
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 158, Number 2, August 1971

INDUCTIVE DEFINITIONS AND COMPUTABILITYC)

BY

THOMAS J. GRILLIOT

Abstract.    Sets inductively defined with respect to Il0, Sx, (nonmonotonic) II t and

S2 predicates are characterized in terms of the four chief notions of abstract recursion.

Moschovakis [7] has introduced the notions of prime and search computability

on an abstract set. Both notions of computability are generalizations of general

recursiveness since a function on the natural numbers is general recursive iff it is

search [alternatively, prime] computable in the successor function (and 0, if

constant functions are not automatically considered computable). For structures

that have no "natural" search operator, search computability is generally a stronger

notion than prime computability. Analogously, prime and search computability in

E, the type 2 object that embodies quantification over the given domain, are

generalizations of hyperarithmeticalness. Moschovakis [8] and Gordon [3] have

shown that other abstract notions of recursion such as those of Fraïssé [2], Lacombe

[5] and Montague [6] are equivalent to search computability. Moschovakis [8],

[9] and Barwise-Gandy-Moschovakis [1] have shown that some abstract notions of

hyperarithmeticalness are equivalent to search computability in E. In this paper we

will characterize notions of abstract computability in terms of various inductively

defined sets. Let PC and SC be abbreviations for prime computable and search

computable. Let "built up by" be an abbreviation for "reducible to a set inductively

defined with respect to". Our main result is to show the following equivalences for

predicates :

(1) Semi-PC o built up by n0 predicate (Theorems 2 and 6).

(2) Semi-SC o built up by monotonie Sj predicate (Theorems 1 and 5).

(3) Semi-(PC in E) o built by Ylx predicate (Theorems 4 and 8).

(4) Semi-(SC in E) -o- built up by S2 predicate (Theorems 3 and 7).

These results relativize to a list of relations, and "monotonie" may be inserted

before no and S2 in equivalences (1) and (4). However, "monotonie" may not

usually be inserted before IIj in equivalence (3) and "monotonie" may never be

deleted from equivalence (2). After we have introduced the necessary definitions,

we shall point out why equivalences (2) and (3) are so sensitive to monotonicity.
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310 T. J. GRILLIOT [August

The reader should be familiar with at least the first few pages of Moschovakis [7]

because the schemes for prime computability (in E) and search computability (in

E) are given there. If a predicate P(a) can be expressed in the form {/}(a) j , then

it is called semi-PC or semi-SC according as the index/is a PC index or a SC index.

If the use of scheme Cl (scheme that introduces constants) is restricted to intro-

ducing only those constants formed from 0 and the pairing operation ( , ), then

the word absolutely is prefixed before PC and SC.

Greek letters will be used for ordinals, and lower case italic letters for elements

of 77*, where B* is described in [7, p. 428]. S and F will be used for subsets of 77*.

Following Spector [11], the ath stage Sa of a set S inductively defined with respect

to a predicate Q is given transfinitely by the rule

(5) x e Sa o 3r < a, Q(x, St),

and S is the union of the Sa. Sometimes equivalence (5) will be expressed more

informally thus: x e S if Q(x, S). Each x e S can be assigned an ordinal \x\ equal

to the first ordinal a satisfying x e Sa + 1. If Q satisfies the property

Q(x, Tx) &TX^T2=> Q(x, F2),

for all x, Tx, T2, then Q is called monotonie.

A predicate Q(x, T) is IIn [resp., Sn] if its quantifiers in prenex form begin with

universal [resp., existential] and alternate in kind at most n— 1 times and if its

matrix is formed from the usual connectives (&, V, —i), equality (=), zero (0),

pairing (( , )), projections (it, 8), variables ranging through elements of B* and

the symbols g and T which must occur together thus : ... e F. For example,

3xVy((x)Q e TVy = ((x, z), 0)) is X2. If additional relations Rx,..., Rn are used in

the matrix, we write Un(Rx,..., Rn) [resp., 2n(T?!,..., Rn)] to emphasize this. An

important class of monotonie Iln [resp., Sn] predicates are the positive ones. These

predicates have the property that each occurrence of ... e T is in the scope of an

even number of —i's. For all the theorems of this paper, the words "positive" and

" monotonie "are interchangeable. A predicate F(o) is reducible toaset Tif, for all a,

P(d) o <0, a> e T.

