mar.

2005. Special issue FoSSaCS’03.

[24] J. C. Blanchette. Hammering Away: A User’s Guide to Sledgeham-

mer for Isabelle/HOL, 2012. http://isabelle.in.tum.de/doc/

sledgehammer.pdf [Accessed 21 August 2012].

[25] J. C. Blanchette. Picking Nits: A User’s Guide to Nitpick for Isabelle/HOL,

2012. http://isabelle.in.tum.de/doc/nitpick.pdf [Accessed

21 August 2012].

[26] J. C. Blanchette, S. Böhme, and L. C. Paulson. Extending Sledgehammer with

SMT solvers. In N. Børner and V. Sofronie-Stokkermans, editors, Automated

Deduction, volume 6803 of Lecture Notes in Computer Science, pages 116–130.

Springer, 2011.

[27] J. C. Blanchette and T. Nipkow. Nitpick: A Counterexample Generator for

Higher-Order Logic Based on a Relational Model Finder. In M. Kaufmann and

L. C. Paulson, editors, ITP, volume 6172 of Lecture Notes in Computer Science,

pages 131–146. Springer, 2010.

[28] C. Bodei, M. Buchholtz, P. Degano, F. Nielson, and H. R. Nielson. Static Vali-

dation of Security Protocols. Journal of Computer Security, 13:2005, 2005.

[29] D. Boneh and M. K. Franklin. Identity-Based Encryption from the Weil Pair-

ing. In J. Kilian, editor, CRYPTO, volume 2139 of Lecture Notes in Computer

Science, pages 213–229. Springer, 2001.

222

http://isabelle.in.tum.de/doc/sledgehammer.pdf
http://isabelle.in.tum.de/doc/sledgehammer.pdf
http://isabelle.in.tum.de/doc/nitpick.pdf

[30] D. Boneh and R. Venkatesan. Breaking RSA May Not Be Equivalent to Factor-

ing. In EUROCRYPT, pages 59–71, 1998.

[31] M. Buchholtz. User’s Guide for the LySatool version 2.01, 2005. http:

//www2.imm.dtu.dk/cs_LySa/lysatool/lysatool-2.01.pdf

[Accessed 31 August 2012].

[32] M. Burrows, M. Abadi, and R. Needham. A Logic of Authentication. ACM

Transactions on Computer Systems, 8:18–36, 1990.

[33] D. Butin and G. Bella. Verifying Privacy by Little Interaction and No Process

Equivalence. In Proceedings of the International Conference on Security and

Cryptography (SECRYPT), 2012. To appear.

[34] R. Canetti, O. Goldreich, and S. Halevi. The Random Oracle Methodology,

Revisited (Preliminary Version). In STOC, pages 209–218, 1998.

[35] C. D. Cannière and C. Rechberger. Finding SHA-1 Characteristics: General

Results and Applications. In X. Lai and K. Chen, editors, ASIACRYPT, volume

4284 of Lecture Notes in Computer Science, pages 1–20. Springer, 2006.

[36] R. Chadha, c. Ciobâcă, and S. Kremer. Automated verification of equivalence

properties of cryptographic protocols. In Proceedings of the 21st European

conference on Programming Languages and Systems, ESOP’12, pages 108–

127, Berlin, Heidelberg, 2012. Springer-Verlag.

[37] C. Cocks. An Identity Based Encryption Scheme based on Quadratic Residues.

In In IMA Int. Conf, pages 360–363. Springer-Verlag, 2001.

[38] H. Comon-Lundh and V. Cortier. Computational Soundness of Observational

Equivalence. In Proceedings of the 15th ACM conference on Computer and

communications security, CCS ’08, pages 109–118, New York, NY, USA, 2008.

ACM.

223

http://www2.imm.dtu.dk/cs_LySa/lysatool/lysatool-2.01.pdf
http://www2.imm.dtu.dk/cs_LySa/lysatool/lysatool-2.01.pdf

[39] V. Cortier and S. Kremer, editors. Formal Models and Techniques for Analyzing

Security Protocols, volume 5 of Cryptology and Information Security Series.

IOS Press, 2011.

