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INDUCTIVE INFERENCE OF FORMAL 

         LANGUAGES

    By 

Masako SATO*

                      Abstract 

   This paper develops a mathematical theory of language identifica

tion from a set theoretic viewpoint. We investigate two types of language 

classes called M-finite thickness and finite elasticity as a hypothesis space 

of an inductive inference machine. It is known that both of the families 

of such classes include interesting and important classes and are substan

tially large. 

For a class with M-finite thickness, we first show some equivalences be

tween several key concepts in language identification such as a finite 

tell-tale and others. We also show that M-finite thickness is preserved 

under some operations such as intersection, concatenation and so on as 

well as finite elasticity, except union operation. Then we apply those  re

sults to problems of inferability in the criteria of ordinary identification in 

the limit or inductive refutable identification proposed by Mukouchi and 

Arikawa as a framework for machine discovery. In particular, we present 

a characterization theorem and some useful sufficient conditions for in

ductive refutable inferability from complete data, in case a hypothesis 

space has M-finite thickness. Furthermore, we discuss inductive infer

ence of lengthbounded elementary formal systems as a framework for 

defining target languages.

1. Introduction 

   Inductive inference is a process of hypothesizing a general rule from eventually in

complete data. Since Gold [3] has proposed a mathematical model of inductive inference 

based on the identification in the limit paradigm, there have been introduced various 

criteria related to the identification in the limit so far. In inductive inference of lan

guages, an inference machine requires data or facts of a target language from time to 
time and produces hypotheses from time to time. The set of hypotheses the machine 

may produce is called the hypothesis space. 

   In the present paper, we assume that the hypothesis space is an indexed family 

of recursive languages. Angluin [1] gave a theorem characterizing inferability of such 

classes (families) from positive data. The set theoretic aspect of the inferability shown 

in [1] is that there exists a finite tell-tale for every language in the class. On the other
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hand, it has been given that if there exists a pair of finite tell-tales for every language 

in the class, then the class is inferable from positive data (cf. [4], [5] and [11]), and that 

if a class has M-finite thickness, then the existence of a finite tell-tale for a language in 

the class is equivalent to that of a pair of finite tell-tales for the language (cf. [10]). It 

means that the inferability for a class with M-finite thickness depends on only such a 

set theoretic property of the class. 

    In the present paper, we will make an approach to inferability in two criteria men

tioned below from a set theoretic viewpoint. 

    We first investigate structural features between a target language and a class of 

languages as a hypothesis space. We introduce a concept of finite cross property repre

senting some structural relation between a language and a class, and show equivalences 

between it and several key concepts such as a finite tell-tale and others proposed as 

necessary or sufficient conditions for inferability in various criteria. Then we consider 

two types of language classes called M-finite thickness and finite elasticity. Finite elas
ticity has been introduced by Wright [14] as a sufficient condition for inferability from 

positive data, and shown in [6] and [14] to be preserved under operations such as union, 
intersection, concatenation and so on except complement. M-finite thickness due to 

Sato&Moriyama [10] is a generalization of finite thickness proposed by Angluin [1], but 

of much weaker condition. We obtain that if a class has M-finite thickness, then equiva

lences between some concepts mentioned above are valid. Furthermore, we have another 

result that M-finite thickness is preserved under operations mentioned above as well as 

finite elasticity, except union operation. 

   Next, we apply these results to problems of inferability in the criteria of ordinary 

identification or inductive refutable identification proposed by Mukouchi&Arikawa [9]. 

Note that every indexed family considered is inferable from complete data (cf. [3]). 

While, concerning inductive refutable inferability from positive data, the power is very 

small (cf. [9]). We present a characterization theorem and some useful sufficient condi

tions for inductive refutable inferability in case a hypothesis space has M-finite thickness. 

    Finally, we adopt lengthbounded elementary formal systems (EFS's, for short) as 

a framework for defining target languages. Concerning inductive inference from positive 

data, Shinohara [12] has obtained the result that for any n, the class of languages 

definable by lengthbounded EFS's with at most n axioms is inferable from positive 

data. It has been shown in [10] that the class has M-finite thickness. In this paper, 

we obtain a characterization theorem for inductive refutable inferability from complete 

data. By the result, we derive as a corollary the result obtained by  Mukouchi&Arikawa 

[9] that for any n, the class mentioned above is inductively refutably inferable from 
complete data. 

