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Abstract. This paper intends to give a theoretical foundation of machine 

discovery from examples. We point out that the essence of a computational logic 

of scientific discovery or a logic of machine discovery is the refutability of the 

entire spaces of hypotheses. We discuss this issue in the framework of inductive 

inference of length-bounded elementary formal systems (EFS's, for short), which 

are a kind of logic programs over strings of characters and correspond to context- 

sensitive grammars in Chomsky hierarchy. 

We first present some characterization theorems on inductive inference ma- 

chines that can refute hypothesis spaces. Then we show differences between our 

inductive inference and some other related inferences such as in the criteria of 

reliable identification, finite identification and identification in the limit. Finally 

we show that for any n, the class, i.e. hypothesis space, of length-bounded EFS's 

with at most n axioms is inferable in our sense, that is, the class is refutable by 

a consistently working inductive inference machine. This means that sufficiently 

large hypothesis spaces are identifiable and refutable. 

A scientist, whether theorist or experimenter, puts forward statements, 

or systems of statements, and test them step by step. In the field of the em- 

pirical sciences, more particularly, he constructs hypotheses, or systems of 

theories, and test them against experience by observation and experiment. 

Karl R. Popper: The Logic of Scientific Discovery 

1. Introduction 

In the middle of this century the logic of scientific discovery was deeply discussed by 

philosophers[23, 241. Recently in Artificial Intelligence, especially in Cognitive Science, 

researchers are extensively discussing frameworks for scientific discovery from various view- 

points[33]. They have obtained a lot of rich results on the components of scientific behavior 

such as scientific knowledge structures and scientific activities. However they look little 

dependent on the philosophical results. 
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Before going into such detailed discussions we need to set up a computational logic of 

scientific discovery in a mathematical way so that we can precisely discuss what kinds of 

machine discovery can work. One of the best ways to this should be to reexamine the 

philosophical results from computational viewpoints. In the present paper we start with 

making the Popperian logic of scientific discovery computational. 

The logic of scientific discovery is essentially a triad of problem discovery, solution inven- 

tion and critical test [35].  Popper was mainly interested in the final stage but not so much 

in the first two stages. More exactly the Popperian logic of scientific discovery concentrated 

on the testability, falsifiability or refutability of hypotheses or scientific theories. He also 

asserted that scientific theory should have been refuted by observed facts and any such 

theory could by no means be verified[23]. Thus we tentatively believe the current theory 

until we face with an observation which is inconsistent with the theory. 

His assertion had an influence on the studies of inductive inference started with Gold's 

identification in the limit, some of which is called Popperian induction[3]. The consistent 

and conservative inductive inference can be viewed as a computational realization of the 

Popperian notion of refutability. In the inductive inference, the inference machine requires 

data or facts from time to time and produces hypotheses from time to time. The hypotheses 

produced by the machine are to be consistent with the facts read so far, and each of them 

is to be refuted when the machine faces with inconsistent data or facts. 

Thus the Popperian logic of scientific discovery can be viewed as a basis of the modern 

inductive inference studies. The inductive inference is thus a mathematical basis of machine 

learning. Then what should be a logic of machine discovery or a computational logic of 

scientific discovery? 

The machine discovery we are concerned with in this paper is to make computers discover 

some scientific theories from given data or facts. Hence machine learning should be a key 

technology for machine discovery. In fact, by using machine learning techniques many 

results have been reported by many authors[33]. In machine learning first we must select 

a hypothesis space from which the learning machine proposes theories or hypotheses. The 

space is naturally required to be large, but to make the learning efficient it is required to 

be small. As far as data or facts are presented according to a hypothesis that is unknown 

but guaranteed to be in the space as in the ordinal inductive inference, the machine will 

eventually identify the hypothesis, and hence no problem may arise. In machine discovery, 

however, we can not assume this. God knows whether or not a hypothesis behinds the data 

or facts belongs to the space. 

If the hypothesis is not in the space, most learning machines will continue for ever to 

search the space for a new hypothesis. Usually we can not know the time when to stop 

such an ineffective searching. This is the most crucial problem we must solve in realizing 

machine discovery systems. In machine discovery the sequences of data or facts are given 

at first independently of the space. We can not give in advance the space that includes the 

desired theory. As stated above, however, we have to keep the space as small as possible 

without any guarantee that the theory is in it. If the learning machine can explicitly tell 

us that there are no theories in the space which explain the given sequence, the machine 

will work for machine discovery. 

Hence the essence of a computational logic of scientific discovery should be that the 

entire hypothesis space is refutable by a sequence of observed data or facts. If there exist 

rich hypothesis spaces that can be refuted, we can give a space and a sequence to the 



machine, and then we can just wait for an output from it. The machine will discover a 

hypothesis which is producing the sequence if it is in the space, otherwise it will refute the 

whole of the space and stop. When the space is refuted, we may give another space to the 

machine and try to make such a discovery in the new space. 

In this paper we choose the inductive inference as the framework for machine learning. 

Then the machine discovery system is an inductive inference machine that can refute hy- 

pothesis spaces. In order to make our discussion clearer we also choose, as the hypothesis 

spaces, classes of elementary formal systems (EFS's, for short) which are a kind of logic 

programs over strings of characters. Thus we are concerned with formal languages in this 

paper. Moreover we assume as in the ordinal inductive inference of languages that every 

class in question be an indexed family of recursive languages. This assumption is quite 

natural to make a grammar, i.e. a hypothesis or theory, refutable by an observation and 

also to generate grammars as hypotheses automatically and successively. Note here that 

any indexed family of recursive languages is identifiable in the Limit from complete data, 

i.e. positive and negative data, but the class of all recursive languages is not such a family. 

Hence it is reasonable to choose some subclasses of the recursive languages as the hypothesis 

spaces for machine learning and machine discovery. 

If the class is a finite set of recursive languages, it is trivially refutable from complete 

data. Also if the class contains all finite languages, it is easily shown not to be refutable. 

Then are there any meaningful classes, i.e. hypothesis spaces, that are identiJiable and 

refutable? We give a positive answer to this question. We will say such classes to be 

refutably inferable. 

We first show some characterizations of such inductive inference. Then we show that 

some sufficiently large classes of formal languages are refutably inferable from complete 

data, while the classes that are refutably inferable only from positive data are very small. 

This paper is organized as follows: Section 2 presents basic notions and definitions 

necessary for our discussion. In Section 3 we discuss some conditions on refutable inferability 

from positive data or complete data. Concerning refutable inferability from positive data, 

we present some necessary and sufficient conditions and reveal that the power is very small. 

Then in Section 4 we show the differences between the inferable classes in the criteria of 

refutable identification, reliable identification, finite identification and identification in the 

limit. Among them the reliable identification is only the inference that deals with sequences 

from the hypotheses not in the given spaces. However, as we are seeing in the next section, 

the reliable inference machine does not tell us that the sequence is not in the space, but 

it just does not converge to any of hypothesis in the space. In Section 5 and Section 6 

we presents some natural classes that are refutably inferable from complete data. First we 

show that a class which consists of unions of at most n concepts from n classes is refutably 

inferable from complete data, if each class satisfies a certain condition. Then we show our 

main result: The classes definable by length-bounded EFS's with at most n axioms are 

refutably inferable from complete data, and reveal that there are sufficiently large classes 

that are refutably inferable from complete data. 

2. Preliminaries 

We start with basic definitions and notions on inductive inference of indexed families of 

recursive concepts. 



Let U be a recursively enumerable set to which we refer as a universal set. Then we call 

L C U a concept. In case the universal set U is the set C+ of all nonnull finite strings over 

a finite alphabet C, we also call L E U a language. 

Definition. Let N = {1,2, a) be the set of all natural numbers. A class C = {Li)iEN of 

concepts is said to be an indexed family of recursive concepts, if there is a recursive function 

f : N x U -+ {0,1) such that 

1, i f w E L i ,  
. f (i, W) = 

0, otherwise. 

In what follows, we assume that a class of concepts is an indexed family of recursive 

concepts without any notice, and identify a class with a hypothesis space. 

Definition. A positive presentation, or a text, of a nonempty concept L is an infinite se- 

quence wl, w,, a a e of elements in the universal set U such that {wl, w2, a a a) = L. A complete 

presentation, or an informant, of a concept L is an infinite sequence (wl, tl), (w2, t2), of 

elements in U x {+, -) such that {wi I ti = +, i 2 1) = L and {wi I ti = -, i 2 1) = 

LC (= U \ L). In what follows, a or S denotes a positive or complete presentation, and a [n] 

denotes the 0's initial segment of length n > 0. For a positive or complete presentation a, 

each element in a is called a fact. For a positive presentation a, a[n]+ denotes the set of 

all facts in a[n]. For a complete presentation a, a[n]+ (resp., o[n]-) denotes the set of all 

elements in the universal set U that appear in a[n] with the sign '+' (resp., the sign '-'), 
that is, a[n]+ = {wi I (wi, +) E ~ [ n ] )  and a[n]- = {wi I (wi7 -) E ~ [ n ] ) .  