[40] C. Cremers. Feasibility of Multi-Protocol Attacks. In Proc. of The First In-

ternational Conference on Availability, Reliability and Security (ARES), pages

287–294, Vienna, Austria, 2006. IEEE Computer Society.

[41] C. Cremers. The Scyther Tool: Verification, Falsification, and Analysis of Secu-

rity Protocols. In Proc. of the 20th International Conference on Computer Aided

Verification (CAV 2008), volume 5123 of Lecture Notes in Computer Science,

pages 414–418. Springer, 2008.

[42] I. Damgård. A Design Principle for Hash Functions. In CRYPTO ’89: Pro-

ceedings of the 9th Annual International Cryptology Conference on Advances

in Cryptology, pages 416–427, London, UK, 1990. Springer-Verlag.

[43] L. M. de Moura and N. Bjørner. Z3: An Efficient SMT Solver. In C. R. Ra-

makrishnan and J. Rehof, editors, TACAS, volume 4963 of Lecture Notes in

Computer Science, pages 337–340. Springer, 2008.

[44] S. Delaune, S. Kremer, and M. Ryan. Verifying privacy-type properties of elec-

tronic voting protocols. Journal of Computer Security, 17(4):435–487, 2009.

[45] S. Delaune, S. Kremer, and M. Ryan. Verifying privacy-type properties of elec-

tronic voting protocols: A taster. In Towards Trustworthy Elections – New

Directions in Electronic Voting, volume 6000 of Lecture Notes in Computer

Science, pages 289–309. Springer, 2010.

[46] S. Delaune, M. Ryan, and B. Smyth. Automatic verification of privacy proper-

ties in the applied pi calculus. Syntax, 263/2008:263–278, 2008.

[47] W. Diffie and M. Hellman. New Directions in Cryptography. IEEE Transactions

on Information Theory, 22:644–654, 1976.

224

[48] D. Dolev and A. C.-C. Yao. On the Security of Public Key Protocols. IEEE

Transactions on Information Theory, 29(2):198–207, 1983.

[49] B. Dutertre and L. de Moura. The Yices SMT solver, 2006. http://yices.

csl.sri.com/tool-paper.pdf [Accessed 28 August 2012].

[50] J. Ellis. The story of non-secret encryption, 1987. http://web.

archive.org/web/20030610193721/http://www.cesg.gov.

uk/ellisdox.ps [Accessed 27 August 2012].

[51] C. Ellison. Ceremony Design and Analysis. IACR eprint archive, 399:2007,

2007.

[52] E. A. Emerson and E. M. Clarke. Characterizing correctness properties of par-

allel programs using fixpoints. In J. W. de Bakker and J. van Leeuwen, edi-

tors, ICALP, volume 85 of Lecture Notes in Computer Science, pages 169–181.

Springer, 1980.

[53] S. Escobar, C. Meadows, and J. Meseguer. A Rewriting-Based Inference System

for the NRL Protocol Analyzer: Grammar Generation. In Proceedings of the

2005 ACM workshop on Formal methods in security engineering, FMSE ’05,

pages 1–12, New York, NY, USA, 2005. ACM.

[54] S. Escobar, C. Meadows, J. Meseguer, and S. Santiago. Sequential Protocol

Composition in Maude-NPA. In D. Gritzalis, B. Preneel, and M. Theoharidou,

editors, Computer Security – ESORICS 2010, volume 6345 of Lecture Notes in

Computer Science, pages 303–318. Springer Berlin Heidelberg, 2010.

[55] A. J. Feldman, J. A. Halderman, and E. W. Felten. Security Analysis of the

Diebold AccuVote-TS Voting Machine. In Proceedings of the USENIX Work-

shop on Accurate Electronic Voting Technology, pages 2–2, Berkeley, CA, USA,

2007. USENIX Association.

225

http://yices.csl.sri.com/tool-paper.pdf
http://yices.csl.sri.com/tool-paper.pdf
http://web.archive.org/web/20030610193721/http://www.cesg.gov.uk/ellisdox.ps
http://web.archive.org/web/20030610193721/http://www.cesg.gov.uk/ellisdox.ps
http://web.archive.org/web/20030610193721/http://www.cesg.gov.uk/ellisdox.ps

[56] Formal Systems. Failures-Divergence Refinement - FDR2 User Manual, 2012.

http://www.cs.ox.ac.uk/projects/concurrency-tools/

download/fdr2manual-2.94.pdf [Accessed 21 August 2012].