   In §2, we investigate relationships between a language and a class of languages 
mentioned above. In §3, we discuss inductive refutable inference from complete data 

as well as inductive inference from positive data. The section 4 is concerned with EFS 

language identification, provided a hypothesis space is a class of lengthbounded EFS's.
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2. Formal Language Classes 

   In study of language identification, there are so many settheoretic concepts such 

as a finite tell-tale [1], finite cross property [11], a pair of finite tell-tales [11], [4], a pair 

of definite finite tell-tales [8] and so on. These concepts are defined only for a hypothesis 

space and a language belonging to the hypothesis space. 

   In this section, first we define these concepts also for a language not belonging the 

hypothesis space, and consider what languages do not have, for instance, finite tell-tale 

within the hypothesis space. We give conditions of the nonexistence of finite tell-tale 

and so on in terms of the concept of infinite cross property. 

   Next, we investigate properties of two special types of language classes called M

finite thickness [10] and finite elasticity [14].

2.1. Finite Cross Property 

   Let  E be a finite alphabet. We denote a language over E by L, L', L1, L2, • • •, and 

denote a class of languages over E by G, G1, £2, • •. Let N = In I n > 11. For a language 

L and n > 0, let L<n be the set of strings in L whose lengths are less than or equal to 

n. 

   First let us define the following notion which was introduced by Sato&Umayahara 

[11]: 

   DEFINITION 2.1. A language L has infinite cross property within a class G if there 

exists an infinite sequence of languages (Ln)nEN such that 

(1)SiCS2C•••, (2) USn=L, (3)LnEG, nEN, 
n=1 

where 
00 

Sn= n (Lk fL), nEN. 
k=n 

L has finite cross property within G, denoted by (L, G), if L does not have infinite cross 

property within G. 

    As easily seen, if (Ln)nEN is a sequence defined above, then Ln's are mutually 

different and L Ln for all n E N, and moreover, L is infinite. 

   The following is useful to establish the results shown later: 

   LEMMA 2.2. A language L has infinite cross property if and only if there exists a 

sequence of finite sets (Tn)nEN of strings and a sequence of languages (Ln)neN, each in 

G, such that 

00 

(1) T1 C T2 C ..., (2) U Tn = L, (3) Tn C Ln, but Tn+1 Ln, n E N. 
n=1
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    PROOF. The if direction is obvious, so we will prove the only if direction. 
    Assume that L has infinite cross property within  G. Then there exists a sequence of 

languages (Ln)nEN. As mentioned above, L is infinite. Let us define a sequence (Tt)tEN 
and a subsequence (Lnt )tEN of (Ln)nEN recursively as follows: Let Sn = nk n(Lkfl L) 
for n E N. 

    For t = 1, let 

           T1 = Etl, where 11 = min{/ E N I L 1 � 0}, and 

ni=min{nENIT1CSn}. 

   For t > 2, let 

          Tt = Eli , where It = min{/ E N I E~l g Lnt_i }, and 
nt=min{nENITtCso. 

    CLAIM: The sequences (1t)tEN and (nt)tEN are both defined and strictly increasing. 

    PROOF OF THE CLAIM. Due to the conditions (1) and (2) in Definition 2.1, for 

some n E N, {wi } =T1 C Sn. Thus n1 is defined. It suffices to show that for any t E N, 

if It and nt are both defined, then so are both 1t+1 and nt+i, and moreover It < It+i 

and nt < nt+1 • Assume that dt and nt are both defined. As mentioned above, L g Lnt 
holds. Thus 1t+1 = min{d E N I L�-1 g Lnt} is bounded. By Tt C Snt C Lnt, it follows 

that It < /t+1 and Tt C Tt+1. Moreover, Tt+1 .g Lnt implies Tt+1 g Snt . It implies 

together with the condition (2) in Definition 2.1 that nt+1 is bounded and nt < nt+1. 

