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Abstract  

This paper surveys recent results concerning the inference of deterministic finite automata 
(DFAs). The results discussed determine the extent to which DFAs can be feasibly inferred, 
and highlight a number of interesting approaches in computational learning theory. 

1 In troduc t ion  

Beginning with Gold's seminal paper on the identification of formal languages from examples [26], 

there has been extensive research into the problem of inferring DFAs (deterministic finite automata) 

from examples supplied to an inference algorithm. The problem of identifying an unknown DFA 

from examples has been central to the study of inductive inference for several reasons: Since a 

main focus of research in inductive inference involves determining those types of rules that can be 

inferred from examples, much attention has been given to those rules computable by the simplest 

types of formal devices. Similarly, the associated class of languages that are accepted by DFAs (i.e., 

the class of regular languages) occupies the "ground floor" of the Chomsky hierarchy, and research 

into the inferability of regular languages provides an excellent entry point into the investigation of 

the inferability of formal languages in general. ~'~rther, approaches and solutions to subproblems 

and problems related to DFA inference have often produced techniques applicable to other inference 

domains. In short, the study of the inferability of DFAs is an excellent means for studying a number 

of general aspects of inductive inference. 

This paper surveys a number of very recent results that (for the most part) determine the extent 

to which DFAs can be inferred in a computationaily efficient manner. Many of the results discussed 

involve interesting new computational models of inference as well as intriguing connections with 

problems in combinatorial optimization and cryptography. 

The rest of this paper is organized as follows. Section 2 contains basic definitions that will 

be used throughout the paper. Section 3 begins by reviewing the definitions of identification 

in the limit due to Gold [26], and discusses the problem of augmenting the definition so as to 

incorporate a notion of computational efficiency. Various definitions are presented, and results of 

Angluin [4, 7] are summarized, showing that there is no polynomial time algorithm for exactly 

identifying the class of DFAs from examples alone. In Section 4 the "distribution-free" inference 

model of Valiant [58], and generalizations of this model are considered. The results of Pitt and 
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Warmuth [43] and Kearns and Valiant f34] are reviewed, which show, based on various complexity- 

theoretic assumptions, that despite these less demanding inference criteria, the problem of inferring 

DFAs from examples alone remains intractable. The related optimization problem of finding an 

approximately small DFA that is consistent with given data is also considered, and strongly negative 

results are reviewed [34, 42]. Section 5 considers inference algorithms that are provided with, or have 

the ability to obtain, additional information about the DFA to be inferred, as well as the problem 

of inferring certain restricted classes of DFAs. We describe a number of results (Angluin [6, 9], 

R~vest and Schapire [50, 51, 52], rbarra and Jiang [33], Helmbotd, Sloan, and Warmuth [30, 31], and 

Abe [2]) showing that the inference problem is efficiently solvable in these more favorable settings. 

Finally~ Section 6 provides a brief sumraary, and suggests some problems for further research. 

2 Def in i t i ons  

P is the class of languages accepted in polynomial time by deterministic 15~_ring machines, N P  is 

the class of languages accepted in polynomial time by nondeterministic Turing machines, and RP 

is the class of languages accepted by probabilistic polynomial time 'Ihring machines with one-sided 

error bounded away from 0, as defined in [24]. It is known that P C_ RP C_ NP,  and it is not known 

if any of the inclusions are proper. Most of the inference problems considered in this paper would 

be triviM if R P  = NP .  The complexity theoretic assumption that R P  ~ N P  is widely used; if 

RP = NP ,  there would be "efficient" (randomized) algorithms for solving problems for which there 

is significant evidence of intractability. See [23, 24, 59] for further justification and background. 

An alphabet E is a finite set of symbols. The set E* consists of all finite length sequences formed 

by concatenating zero or more elements of ]~. Elements of E* are called strings. The unique string 

of length 0 is denoted A. A language over alphabet ~ is any subset L of E*. If L1 and L2 are 

languages over the same alphabet ~, then L1 $L2 is the symmetric difference of L1 and L2, defined 

by L l t L 2  = (L1 - L~) U (L~ - L1). 

2.1 D e t e r m i n i s t i c  F i n i t e  A u t o m a t a  

All of the background material regarding DFAs that is assumed in this paper may be found in [32]. 

Here we briery review the formal definitions and notation that will be used. 

A deterministic finite automaton (DFA), also called a finite state machine, is a 5-tuple M = 

(Q, ~, 6, q0, F),  where Q is a finite set of states, E is an alphabet of input symbols, ~ is the transition 

function 6 : Q × Z ~ Q, where $(q, a) = qt indicates that if M is in state q E Q, and the next input 

symbol to be read is a, then the next state of M is q'. q0 E Q is a unique initial state, and F C_ Q 

is a set of final, or accepting states. The transition furction 6 is extended inductively in the usual 

way to domain Q × ~* by 6(q, A) = q, and ~(q, ua) = 6($(q, u), a) for any string u e ~* and a fi ~. 

The DFA M accepts a string w iff 6(qo, w) E F, i.e., iff the sequence of state transitions 

determined by the input string w results in a final state of M. The language of M, denoted L(M),  

is the set of strings that M accepts. A language L is regular iff there exists a DFA M such that 

L = L(M).  Thus the class of regular languages is the class of languages accepted by DFAs. 

Two DFAs M1 and M2 are equivalent iff L(M1) = L(M2). For any M, there is a unique 

equivalent DFA M' (up to an isomorphism defined by renaming of states) such that the number of 

states of M'  is min]rnu.zn over all DFAs equivalent to M. Thus for any regular language L, there is 

a unique (up to isomorphism) canonical DFA that accepts L. 

The size of a DFA is the length of its representation in some natural encoding. Very roughly, 

most size measures will be proportional to the number of states times the size of the alphabet, since 

each transition must be specified. A more crude measure of size is simply the number of states, 
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which is polynomiaUy related to most reasonable encodings. A related measure of complexity, based 

on the diversity of the DFA, is discussed in Section 5.2. 

A nondeterministie finite automaton (NFA) is defined similarly to a DFA, except that ~ is a 

function with domain Q × E*, and range 2 Q. The reader may wish to consult [32] for further 

details. The class of languages accepted by NFAs also corresponds exactly to the class of regular 

languages. The regular languages are also representable by the class of regular grammars, or by 

regular ezpressions. 

2.2 Classes of  Representations 

For any class of languages to be inferred, there must be an associated collection of names, or class of 

representations; otherwise an inference algorithm would have no means for indicating its conjecture 

as to the language being inferred. We are mainly interested in polynomial-time (feasible) inference. 

Consequently, we wish to associate a measure of complexity with any language to be inferred, 

and allow an inference algorithm a number of computation steps that depends polynomially on 

this complexity measure (and possibly other parameters). Rather than assign one measure of 

complexity to each language, it is natural to let the measure of complexity depend on the choice of 

representation of the language in question. A reasonable measure of the complexity is the length 

of this representation. By assuming a particular class of representations (for example, the DFAs 

represent the regular languages) we conceivably obtain different results than might be obtained by 

considering a different class of representations (e.g., NFAs), since the lengths of the descriptions 

of the same language under different choices of representation schemes might not be polynomiaUy 

related (e.g., for some languages, NFAs are exponentially more concise than DFAs). We define 

these notions more precisely. 

Defini t ion 1 A class of representations for languages over alphabet ~ is a language R (over some 

alphabet r )  such that 

1. R is recursive. 

2. Each r E R denotes a language L(r) C Z*. 

3. There ezists an aIgor4thm that on input of any string w E ~* and representation r E R, 

outputs "yes" iff w E L(r), and outputs "no" iff w ~ L(r). 

If there is a polynomial-time algorithm witnessing condition 1 above, and if there ezists a polynomial- 

time algorithm that satisfies condition 3~ then we say that the class of representations R is polyno- 

miaUy reasonable. 

Since the only classes of representations that we consider axe polynomiaUy reasonable, we omit the 

phrase "polynomially reasonable" except in those cases where emphasis is desired. 
If R is a class of representations, then the size of an element r e R is simply the length of the 

string r. A (labeled) ezample of a representation r is a pair (w, b) where w E E*, and b = "+" if 

w E L(r),  and b = " - "  if w ~ L(r). If (w, b) is an example of some r E R, then r I E R is consistent 

with (w,b) if w e L(r ')  ~ b = "÷".  Examples are also called labeled strings. 

2.3 Inference Problems 

Following Gold [26] (see also Angluin and Smith [12]), in order to properly define an inference 

problem, we must carefully describe: 
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1. The (input) class of representations that defines the class of languages from which examples 

are taken. This class is called the target class. The target class implicitly specifies an asso- 

ciated measure of size of a given representation which acts as a parameter of complexity for 

the inference algorithm. Throughout the paper, unless otherwise specified, the class to be 

inferred is the class of DFAs. Size measures for DFAS were discussed briefly in Section 2.1. 

The particular DFA to be inferred during a given run of an inference algorithm is referred to 

as the target DFA. 

2. The hypothesis space (i.e., the class of representations) used by the inference algorithm, which 

is not necessarily the same as the input class. Unless otherwise specified, the output(s) of 

inference algorithms will be assumed to be DFAs. However, we will also consider algorithms 

that may output other representations of the regular sets, as well as algorithms that may 

output elements from an arbitrary polynomially reasonable hypothesis space. 

3. The manner in which examples are presented to the inference algorithm. Possibilities in- 

clude (but are not limited to): (a) Examples are presented in some particular order (e.g., 

lexicographic). (b) Examples are presented in an arbitrary order~ as long as each string of 

~* appears in the sequence of examples at least once. (c) Examples are randomly generated 

according to some probability distribution on E* which may or may not be known to the 

inference algorithm. 