A set T is said to be consistent with a concept L, if T L. A pair (T, F) of sets is said 

to be consistent with a concept L, if T C L and F 2 LC. For a positive presentation a and 

for n 2 0, the finite sequence a[n] is said to be consistent with a concept L, if o[n]+ C L. 

For a complete presentation 0 and for n > 0, the finite sequence a[n] is said to be consistent 

with a concept L, if a[n]+ C L and a[n]- C LC. 

For two sequences and $2, the sequence which is obtained by concatenating with 

$2 is denoted by $2. 

Here we note that for a class C = {Li)iEN and explicitly given finite sets T, F C U, 

whether T C Li or not and whether (T, F) is consistent with Li or not are recursively 

decidable for any index i, because for any w E U, whether w E Li or not is recursively 

decidable. 

Definition. An inductive inference machine (IIM, for short) is an effective procedure, or 

a certain type of Turing machine, which requests inputs from time to time and produces 

positive integers from time to time. An inductive inference machine that can refute hypoth- 

esis spaces (RIIM, for short) is an effective procedure, or a certain type of Turing machine, 

which requests inputs from time to time and either (i) produces positive integers from 

time to time or (ii) refutes the class and stops after producing some positive integers. The 

outputs produced by a machine are called guesses. 

For an IIM or an RIIM M and a nonempty initial segment ~ [ n ]  = wl, w2, . , w, of a 

positive or complete presentation, we define M (a[n]) as follows: Initialize and start M. If 

it requests a fact for the i-th time with 1 < i < n, then feed wi and continue the execution. 



(I) In case M requests the (n + 1)-st fact, or it stops after it requested the n-th fact. 

If it produces a positive integer or the 'refutation' sign after it requested the n-th fact, 

then let M(a[n]) be the last integer or the 'refutation' sign produced by M,  otherwise let 

M(o[n]) = 0. 

(11) In case M stops before requesting the n-th fact. Let M (a[n]) = 0. 

(Ill) Otherwise. Leave M (a[n]) undefined. 

For an IIM or an RIIM M, we define @(a[n]) as follows: 

(I) In case M(a[n]) is defined. (i) If there is the 'refutation' sign in the sequence 

M(a[l]), M (o[2]), . , M(a[n]), then let @(a[n]) be the 'refutation' sign. (ii) Otherwise. If 

there is a positive integer in the sequence M (a[l]), M (@I), . , M ( ~ [ n ] ) ,  then let M(a[n] ) 
be the last positive integer in the sequence, otherwise let M(a[n]) = 0. 

(11) Otherwise. Leave M(o[n] ) undefined. 

For an IIM or an RIIM M, it is easy to see that for any n > 1, if M(u[n]) is defined, 

then M(a[l]), M(a[2]), . , M(a[n - 11) are also defined. 

The intended interpretation is as follows: (i) In case M(a[n]) is defined as the 'refutation' 

sign, M refutes the class concerned. (ii) In case M(a[n]) is defined as a positive integer i, 

M guesses the i-th concept in the class. (iii) In case M (u[n]) is defined as the integer 0, M 

makes no guess. (iv) In case M(a[n]) is undefined, M is out of control. 

For two nonempty finite sequences and $2, we write M($,) = M ( $ J ~ ) ,  if (i) both 

M($,) and M($2) are undefined, or (ii) both M($,) and M($2) are defined and their values 

are identical. For a nonempty finite sequence $ and an integer i, we write M($) = i (resp., 

M($) > i), if M($) is defined as an integer and the value of M($) is equal to i (resp., 

greater than i). In a similar way, we also define the relations a ( + , )  = a($,), @($) = i 

and @($) > i. 

Hereafter, for a concept L C U ,  we write L E C, if there is an Li E C such that L; = L. 

Definition. An IIM or an RIIM M is said to converge to an index i for a positive or 

complete presentation a, if there is an n 2 1 such that for any rn 2 n, @(a[rn]) = i. 

An RIIM M is said to refute a class C from a positive or complete presentation a, if 

there is an n 2 1 such that M(o[n]) is the 'refutation' sign. In this case we also say that 

M refutes the class C from o[n]. 

Let C = {LiIiEN be a class. For a concept L; E C and a positive or complete presentation 

u of L;, an IIM M or an RIIM M is said to infer the concept L; w.r.t. C in the limit from 

o, if M converges to an index j with Lj = L; for a .  

(a) An IIM M is said to infer a class C = {Li)iEN in the limit from positive data 

(resp., complete data), if for any L; E C, M infers Li w.r.t. C in the limit from any positive 

presentation a (resp., any complete presentation a) of Li- A class C is said to be inferable 

in the limit from positive data (resp., complete data), if there is an IIM M which infers the 

class C in the limit from positive data (resp., complete data). 

(b) An IIM M is said to reliably infer a class C from positive data (resp., complete data), 

if it satisfies the following condition: For any nonempty concept L (resp., any concept L) 

and any positive presentation a (resp., any complete presentation a)  of L, (i) if L E C, then 

M infers L w.r.t. C in the limit from a, (ii) otherwise M does not converge to any index for 



a. A class C is said to be reliably inferable from positive data (resp., complete data), if there 

is an IIM M which reliably infers the class C from positive data (resp., complete data). 

(c) An RIIM M is said to refutably infer a class C from positive data (resp., complete 

data), if it satisfies the following condition: For any nonempty concept L (resp., any concept 

L) and any positive presentation a (resp., any complete presentation a) of L, (i) if L E C, 

then M infers L w.r.t. C in the limit from a, (ii) otherwise M refutes the class C from 0. A 

class C is said to be refutably inferable from positive data (resp., complete data), if there is 

an RIIM M which refutably infers the class C from positive data (resp., complete data). 

Note that when we consider inductive inference from positive data, we restrict every 

concept to a nonempty concept, because we can not make any positive presentation of the 

empty concept. 

The notion of reliable inference was introduced by Minicozzi[20] and Blum&Blum[ll] 

for function learning, and it was adapted to language learning by Sakurai[26]. By definition, 

it is easy to see that if a class C is refutably inferable from positive data (resp., complete 

data), then C is reliably inferable from positive data (resp., complete data). However the 

converse does not hold as shown in Section 4. 

Note that if an inference machine M does not converge to any index for a positive 

or complete presentation a, then @(a[n]) may be undefined for some n 2 1. On the 

other hand, we implicitly use the following Proposition 1 in showing some properties on 

inferability. 

Proposition 1. (a) Assume that an IIM M infers a class C in the limit from positive data. 

Then for any nonempty finite sequence $ consisting o f  elements in U ,  i f  there exists an 

Li E C such that all elements in $ are in Li, then a($) is always defined. 

(b) Assume that an RIIM M refutably infers a class C from positive data. Then for 

any nonempty finite sequence $ consisting o f  elements in U ,  a($) is always defined. 

Similar statements are also valid for the case o f  complete data. 

The above Proposition 1 claims that as far as we feed facts that are from a certain 

concept in the class, an IIM either (i) successively requests another facts in a finite time 

forever or (ii) stops in a finite time after producing some guesses. On the other hand, even 

when we feed any facts that may not be from any concept in the class, an RIIM either (i) 

successively requests another facts in a finite time forever or (ii) stops in a finite time after 

producing some guesses. 

Since we are considering an indexed family of recursive concepts, every class can be 

inferred from complete data by a simple enumerative method. However we can not take 

the class of all recursive concepts as a hypothesis space, because the following Proposition 

2 holds. 

Proposition 2. The class C of  all recursive concepts is not an indexed family o f  recursive 

concepts. 

In case an RIIM M is fed a positive or complete presentation of a non-recursive concept, 

M should refute the class. Therefore even if we could take the class of all recursive concepts, 

it would be still significant to consider refutable inferability. 

For reliable inferability, the following Theorem 3 holds. 



Theorem 3. (a) A class C is reliably inferable from positive data, i f  and only i f  C contains 

no  in finite concept (Sakurai[26]) ]). 

(b) Every class is reliably inferable from complete data. 

In this paper, an effective procedure is said to recursively generate a finite set T ,  if it enu- 

merates all elements in T and then halts. An effective procedure P is said to be uniformly 

and recursively generate a finite-set-valued function F with parameters xl, , x,, if P on 

any input (xl, , x,) in the domain of F recursively generates the finite set F(xl, . . , x,). 

A finite-set-valued function F with parameters xl, . , x, is said to be uniformly and recur- 

sively generable, if there is an effective procedure which uniformly and recursively generates 

the function F .  

3. Characterizations 

In order to characterize the refutable inferability, we need the following Lemma 4. 

Lemma 4. Let M be an RIIM which refutably infers a class C from positive data (resp., 

complete data). Then for a nonempty concept L (resp., a concept L) ,  for a positive pre- 

sentation a (resp., a complete presentation a) of  L and for n 2 1, if M refutes the class C 

from ~ [ n ] ,  then a[n] is not consistent with any Li E C. 