[57] D. Freeman, M. Scott, and E. Teske. A taxonomy of pairing friendly el-

liptic curves. Cryptology ePrint Archive, Report 2006/372, 2006. http:

//eprint.iacr.org/2006/372 [Accessed 21 August 2012].

[58] A. Fujioka, T. Okamoto, and K. Ohta. A Practical Secret Voting Scheme for

Large Scale Elections. In Proceedings of the Workshop on the Theory and Ap-

plication of Cryptographic Techniques: Advances in Cryptology, ASIACRYPT,

pages 244–251. Springer-Verlag, 1993.

[59] E. Fujisaki and T. Okamoto. Secure Integration of Asymmetric and Symmetric

Encryption Schemes. In M. J. Wiener, editor, CRYPTO, volume 1666 of Lecture

Notes in Computer Science, pages 537–554. Springer, 1999.

[60] F. D. Garcia, I. Hasuo, W. Pieters, and P. van Rossum. Provable Anonymity. In

Proceedings of the 2005 ACM workshop on Formal methods in security engi-

neering, FMSE ’05, pages 63–72. ACM, 2005.

[61] S. L. Garfinkel. PGP - Pretty Good Privacy: Encryption for Everyone. O’Reilly,

1995.

[62] S. Goldwasser, S. Micali, and C. Rackoff. The Knowledge Complexity of In-

teractive Proof Systems. SIAM J. Comput., 18(1):186–208, 1989.

[63] L. Gong. Variations on the Themes of Message Freshness and Replay - or the

Difficulty in Devising Formal Methods to Analyze Cryptographic Protocols. In

In Proceedings of the Computer Security Foundations Workshop VI, pages 131–

136. IEEE Computer Society Press, 1993.

[64] M. J. C. Gordon. Proof, Language, and Interaction: Essays in Honour of Robin

Milner, chapter 6. From LCF to HOL: A Short History. MIT Press, May 2000.

226

http://www.cs.ox.ac.uk/projects/concurrency-tools/download/fdr2manual-2.94.pdf
http://www.cs.ox.ac.uk/projects/concurrency-tools/download/fdr2manual-2.94.pdf
http://eprint.iacr.org/2006/372
http://eprint.iacr.org/2006/372

[65] D. Gray. Auditable Identity-Based Signatures with Strong Non-repudiation

Properties. Dublin City University School of Computing, Working Paper CA-

0307, 2007. www.computing.dcu.ie/wpapers/2007/0307.pdf

[Accessed 21 August 2012].

[66] F. Hess. Efficient Identity Based Signature Schemes Based on Pairings. In

K. Nyberg and H. M. Heys, editors, Selected Areas in Cryptography, volume

2595 of Lecture Notes in Computer Science, pages 310–324. Springer, 2002.

[67] T. Hillenbrand, A. Buch, R. Vogt, and B. Löchner. WALDMEISTER – High-

Performance Equational Deduction. Journal of Automated Reasoning, 18:265–

270, 1997. 10.1023/A:1005872405899.

[68] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[69] S. Indesteege, F. Mendel, B. Preneel, and C. Rechberger. Collisions and other

Non-Random Properties for Step-Reduced SHA-256. In Selected Areas in

Cryptography, volume 5381 of Lecture Notes in Computer Science, pages 276–

293. Springer, 2008.

[70] International Organization for Standardization, Genève, Switzerland. ISO/IEC

9798-3:1998/Amd.1:2010,Information technology - Security techniques - En-

tity Authentication - Part 3: Mechanisms using digital signature techniques.

Amendment 1, 2010.

[71] Internet Engineering Task Force. Internet X.509 public key infrastructure

certificate management protocols, 1999. http://www.ietf.org/rfc/

rfc2510.txt [Accessed 21 August 2012].