4. The class of allowable inference algorithms. In this paper we mainly consider deterministic 

and randomized im~erence algorithms that obey various bounds on their runmng tLme. 

5. The criterion of successful inference. Sections 3 and 4 discuss a number of criteria for poly- 

nomial time inference. 

6. Other means (if any) by which the inference algorithm may obtain additional information 

about the target DFA. For example~ we consider algorithms that make various types of queries 

regarding the language accepted by the target DFA, and algorithms that are given some initial 

additional information about the target DFA. 

Finding natural formal definitions that capture the notion of efficient inference of DFAs is not 

at all straightforward. In particular, if our notion of "efficient" is the usual one of polynomial-time 

computation, then it is natural to allow the inference algorithm time polynomial in both the size of 

the target DFA, as well as in the lengths of the example strings seen. Because the example space 

~* contains strings of arbitrary length~ dependence on this latter quantity introduces a number 

of definitional problems. In part, a main catalyst for many of the results we discuss was the 

development of appropriate and natural definitions for computationally efficient DFA inference. 

3 Exact  Identif ication 

In this section we consider the case where successful inference requires the inference algorithm to 

ezactlyidentify the language represented by some target DFA. After discussing a number of different 

protocols and developing definitions for polynomial time identification in the limit, we review the 

results of Angluin [4, 71 which assert that this type of exact identification is too demanding to allow 

for polynomial time identification of DFAs. 
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3.1 Identification in the Limit 

We begin with the framework of identification in the linaJt introduced by Gold [26]. A presentation 

of the language accepted by a given target DFA M is defined to be any infinite sequence of examples 

such that for every string w E L(M),  the example (w, +) occurs at least once in the sequence, for 

every string w E ~* - L(M), the example ( w , - )  appears at least once in the sequence, and no 

other (that is, incorrectly labeled) examples appear in the sequence. 

In this model, a (deterministic) inference algorithm A is given as input an arbitrary presentation 

written on a read-only input tape. After reading each next example of the presentation, A outputs 

an hypothesis DFA. A is said to identify the DFA M in the limit if( on input of any presentation of 

L(M), the infinite sequence of DFAs output by A satisfies the following property: There exists a 

particular DFA M ~ such that for all sufficiently large i, the i-th output of A is M r, and furthermore, 

L(M ~) = L(M). Thus the sequence of outputs of A must converge to a DFA that accepts the same 

language as the target DFA. Note that the point of convergence may depend on the particular 

presentation. The class of DFAs is said to be identifiable in the limit Lff there exists a single 

inference algorithm A such that for all DFAs M, A identifies M in the limit. This criterion of 

successful inference is also known as EX-identification [20]. 

We also consider a presentation of only the positive examples of the DFA M. A positive pre- 

sentation of M is the same as a presentation of M, except that the sequence contains all and only 

the strings that are ha the language L(M). The class of DFAs is said to be identifiable in the limit 

from positive ezamples only iff there exists a single inference algorithm that identifies every DFA 

from any positive presentation. 

Theorem 2 [26] DFAs are identifiable in the limit, and are not identifiable in the limit from 

positive ezamples only. 

The proof of the first part is a simple application of the technique of identification by enumera- 

tion: On input of a given presentation, at stage i of its computation, the inference algorithm outputs 

the lexicographically first DFA that is consistent with the first i elements in the presentation. This 

approach is easily modified so that at any point, the conjectured DFA is a smallest canonical DFA 

that is consistent with all examples seen to that point. The second part follows from a more general 

theorem that states that any class of languages containing all of the finite languages, and at least 

one infinite language, is not identifiable from positive examples alone. The theorem holds for any 

class of representations for the regular languages. 

3.2 Polynomial-t ime Identification in t h e  L i m i t  

The solution (in the case of positive and negative examples) of identification by enumeration dis- 

cussed above seems at once unsatisfactory from the standpoint of computational efficiency. We are 

led to the question of whether there is a polynomial time procedure that identifies the class of reg- 

ular languages in the limit. A problem with this question is that it is ill-posed -- polynomial time 

in what? In this subsection we successively propose and analyze various definitions for polynomial 

time limiting identification. U1timately~ we arrive at what we believe to be one of few possible 

natural definitions. 

In the discussion to foliow, let M be the target DFA, and let M have size n. Let ml,m2,... 

be the lengths, respectively, of each element in some infinite presentation of examples of M. We 

would like to allow for "polynomial-time". Certainly we should allow the inference algorithm time 

to write down a correct hypothesis, which will be at least n in the case that M is a canonical DFA. 
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Consider the augmented definition of identification in the limit where, in addition to convergence 

to a correct hypothesis, we insist that the inference algorithm must have total computation time 

at most p(n) for some polynomial p. This defm.itlon is clearly too restrictive, since the very first 

example may have length ml > p(n), and thus the inference algorithm would not even be able to 

examine the first example. 

Another definition allows for polynomial update time: The inference algorithm is allowed at 

most q(n, ml + m2 + "" + mi) steps to produce it's i-th hypothesis, where q is any polynomial 

function of two variables. This requirement alone is not sufficiently restrictive, since the exhaustive 

search strategy of identification by enumeration (which we are explicitly trying to exclude) may be 

implemented so as to have polynomial update time. Demanding quick processing of each example 

is no guarantee that the total amount of time spent by the inference algorithm will be small. 

Bounding the number of "mind changes" before the inference algorithm has converged to a 

correct hypothesis has also been considered as a measure of complexity of inference (see, for ex- 

ample, [12, 20, 21]). We might require that the number of changes of hypothesis be at most p(n) 

for some polynomial p, in addition to requiring polynomial update time. This criterion of success 

is satisfied by the foUowing algorithm. At most one DFA of size i, for i = 0, I, 2,...n, is ever 

conjectured; thus the number of mind changes is at most n. Initially the algorithm hypothesizes 

the null DFA. If the current hypothesis is a DFA Mi of size i, then Mi is repeatedly conjectured 

until for some j > i, enough additional examples have been collected so that in time polynomial 

in the length of the additional examples, it can be verified that there is exactly one canonical DFA 

Mj (up to isomorphism), of size j such that Mj is the smallest canonical DFA consistent with all 

examples seen so far. At this point, Mj is conjectured. While this algorithm achieves the desired 

bounds for mind changes and update time, the DFAs it produces are not particularly useful until 

a number of examples that is exponential in n have been seen. The algorithm achieves a bounded 

number of mind changes only by tolerating intermediate hypotheses that are clearly inconsistent 

with many of the examples already seen. Bounding the number of mind changes does not exclude 

Mgorithms that are intuitively inefficient. 

In [21], general definitions are developed for the complexity of inductive inference. These 

definitions correspond to the total amount of computation time spent by the inference algorithm 

before it converges to a correct hypothesis. We have already noted that we need to allow the time 

bound to depend on the length of the examples seen. Thus a reasonable definition might be that 

an inference algorithm runs in polynomial time iff the total amount of computation time is at most 

p(n, ml + ... + rnk), where p is a polynomial, and where the algorithm converges after seeing the 

k-th example. (The convergence point k may depend on the presentation.) This definition is also 

unsatisfactory, because any inference algorithm (in particular, the exhaustive search strategy) could 

simply delay convergence (while doing virtually no computation) until a sufficiently long example 

appears so that the algorithm may meet the polynomial time bound. 

An attempt to fix the previous definition by requiring that the point of convergence be polyno- 

mial in n results in a definition that is not satisfied by any inference algorithm. The presentation 

may be such that a key example that distinguishes two otherwise equivalent DFAs does not appear 

until after the required convergence point. We note Gold's result [26] that the method of iden- 

tification by enumeration is optimally tezt efficient in the sense that no other inference strategy 

converges at least as soon as it does on ~l presentations, and converges before it does on at least 

one presentation. 

It seems that the most serious impediment in devising a reasonable definition of polynomial time 

limiting identification is that the inference algorithm has no control over the data presentation, thus 

no guarantee as to point of convergence can be made. However, an hypothesis that is consistent 

with a~ past data and is correct for a reasonably long stream of additional examples may be useful 
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in practice, especially if some bound may be given on the number of times the current hypothesis 

will contradict the next example. 

Let A be an inference algorithm for DFAs. After seeing i examples, A conjectures some DFA 

Mi. We say that A makes an implicit error of prediction at step i if Mi is not consistent with the 

(i + 1)-st example. (The algorithm is not ezplicitly making a prediction, but rather the conjectured 

DFA implicitly predicts the classification of the next example string.) We propose the following 

as a definition of polynomial time identification in the limit. The definition is stated in terms of 

DFAs, but may be applied to any inference domain. 

Def in i t ion  3 DFAs are identifiable in the limit in polynomial time iff there ezists an inference 

algorithm A / o r  DFAs such that A has polynomial update time, and A never makes more than a 

polynomial number of implicit prediction errors. More specifically, there must ezist polynomials p 

and q such that for any n, for any DFA M of size n~ and/or any presentation of M,  the number of 

implicit errors of prediction made by A is at most p(n), and the time used by A between receiving 

the i-th ezample and outputting the i-th conjectured DFA is at most q(n, ml + . . .  + mi), where mj 

is the length of the j-th ezampIe. 