(This is more restrictive than the usual definition of reducibility, but it is strong

enough for our purposes.)

Let us illustrate why equivalences (2) and (3) are sensitive to monotonicity. Let

U be some Tix set, say, for simplicity, xeUo —3y((x, (y)0}=y)- Let Q(x, T) be

x = <0>       v

x = < i, (x)xy & 3j«(*)i, G0o> = y)     v

x = <2, (*),> & <0> e T & <1, (x)xy ¿ T.

Clearly the first three stages of the set inductively defined with respect to Q are

S0= 0, Sx={<0}} u «1, x) : x$U} and S2 = SX u {<2, x) : x e U}. Thus U is
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1971] INDUCTIVE DEFINITIONS AND COMPUTABILITY 311

built up by a 2^ predicate Q by first building Uc and then "complementing." By

"complementing" several times, Hx predicates can build up all S„ sets and, in fact,

all Un^n sets where (J„ denotes "recursive" union. Conversely, by an application

of the first half of Theorem 5, any set inductively defined with respect to a 2j

predicate is a |Jn Sn set. Since there are non-SC \Jn Sn sets, this illustrates that

nonmonotonic Sj predicates can build more complex sets than monotonie Sj

predicates can. Monotonicity prevents the use of "complementing." A similar

observation holds when 2,x is replaced by n1. This explains why equivalences (2)

and (3) cannot be altered by deleting or inserting the word "monotonie." A related

comment regarding equivalence (4) is in order. If the inductive defining predicates

are assumed to be positive, their forms can be more complex than S2, e.g., Sn or

n„ or even semi-(SC in E) as shown by Moschovakis [7]. However, if no mono-

tonicity condition is assumed, S2 predicates are best possible in that U2 predicates

can build up sets more complex than semi-(SC in E) sets. No one has satisfactorily

classified the complexity of general Yl2 inductive definitions even in the case for

natural numbers, though Richter [10] has made some contribution. (Added in proof:

Recently Aczel and Richter solved this problem for natural numbers.)

Theorem 1. For SC in =, Rx,..., Rn, the predicates {f}(a) j and {/}(a) ->-z are

reducible to a set inductively defined with respect to a monotonie 2i(/?i,..., Rn)

predicate.

Proof. We drop Rx, ...,/?„ for simplicity. The idea is to inductively define a set

S so that

{fY(o) I o <0,/ a> e S,       {/} = (a) -*. z o <1,/, z, a> e S.

For each of the schemes CO to C9, we merely set up two clauses for inductively

defining S. Let us consider the two examples corresponding to C2 and C5. Let «

denote the length of the list a. Since y = {<2, «+ 1>} = (j, a), we let

(6) (0,<[2,n+iy,y,a}eS,       <1, <2, «+1>, y, y, a> e S,

and since {<5, «, g, h)}-(a)^{g}-({h}-(a), a), we let

<0, <5, «, g, «>, a> e S   if3z[<0,g,z,a>eS&<l,«,z,a>eS],

<1, <5, «, g, «>, y,a}eS   if 3z[<l, g, y, z, a> e S & <1, h, z, a> e S].

Though these clauses are not quite in the form x e S if Q(x, S), but rather in the

form < • • ■> g S if Ö« • • • >, S), we can remedy this by inductively defining as part

of S the set {<2, x> : Seq (x)}. Then for example the clauses in (6) may be rewritten

thus:

xeS   if <2, x> e S & (x)o = 0 & (x)x = <2, ((x)^^ & ((x^! + 2 = ttx,

xeS   if <2, x> e S &(x)0 = 1 &(x)x = <2,((x)0i> &((x)x)x + 2 = irx &(x)2 = (x)3.
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312 T. J. GRILLIOT [August

Thus we obtain an inductive definition of S with respect to a Hx predicate (exist-

ential quantifiers are used for the clauses corresponding to C5, C6 and C9).