[72] Internet World Stats. World internet usage and population statistics, 2011.

http://www.internetworldstats.com/stats.htm [Accessed 30

August 2012].

227

www.computing.dcu.ie/wpapers/2007/0307.pdf
http://www.ietf.org/rfc/rfc2510.txt
http://www.ietf.org/rfc/rfc2510.txt
http://www.internetworldstats.com/stats.htm

[73] F. Jacquemard. Security Protocols Open Repository, 2009. http://www.

lsv.ens-cachan.fr/Software/spore/index.html [Accessed 21

August 2012].

[74] E. Kiltz and G. Neven. Identity-Based Cryptography, chapter Identity-Based

Signatures, pages 31–44. IOS Press, 2008.

[75] P. C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA,

DSS, and Other Systems. In N. Koblitz, editor, CRYPTO, volume 1109 of Lec-

ture Notes in Computer Science, pages 104–113. Springer, 1996.

[76] S. Kremer and M. Ryan. Analysis of an Electronic Voting Protocol in the Ap-

plied Pi Calculus. In In Proc. 14th European Symposium On Programming

(ESOP’05), volume 3444 of Lecture Notes in Computer Science, pages 186–

200. Springer, 2005.

[77] S. Kumar, C. Paar, J. Pelzl, G. Pfeiffer, A. Rupp, and M. Schimmler. How to

Break DES for 8,980e. In International Workshop on Special-Purpose Hard-

ware for Attacking Cryptographic Systems — SHARCS’06, Cologne, Germany,

2006.

[78] R. Küsters and T. Truderung. Using ProVerif to Analyze Protocols with Diffie-

Hellman Exponentiation. pages 157–171, July 2009.

[79] R. Küsters and T. Truderung. Reducing Protocol Analysis with XOR to the

XOR-Free Case in the Horn Theory Based Approach. Journal of Automated

Reasoning, 46:325–352, 2011. 10.1007/s10817-010-9188-8.

[80] A. K. Lenstra and E. R. Verheul. Selecting Cryptographic Key Sizes. Journal

of Cryptology, 14:255–293, 1999.

[81] Y. Li and J. Pang. An Inductive Approach to Provable Anonymity. In Proceed-

ings of The 6th Conference on Availability, Reliability and Security (ARES’11),

pages 454–459. IEEE CS, 2011.

228

http://www.lsv.ens-cachan.fr/Software/spore/index.html
http://www.lsv.ens-cachan.fr/Software/spore/index.html

[82] G. Lowe. An Attack on the Needham-Schroeder Public-key Authentication

Protocol. Information Processing Letters, 56(3):131–133, 1995.

[83] G. Lowe. Breaking and Fixing the Needham-Schroeder Public-key Protocol us-

ing CSP and FDR. In T. Margaria and B. Steffen, editors, Proc of the 2nd Inter-

national Conference on Tools and Algorithms for the Construction and Analysis

of Systems (TACAS’96), volume 1055 of Lecture Notes in Computer Science,

pages 147–166. Springer, 1996.

[84] G. Lowe. Casper: A Compiler for the Analysis of Security Protocols. Journal

of Computer Security, 6(1-2):53–84, 1998.

[85] J. E. Martina. Verification of Security Protocols Based on Multicast Communi-

cation. Ph.D. Thesis, Cambridge University Computer Laboratory, 2011.

[86] J. E. Martina and L. C. Paulson. Verifying Multicast-Based Security Protocols

Using the Inductive Method. In Workshop on Formal Methods and Cryptogra-

phy (CryptoForma 2011), 2011.

[87] C. Meadows. Analyzing the Needham-Schroeder Public-Key Protocol: A Com-

parison of Two Approaches. In ESORICS, pages 351–364, 1996.

[88] C. A. Meadows. Formal Verification of Cryptographic Protocols: A Sur-

vey. In Advances in Cryptology (ASIACRYPT 94), LNCS 917, pages 133–150.

Springer, 1995.

[89] C. A. Meadows. The NRL protocol analyzer: An overview. Journal of Logic

Programming, 26(2):113–131, 1996.