A model of prediction in the limit has also been investigated [12, 13, 14, 16, 37, 44, 45]. This 

model (as applied to DFAs) dictates that the inference algorithm receives an unlabeled string w, and 

must predict whether or not w is in the language of the target DFA M. After the prediction, the 

algorithm is told whether in fact w E L(M).  There is no requirement that the inference algorithm 

ever conjecture a DFA, or have one "in mind" during the inference process. Littlestone [37] considers 

bounding the number of (explicit) prediction errors made by such a prediction algorithm in the 

worst case over all presentations of a language to be predicted. Definition 3 captures the spirit of 

Littlestone's model in the case where the inference algorithm is required to output a correct DFA 

(in the limit). The definition of polynomial time identification in the limit is also closely related to 

the definitions of Angluin [7, 11] considered in the next section, and the development of Definition 3 

nicely motivates her model of polynomial time identification using equivalence queries. 

3.3 P o l y n o m i a l - t i m e  I d e n t i f i c a t i o n  us ing  E q u i v a l e n c e  Q u e r i e s  

Angluin [1I] considers inference algorithms that may make equivalence queries to obtain information 

about the language of the target DFA M. An equivalence query is a description of a conjectured 

DFA M', and if L(M) = L(M~), then the reply to the inference algorithm is "yes", and the inference 

is completed. Otherwise, the inference algorithm is told "no", and supplied with a countere~cample 

an arbitrary string w E L(M)q~L(Mt), the symmetric difference of L(M) and L(M~). Angluin 

gives the following definition: 

Definition 4 An algorithm A identifies the class of DFAs using equivalence queries in polynomial 

time if and only if there ezists a polynomial p(n, m) such that for any DFA M,  when A is ran 

with an oracle to answer equivalence queries/or L(M) ,  it halts and outputs a DFA M' such that 

L( M w) = L( M) .  Moreover, at any point during the run, the time used by A to that point is bounded 

by p(n, m), where n is the size of M,  and m is the length of the longest counterexample returned 

by any equivalence query seen to that point in the run. 

Note that not only is the total rtmnlng time bounded, but the amount of time used at any point 
is required to be polynomial in the counterexamples provided to that point. Angluin shows that if 

only the total running time is polynomiaily bounded, then a variant of identification by enumeration 

would satisfy the less restrictive definition by first finding a correct DFA using equivalence queries 

(ignoring any time constraints), and then forcing the oracle to return a sufficiently long string as 
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a counterexample so that the total computation time becomes polynomial. This is achieved by 

conjecturing a DFA that accepts a language identical to the correct DFA except for some very long 

string w. (If one objects to the algorithm continuing after it has obtained a correct hypothesis, the 

construction may be modified so that the correct DFA is not produced until after the very long 

counterexample is obtained.) 

It is interesting to compare Definition 3 with Definition 4. Suppose that in the former we ignore 

• all hypotheses of the inference algorithm that do not result in an implicit error of prediction, and 

compress the run of the inference algorithm to contain only those trims where the hypothesized 

DFA is incorrect on the next example. Then this corresponds to identification with equivalence 

queries, since after each conjecture, a counterexample is provided (or, if the conjecture is correct, 

the inference task ends). More formally, it is not difficult to show that if DFAs are polynomial time 

identifiable in the limit, then they are identifiable in polynomial time using equivalence queries. 

The definition of identification in polynomial time using equivalence queries is less restrictive in 

that the number of implicit prediction errors may depend also on the size of counterexamples that 

are returned, whereas in Definition 3, only the update time may depend on this parameter m the 

number of implicit errors is bounded only by a polynomial function of the size of the target DFA. 

The following theorem is due to Angluin. 

T h e o r e m  5 [4, 7] The class of DFAs is not polynomial time identifiable using equivalence queries. 

As a corollary we have 

Coro l la ry  8 The class of DFAs is not polynomial time identifiable in the limit. 

The proof of Theorem 5 is by a general method dubbed "approximate fingerprinting". For 

each n, an exponentially sized subclass H~ of DFAs of size n is constructed with the following 

properties. For any DFA M (not necessarily from H,~), for any polynomial q, and for all sufficiently 

large n, there is a string ZM with length bounded by a polynomial in n, such that the fraction of 
1 . , ,  DFAs of H~ that agree with M on the string ZM is less than q-~. Thus by answering no to the 

equivalence query "M",  and providing the inference algorithm With the counterexample ZM, an 

adversary may ensure that less than a polynomially small fraction of the set H,~ may be eliminated 

from consideration by the inference algorithm. The adversary can repeat this approach, and force 

any algorithm to make more than q(n) queries before it can eliminate all but one element of Hn. 

Since q was an arbitrary polynomial, the result follows. 

Angluin uses the method of approximate fingerprints to obtain other negative results in the 

model of polynomial time identification using equivalence queries. Similar theorems are proven for 

NFAs, context-free grammars, bottom-up tree automata, DNF formulas, and ~-formuias. 

The proof of Theorem 5 is inforn~tion-theoretic; it makes no complexity-theoretic assumptions 

whatsoever. In fact, the polynomial bound on the running time of the inference algorithm is used 

only to bound the size of the hypothesized DFAs. Thus the theorem essentially states that a polyno- 

mial number of polynomiaUy sized conjectures (together with the corresponding counterexamples) 

need not provide enough information to uniquely distinguish a particular DFA from among the 

class H~. Consequently, even an oracle for PSPACE does not help the inference algorithm. 

The theorem is representation dependent m the proof relies on the fact that the inference 

algorithm is only allowed to make equivalence queries using DFAs. In [11] a very general "majority 

vote" algorithm (see also [14, 37]) is shown to achieve a number of equivalence queries that is 

logarithmic in the size of the class of target representations. This general strategy uses equivalence 

queries that are not limited to any one class of representations. Since the classes Hn have only 

exponentially many elements, the majority vote strategy identifies these subclasses of DFAs using 
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only polynomiaUy many equivalence queries. Theorem 5 points out that the majority vote algorithm 

has no efficient implementation that uses DFA equivalence queries alone. By the comments above, 

the reason for this must be that the languages queried by the majority vote strategy are not 

representable by polynomially sized DFAs. 

Another interesting property of the proof of Theorem 5 is that the target DFAs under consid- 

eration (i.e., elements of H, )  accept only finite languages. Thus polynomial time identification of 

DFAs with equivalence queries is no easier in the restricted case of DFAs accepting only finite lan- 

guages. Independently, Ibarra and Jiang [33] show that the inference problem for finite languages, 

and fixed-length languages (all strings are the same length), is no easier than the inference problem 

for DFAs accepting arbitrary languages. 

A final note regarding this result is that the subclass of DFAs used in the proof are all zero- 

reversible: each DFA has at most one final state, and for any state q and symbol a there is at 

most one state p such that 6(p, a) -- q. Thus even the class of zero-reversible automata are not 

identifiable in the limit using equivalence queries. This contrasts with the algorithm of Angluin [5}, 

that has polynomial update time, and identifies this class in the limit from positive examples only. 

A number of other results have been shown in the model of polynomial time identification 

with equivalence queries, tn [11] similar information-theoretic lower bounds are presented for 

identification of other types of languages, as well as some positive results that rely on additional 

types of queries (see also [9]). We will discuss the positive results for DFAs in Section 5. 

4 Approximate Identification 

In this section we consider a less demanding criterion of approximate identification, and generaliza- 

tions of this criterion to approximate prediction. Despite these relaxed definitions, if the information 

available is limited to example strings, then the existence of an efficient inference algorithm seems 

unlikely. As opposed to the information-theoretic results of Theorem 5, the negative results re- 

viewed here necessarily depend on various complexity-theoretic assumptions. 

4.1 P A C - I d e n t i f i c a t i o n  

In [SS], Valiant introduces a distribution-independent model of randomized inference that has been 

called PAC-identification. Subsequently, the model has been refined and extended in a number 

of ways; the reader should consult [17, 29, 43] for interesting variations. Here we consider the 

version(s) most applicable to the class of DFAs. 

"PAC" abbreviates "probably approximately correct". The goal of a PAC-identification algo- 

rithm is to obtain, with high probability, a DFA that is approximately correct when compared to 

the target DFA. Assume that there is an unknown and arbitrary probability distribution D on 

strings of ~* of length at most rn. (Below we justify this bound on string length.) A PAC-inference 

algorithm A may sample strings according to the distribution D, and for each string w that is gen- 

erated, A is told whether or not w E L(M) ,  where M is the target DFA. A is required to produce, 

in polynomial time and with high probability, a DFA that is likely to correctly classify a randomly 

chosen example according to the distribution D on which it has trained. "With high probability", 

and "likely" in the previous sentence are precisely quantified by two parameters that are supplied 

to A: an accuracy parameter e, and a confidence parameter 6. 

D e f i n i t i o n  7 DFAs are PAC-identifiable iff there ezists a (possibly randomized) algorithm A such 

that on input of any parameters e and 6, for any DFA M of size n, for any number m, and for 

any probability distribution D on strings of ~" of length at most rn, if A obtains labeled e~amples 
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of M generated according to distribution D, then A produces a DFA M ~ such that, with probability 

at least 1 - 6, the probability (with respect to distribution D) of the set {w : w E L( M)$L(  M') } is 

at most e. The run time of A (and hence the number of randomly generated ezamples obtained by 

A) is required to be polynomial in n, ,~, ~, 3, and l r~t. 

In many other PAC-identification domains that have been studied (e.g., the inference of Boolean 

functions), all example strings for a given target function have the same length (e.g., the number of 

Boolean variables over which the function is defined). Again, in the case of DFAs, definitional prob- 

lems arise because example strings may have different lengths. In the case of PAC-identification, 

there are especially subtle issues in arriving at a natural definition due to the fact that e.-:amples 

are chosen randomly. These issues are discussed in more detail in [43]. In the definition above, the 

distribution is limited to a finite sublanguage of the regular language accepted by the target DFA. 