Proof. Assume that an RIIM M refutes a class C from a[n]. Then suppose that there 

is an Li E C such that a[n] is consistent with Li. Let S be a positive presentation (resp., 

a complete presentation) of Li. Then the infinite sequence a[n] S becomes a positive 

presentation (resp., a complete presentation) of Li. Therefore M can not infer Li w.r.t. C 

in the limit from a[n] 6, which contradicts the assumption. 

By the above Lemma 4, we obtain the following Proposition 5. 

Proposition 5. (a) I f  a class C is refutably inferable from positive data, then 

(3.1) for any nonempty concept L 6 C, there is a finite set T & L such that T is not 

consistent with any L; E C .  

(b) I f  a class C is refutably inferable from complete data, then 

(3.2) for any concept L 6 C, there are finite sets T 2 L and F C LC such that (T, F )  is 

not consistent with any L; E C.  

Proof. We only give the proof of (a). The proof of (b) can be given in a similar way. 

Assume that an RIIM M refutably infers a class C from positive data. Let L C be 

a nonempty concept, and let a be an arbitrary positive presentation of L. By definition, 

there is an n 2 1 such that M refutes the class C from a[n]. Let T = o[n]+. Then by 

Lelnma 4, T is not consistent with any Li E C. 

Corollary 6. I f  a class C contains all nonempty finite concepts, then C is not refutably 

inferable from positive data or complete data. 



Proof. We only give the proof of the case of complete data. The proof for positive data 

can be given in a similar way. 

Assume that a class C contains all nonempty finite concepts. Then let L 6 C be a 

concept. Let T E L and F 2 LC be finite sets. (i) In case T is not empty. There is an 

Li E C with T = L;, and it follows that (T, F) is consistent with L;. (ii) In case T is empty. 

Since F is a finite set, there is an L; E C such that F Lf, which means (T, F )  is consistent 

with L;. Therefore by Proposition 5 ,  we see that C is not refutably inferable from complete 

data. 

In characterizing the refutable inferability, the notion of consistency plays an important 

role. 

Definition. Let C = {Li)itN be a class. An RIIM M which refutably infers a class C 

from positive data (resp., complete data) is said to be consistently working, if it satisfies 

the following condition: For any nonempty concept L (resp., any concept L), any positive 

presentation a (resp., any complete presentation a) of L and any n 2 1, (i) if M(a[n]) is 

the 'refutation' sign, then a[n] is not consistent with any L; E C, (ii) if M(o[n]) > 0, then 

o[n] is consistent with LM(,[nl) 

An RIIM M which refutably infers a class C from positive data (resp., complete data) 

is said to be responsively working, if it satisfies the following condition: For any nonempty 

concept L (resp., any concept L), any positive presentation a (resp., any complete presen- 

tation a) of L and any n 2 1, if M does not refute the class C from a[n], then M(o[n]) > 0 

holds, that is, while M does not refute the class, M produces a guess between any two 

input requests in the computation of M on input o. 

A class C is said to be refutably, consistently and responsively inferable from positive 

data (resp., complete data), if there is a consistently and responsively working RIIM which 

refutably infers the class C from positive data (resp., complete data). 

In a similar way, we can also define a consistently or responsively working IIM (cf. Angluin[2]). 

Here we note that a consistently and responsively working RIIM refutes a class i m e -  

diately after the observed data become not consistent with any concept in the class. 

Since we are considering an indexed family of recursive concepts, we can easily show 

that if a class C is inferable in the limit from positive data or complete data, then it can be 

achieved by a consistently and responsively working IIM. Furthermore, as shown later, if a 

class C is refutably inferable from positive data or complete data, then it can be achieved 

by a consistently and responsively working RIIM. 

Definition. For a finite set T C U ,  let 

1, if there exists an L; E C such that 

econs,(T) = T is consistent with L;, 

0, otherwise. 

For finite sets T, F 5 U ,  let 

if there exists an Li E C such that 

(T, F) is consistent with L;, 

( 0 ,  otherwise. 



Proposition 7. I f  a class C is refutably inferable from positive data, then 

(3.3) the function econs, for C is recursive. 

Proof. Assume that an RIIM M refutably infers C from positive data. Let T = {wl, , w,} 

U be a nonempty finite set, and put o = wl, w2, . , w,, wl, wl, wl, .. Clearly, the infi- 

nite sequence o is a positive presentation of the concept T. Thus when we successively feed 

o, M either refutes the class C or produces an index i with T = Li after producing some 

positive integers. Therefore we can recursively compute the function econs,(T) for C as 

follows: Simulate M with presenting o. During the simulation, (i) if M refutes the class C, 

then output 0 and stop, (ii) if M produces an index i with T & Li, then output 1 and stop, 

(iii) otherwise continue the simulation. We note that whether T & Li or not is recursively 

decidable. By Lemma 4, it is clear that the above output agrees with the econs,(T). 

Theorem 8 (Based on Kinber [l4]) . I f  a class C is refutably inferable from complete data, 

then 

(3.4) the function econs, for C is recursive. 

Proof. Assume that an RIIM M refutably infers C from complete data. Let T = 

{wl, , wn} & U and F = {w,+l, . , w,} C U be finite sets. 

It is easy to see that if T n F # 4, then econs,(T, F )  = 0. Thus in what follows, we 

assume T n F = 4. 

Let +o = (wl, +), . - , (w,, +), (w,+,, -), , (wm, -), and let ul, u2, . be an effective 

enumeration of U \ (7' u F). Then let 7 be the set of all initial segments of ~ 1 , 2 1 2 ,  coupled 

with + and -, that is, 7 = (4; (w,+); ( ~ 1 ,  -); (uI,+), ( ~ 2 , + ) ;  (UI, +), ( ~ 2 ,  -1; (UI, -), 
(u2, +); ( u  -1, ( u  - )  0 ) .  We define the binary relation C over 7 as follows: +l & 3b2 

if and only if is an initial segment of +2. This gives a partial ordering of 7, and it 

becomes a binary tree, which can be diagrammed in Figure 1. 

Figure 1: The binary tree 7 

Then we define a subtree S of T as follows: 

S = {+ E 7 1 . +) # 'refutation'}. 



Here we note that if $1 C $2 and $1) = 'refutation', then $2) = 'refutation7. 

Claim A: The subtree S is finite, if and only if there is no concept L; E C such that (T, F )  

is consistent with L; . 

Proof of the claim. (I) The 'if' part. Assume that there is no concept Li E C such that (T, F )  

is consistent with L;. Then suppose that the subtree S has an infinite branch, say 3b1, $,) .. 
By the construction of the subtree S, there is an infinite sequence tl, t2, . . E {+, -) such 

that for any i 2 1, $; = (ul, tl), (u2, t2), . , (u;, ti). Put a = $0, (ul, tl), (u2, t2), . . ., and 

let L = {u; E U I (u;, +) E a, i 2 1) be a concept. Then (T, F) is consistent with L, and 

a is a complete presentation of L. By assumption, L is not in C, and it follows that M 

refutes C from g[n] for some n 2 1. However, by the construction, there is a j 2 1 such 

that o[n] = $0 . $j. This contradicts the assumption of $j E S. 

Thus we see that the subtree S has no infinite branch, and it follows by Endlichkeits- 

lemma for trees with finite branching (cf. e.g. Rogers [25], Exercise 9.40) that the subtree S 

is finite. 

(11) The 'only if' part. Assume that the subtree S is finite. Therefore the subtree S 

has no infinite branch. Then suppose that there is an Li E C such that (T, F) is consistent 

with L;. For j 2 1, let t j  = '+' if uj E L;, otherwise let t j  = '-' . Then put a = 

(ul, tl), (u2, t2), . a. By the construction, a is a complete presentation of L;. Thus M 

does not refute C from a. It is easy to see that this contradicts the assumption. 

Claim B: There is an Li E C such that (T, F) is consistent with L;, if and only if there is 

a $ E S such that $) > 0 and (T, F) is consistent with LM(+a.+). 

Proof of the claim. The 'if7 part is obvious. Thus we only give the proof of the 'only if' 

part. Assume that there is an L; E C such that (T, F) is consistent with Li For j 2 1, 

let t j  = '+' if 24; E L;, otherwise let t j  = '-'. Then put a = $o, (ul, tl), (u2, t2), .. By 

the construction, a is a complete presentation of L;. Since M infers L; w.r.t. C in the limit 

from a, it follows that there is an n 2 1 such that a (o [n ] )  > 0 and L; = LE(u[nly It is 

easy to see that there is a $ E S such that + = o[n]. 

Therefore we can compute econs,(T, F) as follows: Search for a node $ E S such that 

$1 > 0 and (T, F) is consistent with LG(Qo.Q). By Claim A and B, we see that there 

must happen one of two cases: 

(1) Such a node is found. 

(2) The subtree S is confirmed to be finite. 

In case (I), put econs,(T, F) = 1 and in case (2)) put econs,(T, F) = 0. It is easy to see 

that the obtained results agrees with the definition of econs,(T, F). 

Theorem 9. (a) I f  a class C satisfies the following three conditions, then C is refutably, 

consistently and responsively inferable from positive data. 