[90] National Bureau of Standards (NBS). Data Encryption Standard (FIPS

PUB 46-3), 1999. http://csrc.nist.gov/publications/fips/

archive/fips46-3/fips46-3.pdf [Accessed 29 August 2012].

[91] National Institute for Science and Technology (NIST). Advanced Encryp-

tion Standard (FIPS PUB 197), 2001. http://www.csrc.nist.gov/

229

http://csrc.nist.gov/publications/fips/archive/fips46-3/fips46-3.pdf
http://csrc.nist.gov/publications/fips/archive/fips46-3/fips46-3.pdf
http://www.csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://www.csrc.nist.gov/publications/fips/fips197/fips-197.pdf

publications/fips/fips197/fips-197.pdf [Accessed 23 August

2012].

[92] National Institute for Science and Technology (NIST). Secure Hash

Standard (SHS) (FIPS PUB 180-4), 2012. http://csrc.nist.gov/

publications/fips/fips180-4/fips-180-4.pdf [Accessed 29

August 2012].

[93] National Institute for Science and Technology (NIST). Tentative Timeline of the

Development of New Hash Functions, 2012. http://csrc.nist.gov/

groups/ST/hash/timeline.html [Accessed 23 August 2012].

[94] R. M. Needham and M. D. Schroeder. Using Encryption for Authentication in

Large Networks of Computers. Communications of the ACM, 21(12):993–999,

1978.

[95] T. Nipkow, L. C. Paulson, and M. Wenzel. Tutorial on Isabelle/HOL,

2012. http://www.cl.cam.ac.uk/research/hvg/Isabelle/

dist/Isabelle/doc/tutorial.pdf [Accessed 23 August 2012].

[96] F. Oehl, G. Cécé, O. Kouchnarenko, and D. Sinclair. Automatic Approximation

for the Verification of Cryptographic Protocols. In A. E. Abdallah, P. Ryan,

and S. Schneider, editors, FASec, volume 2629 of Lecture Notes in Computer

Science, pages 33–48. Springer, 2002.

[97] N. O’Shea. Using Elyjah to analyse Java implementations of cryptographic pro-

tocols. Foundations of Computer Security, Automated Reasoning for Security

Protocol Analysis and Issues in the Theory of Security, pages 221–226, 2008.

[98] L. C. Paulson. The Foundation of a Generic Theorem Prover. Journal of Auto-

mated Reasoning, 5, 1989.

[99] L. C. Paulson. Isabelle: A Generic Theorem Prover. volume 828 of Lecture

Notes in Computer Science. Springer, 1994.

230

http://www.csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://www.csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/groups/ST/hash/timeline.html
http://csrc.nist.gov/groups/ST/hash/timeline.html
http://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/Isabelle/doc/tutorial.pdf
http://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/Isabelle/doc/tutorial.pdf

[100] M. G. Reed, P. F. Syverson, and D. M. Goldschlag. Anonymous Connec-

tions and Onion Routing. IEEE Journal on Selected Areas in Communications,

16:482–494, 1998.

[101] A. Riazanov and A. Voronkov. The design and implementation of VAMPIRE.

AI Commun., 15(2,3):91–110, Aug. 2002.

[102] R. Rivest and B. Kaliski. RSA problem. In Encyclopedia of Cryptography and

Security, 2003.

[103] R. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Sig-

natures and Public-Key Cryptosystems. Communications of the ACM, 21:120–

126, 1978.

[104] A. W. Roscoe. Model-Checking CSP. In A. W. Roscoe, editor, A Classical

Mind, Essays in Honour of C. A. R. Hoare, pages 353–378. Prentice-Hall, 1994.

[105] P. Y. A. Ryan, S. Schneider, M. Goldsmith, G. Lowe, and A. W. Roscoe. Mod-

elling and Analysis of Security Protocols. Addison-Wesley, 2001.