This definition seems to be the best of several possible alternatives discussed in [43]. Further note 

that for any distribution D on the countable space Z*, and for any arbitrarily small 7 > 0, there 

is a length m such that the probability of any string of length greater than m occurring is at most 

7. Thus there is a distribution D I assigning zero probability to strings of length greater than m 

such that D' "approximates" D within 7. Consequently, the restriction to such distributions is not 

unreasonable. It is also of interest that similarly restricting the class of target languages to finite 

sublanguages does not simplify the inference task in the case of polynomial time identification with 

equivalence queries [4, 33]. See Section 3.3 for additional discussion. 

A relaxation of the PAC-identification criterion allows the inference algorithm to output rep- 

resentations chosen from some other hypothesis class, as long as the language associated with the 

representation output by the algorithm has error at most e when compared to the target DFA and 

the distribution on which the inference has occurred. For example, an algorithm might output 

an NFA N as its conjecture, ff H is a class of representations (e.g., NFAs, regular expressions, 

context-free grammars, etc.), then we say that DFAs are PAC-identifiable in terms of H iff the 

above definitions hold, but the inference algorithm outputs a representation from the class H. The 

choice of hypothesis space can often be the determining factor as to whether or not a feasible algo- 

rithm exists. For example, it is known that the class k-term-DNF of Boolean formulas in disjunctive 

normal form with at most k terms (k >_ 2 and constant.) is not PAC-identifiable unless RP = NP,  

but there is a PAC-algorithm for this class in terms of the class k-CNF of conjunctive normal form 

expressions where each clause has size at most k [41]. 

Finally, there is a notion of polynomial time predictability that corresponds to the criterion of 

PAC-identification. We say that DFAs are (polynomially) approzimately predictable iff there exists 

any (polynomially reasonable) hypothesis class H such that DFAs are PAC-identifiable in terms of 

H. This is equivalent to a model discussed in [43], where, as in the definitions.of prediction in the 

limit described earlier, instead of outputting a DFA as a conjecture, the inference algorithm need 

onty classify unlabeled examples correctly. In particular, consider the protocol where the inference 

algorithm A may access randomly generated examples (as in PAC-identification), and then halts 

in a special predict state. A new (unlabeled) string is drawn according to the distribution, and 

A predicts whether w E L(M) or w • L(M).  If A is incorrect, then A makes an (explicit) error 

of prediction. The following definition of approximate prediction is equivalent to that of PAC- 

identification in terms of an arbitrary (polynomially reasonable) hypothesis space. (The parameter 

has been absorbed into the parameter e.) 

Def ini t ion 8 DFAs are polynomialty approximately predictable iff there ezists a (possibly ran. 

domized) algorithm A such that on input of any parameter e, for any target DFA M of size n, for 

any number m, and for any probability distribution D on strings of v.* of length at most m, if A 
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obtains labeled ezamples of M generated according to distribution D, then A halts in a predict state 

such that the probability is at most ~ that A makes an error of prediction on a new string generated 

according to distribution D. The run time of A is required to be polynomial in n, m, ~, and [~t. 

A number of relationships between these (and other) criteria have been given [11, 29, 37, 43]. 

Particularly relevant to our investigation here is the following theorem due to Angluin. 

Theorem 9 [11] For all polynomially reasonable classes of representations R, and for DFAs in 

particular, if R is polynomial time identifiable with equivalence queries, then R is PA C-identifiable, 

and hence polynomiaUy approzimately predictable. Further, there are classes of representations that 

are PA C-identifiable, but not polynomial time identifiable with equivalence queries. 

4.2 O c c a m ' s  Razor :  F i n d i n g  Smal l  DFAs  

The minimum consistent DFA problem it that of finding the smallest DFA that is consistent with 

.each of a finite collection of examples. We will see below how this problem is motivated by the 
results of Blumer, Ehrenfeucht, Hanssler, and Warmuth [18] in the context of PAC-identification. 

However, before the PAC-identification criterion was proposed, the minimum consistent DFA prob- 

lem had already received significant attention. This is not surprising, in that independent of any 

formal justification from the standpoint of computational inference models, the principle of Oc- 

cain's Razor [40], is appealing both intuitively and philosophically as an inference technique. In 

the context of inference, Oecam's Razor is taken to mean that among competing hypotheses, the 

simplest is preferable. Taking the standard information-theoretic interpretation of "simplest" to 

mean "fewest number of bits", Occam's Razor suggests that we attempt to identify a regular lan- 

guage by hypothesizing, at arty point, the smallest DFA consistent with the set of examples seen 

up to that point. This general approach has been taken in a number of practical and theoretical 

settings [2, 12~ 36, 48, 49, 56]. 
Gold [25] showed that an algorithm for the minimum consistent DFA problem could be used 

to achieve identification in the limit~ and that such a technique would be optimally data efficient. 

However, Gold also showed that it is NP-hard to find the smallest DFA consistent with a given 

sample. Trakhtenbrot and Barzdin [57] show that if the sample consists of all strings up to a 

given length, then there is a polynomial-time algorithm for finding the smallest consistent DF2k. 

Angluin [10] extends Gold's NP-hardness results by showing that the problem remains NP-hard 

even if all but e of the strings up to a given length are given as examples. Angluin also shows that 

the problem of finding a smallest consistent regular expression is NP-hard. 
That the minimum consistent DFA problem is relevant to inference is more formally supported 

by the work of Blamer, Ehrenfeucht, Haussler, and Warmuth [18]. To understand their results, we 

need the following definition. 

Def in i t ion  10 An Occam algorithm for the class of representations R in terms of the class H is 

an algorithm 0 such that for some constants k > 0 and 0 < a < 1~ the following guarantee holds. 

Let s, n, and m be any numbers, and let r E R have size n and represent the language L(r). Then 

on input of any set of s ezamples of L(r),  each of length at most m, 0 outputs an element h E H 

of size at most n~rnks ~ that is consistent with each of the s ezamples. An Occam algorithm for a 

class R in terms of the same class R is called an Occam algorithm for R. 

Blumer et al prove the following sufficient condition for PAC-identification: 

T h e o r e m  11 [17, 18] For any classes of representations R and H~ if there ezists a polynomial-time 

Occam algorithm for R in terms of H,  then R is PAC-identifiable in terms of H. 
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Coro l l a ry  12 For any (polynomially reasonable) classes of representations R and H, if there ezists 

a polynomial-time Occam algorithm for R in terms of H,  then R is polynomiaUy approzimately 

predictable. 

Theorem 11 and Corollary 12 also hold if the Occam algorithm is randomized, and is only required 

to produce an element h E H as specified with probability exceeding some constant 7. 

If we let both R and H be the class of DFAs, then Theorem 11 gives the following sufficient 

condition for PAC-identification of DFAs. 

Coro l l a ry  13 DFAs are PA C-identifiable if there exists a (possibly randomized) polynomial.time 

Occam algorithm for DFAs. 

Hence the PAC-identifiability of DFAs would follow from the existence of a random polynomial- 

time algorithm that could approzimately solve the minimum consistent DFA problem. Board and 

Pitt [t9] recently prove that i fa  hypothesis class H is "closed under exceptions" then the converse of 

Theorem 11 holds. They observe that DFAs have this property, and obtain the following theorem. 

T h e o r e m  14 [19] If DFAs are PA C-identifiable then there ezists a randomized polynomial.time 

Occam algorithm ]or DFAs. 

Together with Corollary 13, Theorem t4 shows that the PAC-identifiabillty of DFAs is equivalent 

to the existence of a random, polynomial-time approximation algorithm for the minimum consistent 

DFA problem that makes only a very weak approximation guarantee. More succinctly, for DFAs, 

PAC-identification is equivalent to data compression. 

Consequently, this approach to inferring DFAs has recently received more scrutiny. Li and 

Vazirani [35] provided the first nonapproximabillty result extending the NP-completeness result 

of [25], by showing that it is NP-hard to produce a consistent DFA that is at most ] times 

larger than the smallest consistent DFA [35]. Recently, Pitt  and Warmuth [42] show (assuming 

P ~ N P )  that there is no polynomial-time approximation algorithm that is guaranteed to produce 

a consistent DFA of size bounded above by any polynomial in the size of the smallest DFA; in 

particular, they prove the following theorem. 

T h e o r e m  15 [42] For any constant e > O, the following optimization problem is NP-hard. Given 

a set o] ezamples of some DFA with at most n states, produce a DFA with at most n (1-~)l°sl°g~ 

states. 

Theorem 15 appears to be one of few very strong nonapproximability results for naturally 

arising combinatorial optimization problems. Theorem 15 does not imply that DFAs are not PAC- 

identifiable: The theorem does not preclude the existence of an Occam algorithm, since the un- 

achievable approximation bound is a function only of the size of the smallest DFA, whereas an 

Occam algorithm allows the size of the I)FA produced to also depend polynomially on the length 

m of each example, as well as sublinearly on the number $ of examples for which a consistent DFA 

is sought. Note also that the result is representation dependent, in that it does not preclude the 

existence of an approximation algorithm that produces a consistent hypothesis h from some class 

H other than DFAs, such that the size of h is polynomially bounded in the size of the sma~est 

consistent DFA. 1 Such an algorithm would show that DFAs were PAC-identifiable in terms of the 

1However, for the case that H is the class of NFAs, both the results of [35] and the results of [42] remaJ.n true. If 
H is the class of regular expressions, regular grammars, DFAs, or NFAs over the fixed alphabet {0, I}, then a slightly 
weaker bound than that of Theorem 15 holds [42]. 
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hypothesis space H, and thus, by Corollary 12, were polynomially approximately predictable. In 

fact, in Section 5.4 we will see that the subclass of DFAs for which the nonapproximation result of 

Theorem 15 holds is polynomially approximately predictable. 