Schemes C7 and C8 pose the slight problems of permuting a list of variables of

nonfixed length and of dropping a list of variables of nonfixed length. These

problems are handled by adding some auxiliary clauses to the inductive definition

ofS.

Theorem 2. For PC in =, Rx,..., Rn, the predicates {f}(a) J- and {f}(a) -*■ z are

reducible to a set inductively defined with respect to a monotonie Tl0(R1,..., Rn)

predicate.

Proof. The set 5 in the proof of Theorem 1 has existential quantifiers in its

inductive definition in only the clauses corresponding to C5, C6 and C9. For this

theorem we drop the clauses corresponding to C9. The remaining existential

quantifiers may be removed in accordance with the following two observations.

First, each existential quantifier 3z occurring in the clauses for C5 and C6 may be

replaced by 3z e [b] where b is the list of free variables occurring in the scope of the

quantifier, ([b] is the set of all objects formed from 0, b and the pairing and projec-

tion functions.) For instance, the first clause in (7) may be altered by inserting

"e [g, h, a]" after the quantifier 3z. This follows from Lemma 24 of [7] that shows

that the value of {f}(a) is in [/, a] when/is a PC index. The second observation is

that quantifiers of the form 3z e [b] can be built up by a monotonie n0 predicate,

as is exemplified in the following lemma. Thus with slight alterations the set S

described in the preceding theorem (excluding clauses for C9) can be inductively

defined with respect to a monotonie II0 predicate.

Lemma. If S is inductively defined with respect to some predicate, then a few U0

clauses can be added to its inductive definition so that the new inductively defined set

T satisfies the property

3ze[b]«0,z,b>eF)^<l,b>eF.

Thus quantifiers of the form 3z e [b] can be "built up" by n0 predicates.

Proof. For simplicity consider the case where b is x, y, and x,y e B. Add to the

inductive definition of S the following clauses :

<2,x,y,zyeT   if <0, z, x, y} e T,

<2, x, y, u, v,a}eT   if <2, x, y, (u, v), a> e T,

<2, x, v, a> e F   if <2, x, y, x, a> e For <2, x, y, y, a> e For <2, x, y, 0, a> e T,

(l,x,y>eT   if <2, x, y> e F.

For  example,  suppose  3z e [x, j]«0, z, x, y} eT);  say  <0, ((x, y), 0), x, y} e T.

Then the following objects are successively put into F:

<2, x, y, ((x, y), 0)>,    <2, x, y, (x, y), 0>,    <2, x, y, x, y, 0>,

<2,x,y,y,0},   <2, x, y, 0>,    <2, x,y>,   <l,x,y).

Thus <1, x, y} e T, which is what we want.
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Theorem 3. For SC in E, =, Rx,..., Rn, the predicates {/}(«.) j and {/}(a) ->- z

are reducible to a set inductively defined with respect to a monotonie Tlx(Rx,..., Rn) v

Si(i?i,..., Rn) predicate.

(This result occurs in Moschovakis [7, p. 493].)

Proof. Modify the inductive definition of S described in Theorem 1 by adding

the following clauses for scheme C10. It is desirable to maintain the property that,

whenever {/}(a) -> z, |<0,/, o>| = |<1,/ z, a>| (i.e., both objects are put into S at

the same stage); so the first clause is inserted to maintain this synchronization.

<7, <10, n, g}, a}e S if Vy«0, g, y, a> e S),

<0, <10, «, g>, aye S if <7, <10, «, g>, o> e S,

<8, g, y,ayeS if 3w(w # 0 & <1, g, u, y, a> e S),

<1, <10, «, gy,l,ayeS if <7, <10, «, g>, ayeS& Vy«8, g, j>, a> e S),

<1, <10, «, g>, 0,a)e5 if <7, <10, n, g>, a)eS& 3j«l, g, 0, y, a> e 5).