[106] S. K. Sanadhya and P. Sarkar. Deterministic Constructions of 21-Step Collisions

for the SHA-2 Hash Family. In T.-C. Wu, C.-L. Lei, V. Rijmen, and D.-T. Lee,

editors, ISC, volume 5222 of Lecture Notes in Computer Science, pages 244–

259. Springer, 2008.

[107] P. Schaller, B. Schmidt, D. Basin, and S. Capkun. Modeling and Verifying Phys-

ical Properties of Security Protocols for Wireless Networks. In Proceedings

of the 2009 22nd IEEE Computer Security Foundations Symposium (CSF’09),

pages 109–123, Washington, DC, USA, 2009. IEEE Computer Society.

[108] B. Schmidt, S. Meier, C. Cremers, and D. Basin. Automated Analysis of Diffie-

Hellman Protocols and Advanced Security Properties. In Proceedings of the

2012 25th IEEE Computer Security Foundations Symposium (CSF’12), 2012.

231

[109] S. Schulz. E – A Brainiac Theorem Prover. AI Commun., 15(2-3):111–126,

2002.

[110] D. S. Scott. A type-theoretical alternative to ISWIM, CUCH, OWHY. Theor.

Comput. Sci., 121(1-2):411–440, 1993.

[111] A. Shamir. How to Share a Secret. Communications of the ACM, 22(11):612–

613, 1979.

[112] A. Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO,

pages 47–53, 1984.

[113] C. E. Shannon. Communication theory of secrecy systems. Bell Systems Tech-

nical Journal, 28:656–715, 1949.

[114] P. W. Shor. Polynominal Time Algorithms for Discrete Logarithms and Factor-

ing on a Quantum Computer. In L. M. Adleman and M.-D. A. Huang, editors,

ANTS, volume 877 of Lecture Notes in Computer Science, page 289. Springer,

1994.

[115] D. Song, S. Berezin, and A. Perrig. Athena: a novel approach to efficient auto-

matic security protocol analysis. Journal of Computer Security, 9:2001, 2001.

[116] G. Sutcliffe. System on TPTP, 2009. http://www.cs.miami.edu/

˜tptp/cgi-bin/SystemOnTPTP [Accessed 23 August 2012].

[117] Telecommunication Standardization Sector (ITU-T). Information technology -

Open Systems Interconnection - The Directory: Public-key and attribute certifi-

cate frameworks, 2005. http://www.itu.int/rec/T-REC-X.509/

en [Accessed 23 August 2012].

[118] F. J. Thayer, J. C. Herzog, and J. D. Guttman. Strand Spaces: Proving Security

Protocols Correct. Journal of Computer Security, 7:191–220, 1999.

232

http://www.cs.miami.edu/~tptp/cgi-bin/SystemOnTPTP
http://www.cs.miami.edu/~tptp/cgi-bin/SystemOnTPTP
http://www.itu.int/rec/T-REC-X.509/en
http://www.itu.int/rec/T-REC-X.509/en

[119] Trend Micro. Email encryption client, 2009. http://uk.trendmicro.

com/imperia/md/content/uk/products/datasheets/ds01_

tmee_080609gb.pdf [Accessed 23 August 2012].

[120] Voltage Security. Voltage identity-based encryption, 2012. http://www.

voltage.com/technology/ibe.htm [Accessed 23 August 2012].

[121] B. Waters. Efficient Identity-Based Encryption Without Random Oracles. In

R. Cramer, editor, EUROCRYPT, volume 3494 of Lecture Notes in Computer

Science, pages 114–127. Springer, 2005.

[122] C. Weidenbach. Towards an automatic analysis of security protocols in first-

order logic. In H. Ganzinger, editor, CADE, volume 1632 of Lecture Notes in

Computer Science, pages 314–328. Springer, 1999.

[123] C. Weidenbach, D. Dimova, A. Fietzke, R. Kumar, M. Suda, and P. Wis-

chnewski. SPASS Version 3.5. In R. A. Schmidt, editor, CADE, volume 5663

of Lecture Notes in Computer Science, pages 140–145. Springer, 2009.

[124] M. Wenzel. The Isabelle/Isar Reference Manual, 2012. http://isabelle.

in.tum.de/doc/isar-ref.pdf [Accessed 23 August 2012].

[125] S. Wiesner. Conjugate Coding. SIGACT News, 15(1):78–88, 1983.