Based on cryptographic and number-theoretic assumptions that are (ostensibly) stronger than 

the P # N P  assumption, Kearns and Valiant [34] show that DFAs are not polynomially ap- 

proximately predictable (Theorem 19 below). By Corollary 12 they conclude that there is no 

polynomial-time Occam algorithm for DFAs in terms of any polynomiaIIy reasonable class of rep- 

resentations. They thus obtain the following representation independent nonapproximability result 

for the minimum consistent DFA problem. 

T h e o r e m  16 [34] For any constants k > 0 and a < 1, the following optimization problem is 

as hard as any of the cryptographic or number.theoretic problems mentioned in the statement o/ 

Theorem 19: Given a set of s ezamples, each of length at most m, of some DFA with at most n 

states, produce a polynomial-time algorithm that is consistent with all s ezamvles, and has size at 

most most  nkr~2k S a. 

4.3 P A C - i d e n t i f i a b i l i t y  and  P r e d i c t a b i l i t y :  N e g a t i v e  R e s u l t s  

It is not difficult to show that if RP = NP then any polynomially reasonable class of representations 

is PAC-identifiable. Thus any negative results for the PAC-identification criterion must make the 

standard complexity-theoretic assumption that RP ~ NP.  

There are negative results based only on this assumption (for example, see [28, 41]). These 

negative results are typically obtained by showing that the consistency problem for the class of 

representations is NP-hard [17, 28, 41]. (The consistency problem is that of producing any element 

from the class that is consistent with a given set of examples.) Most such results involve a class of 

representations that is restricted in some way (for example, DNF with a constant upper bound on 

the number of terms). For any class of representations that is powerful enough to express arbitrary 

disjunctions, this approach to proving non PAC-identifiability will not work. For example, the 

consistency problem for DNF formulas (without a bound on the number of terms) is trivial. The 

consistency problem for DFAs is also easily solved by constructing a DFA that accepts exactly 

the positively labeled strings in the given sample. Thus this approach is not a useful one in the 

present context. Note however, that we may obtain a negative result for the class of DFAs restricted 

by size: The nonapproximabllity result of Theorem 15 shows, based only on the assumption that 

R P  ~ NP ,  that DFAs with n states are not PAC-identifiable in terms of DFAs with at most 
n (1-~) l°gl°sn states. 

For classes of representations that are not restri£ted in some way, it appears to be very difficult 

to prove negative results in the PAC-identification model based only on the assmnption that R P  # 

NP.  An alternative approach, analogous to the one taken in computational complexity theory, is 

to relate the relative difficulty of PAC-identification of various classes. Perhaps DF~.s are at least 

as hard to PAC-identify as a wide variety of other classes of representations. 
This approach was taken by Pitt  and W a r m t h  [43]. tn the context of approximate prediction 

(i.e., PAC-identification in terms of an arbitrary hypothesis space), a notion of prediction preserv- 

ing reduction is given (see also [37]). The existence of a (polynomial time) prediction preserving 

reduction from inference problem A to inference problem B guarantees that if B is polynomially 

approximately predictable, then A is also polynomially approximately predictable. A number of 

interesting reductions are given. 
Prediction problems are classified based on the computational complexity of their evaluation 

problems. The evaluation problem for a class R is to determine, given any r E R and w e E*, 
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whether or not w E L(r). Since all classes we consider are polynomially reasonable, by condition 3 

of Definition 1, the evaluation problems for these classes are all in the complexity class P. Pitt and 

Warmuth prove the following "completeness" theorem for DFA prediction: 

T h e o r e m  17 [43] If DFAs are polynomiaUy approzimately predictable, then so is every class of 
representations whose evaluation problem is in the complezity class Deterministic LogSpace. 

The theorem is proved by showing that (1) if R is a class of representations whose evaluation 

problem is in Deterministic LogSpace, then there is a prediction preserving reduction from R to the 

class of Iogspace bounded deterministic Tu.ring machines; and (2) there is a prediction preserving 

reduction from Iogspace bounded deterministic Tu.ring machines to DFAs. Thus not only would the 

polynomial time approximate predictability of DFAs imply the same for logspace Turing machines, 

but also for a wide variety of classes of representations. In particular, since the evaluation problem 

for Boolean formulas is in Deterministic LogSpace, the following corollary is obtained. 

Corol lary  18 [43] If DFAs are potynomiaUy approzimately predictable, then Boolean formulas are 

polynomially approzimately predictable. 

Corollary 18 is particularly interesting because the class of DNF formulas is a very restricted 

subclass of Boolean formulas, and whether DNF formulas are PAC-identifiable (and therefore, 

approximately predictable) has remained a basic open problem since it was posed by Valiant in 

1984 [58]. By relying on other unresolved inference problems, the fact that DFAs are "prediction- 

complete" for Deterministic LogSpace provides some evidence for the difficulty of their prediction. 

Similar results are obtained showing that other types of automata are prediction-complete for a 

range of complexity classes. 

Any "evidence of intractability" for a problem A that is obtained via a reduction from a problem 

B (or from a large class of problems) is only plausible to the extent that we believe B to be an 

intractable problem to begin with. In the area of cryptography, a number of cryptosystems exist 

that appear to be difficult to invert. Indeed, one of the main research goals in this area is to devise 

cryptographic schemes that are provably hard to invert. Additional and more convincing evidence 

of the intractability of DFA prediction can be obtained by relying on assumptions concerning the 

difficulty of breaking various cryptographic systems. Kearns and Valiant [34] take exactly this 

approach, by considering certain cryptographic and number-theoretic problems. Before describing 

their results, we briefly explain the problems on which they are based. 

The RSA encryption ~unction, due to Rivest, Shamir, and Adleman [53], is the basis for a well 

known public key cryptosystem that has received much analysis. There is currently no known 

polynomial-time algorithm for inverting the I~SA function. Similarly, the encryption scheme of 

Rabin [47] is thought to be hard to invert. In Rabin's encryption scheme, the problem of decryption 

can be shown to be equivalent (with respect to polynomial-time probabilistic computation) to the 

problem of factoring Blum integers, which is that of determining the factors p and q, each/-bit 

primes congruent to 3 rood 4, given only the product N = pq. The evidence of difficulty of inverting 

Rabin's encryption scheme rests on the fact that the problem of factoring Blum integers has received 

much scrutiny, yet no known polynomial-time probabilistic algorithm for it has been discovered. 

Finally, the quadratic residue problem is also a well studied problem of number theory for which no 

polynomial-time solution is known: Let Z~ be the multiplicative group modulo N (Z,~ contains 

only elements of Ziv that are relatively prime to N) and let J (z ,  N) denote the Jacobi symbol of 

z with respect to N [39]. Then the quadratic residue problem is the following. Given a number N 

that is the product of two (unknown) primes p and q, each of length l, and given a number z E Z~ 

such that J(~, N) = 1, determine if there exists a E Z~ such that • = a 2 mod N. 

Kearns and Valiant [34] prove the following theorem. 
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T h e o r e m  19 [34] If  DFAs are poIynomially approzimatety predictable, then there is a probabilistic 

polynomial time algorithm ]or inverting the RSA eneryption function, for factoring Blum integers, 
and for deciding quadratic residues. 

We describe the two main steps involved in the proof of Theorem 19, using the RSA function 

as an example: (1) A class of representations R is defined such that the problem of polynomiaUy 

approximately predicting the class R is equivalent (with respect to probabilistic polynomial time 

computation) to the problem of inverting the KSA encryption function. (2) It is shown that the 

class R has an evaluation problem that is contained in the complexity class Deterministic LogSpace. 

(Actually, they give the stronger result that the evaluation problem for R is contained in N C  1 - -  

the class of polynomial size, log depth circuits of standard fan-in two Boolean gates.) Theorem 19 

then follows from Theorem 17. 

Let us look at these two steps in a bit more detail. First we state a few facts about the RSA 

scheme. (The following is not meant to fully describe the RSA encryption function - -  we present 

only what is necessary for our exposition.) A particular RSA function is given by specifying three 

numbers p, q, and e, with special properties. Let N = pq. The encryption function is defined by 

RSA(N,  e, z) = z ~ mod N. If p, q, and e are known, then inverting RSA(N,  e, z) (i.e., finding z) 

may be done in polynomial time. If only N and e are known, but not p and q, then inverting 

RSA(N,  e, z) is believed to be difficult for z chosen randomly from Z~r according to a uniform 

distribution. 
It has been shown that finding the least significant bit of z given RSA(N,  e, z) is as hard as 

determining the entire string z [3]. This suggests the following inference problem R based on the 

P~SA iunction. The class of representations R consists of triples (p, q, e) with the required special 

properties. A positive example of (p, q, e) is any number RSA(N,  e, z) such that the least significant 

bit of z is 1. A negative example is a number RSA(N ,  e, z) such that the least significant bit of z 

is 0. Thus learning to predict positive and negative examples of a target representation (p, q, e) is 

equivalent to the problem of determining the least significant bit of the encrypted number z, which 

in turn is equivalent to decrypting the KSA function. 