(3.1) For any nonempty concept L 6 C, there is a finite set T L such that T is not 

consistent with any L; E C.  

(3.3) The  function econs, for C is recursive. 

(3.5) The  class C is inferable in the limit from positive data. 



(b) I f  a class C satisfies the following two conditions, then C is refutably, consistently 

and responsively inferable from complete data. 

(3.2) For any concept L $! C ,  there are finite sets T G L and F LC such that (T, F) 
is not consistent with any Li E C.  

(3.4) The function econs, for C is recursive. 

Proof. We only give the proof of (a). The proof of (b) can be given in a similar way, where 

we note that every indexed family of recursive concepts is consistently and responsively 

inferable in the limit from complete data. 

Assume that a class C satisfies the above three conditions (3.1), (3.3) and (3.5). Let M 

be an IIM which infers C in the limit f?om positive data. Without loss of generality, we can 

assume that it works consistently and responsively. Then let us consider the procedure in 

Figure 2. 

Procedure RIIM M; 

begin 

T = 4; 

repeat 

read the next fact w and store it in T; 

if econsp(T) = 0 then 

refute the class C and stop; 

else begin 

simulate M with presenting the fact w until requesting the next fact; 

if M produces a guess then output it; 

end; 

forever; 

end. 

Figure 2: An inference machine that can refute hypothesis spaces from positive data 

Assume that we feed a positive presentation a of a nonempty concept L to the procedure. 

(I) In case L 9 C.  By the condition (3.1), there is a finite set T G L such that 

econs,(T) = 0, and by the definition of a positive presentation, we see that there is an 

n 2 1 such that T a[n]+. Therefore the procedure refutes the class C from a[n] and 

stops. 

(II) In case L E C .  As easily seen, for any finite set T C L, the value of econsp(T) 

never becomes 0. Since the IIM M infers L w.r.t. C in the limit from a, it follows that the 

procedure infers L w.r.t. C in the limit from a. 

Furthermore it is easy to see that the procedure works consistently and responsively. 

By Proposition 5, 7, Theorem 8 and 9, we have the following Corollary 10. 



Corollary 10. (a) For a class C, the following three statements are equivalent: 

(i) C is refutably inferable from positive data. 

(ii) C is refutably, consistently and responsively inferable from positive data. 

(iii) C satisfies the conditions (3.1)) (3.3) and (3.5). 

(b) For a class C, the following three statements are equivalent: 

(i) C is refutably inferable from complete data. 

(ii) C is refuta b?y, consistently and responsively inferable from complete data. 

(iii) C satisfies the conditions (3.2) and (3.4). 

The above conditions heavily depend on each concept rather than the properties of 

the class concerned. Thus we need to investigate another conditions concerned with the 

properties of the class itself. 

Definition. A class C is said to be closed under the subset operation, if for any Li E C, all 

nonempty subsets of Li are also in the class C. 

A class C is said to be of finite hierarchy, if there is no infinite sequence of concepts 

L;,, L;,, E C such that Lil C_ Liz 2 . a. 

As easily seen, if a class C has the so-called finite elasticity[37], then C is of finite 

hierarchy. Moreover, if a class C is closed under the subset operation and it is of finite 

hierarchy, then C contains no infinite concept, as shown in the proof of Lemma 12. 

Lemma 11. I f  a class C is refutably inferable from positive data, then C satisfies the 

following two conditions: 

(3.6) C is closed under the subset operation. 

(3.7) C is o f  finite hierarchy. 

Proof. (I) Suppose that the condition (3.6) does not hold, that is, there is a nonempty 

concept L such that L $! C and L C L; for some Li E C. Then every subset of L is consistent 

with L;. Therefore by Proposition 5, C is not refutably inferable from positive data. 

(II) Assume that a class C is refutably inferable from positive data. Then by the above 

(I), the condition (3.6) holds. 

Claim: The class C contains no infinite concept. 

Proof of the claim. Suppose that C contains an infinite concept Li. Then by the condition 

(3.6), we see that C contains all nonempty finite subset of Li. We can show that any 

RIIM does not infer Li w.r.t. C in the limit from a certain positive presentation of Li as in 

Gold[l2]. This is a contradiction. H 

Now suppose that the condition (3.7) does not hold, that is, there is an infinite sequence 

of concepts L;,, L;,, E C such that Lil 2 Li2 C_ . a. Then we consider the concept 

L = Uj"=, Lij. Since L is an infinite concept, it follows by the above claim that L $! C. By 

the definition of the concept L, we see that for any finite set T L, there is an Lij E C 

such that T is consistent with Lii . This contradicts the assumption by Proposition 5. 



Lemma 12. I f  a class C satisfies the following three conditions, then C is refutably, con- 

sistently and responsively inferable from positive data. 

(3.6) C is closed under the subset operation. 

(3.7) C is o f  finite hierarchy. 

(3.3) The  function econs, for C is recursive. 

Proof. Assume that a class C satisfies the above three conditions. Then by Theorem 9, it 

suffices for us to show that C satisfies the conditions (3.1) and (3.5). 

Claim: The class C contains no infinite concept. 

Proof of the claim. Suppose that C contains an infinite concept Li. Then by the condition 

(3.6), all subsets of Li are also in C ,  and it follows that there is an infinite sequence of 

concepts Lil, L;,, . . E C such that Li, 5 Liz 5 . ., which contradicts the condition (3.7). 

H 

(I) By this claim, we see that C is inferable in the limit from positive data, that is, the 

condition (3.5) is satisfied (cf. Angluin[2]). 

(11) Let L 6 C be a nonempty concept. (i) In case L is a finite concept. By the condition 

(3.6), we see that L is not  consistent with any Li E C ,  because the existence of Li E C with 

L Li means L E C .  Therefore it suffices for us to take L itself as T in the condition (3.1). 

(ii) In case L is an infinite concept. Suppose that the condition (3.1) does not hold. Then 

for any finite set T C L, there is an Li E C such that T is consistent with Li. However by 

the condition (3.6), we see that the above T's themselves are in C .  To sum up, every finite 

set T c' L is in C, and it follows that there is an infinite sequence L;,, L;,, . such that 

Lil 5 Liz 5 a, because L is an infinite concept. This contradicts the condition (3.7). 

By Corollary 10, Lemma 11 and 12, we have the following Theorem 13. 

Theorem 13. For a class C ,  the following four statements are equivalent: 

(i) C is refutably inferable from positive data. 

(ii) C is refutably, consistently and responsively inferable from positive data. 

(iii) C satisfies the conditions (3.1), (3.3) and (3.5). 

(iv) C satisfies the conditions (3.6)) (3.7) and (3.3). 

Example 1. Let F C ,  be the class of all nonempty finite concepts each of which cardinality 

is just n. Then this class is not  refutably inferable from positive data for any n 2 2, because 

it is not closed under the subset operation. 

In contrast with the above class, let FC<,  be the class of all nonempty finite concepts 

each of which cardinality is at most n. we-note that FC<l - = FC1 .  As easily seen, the 

function econs, for FC<,  - is recursive, because econs,(T) = 1 if and only if the cardinality 

of T is not greater than n. Furthermore, this class is closed under the subset operation and 

of finite hierarchy. Therefore F C  - <, is refutably inferable from positive data. 

Lastly, let F C ,  be the class of all nonempty finite concepts (cf. Corollary 6). The 

function econs, for F C ,  is recursive, because econs,(T) = 1 for any finite set T C U .  This 

class is closed under the subset operation but is not of finite hierarchy. Therefore F C ,  is 

not  refutably inferable from positive data. 



Here we present a sufficient condition for a class to be refutably inferable from complete 

data, which is very strict but widely applicable as shown in Section 5 and 6. 

The following Lemma 14 is basic. 

Lemma 14. Let n 2 1 be an integer, let L1, . , L, G U be concepts, and let L 2 U be a 

concept which differs from L1, . . , Ln. Then for any complete presentation o of L, there is 

an rn 2 1 such that a[rn] is not consistent with any concept L; with 1 5 i 5 n. 

Definition. Let C = {LijiEN be a class, and let S be a subclass of C. A set I of indices 

is said to be a cover-index set of S ,  if the collection of all concepts each of which has an 

index in I is equal to S, that is, S = {L; E C I i E I). 

Theorem 15. I f  a class C satisfies the following two conditions, then C is refutably inferable 

from complete data. 

(3.8) For any w E U ,  there is a uniformly and recursively generable finite cover-index 

set o f  the subclass {Li E C I w E Li) of C. 

(3.9) The class C contains the empty concept as its member. 

Proof. Assume that a class C satisfies the conditions (3.8) and (3.9). Then let us consider 

the procedure in Figure 3. 

Assume that we feed a complete presentation o of a concept L to the procedure. 

(I) In case L = 4. It is easy to see that the while-loop (1) never terminates and that 

the procedure infers the empty concept w.r.t. C in the limit from a. 

(II) In case L + 4. The procedure terminates the while-loop (1) in a finite time. 