    The above claim yields that the sequences (Tt)tEN and (Lnt)tEN satisfy the con

ditions (1)-(3) in our lemma. In fact, clearly the conditions (1) and (2) hold, because 

(dt)tEN is strictly increasing. On the other hand, by the definitions of nt and It+l, it 
follows that Tt C Snt (C Lnt) and Tt+1 .g Lnt . Thus the condition (3) is also valid. 
This completes our proof.p 

   For a language L and a class G, let us define the following subclass: 

GL={L'EGIL'CLl. 

   By Definition 2.1, it follows immediately that: 

    LEMMA 2.3. 

     (i) If L eg L', then (L, GO. 

    (ii) If (L, GL,) and L" C L', then (L, GL") . 

    (iii) If L is finite, then (L, G) . 

   Kapur [4] has introduced the following notion similar to our infinite cross property 

considered, in order to clarify the notion of finite tell-tale described later. 

   DEFINITION 2.4. A language L is an accumulation point of G if there exists a se

quence of finite sets (Tn)nEN of strings such that 
00 

    (1) TiCT2C..., (2) UTn=L, 
n-1 

    (3) For every n E N there exists a language Ln E G such that Tn C Ln C L.
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   For a pair of sets I =  (T, F) of strings, we denote 

CON(I,L) = {LEL TCLandFCLc} 

CON(I) = {L C E* T C L and F C Lc }. 

   For two pairs I = (T, F) and I' = (T', F') of sets of strings, let 

I -<I' <---> TCT', FCF' and TUFCT'UF'. 

   DEFINITION 2.5. A language L has pinfinite cross property within L if there exists 

a sequence of pairs of finite sets (In)nEN and a sequence of languages (Ln)nEN, each in 

G, such that 
        co00 

    (1) I1 12 • • •, (2) U Tn = L, U Fn = Lc, where In = (Tin Fn) 
n=1n=1 

    (3) Ln E CON(In, L), but Ln CI CON(In+1, L), n E N. 
   L has finite cross property within L if L does not have pinfinite cross property 

within L.

2.1.1. A Finite Tell-tale 

   The following notion has been introduced by Angluin [1] as a necessary condition 

for inferability from positive data. 

   DEFINITION 2.6. A set T of strings is a finite tell-tale (ftt, for short) of a language 

L within L if T is a finite subset of L and there does not exist any language L' E L such 

that T C L' C L. L has ftt within L if there is a finite tell-tale of L within L. 

   In a case of L E L, it has been shown that the existence of ftt of L is equivalent to 

that (i) L is not an accumulation point of L (Kapur [4]), and to that (ii) L has finite 

cross property within LL (Sato&Umayahara [11]). These equivalences are also valid for 

L¢G. 

    THEOREM 2.7. The following four statements are equivalent: 

     (i) L has ftt within L. 

     (ii) L is not an accumulation point of ,C. 

    (iii) L has finite cross property within £L, that is (L, £L). 

     (iv) L has p-finite cross property within Li,. 

   PROOF. The proofs of ((i) a (ii)) and ((i) a (iii)) are found in [4] and [11], 

respectively. Thus (ii) a (iii). It is easy to show the equivalence between (iii) and 

(iv).U

2.1.2. A Pair of Finite Tell-tales 

   The present author and Umayahara [11] have introduced the following notion as a 

sufficient condition for inferability from positive data (by Kapur [4] at the same time, 

which is called a test set).
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   DEFINITION 2.8. A pair of sets I =  (T,  F) is a pair of finite tell-tales (pftt, for 

short) of a language L within G if T and F are finite sets of strings, L E CON(I) and 

L C L' for all L' E CON(I, G). L has pftt within G if there exists pftt of L within G. 

   Note that if I = (T, F) is pftt of L within G, then T is ftt of L within G. The notion 

of pftt may be characterized by finite cross property as follows: 

    THEOREM 2.9. The following two statements are equivalent: 

    (i) L has pftt within G. 