[126] J. Zhou and D. Gollmann. A Fair Non-repudiation Protocol. In Proc. of the 15th

IEEE Symposium on Security and Privacy (SSP’96), pages 55–61. IEEE Press,

1996.

233

http://uk.trendmicro.com/imperia/md/content/uk/products/datasheets/ds01_tmee_080609gb.pdf
http://uk.trendmicro.com/imperia/md/content/uk/products/datasheets/ds01_tmee_080609gb.pdf
http://uk.trendmicro.com/imperia/md/content/uk/products/datasheets/ds01_tmee_080609gb.pdf
http://www.voltage.com/technology/ibe.htm
http://www.voltage.com/technology/ibe.htm
http://isabelle.in.tum.de/doc/isar-ref.pdf
http://isabelle.in.tum.de/doc/isar-ref.pdf

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	The Need for Network Security
	Cryptography
	A Short History of Modern Cryptology
	Symmetric Cryptography
	Asymmetric Cryptography and PKIs
	One-way Functions and Hash Functions, the SHA Family
	Provable Security of Public-key Schemes

	Identity-Based Cryptography
	Identity-Based Signatures
	Identity-Based Encryption
	Provable Security of IBE and IBS

	Protocol Security
	Security Protocols

	Motivation
	Outline and Contributions

	Security Protocol Analysis
	Approaches for the Analysis of Security Protocols
	BAN Logic
	Model Checking
	Strand Spaces
	Process Calculi and Horn Clauses
	Interactive Theorem Proving
	Automated Theorem Proving

	Tools for the Analysis of Security Protocols
	FDR, FDR2 and CSP
	AVISPA and the AVANTSSAR Platform
	The NRL Protocol Analyzer and Maude-NPA
	Scyther
	LySatool
	ProVerif and AKiSs
	tamarin
	Tool Synthesis

	Discussion

	Isabelle/HOL and the Inductive Method
	Isabelle/HOL
	The Inductive Method
	Main Components
	Goal Definition and Proving
	Common Security Property Formalisations
	Existing Extensions to the Inductive Method
	Protocols Verified So Far

	Discussion

	Protocol Composition Analysis Applied to Public Key Infrastructure
	Security Protocol Composition
	Specification and Verification of a Composed Protocol
	Specification
	Results
	Details of the Findings

	Other Protocol Composition Configurations
	Generalised Protocol Sequencing
	Intertwined Protocols

	Discussion

	Modelling an ISO/IEC 9798-3 Protocol Using Auditable Identity-Based Signatures
	Auditable Identity-Based Signatures
	The ISO/IEC 9798-3 Protocol Suite
	Side-by-side Specification of IBS and AIBS Variants of an ISO/IEC 9798-3 Protocol
	Specifying the IBS Version
	Specifying the AIBS Version

	Comparative Analysis
	Findings for the IBS Version
	Findings for the AIBS Version

	Discussion

	Formally Analysing an Electronic Voting Scheme Using Blind Signatures
	The Spread of Electronic Voting
	Common Properties of Electronic Voting Protocols
	Alternative Formal Approach to Voter Privacy Analysis
	Indistinguishability for E-voting Protocol Analysis
	Unlinkability

	Modelling Electronic Voting Protocols in the Inductive Method
	The FOO Protocol
	Specifying the FOO Protocol and Blind Signatures
	Blind Signatures
	Inductive Protocol Model

	Formal Verification
	Main Classic Results
	Main Privacy Results
	Proof of the Main Theorem
	Proof of the Supporting Theorems

	Comparison
	Discussion

	Discussion
	Domain of Applicability of the Inductive Method
	Future Work
	Protocol Composition
	Electronic Voting
	Framework Evolution

	Conclusion

	Isabelle Theories
	Proofs for the Protocol Composition Case Study
	Certification.thy
	Cert_NS_Public.thy

	Proofs for the ISO/IEC 9798-3 Protocol with AIBS
	Public_IBS.thy
	ISO_IBS.thy
	Message_AIBS.thy
	Event_AIBS.thy
	Public_AIBS.thy
	ISO_AIBS.thy

	Proofs for the FOO Protocol
	Foo.thy
	Privacy.thy

	Bibliography