(i) In case L E C. It is easy to see that L is in the subclass {L; E C I w E L;}, and 

it follows that there is an index j E I such that Lj = L. Since I is a finite set, we see by 

Lemma 14 that the for-loop (2) is eventually executed with j E I such that Lj = L, and 

the while-loop (3) never terminates. That is, the procedure infers L w.r.t. C in the limit 

from a. 

(ii) In case L $ C. Since I is an explicitly given finite set, we see by Lemma 14 that 

the procedure refutes the class C from o. 

Before proceeding to the next example, we briefly recall a pattern and a pattern lan- 

guage. For more details, please refer to Angluin [1 , 21. 

Fix a nonempty finite alphabet. A pattern is a nonnull finite string of constant and 

variable symbols. The pattern language L(n) generated by a pattern n is the set of all 

strings obtained by substituting nonnull strings of constant symbols for the variables in n. 

Since two patterns that are identical except for renaming of variables generate the same 

pattern language, we do not distinguish one from the other. We can enumerate all patterns 

recursively and whether w E L(n) or not for any w and n is recursively decidable. Therefore 

we can consider the class of pattern languages as an indexed family of recursive concepts, 

where the pattern itself is considered to be an index. 

Example 2. We consider the class PA7 of pattern languages. As easily seen, the empty 

concept L = q5 is not in PAT. Furthermore, for any finite set F U ,  there is an Li E PA7 

such that (4, F) is consistent with Li- In fact, let 1 be the length of the longest string in 



Procedure RIIM M; 

begin 

T = d ;  F = # ;  i - I ;  

readstore(T, F);  

while T = q5 do  begin ................................................... (1) 

while F L: do  i = i + 1; 

output i; 

readstore(?', F) ; 

end; 

let {w) = T; 

recursively generate a cover-index set of {Li E C I w E Li}, and set it to I ;  

for each j E I do  ........................................................ (2) 

........................... while (T, F) is consistent with Lj d o  begin (3) 

output j; 

readstore(T, F);  

end; 

refute the class C and stop; 

end; 

Procedure readstore(T, F);  

begin 

read the next fact (w, t); 

if t ='+' then  T = T LJ {w) else F = F u {w); 

end. 

Figure 3: An inference machine that can refute hypothesis spaces from complete data 

F .  Then (4, F) is consistent with the language of the pattern xlxz Therefore by 

Proposition 5, we see that pA?I is not refutably inferable from complete data. 

However the class PAT satisfies the condition (3.8). In fact, fix an arbitrary constant 

string w. As easily seen, if w E L(T), then T is not longer than w. The set of all patterns 

shorter than a fixed length is a recursively generable finite set, and whether w E L(T) or not 

for any w and T is recursively decidable. Therefore the set {T I w E L(T)) is a recursively 

generable finite set. 

Thus, by Theorem 15, we see that if we add the empty concept to the class of pattern 

languages, then the obtained class is refutably inferable from complete data. 



4. Comparisons with Other Identifications 

In this section, by some distinctive examples of classes, we compare the criterion of refutable 

inference with some other criteria. This is motivated by the following question: What should 

we do if we face with facts that are inconsistent with a finitely inferred hypothesis? 

In what follows, for the criterion of finite identification for a class of recursive concepts, 

please refer to Mukouchi[21], Lange&Zeugmann[lG] and Kapur[l3]. For the purpose of 

comparing the inferability from positive data with the inferability from complete data, we 

assume that all concepts are nonempty throughout this section. 

The following Proposition 16 is obvious, because for a complete presentation o of a 

nonempty concept L, we can effectively obtain a positive presentation of L by getting rid 

of all negative facts of o and repeating a positive fact. 

Proposition 16. I f  a class C is inferable in the limit from positive data, then C is also 

inferable in the limit from complete data. 

Furthermore the above assertion is still valid, if we replace the phrase 'inferable in the 

limit' with the phrase 'finitely inferable', 'reliably inferable' or 'refutably inferable'. 

Theorem 17 (Lange&Zeugmann[l5]) . I f a  class C is finitely inferable from complete data, 

then C is also inferable in the limit from positive data. 

In the following examples, we assume appropriate universal sets and indexings of the 

classes. 

Example 3. Again we consider the classes FC,, FC<, - and FC, defined in Example 1 

(cf. Theorem 3). 

(AS) For any n 2 2, the class FC, is not refutably inferable from complete data. 

In fact, let L U be a concept with cardinality 1. It is easy to see that there are no 

finite sets T L and F E LC that satisfy the condition (3.2) in Proposition 5. 

(A.2) For any n 2 1, the class FC, is reliably inferable from positive data. 

(A.3) For any n 2 1, the class FC, is finitely inferable from positive data. 

(B.1) For any n 2 1, the class FC<, - is refutably inferable from positive data. 

(B.2) For any n 2 1, the class FC<, - is reliably inferable from positive data. 

(B.3) For any n > 2, the class FC<, - is not finitely inferable from complete data. 

(C.1) F C ,  is not refutably inferable from complete data (cf. Corollary 6) .  

(C.2) F C ,  is reliably inferable from positive data. 

(C.3) F C ,  is not finitely inferable from complete data. 

Example 4. Let E = {a), L1 = {aj I j > - I}, and L; = {aj I 1 < j < i - 1) for i > 2. 

Then let = {LiIiEN be the class of interest. 

(D.1) The class CCC is refutably inferable from complete data. 

In fact, let L 6 CCC be a nonempty concept. Then as easily seen, there is a j 2 1 such 

that a j  6 L but aj+' E L. Therefore T = {aj+l) and F = {aj} satisfy the condition (3.2). 

It is easy to see that the condition (3.4) is also satisfied (cf. Theorem 9). 

(D.2) The class CLC is not inferable from positive data. 

We note that, in Lange&Zeugrnann[l7], this class was shown to be inferable within one 

mind change from complete data but not inferable in the limit from positive data. 



Example 5. Let ?R<, - be the class of concepts each of which consists of all multiples of 

at most n prime numbers. For example, the concept {2,4,6, . . ,7,14,21,. . .) is in PR<i - 

with i > 2. 

(E. 1) For any n > 1, the class PR,, - is refutably inferable from complete data. 

In fact, let L E PR,, - be a nonempty concept. (i) In case L contains more than n 

prime numbers. Let T be a set of some n + 1 prime numbers in L, and let F = 4. (ii) In 

case L contains no prime number. Let m be the least integer in L. Then let T = {m) and 

F = (1, . , m - 1). (iii) Otherwise. Let pl, . . , ph be all prime numbers in L. As easily 

seen, the following (1) or (2) holds. (1) There is an m E L which is not a multiple of any 

pi with 1 5 i 5 k. Then let T = {m), and let F be the finite set of all prime numbers less 

than m each of which differs from pl, ,pk.  (2) There is an m $i L which is a multiple of 

some pi. Then let T = {pl, . . ,pk) and F = {m). It is easy to see that the above defined 

T and F satisfy the condition (3.2). Furthermore it is also easy to see that the condition 

(3.4) is satisfied. 

(E.2) For any n > 1, the class PR<, - is not reliably inferable from positive data. 

(E.3) For any n 2 2, the class PR,, - is not finitely inferable from complete data. 

(E.4) For any n > 1, the class PR<, - is inferable in the limit from positive data. 

Let PRn be the class of concepts each of which consists of all multiples of n distinct 

prime numbers. For example, the concept {2,4,6, ,7,14,21, 0 )  is in PR2 ,  but not in 

PR; with i = 1 or i > 3. We note that PR1 = PRX1. - 

(F.1) For any n > 2, the class PR, is not refutably inferable from complete data. 

In fact, let L = (2). Then for any finite set F C LC, there is a prime number which is 

greater than any integer in F. Therefore there are no finite sets T C L and F E LC that 

satisfy the condition (3.2). 

(F.2) For any n 2 1, the class PR, is not reliably inferable from positive data. 

(F.3) For any n > 1, the class PR, is finitely inferable from positive data. 

Example 6. Again we consider the class P A 7  of pattern languages. As easily seen from 

Theorem 15 and Example 2, the empty concept is only the concept that does not satisfy 

the condition (3.2). Since all concepts are assumed to be nonempty in this section, the 

class of pattern languages is shown to be refutably inferable from complete data. 

(G.1) P A 7  is refutably inferable from complete data. 

(G.2) P A 7  is not reliably inferable from positive data. 

(G.3) P '  is finitely inferable from complete data but not finitely inferable from positive 

data (cf. Mukouchi [2 11, Lange&Zeugmann [l5]). 

(G.4) PAT is inferable in the limit from positive data (cf. Angluin[2]). 

We can summarize the above comparisons in Figure 4. 

In the figure, the prefix 'LIM', 'FIN', 'REL' or 'REF' means the collection of all classes 

that are 'inferable in the limit', 'finitely inferable', 'reliably inferable' or 'refutably inferable', 

respectively, and the postfix 'TXT' or 'INF' means 'from positive data' or 'from complete 

data', respectively. For example, REF-TXT is the collection of all classes that are refutably 

inferable from positive data. 