Theorem 4. For FC /« E, =, Rx,..., Rn, the predicates {f}(a) j and{/}(a) -> z

are reducible to a set inductively defined with respect to a U^Ru ..., Rn) predicate.

Proof. Modify the inductive definition of S described in Theorem 2 by adding the

following clauses for scheme C10. Note that these clauses are similar to those used

in the preceding proof except that existential quantifiers have been avoided by

using universal quantifiers at the expense of monotonicity.

<7, <10, «, g>, aye S if Vy«0, g, y, a> e S),

<0, <10, «, g>, aye S if <7, <10, «, g>, a> e S,

<8, g, ay e S if VK<0, g, y, a> e S) & Vj;«l, g, 0, j, a> £ S),

<l,<10,«,g>, l,a)ES if<8,g,a>ES,

<1, <10, «, g>, 0, a> e S if <7, <10, «, g>, a)eS& <8, g, a> ¿ 5.

For example, suppose {<10, «, g>}£,=(ct) ->■ 0; that is {g}E,=(y, a) | for all y and

{g}£' =(j, o) ^ 0 for some y. Let a be the first ordinal for which <0, g, y, a> e Sa

for all y. Since <1, g, 0, j, u> ê 51,, for some j>, we have <7, <10, «, g>, ay e Sa + X but

<8, g, o> $ Sa + x;so <0, <10, «, g>, a> e .S^ and <1, <10, n, g>, 0, a> e S; + 2, which

is what we want.

Now we will prove the converses of Theorems 1 through 4.

Lemma. IfP(a, T) is U0 andT=\Ji<a F¡ where F¡^T}for i<j,P(a, T) oP(a, T)

for all sufficiently large i.

Proof. F occurs in P only finitely often, say, in bx e T,..., bk e T. Let i be large

enough so that {bx, ...,bk}n T^Tt. Then P(a, T) iff P(a, T).

Theorem 5. A set inductively defined with respect to a S1(/?1,..., Rn) predicate

has at most w stages. A set inductively defined with respect to a monotonie

^i(Ri, • • •, Rn)predicate is absolutely semi-(SC in =, Rx,..., Rn).
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Proof. For simplicity, drop Rx,..., Rn. Suppose S is inductively defined with

respect to 3yP(x, y, T) where F is no. If P(x, y, Sa) is true for some y, then, by

the lemma, P(x, y, Sn) is true for some n e w. It follows that Sta + x = Sm = S.

Next suppose that 3yP(x, y, T) is monotonie.

xe S<->3ne w[xe Sn]

<-> 3n 6 cu 3 finite sets T0,..., Tn

[x e Fn & Vi < n Fi + 1 s {z : 3yP(z, y, T,)}]

<-► 3« Ecu 3z0, zx,..., zn

[x = (zn)0 & V/ < n Vi < /A(zi + 1) 3^F((zi + 1);, y, {((z)t)fc : * < lh(z,)})].

Thus the predicate x e S may be put in the form 3y[{f}°(x, y) ->■ 0] for some absolute

index/ which in turn may be put in the form {<9, 2,/>}=(x) j .

Theorem 6. A set inductively defined with respect to a n0(F1,..., Rn) predicate is

absolutely semi-(PC in =, Rx,..., Rn).

Proof. For simplicity drop Rx,..., Rn. Suppose S is inductively defined with

respect to P(x, T) where F is no. By the recursion theorem, there exists a function

F that is absolutely PC in = satisfying

F(x, y) - 0   if y # 0 & Fix, {z : F(z, (y)0) = 0}),

= 0   ifF(x,(j)o) = 0,

= 1    otherwise.

Then, for each new, F(x, n) = 0 o xe Sn; so xe S o p.n(F(x, ri) = 0) \ .