For step (2) described above, it must be shown that the evaluation problem for R is solvable 

in deterministic logspace. In this case, the evaluation problem is to determine, given (p, q, e), and 

z = RSA(N,e ,  x), whether or not z is a positive example, i.e., whether or not the least significant 

bit of z is a 1. This can be done in polynomial time, but unfortunately, this problem does not 

appear to be achievable in deterministic logspace. Kearas and Valiant overcome this obstacle 

by describing a different prediction problem for R, where each example consists not only of an 

encrypted string R S A ( N ,  e, z), but also contains additional information that is sufficient to lower 

the complexity of the resulting evaluation problem down to the complexity class N C  1. Although 

the evaluation problem becomes easier, the additional information does not make the prediction 

problem any easier, since it is shown that this information is readily obtained b'y any probabRistic 

polynomial time algorithm from the encrypted message alone. 
Thus classes of representations are defined that are as hard to approximately predict as the 

above number-theoretic problems are to solve, and whose evaluation problem lles in the complexity 

class N C  1. They also prove the following related theorem, by exhibiting a prediction-preserving 

reduction from the class of N C  1 circuits to the class of Boolean formulas. 

T h e o r e m  20 [34]/f the class of Boolean formulas are polynomiaUy approzimately predictable, then 
there is a prvbabiIistic polynomial time algorithm for inve~'ting the RSA encryption function, for 

factoring Blum integers, and for deciding quadratic residues. 

Each of the number-theoretic problems on which Theorem 19 (and Theorem 20) is based have 

the additional interesting property that if there is an algorithm that solves the problem for some 
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small fraction of inputs according to a uniform distribution, then there is an algorithm that solves 

the problem for most inputs according to a uniform distribution. As a result, Theorem 19 can be 

strengthened to show that DFAs are not predictable even in a very weak sense. 

Defini t ion 21 DFAs are polynomially weakly predictable iff there ezists a (possibly randomized) 

algorithm A and a polynomial q such that for any target DFA M of size n, for any number rn, 

and for any probability distribution D on strings of Z" of length at most m, if A obtains labeled 

ezamples o] M generated according to distribution D, then A halts in a predict state such that 

the probability is at most ½ - ~ that A makes an error of prediction on a new string generated 

according to distribution D. The run time of A is required to be polynomial in n, m, and I~t. 

Thus weak predictability only requires that the inference algorithm arrive at a state where it 

can predict only slightly better than guessing randomly. 

Coro l la ry  22 [34] If  DFAs are polynomially weakly predictable then there is a probabilistic poly- 

nomial time algorithm for inverting the RSA encryption function, ]or factoring Blum integers, and 

for deciding quadratic residues. 

This corollary also follows from Theorem 19 by a recent result of Schapire [55], showing that any 

class is polynomiaUy approximately predictable if and only if it is polynomially weakly predictable. 

The cryptographic and number-theoretic problems above are assumed hard when the input is 

drawn according to a ~afiform distribution. If we trace through all necessary prediction-preserving 

reductions in the proof of Theorem 19, we may observe that the results of Theorem 19 hold even 

when the distribution on example strings of the target DFA is fiat - -  each positive example (that 

has nonzero probability) has the same probability, and similarly for the negative examples. 

Finally, by Theorem 9, assuming that the above mentioned cryptographic and number-theoretic 

problems are intractable, the negative results for polynomial time identification of DFAs with equiv- 

alence queries (Theorem 5) follows from Theorem 19 even when the equivalence queries are allowed 

to be from any polynomialtjr reasonable hypothesis class. Thus we may strengthen Theorem 5 to 

be representation independent by making stronger assumptions. 

5 Learning with  Addit ional  Information 

Any of the inference models that we have discussed may be augmented by either allowing the 

inference algorithm to obtain additional information concerning the target DFA, or by explicitly 

providing such information at the outset. In light of the negative results presented in Sections 3 

and 4, it is especially important to determine the type (and amount) of additional information that 

is necessary and sufficient for feasible inference. In this section we review a number of positive 

results for DFA inference in the presence of additional information. We also consider some recent 

results on inferring restricted types of DFAs. 

5.1 Identif icat ion w i t h  M e m b e r s h i p  Q u e r i e s  

When example strings are provided in a deterministic presentation (as with identification in the 

limit), or by a randomized source (as in PAC-identification), the inference algorithm is at the mercy 

of the data-stream. By instead (or in addition) allowing the inference algorithm the ability to play 

a more active role in obtaining examples, the task may become much easier. A membership query 

made by an inference algorithm is a string w E ~]*. The reply to a membership query is "yes" if 
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w E L(M),  or "no" if w ~ L(M), where M is the target DFA. Thus a membership query provides a 

way for the inference algorithm to quickly extract desired information about the unknown language. 

DFAs are trivially identifiable in the limit from membership queries alone - -  an inference 

algorithm simply queries every string of Z* in some canonical order, obtaining a presentation of M, 

and then Theorem 2 applies. In the absence of any additional information, it is known that DFAs 

cannot be identified by an algorithm in finite time, i.e., by one that halts after making a single 

conjecture [38]. However, if an upper bound n on the number of states of M is provided, then a 

canonical DFA may be found by querying sufficiently many strings so that at most one canonical 

acceptor of size less than or equal to n is consistent with the results of the queries. However, this 

approach is not efficient - -  it has been shown that even with an upper bound on the number of 

states in the target DFA, any algorithm that identifies DFAs from membership queries alone must 

make an exponential number of queries in the worst case [9]. 

5.1.1 M e m b e r s h i p  queries  and  state representatives 

Let M = (Q,~,6,  qo, F) be any DFA, and let L be the language accepted by M. A state q of M 

is reachable if there exists w E ~* such that 6(qo, w) = q. We also say that w is a representative 

for the state q. A complete set of state representatives for M is a set U of strings such that 

for each reachable state q of M, there is a representative u E U for q. Angluin [9] proves that 

this information together with membership queries allows for polynomial time identification of the 

target DFA: 

Theorem 23 [9] The class of DFAs are identifiable in polynomial time from a set of state repre- 

sentatives and using membership queries. More specifically, there is a polynomial time algorithm A 

such that if M is any DFA of n states, then if A is given as input any set of state representatives 

U for M,  then A makes at most O(I~ln 2) membership queries, and outputs the canonical aeceptor 

equivalent to M.  

Angluin actually proves that only representatives for "live" states of M are needed. Our consid- 

eration of the slightly weaker result above allows for a clearer presentation. The number of queries 

made by Angluin's algorithm (which is slightly better than the bound stated here) is shown to be 

optimal to within a constant factor [9]. 

We sketch the ideas in the proof of Theorem 23, which was motivated by the approach of 

Gold [27]. We first briefly review the state minimization algorithm for DFAs [32]. Given any DFA 

M = (Q, Z, ~, q0, F),  a pair of states qz, q2 of Q is said to be distinguishable if there exists a string 

w such that 6(ql,w) E F but 6(q2, w) ~ F, or vice versa. Note that i fq l  E F, and q~ ~ F (or 

vice versa), then ql and q~ are distinguished by the empty string A. Suppose that ql and q2 are 

distinguished by string w. Then if for some a E Z and Pl,P2 E Q, 6(pl,a) = ql and $(p2,a) = q2, 
then Pl and P2 are distinguished by string aw. It follows that if a pair of states is distinguishable, 

then the pair is distinguishable by a string of length at most n = IQI. The standard polynomial- 

time state minimization algorithm works by starting with the given DFA M, and iterativety finding 

pairs of states that  are distinguished by strings of length 0, length 1, length 2, . . . .  In particular, the 

algorithm iteratively searches for a pair of states Pl,P2 and a symbol a such that the pair of states 

(~(P1, a), ~(P2, a)l has already been distinguished, then it marks the pair (PI,P~ as distinguished. 

The algorithm terminates when no triple (Pl,P2, a) can be found with the above properties. It can 

be shown tha t  if any pair of states that have not been distinguished from each other are merged 

into a single state, then the canonical acceptor is obtained. The algorithm is easily modified to 

save the distinguishing strings that were found for each pair of distinguished states. 
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Now suppose that a complete set of state representatives U is given. Let qu denote that state 

that string u represents, i.e., q~, = ~(qo, u) in the target DFA M. The approach is to find the 

canonical acceptor that is equivalent to M by adapting the state minimization algorithm to: (1) 

determine which pairs of states q~,, q. are distinguishable, for any u, v E U; and (2) determine the 

transitions 5(qu, a) for each u E U and a E E. 

The general step of the state minimization algorithm requires us to determine for arbitrary 

q~,q,j, and a, whether 6(q~,a) and 6(q~,a) are distinguished states. But M is unknown, and we 

do not know which state $(q~, a) actually is. In order to apply the general iterative step of the 

state minimization algorithm, for any u E U and a E ~], we must be able to determine a w E U 

such that $(q~,, a) = q~. It turns out that it is possible to determine this transition function while 

simultaneously determining state distinguishability and using membership queries. For exampte~ 

we may deduce that $(q~,, a) ~ qv if we obtain different responses to membership queries about the 

strings ua and v. While this doesn't determine 6(q~,, a), it does rule out one possibility. By saving 

all distinguishing strings wi, w2, . . . ,  that are found, and comparing the results of the membership 

queries uaw~, uaw2,. . . ,  with the results (respectively) of the membership queries vwl, vw2,. . ,  for 

each v E U, ultimately enough evidence is obtained so that for only one v is it possible that 
a) = 

5.1.2 Equivalence queries and membership queries 

In a more recent paper, Angluin [6] shows that the ability to make equivalence queries can com- 

pensate for the lack of state representatives: 

Theorem 24 [6] The class of DFAs are polynomial time identifiable using equivalence queries and 

membership queries. 

To see how this is proved, consider how the algorithm sketched above (call it algorithm A) 

might fail if it is given only a set of representatives U for a proper subset of the states of the target 

DFA M. While inferring the transition function 6 (see above), it might be determined that for no 

v E U is it possible that 6(q~, a) = q~. This would mean that U is not closed in the sense that 

the responses to the membership queries uaw~, uaw2,. . ,  do not exactly match the results of the 

membership queries vwl, vw2, . . ,  for any v E U. In this case, ua must be a representative for some 

state not already represented in U, and we may add ua to U and run A again from the beginning. 