LIM- 

Figure 4: Comparisons with other identifications 

The classes FC1, FC,, ;FC<, and FC, consist of all finite concepts each of which cardi- 

nality is just 1, n 2 2, at mostn and unrestricted finite, respectively (cf. Example 3). The 

class CLC has been shown in Example 4. The classes PR1, PRn and PRKn - consist of all 

multiples of a prime number, n 2 2 distinct prime numbers and at most n prime numbers, 

respectively (cf. Example 5). The class PAT is the class of pattern languages (cf. Example 

6). The class S F C  is the so-called superfinite class[l2], that is, a class contains all finite 

concepts and at least one infinite concept. 

In Figure 4, we see that a subclass of a refutably inferable class is not always refutably 

inferable. 

5. Unions of Some Classes 

In this section we consider two types of union classes. First we take a class as the collection 

of all concepts from n classes. 

Definition. Let n 2 1 be an integer, and let Cl, . , Cn be classes. For i with 1 5 i < n 

and j 2 1, the j-th concept Lj of the class Ci is denoted by Then the union class of 

C1, . , Cn is represented as: 
n 

U Ci = {L(i,j)}15i5n,  EN 
i=l 

By assuming a bijective coding from {I, . , n} x N to N, the new class above becomes 

an indexed family of recursive concepts. 

Theorem 18. Let n 2 1 be an integer, and let C1,. . , Cn be classes each o f  which is 

refutably inferable from positive data (resp., complete data). Then the class U,?=,Ci is 

refutably inferable from positive data (resp., complete data). 



Proof. We only give the proof of the case of positive data. The proof for complete data 

can be given in a similar way. 

For any i with 1 5 i 5 n, let Mi be an RIIM which refutably infers Ci from positive 

data. Then let us consider the procedure in Figure 5 .  

Procedure RIIM M; 

begin 

for i = 1 to n do 

while Mi does not refute the class Ci do begin 

simulate Mi with presenting facts read so far; 

during the simulation, 

if Mi requests another fact then 

read the next fact and present it to Mi; 

if Mi produces a guess j then 

output the coding of (i, j); 

end; 

refute the class UYE1 Ci and stop; 

end. 

Figure 5: An RIIM for unions by U 

Assume that we feed a positive presentation a of a nonempty concept L to the procedure. 

(I) In case L 6 U:=,Ci. Then for any i with 1 5 i 5 n, L $ Ci holds, and it follows 

that Mi refutes the class C; from a. Thus the procedure refutes the class U:==, Ci from a .  

(II) In case L E U:=Si. Let io be the least integer such that L E Cia. Then for any i 

with 1 < i < io, L 6 Ci holds, and it follows that Mi refutes the class Ci from a .  Therefore 

the for-loop in the procedure reaches the case of i = io. Since Mi0 infers L w.r.t. Ci, in the 

limit from a, it follows that Mi, converges to an index j with L(io,i) = L for a .  Thus the 

procedure converges to the coding of (io, j) for a .  That is, the procedure infers L w.r.t. 

U:=l CCi in the limit from a .  

Thus the procedure refutably infers the class UYZl Ci from positive data. 

Now we consider a class of concepts each of which is a union of at most n concepts from 

n classes (cf. Wright [37]). 

Definition. Let n > 1 be an integer, and let C1, ,Cn be classes. For i with 1 5 i < n 

and j 2 0, L{iyj) denotes the empty concept if j = 0, otherwise the j-th concept Lj of the 

class Ci. Then we define a class generated by C1, . , Cn as follows: 

where Nn is the set of all n-tuples of nonnegative integers, that is, Nn = {0,1,2, . .In. 



By assuming a bijective coding from Nn to N ,  the new class above becomes an indexed 

family of recursive concepts. 

If each class satisfies the condition (3.8), then the above class is shown to be refutably 

inferable from complete data. 

Theorem 19. Let n 2 1 be an integer, and let C1, . . . , Cn be classes each of  which satisfies 

the condition (3.8). Then the class Uy=l Ci is refutably inferable from complete data. 

Proof. Let us consider the procedure in Figure 6, where the procedure readstore is the 

same one as in Figure 3 and X is a special element not in the universal set U .  

Assume that we feed a complete presentation a of a concept Lbae to the procedure. 

(A) In case Lbase E Ci. Let NE(m) = {(jl, . , jn) E Nn I there are just m 
nonempty concepts among L(l,jl), , L(nyjn) ). 

Claim: In the procedure, for any m with 0 < m < n, if Tm and Fm are defined, then 

(Tm, Fm) is not consistent with (L(l,jl) U . U L(,,j,)) for any (A, . . . , j,) E NE(m). 

Proof of the claim. This proof is given by mathematical induction on m. 

(I) In case rn = 0. It is clear because To is nonempty and the union of n empty concepts 

is empty. 

(11) In case rn 2 1. We assume the claim for m - 1, and assume that Tm and Fm are 

defined. Then suppose that there is an n-tuple (kl, . . . , k,) E NE(m) such that (T,, Fm) is 

consistent with (L(l,lcl) U . U L(,,kn)). Then (Tm-1, FmW1) is consistent with (L(1,kl) U . U 

L(nykn)), because Tm-1 C Tm and Fm-1 C Fm hold. 

Here suppose that there is an i 2 1 such that L(iYlri) f 4 and (L(i,ki) n Tm-1) = 4. Then 

Tm-1 C (L(l,kl)ua .UL(i-l ,ki-1)UL(i+l,ki+l)u.  . .~L(n,k,)) and Fm-1 (L(l,k1)u. .~L(n,k,))~ 
(Lpkl) U . . U L(i-l,ki-l) U L(i+l,ki+l) U . . U L(n,kn))c hold. This means that (Tm-l, F,-l) is 

consistent with (Lpkl) U . . U L(i-l,ki-l) U L(i+l,lci+l) U . . U L(n,kn)). This contradicts the 

induction hypothesis, because (kl, . , ki-1, 0, ki+1, , kn) E NE(m - 1). 

Thus we have (L(i,ki) n Tm-,) # q5 for any i with L(i,lci) f 4. Therefore we can take ui's 

as follows: If L(iYki) # 4, then ui E (L(i,ki) n Tmm1), otherwise ui = A. Since all ui's are 

in (TmW1 U {A}) and the number of ui's other than X is just m, the n-tuple (ul, - , u,) is 

in iT,. Thus there is a case where the for-loop (2) is executed with (ul,. , u,). In this 

case there is an n-tuple (ki, , k:) E Sl x . . x S, such that for any i with 1 5 i 5 n, 

Lk: = Lki. Thus there is a case where the for-loop (3) is executed with (ki, . + . , kk). Since 

(Tm, Fm) is consistent with (Lpk;) U . U L(n,lcl)), it follows that for any finite sets T Tm 
and F Fm, (T, F) is consistent with (L(1,k;) U . . U L(n,kb))- However the while-loop (4) 

should terminate with T C Tm and F C Fm, because Tm and Fm are assumed to be defined. 

This is a contradiction. rn 

Since Lb, E Uy=l Ci, there are an mo with 0 < mo 5 n and an n-tuple (jl, . . . , j,) such 

that (jl, . . , jn) E NE(mo) and LbMe = (L(l,h) U . U L(,,j,)). By this claim, we see that 

Tm, and Fmo are never defined. By Lemma 14, this means that the procedure outputs the 

coding of an n-tuple (jl, , j,) with Lbase = (L(lyjl) U . U L(, $,)) and never terminates 

the while-loop (1) or (4). 

(B) In case Lbase $? Ur=lCi. By using Lemma 14 n times, we see that the procedure 

refutes the class UyE1 Ci from a. EI 



Procedure RIIM M; 

begin 

T=q5; F=q5; 

readstore(T, F); 

while T = q5 do begin ................................................... (1) 

output the coding of (0, ... ,0); 

readstore(T, F ) ;  

end; 

T, = T; Fo = F; 

for m = 1 to n do begin 

for each (wl, . - a  , w,) E I, do begin ................................. (2) 

for i = 1 to n do 

if w; = X then let Si = (0) 

(WI, wn) 
let Tm = 

E (Tm-1 U {A})" 

else recursively generate a cover-index set w.r.t. Ci 

of {L(;,j) E C; I W; E and set it to Si; 

if all Si7s are nonempty then 

the number of wi's 

other than X is just m 

for each (j1, ... , j,) E Sl x * . .  x Sn do ......................... (3) 

while (T, F) is consistent with (L(l,j,) u . u L(,,j,)) do begin . (4) 

output the coding of (jl, . , j,); 
readstore(T, F) ;  

end; 

end; 

T m = T ;  F,=F;  

end; 

refute the class U:=, Ci and stop; 

end. 

Figure 6: An RIIM for unions by U 



Example 7. We consider the class PAT of pattern languages. As shown in Example 2, 

the class satisfies the condition (3.8). Therefore by Theorem 19, for any n 2 1, the class of 

unions of at most n pattern languages is refutably inferable from complete data. 

By Corollary 6, we see that if the number of patterns is not bounded by a constant 

number, then the class is not refutably inferable from complete data, because it contains 

all nonempty finite languages. 