Definitions. Before we prove Theorems 7 and 8, we need some notation. To

each defined {/}£'=(u), an ordinal |{/}£' = (a)| can be assigned whose size indicates

the size of the tree of computation of {/}£, = (o). A precise definition is given by

Moschovakis [7, pp. 444-445]. Call ordinals aa SC [resp., PC] in E,=,a,b

(uniformly in a) if, for some absolute SC [resp., PC] index/ oa=\{f}E'=(a, b)|

where{f}E, = (a, b) |. Note that, if oz is SC [resp., PC] in E, —, z, a (uniformly in z),

then there exists an ordinal r^sup2 az that is SC [resp., PC] in E, =, a. (Reason:

|{g}*- = (a)|èsup2|{/}£' = (z,ct)|  where {g}£-(a)S£(A,{/}£- = (z, a)).) Let k»i.*.

[resp., ABi.R"] be the supremum of all ordinals SC [resp., PC] in E, =, Rx,..., Rn,x

for some x.

Theorem 7. A set inductively defined with respect to a 22 (Rx,..., Rn) predicate is

absolutely semi-(SC in E, =, Rx,..., Rn) and has at most khi.B» stages.

Proof. For simplicity drop Rx,..., Rn- Suppose S is inductively defined with

respect to 3_v VzP(x, y, z, T), where F is n0. We want to show that S=SK. If this is

the case, then

x e S o 3f3y[x e S„ where o = \{f}E' = (y)\]

o vy[x e Sa where a = |{(.v)o}£, = ((.y)i)|] I.
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Thus S is absolutely semi-(SC in E, = ) since the predicate [xeSa where

a=\{f}E'=(y)\] is absolutely SC in E, =. To see that SK + X = SK, suppose

VzP(x, a, z, SK) for some a. We will show that \/zP(x, a, z, Sa) for some a<#c;

hence, if x e SK + X then x e SK. In fact, letting a = supnet0 an where the an satisfy

an + x ^ sup pß[ß ^ an 8lP(x, a, Z, Sg)],
z

we get VzF(x, a, z, 5a). To see this, let z be arbitrary. There exist ordinals ßn such

that an^j8„^an + 1 and P(x,a,z, SBn) is true. Since Sa = {JnSßn, by the lemma,

P(x, a, z, Sa) is true. We are finished if we can make the an small enough so that

a<K. We obtain the an by the following recursion. Suppose that an is SC in

E, =,n,x,a (uniformly in «). Since any ß close to k satisfies ß^ an & F(x, a, z, Se),

using the v-operator, we get one that is SC in E, =, «, z, x, a (uniformly in «, z).

Call it yn2. Using the recursion theorem construct an + 1^sup2yn2. Since a

= supneman has ordinals above it SC in E, =, x, a, we see that <*<*.

Though we have no v-operator for PC functions, it is useful to have some sort of

selection operator. We restrict our attention to PC functions. The predicate (with

arguments / a, g, b)

|{/}£-=(a)| Ï \{g}e- = (b)\

is absolutely PC in E, = and is defined whenever one of {f}£, = (ct) and {g}£,=(£>) is

defined. One proves this by the recursion theorem: to compare |{/}£'=(a)| and

\{g}E,=(b)\, one computes appropriate comparisons between ordinals of the form

|{«}£,=(c)| and |{/}£,=(b)| where {«}£, = (c) and {/}£- = (b) are respectively in the trees

of computation of {f}E, = (a) and {g}£,=(b); hence a recursion. Another way of

solving the problem is to show that, for the set S inductively defined in the proof of

Theorem 4, the predicate |x| ^ |y\ is absolutely PC in E, = and is defined whenever

x e S or y e S. This is shown as follows. There is a PC function f(x, z, i) and a

fixed number k such that, if xeS, then |x|=0 or |x| =supÄinfiSfc |/(x, z,/)|.

This is easily seen by examining each of the clauses in the inductive definition of S.

Then the methods in Theorems 1 and 2 of [4] can be applied to obtain a selection

operator.