This can happen at most n times, where n is the number of states of the canonical DFA equ]valent 

to M. Ultimately, a set U is obtained that is dosed, and no such witness ua is obtained. In 

this case, A will run to completion, and produce a DFA M t. It turns out that any string that is a 

counterexample to the correctness of M '  must have a prefix that is a representative for a state of M 

that has no representative in U. Thus, if the equivalence query " M "  results in a counterexample w, 

we add all prefixes of w to U, and begin the entire process again. This procedure is iterated (at most 

polynomially many times) until a canonical DFA is produced. Because the munber of equivalence 

queries used in Angluin~s algorithm depends only on n, and not on the length of counterexamptes 

seen, we have the following slightly stronger corollary. 

Corollary 25 The class of DFAs is polynomial time identifiable in the limit from membership 
queries (and an arbitrary presentation). 

From Theorem 9, we also have 

Corollary 26 The class of DFAs is PA C-identifiable using membership queries (in addition to 

randomly generated ezamples). 
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Suppose we extend the definitions for prediction preserving reductions (discussed in Section 4.3) 

in a natural way so as to allow for inference algorithms that make membership queries in addition 

to receiving randomly generated examples. A particuiarly intriguing open question is whether an 

analogue of Corollary 18 exists, i.e., whether an algorithm for predicting DFAs that uses membership 

queries could be used to obtain an algorithm for predicting Boolean formuias using membership 

queries. If so, then Theorem 24 could be used to show that Boolean formulas would be polynomially 

approximately predictable if membership queries were available in addition to randomly generated 

examples. 

Extensions to Theorem 24 have been obtained in other domains. Berman and Roos [15] show 

that deterministic one-counter languages can be identified in polynomial time using equivalence and 

membership queries. Sakakibara shows that context-free grammars may be identified in polynomial 

time using structural equivalence queries and structural membership queries [54]. Angluin [11] gives 

a general investigation of different types of queries as applied to various inference domains. 

5.2 Experiments 

A membership query allows the inference algorithm to reset the automaton to the initial state, 

and thus observe the behavior of the automaton on a newly queried string. For some inference 

applications it may be unreasonable to assume that such a reset is available. Kivest and Schapire [50, 

51, 52] view the inference process as a single continuous experiment, where each input given to the 

DFA causes a state transition which may not be reversible. Even if the transition is reversible, the 

sequence of characters necessary to return the DFA to the initial state may not be known to the 

inference algorithm. 

Let M = (Q, E, 6, q0~ F)  be the target DFA. It will be convenient to view M as a Moore machine 

(see [32]), where F is treated also as an output function. Thus we write F(q) = 1 if q E F, and 

F(q) = 0 if q ~ F. Consider the inference protocol where M is initially in state q0. At any time 

during the inference process, the algorithm may execute an ezperiment a E ~. If the current state 

of M is q, then after the experiment a, the DFA is in state qJ = 6(q, a), and the inference algorithm 

may observe the output F(q~). Experiments are a restricted form of membership queries - while 

initially, an inference algorithm can determine whether a given string w is accepted, once the single 

query w has been made, only strings which eztend w may be subsequently queried. In particular, 

experiments only allow the inference algorithm to make membership queries on any collection of 

strings of the form al,  ala~, aia2a3~..., where each a4 is an element of ~. 

5.2.1 Experiments and equivalence queries 

Since experiments are a restricted type of membership query~ by the com_ments at the beginning of 

Section 5.1, there is no algorithm for inferring DFAs in polynomial time from experiments alone. 

Thus P~ivest and Schapire consider inference of DFAs from equivalence queries and experiments. 

In their model, an equivalence query is slightly different than in the model of Angluin" Let M = 

(Q,~,6, qo, F) be the target DFA, and for any q E Q, let Mq = (Q, ~,6, q,F).  At any point of the 

inference algorithm, if q is the current state of M~ then the answer to an equivalence query " M "  

is "yes" if L(M') = L(Mq). Thus each equivalence query is answered as if the current state was 

the initial state of the target DFA. 
A DFA is strongly connected iff for any pair of states ql,q2, there exists a string w E ~" such 

that 6(ql, w) = q2- Without the assumption that the target DFA is strongly connected, polynomial 

time identification using equivalence queries and experiments is not possible, because the very first 

experiment could force the DFA into a state from which no other states are reachabte~ rendering 
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any further experiments useless~ and then Theorem 5 may be applied. While a deterministic 

algorithm for polynomial time identification of strongly connected DFAs using equivalence queries 

and experiments is not known, there is a randomized polynomial-time algorithm that can guarantee 

successful identification with high probability. 

T h e o r e m  27 [51] The class of strongly connected DFAs are random-polynomial time identifiable 

using equivalence queries and ezperiments. In particular, there is a randomized algorithm A such 

that on input of any 6 > O, for any strongly connected target DFA M,  using equivalence queries 

and ezperiments, A will successfully identi~y M with probability at least 1 - 6. The running time 

of A is polynomial in n and rn and logarithmic in ~, where n is the size of M,  and m is the length 

of the longest counterezample returned from any equivalence query. 

We give some of the main ideas in the proof of Theorem 27. For any q E Q and w = aia2.° .a~, 

where each a~ is in Y,, define the output sequence q(w) to be the sequence 

q(w) = <F(q), F(6(q, al)), F(6(q, ala2)) , . . .  F(6(q, ala2. . ,  a,~))>. 

A homing sequence h E ~* is a string such that for all ql, q2 E Q, ql(h) --- q2(h) ~ 6(ql, h) = 6(q~, h). 

Thus, from any state, if the homing sequence h is given to M, the output sequence obtained uniquely 

determines the resulting state of M. If h is a homing sequence, then let q~, denote the unique state 

6(q', h) for all q' such that q'(h) = w. 

The main idea o f  the proof is to use a homing sequence instead of a reset, and apply the 

algorithm of Angtuln (call it B) that identifies DFAs from equivalence queries and membership 

queries (described in the proof of Theorem 24). Suppose that the inference algorithm has available 

a homing sequence h. Let q be the current state, and suppose that h is applied and output sequence 

a = q(h) is obtained, indicating that qa = 6(q, h) is the resulting state of M. Algorithm B is now 

run, with qa as an initial state. Whenever B attempts to "reset" from some state q', and do a 

membership query on a new string, the homing sequence h is executed, and if we are lucky, the 

output is again cr = q'(h), and (since h is a homing sequence) the current state must again be q~, 

and the membership query may then be made. The problem with this approach is that c~ might not 

be obtained upon execution of h~ and instead some other output sequence a '  might be obtained. 

The solution is to run an independent copy Be, of the algorithm B for each possible output sequence 

o" of the homing sequence. Whenever the homing sequence is executed~ some string 0" is output, 

and the DFA M returns to state q~,, which is the initial state of the DFA that algorithm B~, is 

attempting to infer. Thus~ the next membership query of B~, may be successfully executed. After 

each execution of h~ at least one of the algorithms {B~} makes progress towards completion. Since 

the munber of distinct output sequences • is at most n = t QI, the algorithm makes no more than 

n times the nl,mher of equivalence and membership queries as does algorithm B. 

Finally, it is shown how to infer a homing sequence h while at the same time inferring the 

unknown DFA M. A candidate homing sequence h is maintained (initially, h = A). At any point 

during the run of any of the algorithms {Be,}, it might be determined that h is inconsistent, i.e., 

some ql,q~ e Q, and z e P~* are found such that ql(h) = q2(h) but 6(ql, hz) ¢ 6(q~,h$). In 

this case, it is shown that hz is a "better appro~__mation" to a homing sequence than h. At this 

point, all prior computation is discarded, and the entire algorithm is rerun with the new candidate 

homing sequence h~. It is shown that this can happen at most n = tQI times. Finally, it is possible 

that although h is inconsistent, this fact is not determined during the run of the algorithm. In this 

case, it is shown that a randomized strategy may be used to find an inconsistency of h with high 

probability. 
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5.2.2 P e r m u t a t i o n  a u t o m a t a  

A permutation DFA is a DFA M = (Q, ~, 6, q0, F)  such that for every a E E, the function 6(., a) is a 

permutation of Q. Rivest and Schapire strengthen Theorem 27 to the case of inferring permutation 

automata. 

T h e o r e m  28 [51] The class of permutation DFAs are random-polynomial time identifiable using 

ezperiments alone. In particular, there ezists a randomized algorithm A such that on input of any 

> O, for any permutation DFA M of size n, in time polynomial in n and ~, using ezperiments 

alone, A will output a DFA M' such that with probability at least 1 - 6, L(M')  = L(M).  

To prove Theorem 28, first consider DFAs such that the output at any state is the name of 

that state. Such a DFA is easily identified in polynomial time. Next it is shown how a homing 

sequence may be used to obtain a name for the current state: For permutation DFAs, a homing 

sequence h is also a distinguishing sequence, Le., ql(h) = q2(h) iff ql = q2. Thus the identity of 

the current state q may be determined by executing h and observing the output sequence q(h). 

At this point however, the current state has changed from q to q' = 6(q, h). How is the identity 

of the current state q (which is given by the string q(h)) obtained without first executing h? If h 

is executed from q' = ~(q, h), we may record in a "lookahead table" that if the sequence q(h) is 

observed, then the result of applying h once again will be q~(h). Thus the next time h is executed 

and q(h) is output, the inference algorithm knows that the identity of the current state is given 

by the string q'(h). Finally, it is shown that for permutation DFAs, a homing sequence may be 

obtained with probability 1 - 6 by randomly choosing any string that is sufficiently (although not 

more than polynomially) long. 