We note that for any n > 1, the class of unions of at most n pattern languages is shown 

to be inferable in the limit from positive data (cf. Wright[37], Shinoharal30, 311). 

6. EFS Definable Classes 

In this section, we consider so-called model inference (cf. Shapiro[27]) and language learning 

using elementary formal s ystems ( E m s ,  for short). 

The EFS7s were originally introduced by Smullyan[34] to develop his recursion theory. 

In a word, EFS's are a kind of logic programming language which uses patterns instead of 

terms in first order logic[38], and they are shown to be natural devices to define languages[5]. 

In this paper, we briefly recall EFS's. For detailed definitions and properties of EFS's, 

please refer to Smullyan [34], Arikawa[5], Arikawa et a1.16, 71 and Yamamoto [38]. 

Let C, X and 17 be mutually disjoint nonempty sets. We assume that C is finite, and fix 

it throughout this section. Elements in C, X and 17 are called constant symbols, variables 

and predicate symbols, respectively. By p, q,  pl, pa, . -, we denote predicate symbols. Each 

predicate symbol is associated with a positive integer which we call an arity. 

In general, for a set S, S+ denotes the set of all nonempty finite strings over S, and #S 

denotes the cardinality of S .  

Definition. A term, or a pattern, is an element in (C U X)+, that is, it is a nonnull string 

over (C U X). By ?r, ?rl, ?r2, *, we denote terms. A term 7r is said to be ground, if ?r E C+. 

By w, wl, w2, ., we denote ground terms. 

An atomic formula (atom, for short) is an expression of the form p(?rl, . . . , rn) ,  where p 

is a predicate symbol with arity n, and ?rl, , -/r, are terms. By A, B, Al , A2, a, we denote 

atoms. An atom p(?rl, , ?rn) is said to be ground, if TI, , Tn are ground terms. 

We define well-formed formulas and clauses in the ordinary ways[l8]. 

Definition. A definite clause is a clause of the form 

where n 2 0, and A, Bl, . . , Bn are atoms. The atom A above is called the head of the 

clause, and the sequence B1, . . , Bn is called the body of the clause. By C, D, Cl, C2, . a, 
we denote definite clauses. Then an EFS is a finite set of definite clauses, each of which is 

called an axiom. 

A substitution is a homomorphism from terms to terms which maps each symbol a E C 

to itself. 



In the world of EFS's, the Herbrand base (HB, for short) is the set of all ground atoms. 

A subset I of HB is called an Herbrand interpretation. We also define Herbrand model, and 

the least Herbrand model in the ordinary ways[l8]. 

For an EFS r, the least Herbrand model is denoted by M ( r ) .  For an EFS r and a 

predicate symbol p with arity n, we define the set of n-tuples of ground terms as follows: 

In case the arity of p is 1, i.e. p is unary, we regard L(r ,p)  as a language over C. 

Now we put a syntactical restriction on EFS's, because the least Herbrand model M(T) 

for an unrestricted EFS r may not be recursive, that is, for a ground atom A, we can not 

recursively 'decide whether A E M (T) or not. 

For a term IT, llall denotes the length of IT, and o(x, IT) denotes the number of all occur- 

rences of a variable x in IT. For an atom p(?rl, . . . ,  IT^), we define the length of the atom and 

the number of variable's occurrences in the atom as follows: 

Definition. A clause A t B1, . , Bn is said to be length-bounded, if 

for any substitution 0. 

An EFS r is said to be length-bounded, if all axioms of I' are length-bounded. 

The notion of length-bounded clauses is characterized by the following Lemma 20. 

Lemma 20 (Arikawa et a1. [6, 71). A clause A + B1, . . , Bn is length-bounded, if and only 

i f  11 All 2 11 Bl 11 + + IIBn 11 and O(X, A) 2 O(X, B1) + . . + o(x, B,) hold for any variable x. 

From now on, we only consider length-bounded EFS's. For length-bounded EFS's, the 

following Theorem 2 1 holds. 

Theorem 21 (Arikawa et a1.[6, 71, Yamamoto[38]). For a length-bounded EFS r, the least 

Herbrand model M ( r )  is recursive, that is, for any ground atom A, whether A E M ( r )  or 

not is recursively decidable. 

Furthermore the following Theorem 22 shows the power of length-bounded EFS's. 

Theorem 22 (Arikawa et a1.[6, 71). A language L E C+ is context-sensitive, if and only i f  

L is definable by a length-bounded EFS. 

We devote the rest of this section to investigating the refutable inferability of length- 

bounded EFS definable classes. We adapt the definitions of inferability to the case of 

EFS's as follows, but as easily seen, the essential part is kept unchanged from definitions 

in Section2. In what follows, we assume that outputs from an IIM or an RIIM are EFS's. 



Definition. For an atom A, pred(A) denotes the predicate symbol of A. For a set 170 g 17 

and a set S of atoms, Slno denotes the set of atoms restricted to I&-,, that is, 

A predicate-restricted complete presentation of a set I C HB w.r.t. l& 5 lI is an infinite 

sequence (A1, tl), (A2, t2), of elements in HB l n b  x {+, -) such that {Ai I ti = +, i 2 
1) =Ilno and {Ai I ti = -, i 2 1 )  = HBJrr, \ 

An IIM M or an RIIM M is said to converge to  an EFS I' for a presentation a, if there 

is an n 2 1 such that for any m 2 n, M(o[m]) = I'. 

Let EC be a class of EFS's. For an EFS I' E EC and a predicate-restricted complete 

presentation a of M ( r )  w.r.t. l& C 17, an IIM M or an RIIM M is said to infer the EFS T 

w.r.t. EC in the limit from a ,  if M converges to an EFS I" E EC with M ( r l )  Ino = M ( r )  In, 
for a. 

A class EC is said to be theoretical-term-freely inferable in the limit from complete data, 

if for any nonempty finite subset of D, there is an IIM M which infers I' w.r.t. EC in 

the limit from a for any EFS I' E EC and any predicate-restricted complete presentation o 

of M ( r )  w.r.t. Do. 

A class I C  is said to be theoretical-term-freely and refutably inferable from complete data, 

if for any nonempty finite subset 170 of 17, there is an RIIM M which satisfies the following 

condition: For any set I C HE? and any predicate-restricted complete presentation a of I 

w.r.t. a, (i) if there is an EFS r E EC such that M(I')l, = TIno, then M infers I' w.r.t. 

&C in the limit from 0, (ii) otherwise M refutes the class EC from o. 

Theoretical terms are supplementary predicates that are necessary for defining some 

goal predicates. In the above definition, the phrase 'theoretical-term-freely inferable' means 

that from only the facts on  the goal predicates, an IIM or an RIIM generates some suitable 

predicates and infers an EFS which explains the goal predicates. 

Definition. For two EFS's I' and I", and a set l& C 17, we write I' =no I", if we can 

make I" identical to r by renaming predicate symbols other than those in I& and by 

renaming variables in each axiom. We assume some canonical form of an EFS w.r.t. 170, 

and canon(I', no) denotes the representative EFS for the set of EFS's {I' I I' -no I"). 

For an EFS l", HPRED (I') (resp., BPRED (I '))  denotes the set of all predicate symbols 

appearing in the heads (resp., the bodies) of the axioms of I', and PRED(r) denotes the 

set HPRED(I') U BPRED(I'). We also define various sets and classes as follows: 

L13Ln] = {I' I I' is a length-bounded EFS with n axioms), 

CB[~]  [a] = {canon(I', Do) I I' E ~ l 3 [ ~ ] } ,  

MLB[~] [no] = {T E CB["] [no] I BPRED(I') C HPRED ( I" )} ,  

M L B ~ ~ [ ~ ] ( Z )  = {I' E ~ L l 3 [ ~ I [ l l ~ ]  I the head's length of each axiom 

of r is not greater than I .  



where 1,n > 0, and 170 C 17. 

We note that for any EFS7s r and r', and any 170 c l?, whether I' =no I" or not is 

recursively decidable, and that we can effectively obtain the EFS canon(r, ITo). 

We prepare some basic lemmas. 

Lemma 23 (Shinohara[31]). Let r be a length-bounded EFS, and let A E M ( r )  be a 

ground atom. Then i f  I' has an axiom C whose head is longer than A, then A E M ( r \  {C)) 

holds. 

Lemma 24. For any EFS r E CB[<"] and any ITo To l?, there is an EFS r' E MCB[~"][&] 

such that M(I")lno = M(r)lno. 

Proof. Let I' E LB[<"] and r1 = can0n(r,17~). Then M(r-)Ino = M(r)Jno  holds. 