If {f}E>=(n, a) j for some new, then it is useful to find such an «. Define g by

the recursion

{g}£- = («, a) S « if |{/}£- = («, a)\ ï \{g}E-=(n+h a)\,

S {g}£-=(«+l, a)   if not.
Then

3« e *[{/}*•-(«, a) | ] => {/}£- = ({g}£'=(0, a), a) J,.

Since absolute indices can be effectively enumerated, it follows that, given a

predicate P(f, a) PC in E, = there exists h such that

3/e {absolute PC indices}[{/}£-=(a) J, & P(fi a)]

=> {{h}E- =(a)}£- = (a) j & F({«}£- =(a), a).

This fact will be used twice in the next theorem.
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Theorem 8. A set inductively defined with respect to a flx(Rx,..., Rn) predicate is

absolutely semi-(PC in E, =, Rx,..., Rn) and has at most ABi.B» stages.

Proof. For simplicity drop F1;..., Rn. Suppose S is inductively defined with

respect to VzP(x, z, T) where F is no. Let 7r(a) be an abbreviation for the supremum

of all ordinals PC in E, =, a. We want to show that x e S => x e Salx), in which case

we see that S=\JX SMx) = Sk and

x e S o 3/X/is an absolute PC index &x e S„ where a = \{f}E, = (x)\]

o{g}E-=(x)   I

for some absolute PC index g. (The existence of g is insured by the selection-

operator theorem.)

Let x e S; so VzP(x, z, Six[ ). We will show that x e S„M. As an induction hypoth-

esis, we may assume that, for all y, if \y\ < \x\, then y e S„M. Also we may assume

that 7r(x)^|x|; for otherwise x e S]x¡+x^Sll(x}. By the same reasoning as in the

preceding theorem, VzP(x, z, Sa) is true where a = supns¡0 an and the an satisfy

an ^ sup yß[ß S an & P(x, Z, Se)].
z

We will make a<n(x). Suppose an is PC in E, =, n, x (uniformly in n). We show

that there exists an ordinal PC in E, =, n, z, x (uniformly in n, z) bigger than

fj,ß[ß^an & P(x, z, S0)] by considering two cases.

Case 1. \x\ <tt(x, z). This case is trivial since |jc| ^an &P(x, z, Slxi).

Case 2. ir(x, z)á \x\. If the clause b e T occurs in P(x, z, T), then b e Six] o

b e S„iXiZ). For if b e SM, then |è| < |x|, so by the induction hypothesis b e SRm;

but since b is a term composed of x, z and the pairing and projection functions, we

have that rr(b) ^ n(x, z) ; so ieS,M. The reverse implication follows from

tt(x, z)¿ \x\. Thus since P(x, z, Slxl) is true, P(x, z, Sn(x,z)) must be true and so (by

the lemma) P(x, z, Sß) is true for ß just below tr(x, z). Thus in either case there

exist ordinals PC in E, =, n, z, x (uniformly in n, z) bigger than p.ß[ß ̂ an&

P(x, z, Se)]. Using a selection operator, pick one; call it ynz- By the recursion

theorem, construct <xn + 1^sup2 ynz. Since a = supn6£0 an has ordinals above it PC in

E, =, x, we see that a<-n(x).

We close with the following remark. We have characterized semi-PC and semi-

SC rather than PC and SC. Of course, a PC [resp., SC] predicate is one that is semi-

PC [resp., semi-SC] and whose negation is as well. For the case of PC or SC in E,

we can go a step further. Suppose P(a) is PC in E, =. Then there is a set S

inductively defined with respect to a II ! predicate such that

P(a) o <0, ct> s S,       —lP(á) o (I, a} e S.

By using a selection operator, the smallest ordinals aa such that <0, ct> e S„a V

<1, u> e S„a are PC in E, =, a (uniformly in a). Thus there is an ordinal <r^supa oa

that is PC in E, = and P(a) o <0, ct> e Sa. Therefore, the predicates PC in E, =
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are precisely those reducible to a stage—whose ordinal is PC in E, =—of a set

inductively defined with respect to a Ylx predicate. A similar remark holds for SC

in E, = by replacing Tlx by X2.
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