Theorem 28 is especially interesting in light of our comments at the beginning of Section 5.1, 

that DFAs are not polynomial time identifiable from membership queries alone, Theorem 28 shows 

that for permutation automata, a randomized algorithm can achieve polynomial time identification 

(with high probability) using only a restricted type of membership query. 

5.2.3 D i v e r s i t y  

The actual definitions of Rivest and Schapire generalize those described above, and are meant to 

model the situation of a robot (algorithm) attempting to infer its finite state environment. The 

robot may take basic actions (elements of ~) which cause a state transition of the environment. 

There is no set F of accept states, but instead there is a finite set of predicates P = {Pa~...,Pk~, 

such that for each i, p~ : Q --* {true, false). For any q E Q, the vector (pl(q), . . . ,pk(q)) may be 

viewed as the k-ary output of a Moore machine at the state q. The predicates correspond to the 

"sensations" that are available to the robot from a given state of the environment. In the protocol 

of Rivest and Schapire, the k outputs are not given pt each state, but must be explicitly obtained 

by executing a test. A test is an element of ~* × P. The value of a test t = (w, p) from state q is 

denoted qt and defined by qt = p(~(q, w)). The goal of the inference algorithm is to eventually be 

able to predict the outcome of any test. 
A different measure of the size of the DFA (environment) is introduced. Define two tests tl and 

t2 to be equivalent ifffor all q E Q, qtl = qt2. The diversity of the environment is the number of 

distinct equivalence classes of tests under this equivalence relation. It  is shown that the diversity of 

a DFA is at least logarithmic, and at most exponential, in the number of states of the DFA. A DFA 

with many states but low diversity is one which is fairly "structured". Algorithms for inferring 

DFAs using diversity as a measure of size are presented, and theorems analogous to Theorem 27 

and Theorem 28 are proven. These results subsume the results in [52] on the inference of "visible 

simple assignment automata".  See [8, 50] for further discussion of the diversity measure. 
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5.3 E q u i v a l e n c e  Q u e r i e s  w i t h  O r d e r e d  C o u n t e r e x a m p l e s  

Ibarra and Jiang [33] present an interesting theorem that contrasts nicely with the negative result 

of Theorem 5. An LF-equivalence query is an equivalence query, except if the queried DFA M' 

is not equivalent to the target DFA M~ then the counterexample supplied is the lezicographicaUy 

first element of L(M)(gL(M') according to some standard enumeration of ~*. Similarly, define an 

S.equivalence query to be one for which every counterexample is a shortest possible counterexample. 

T h e o r e m  29 [33] The class of DFAs is polynomial time identifiable using LF.equivalence queries. 
The class of DFAs is not polynomial time identifiable using S-equivalence queries. 

They also give general reductions showing that in the model of polynomial time identification 

with equivalence queries, identifying the class of DFAs accepting finite languages is no easier than 

identifying the full class of DFAs. These general reductions play an important role in proving 

Theorem 29. 

Porat and Feldman [46] also consider the problem of identifying DFAs from ordered examples. 

They present an algorithm that identifies the class of DFAs in the limit from a lexicographic 

presentation. While their algorithm does not satisfy Definition 3, it is shown to have a number of 

desirable properties that are motivated from applications to "connectionist" learning. For example, 

the total amount of space used by the algorithm at any point is bounded by the size of the canonical 

acceptor. The algorithm is shown to have polynomial update time in an amortized sense. 

5.4 Learning Subclasses of Regular Languages 

A commutative regular language is a regular language L such that for all w, w E L :~ ~r(w) E L, 

where 7r(w) is any permutation of the characters of w. A commutative DFA is a DFA that accepts 

a commutative regular language. Recall that a zero-reversible DFA has at most one final state, and 

for any state q and symbol a there is at most one state p such that ~(p, a) = q. Theorem 15 in fact 

holds for zero-reversible commutative DFAs, indicating that if this restricted subclass of DFAs are 

PAC-identifiable, then the inference algorithm would necessarily have to output very large DFAs 

or NFAs. However, by considering a different hypothesis class for these languages, it can be shown 

that this class is polynomially approximately predictable. 

Let Z denote the set of integers. Helmbold, Sloan, and Warmuth [30, 31] consider the problem 

of inferring the class of subsets of Z k that are closed under addition and subtraction (i.e., the class 

of submodules of the free Z-module of rank k). They show that their algorithm for identifying 

submodules of Z k can be used to predict zero-reversible commutative regular languages: 

T h e o r e m  30 [30] The class of zero-reversible commutative DFAs is polynomially approzimatsIy 

predictable. 

The nonapproximability of the mi~irnunt consistent DFA problem (Theorem 15) for this subclass of 

DFAs is overcome by rdpresenting the hypothesis not as a DFA, but as a submodule that concisely 

encodes the randomly generated examples. 

Abe [2] considers the related problem of inferring semi-linear sets. A semi-linear set of dimension 
d is the union of a finite number of linear sets of dimension d. A linear set of dimension d is a 

set of the form {~" e N d : (3e l , . . . , ck  G N) g = vo ÷ ~ = l  ci~} for some fixed generating vectors 

vo, . . . ,  v'k E N d. Semi-linear sets of d dimensions are exactly the sets of "letter counts" (or Parikh- 

images) of regular sets over an alphabet of size d. 

There are two measures of size that we may associate with the representation of a semi-linear set 

of d dimensions. The unary size is the sum of the values of all components of each generating vector. 
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This corresponds roughly to the total number of characters needed to write the representation where 

integers are encoded in unary. The binary size is the sum of the logarithms of all components of 

each generating vector, corresponding to the number of bits needed to encode the vectors in binary. 

Abe shows that, according to the unary measure, semi-linear sets of dimension 1 and 2 are 

PAC-identifiable. It is shown that polynomial approximate prediction of semi-linear sets of varying 

dimension d is as hard as polynomial approximate prediction of DNF formulas - which remains an 

intriguing open problem. Similarly, DNF prediction also reduces to the prediction of semi-linear 

sets of 2 dimensions when the binary size measure is used. 

Finally, at the time of this writing Abe claims to have extended his results to show that (not nec- 

essarily zero-reversible) commutative DFAs over arbitrary alphabets are polynomiaily predictable. 

See [I, 2] for further details and discussion. 

As a final example of a positive result for inference of restricted types of DFAs, consider the 

k-bounded regular languages: A regular language L is k-bounded if there exists strings wt . . . . .  wk 

such that L C_ w~w~...w~. A DFA is k-bounded if it accepts a k-bounded regular language. Ibarra 

and Jiang [33] prove the following theorem. 

T h e o r e m  31 The class of k-bounded DFAs is polynomial time identifiable using equivalence queries. 

6 Conc lus ion  

The negative results outlined in Section 3 and Section 4 show, based on various complexity-theoretic 

assumptions, that the problem of inferring DFAs from examples alone is intractable according to 

a number of reasonable definitions of polynomial time inference. On the other hand, Section 5 

outlines a munber of interesting algorithms which efficiently infer DFAs, and restricted classes of 

DFAs, assuming that the inference algorithm may take a more active role in obtaining additional 

information about the target DFA. 

Collectively, the results surveyed provide an introduction to many issues that are prevalent in 

the investigation of feasible inference in other domains. Several main themes deserve mention: 

(1) The choice of hypothesis space plays a key role in determining whether a class of languages 

may be inferred. (2) Similarly, the ability of the inference algorithm to make membership queries, 

or actively execute some other type of experiment on the object of inference, may allow for feasible 

inference when "passively obtained" examples alone are not sufficient. (3) The ability to compress 

the set of examples seen by finding reasonably small hypotheses is sufficient for PAC-identification, 

and in some cases~ necessary. Thus many PAC-identification problems are equivalent to finding 

weak approximation algorithms for associated combinatorial optimization problems. 

This survey is not meant to be exhaustive, although an effort was made to include as many 

recent theorems (and relevant past theorems) on DFA inference as possible considering the space 

limitations. It would be interesting to compare many of the results discussed here with heuristic 

approaches that have been presented in earlier work in more practical settings. Many of these 

approaches are discussed in the survey by Angluin and Smith [12]. 

Hopefully, we have convinced the reader that the general area of DFA inference is rich with 

interesting problems and solutions; we close with a list of open problems for fttrther consideration. 

1. Can it be shown that DFAs are not PAC-identiliable based only on the assumption that 

RP ~ NP? Such a result could be proved by showing that there is no Occam algorithm for 

DFAs (in terms of DFAs) unless RP ~ NP. Stronger still, can the nonpredictability result 

of Theorem 19 be strengthened by replacing the cryptographic assumptions with only the 
assumption that RP ~ NP? This would be the strongest negative result possible in the 

PAC-identification model. 
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2. Are DFAs PAC-identifiable (or at least polynomialty approximately predictable) if examples 

are drawn from a uniform distribution, or some other known simple distribution? 

3. Can matching lower and upper bounds be found on the number of examples, queries, and 

other types of information needed to infer DFAs according to the models presented? Such 

bounds might be obtained by computing the VC-dimension [17] of the classes considered, and 

applying techniques used for other domains [22]. 

4. Are (not necessarily zero-reversible) commutative DFAs (or NFAs) PAC-identifiable? 

5. Is the class of Boolean formulas polynomiaUy approximately predictable if membership queries 

are also allowed? Perhaps a method will be found by enhancing the reduction showing that 

Boolean formulas are no harder to predict than DFAs from examples alone. How about the 

easier problem of predicting DNF formulas with membership queries allowed? 
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