Therefore if BPRED(Tl) 2 HPRED(Tl), then rl itself is in MLB['"] [I&]. Otherwise, let 

.E2 be the EFS which is obtained from rl by subtracting all axioms that have predicate 

symbols in BPRED (TI) \ HPRED(r') in their bodies, and let r3 = canon(r2, no) .  Then 

clearly, M (r3) I no = M (F) 1 no and r3 E MLB[<"~ [no] hold. ~1 

Lemma 25. Let n 2 1 be an integer, let l& & 17 be a set ofpredicates, let T c HBIno be a 

nonempty finite set, and let F c HB In, be a finite set. Assume that (T, F )  is not consistent 

with M ( r )  In, for any EFS r E MLB[~-~]  [.Do]. Then for any EFS r E MEB["] [lIO] \ 
MLB["~[&](~), (T, F )  is not consistent with M(r)lrr,, where 1 = rnax{llAll I A E T}. 

Proof. Let r E MLB[~] [Do] \MLB["] [I&] (1). Then there is a length-bounded clause C E I' 

whose head's length is greater than 1. Let rl = r \ {C}. Suppose that (T, F) is consistent 

with M ( r )  In,. Since the head of C is longer than every ground atom in T, it follows by 

Lemma 23 that T M(rl)ln0. Furthermore, since rl c r, it follows that M(r l )  M ( r )  
by monotonicity of the least Herbrand model. Therefore F E HBID0 \ M(r)lDo To HBIa \ 
M(r l )  lrr, holds. Thus (T, F) is consistent with M(r l )  In,. Let r2 = canon(rx, Do). Then 

M ( r2)  1, = M (TI) 1, holds, and it follows that (T, F) is consistent with M (r2)  lrr, This 

contradicts the assumption, because r2 E MLB["-~~ [no]. 

Lemma 26. For any l , n  2 0 and any finite subset IT0 o f  17, the set M L ~ [ ~ l [ l & ] ( l )  is a 

uniformly and recursively genera ble finite set. 

Proof. As easily seen, for any EFS I' E MLB["~[&](~), the number of predicate symbols 

appearing in r is at most n and the arities of those predicate symbols are at most 1. 

Put PA(1,m) = { {  I 0 < lc < m and 15 jl < . . -  < jk 5 I}, where for 

a predicate symbol q!t), the superscript t represents its arity. Then put PR(1, n, Do) = 

{l?' u fl' 1 17' c 17, and 17" E PA(1, n - #ITf)}. By the above observation, it is sufficient 

for us to generate EFS's r with PRED(r) E PR(1, n, Do), because we do not distinguish 

two EFS's that are identical except for renaming of predicate symbols other than those in 

170. 

As easily seen, the above PR(1, n, a) is a uniformly and recursively generable finite set. 

Furthermore the set of all terms shorter than a fixed length is a uniformly and recursively 

generable finite set, where we do not distinguish two terms that are identical except for 

renaming of variables. 

Roughly speaking, we recursively generate EFS's in MLB["] [ITo] ( l )  as follows: We com- 

bine sets of predicate symbols in PR(1, n, 170) and terms whose lengths are not greater than 

1, rearrange variables in each axiom, make canonical form w.r.t. & of them and check 

whether each obtained EFS is in M.CBLnl [no] (1) or not by using Lemma 20. 



Theorem 27. For any n 2 0,  the class C B [ ~ ~ ~  is theoretical-term-freely and refutably 

infera b2e from complete data. 

Proof. Let us consider the procedure in Figure 7, where the procedure readstore is the 

same one as in Figure 3. 

Procedure RIIM M (n, Do); 

begin 

T F = 4 ;  

readstore(T, F); 

................................................... while T = 4 do begin (1) 

output the empty EFS; 

readstore(T, F); 

end; 

To=T;  Fo=F; 

for rn = I to n d o  begin 

1m = max{llAll I A E Tm-I}; 

recursively generate M C B [ ~ ~ [ ~ T ~ ] ( ~ ~ ) ,  and set it to S; 

for each r E S do .................................................... (2) 

while (T, F) is consistent with M(r)lno do  begin .................. (3) 

output r; 
readstore(T, F); 

end; 

T T  F,= F; 

end; 

refute the class L B [ ~ ~ ~  and stop; 

end. 

Figure 7: An RIIM for the class L B [ ~ ' ~ ]  

Let be a nonempty finite subset of iT, and let Ibb,, C HB be a set of ground atoms. 

Then assume that we feed a predicate-restricted complete presentation a of base w.r.t. 

to the procedure. 

(A) In case there is an EFS rb, E ISB['"] such that Ibase 1 no = M (rbase) 1 

Claim: In the procedure, for any m with 0 5 rn 5 n, if Tm and F, are defined, then 

(Tm, Fm) is not consistent with M(r)lno for any EFS r E M C B [ ~ I [ I ~ ~ ] .  

Proof of the claim. This proof is given by mathematical induction on m. 

(I) In case rn = 0. It is clear because To is nonempty and the least Herbrand model of 

the empty EFS is empty. 



(II) In case rn 2 1. We assume the claim for rn - 1, and assume that Tm and F, 
are defined. Then we see that T,-l and Fm-l are also defined, and by the induction 

hypothesis, (Trn-1, Fm-l) is not consistent with M ( r )  Ino for any EFS I' E M L B [ ~ - ~ ]  [no]. 

Therefore by Lemma 25, (Tm-l, Frn-1) is not consistent with M(r)llT, for any EFS r E 

M L B [ ~ ]  [&I \ M LB["] [no] (1,). Thus (Tm, Fm) is not consistent with M ( r )  1 no for any EFS 

r E MLB[~][&] \ M C B [ ~ ~ [ ~ T ~ ] ( ~ , ) ,  because Tmml T, and FmV1 Fm hold. 

Furthermore, since the for-loop (2) terminates, we see that (Tm, Fm) is also not consistent 

with M (r) Ino for any EFS r E M C B [ ~ ]  [ITo] (2,). 

Hence we have the claim for rn. w 

By Lemma 24, there is an EFS I' E MISB[~"][IT,] such that M(r)lno = M(rb,)(, (= 
Ibmelno). Therefore we see by the above claim that Tn and Fn are never defined. By Lemma 

14, this means that the procedure outputs an EFS r with M(r)lno = Ib,,ln0 and never 

terminates the while-loop (1) or (3). 

(B) In case there is no EFS r E CB['"] such that Ibme llTa = M (r) Ino . By using Lemma 

14 n times, we see that the procedure refutes the class CB['"] from o. 

By Corollary 6, we see that if the number of axioms is not bounded by a constant 

number, then this class is not refutably inferable, because it contains all nonempty finite 

concepts on H B  1 no. 

The following Corollary 28 is obvious from Theorem 27. 

Corollary 28. For any n 2 0, the class o f  languages definable by EFS's in CB['"] is 

refutably inferable from complete data. 

We note that Shinohara[31] showed that the classes in Theorem 27 or Corollary 28 are 

inferable from positive data. 

7. Concluding Remarks 

We have pointed out that the essence of the computational logic of scientific discovery or 

the logic of machine discovery should be the refutability of the whole space of hypotheses 

by observed data or given facts. Then we have shown a series of such sufficiently large 

hypothesis spaces in terms of the elementary formal systems. More exactly, for any n 

the class of length-bounded EFS's with at most n axioms are refutably identifiable. The 

argument to prove this is also valid for the classes of weakly reducing EFS's, and linear or 

weakly reducing logic programs(28, 101 with at most n axioms. 

The refutability we proposed here forms an interesting contrast to the original one: 

In the logic of scientific discovery for scientists each theory in a hypothesis space is to be 

refutable, while in the computational version of the logic for machines or the logic of machine 

discovery the space itself is to be refutable by an observation. Popper contributed to the 

modern theory of inductive inference. In his books[23, 241, however, Popper strongly denied 

the induction so far developed by, for example, J. Stuart Mi11[19], which had two stages of 

mechanical creation of a hypothesis from observations and proof of its validity. In fact, he 

said that the induction, i.e. inference based on many observations, was a myth, and it was 

neither a psychological fact, nor a fact of ordinary life, nor one of scientific procedure[23]. 



What he wanted to assert in those books was that scientific theory should have been refuted 

by observed data or facts and any such theory could by no means be verified. He could not 

agree with the assertion that the induction should have proved the validity of theory. But 

we think there were no reasons to deny the stage of mechanical creation of hypotheses. 

The inductive inference machine that can refute the hypothesis space itself works as 

an automatic system for scientific discovery. If the machine for scientific discovery can not 

refute the whole space of hypotheses, it can just work for computer aided scientific discovery. 

That is, we need to check from time to time whether the machine is still searching for a 

possible hypothesis. 

As a future work we have left the refutability of hypothesis spaces in another two major 

frameworks of PAC and MAT learning[36, 41, which we will discuss elsewhere. As for the 

PAC learning we obtained very practical results in the area of Molecular Biology based on 

our theoretical studies on learnability[8,9,29]. Our learning system succeeded in discovering 

some simple and accurate knowledge, i.e. hypotheses, in a very short time. However it was 

still an application of PAC learning, but not machine discovery. In such a system we could 

not have any way to stop the learning algorithm even when there remains no possibility to 

find any good hypotheses to explain the data or facts given so far. We were lucky, because 

the hypotheses our learning system found out happened to be in the spaces we initially 

gave. The spaces were natural subclasses of the refutably inferable classes we have shown 

in the last section. 
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