    (ii) There exists a finite set F C Lc such that (L, GFc) . 

   PROOF. ((i) = (ii)) Assume that L has pftt within G, say I = (T, F). For the set 

F, we show that (L, GFc ). 

    Assume the converse. By Lemma 2.2, there exist two infinite sequences (Tn)nEN 

and (Ln)nEN satisfying the conditions (1)-(3) in Lemma 2.2, where Ln C Fc for all 

n E N. Due to the conditions (1) and (2), for some n E N, T C Tn C Ln and 

Tn+1 sg Ln. It implies together with Ln C Fc that Ln E CON(I, G). Since I is pftt of 

L, we have L C_ Ln. This contradicts that Tn+1 g L. 

((ii) = (i)) Assume that there exists a finite set F C Lc such that (L, GFc ). By 
Lemma 2.3 (ii), (L, GL) because of L C Fc. Theorem 2.7 implies that L has ftt within 

G, say T. 

   Assume that L does not have pftt within G. Let us define two infinite sequences 

(Tn)nEN and (Ln)nEN recursively as follows: 

   For n = 1, let 

T1=L11, where ll=min{IENITCL�'}, and 

    L1 E .F1, where Ii = (Ti, F) and F1 =IL' E CON(I1, G) I L ,g L'}. 

   For n > 2, let 

Tn = L1' , where in = min{/ E N I L' g Ln_1}, and 

Ln E .rn, where In = (Tn, F) and .Fn = {L' E CON(In, G) I L L'}. 

Similar to the proof of Lemma 2.2, we can show that the sequences (Tn)nEN and (Ln)nEN 

defined above satisfy the conditions (1)-(3) in Lemma 2.2. Since Ln C Fc for all n E N, 

L does not have finite cross property within GFc . This contradicts our assumption. El

2.1.3. A Pair of Definite Finite Tell-tales 

   Mukouchi [8] has introduced the following notion as a necessary condition for finite 

identification from complete data. 

   DEFINITION 2.10. A pair of sets I = (T, F) is a pair of definite finite tell-tales 

(pdftt, for short) of L within G if I is pftt of L within G and 

CON(I, G) =I{L},if L E C, 
                             0, o.w. 

   L has pdftt within G if there is pdftt of L within G.
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   The notion of  pdftt may be characterized by our finite cross property or p-finite 
cross property as follows: 

    THEOREM 2.11. The following three statements are equivalent: 

     (i) L has pdftt within G. 
     (ii) (Lc, 4c) and there exists a finite set F C Lc such that (L, CFO, 

         where Lc = {L'c L' E G}. 

    (iii) L has p-finite cross property within L. 

   PROOF. The proof of (i) a (ii) can be done similarly to that of Theorem 2.9. So 
we will prove the equivalency between (i) and (iii). 

   ((i) = (iii)) Assume that L has pdftt within L, say I = (T, F), and L does not have 
p-finite cross property within G, then there exist infinite sequences (In)nEN and (Ln)nEN 
satisfying the conditions (1)-(3) in Definition 2.5. Due to the conditions (1) and (2), for 
some n E N, I -< In. By the condition (3), Ln E CON(In, G), but Ln ¢ CON(In+1, G). 
These imply that Ln E CON(I, L) and L Ln. This contradicts that I is pdftt of L 
within L. 

   ((iii) = (i)) Assume that L does not have pdftt within L. Let us define two infinite 
sequences (In)nEN and (Ln)nEN as follows: 

   For n = 1, let 

T1 = L<l,, F1 = (Lc)t1, where li = 1, 
L1 E .Fi, where I1 = (T1, F1) and F1 = {L' E CON(I1i L) I L L'}. 

   For n > 2, let 

Tn = L<ln, Fn = (Lc) in, where In = min{/ E N I L« Ln_1 or (LC )-1 

Ln E .Fn, where In = (Tn, Fn) and .Fn = {L' E CON(In, G) I L L'}. 

Similar to the proof of Lemma 2.2, we can prove that the sequences (In)nEN and (Ln)nEN 

defined above satisfy the conditions (1)-(3) in Definition 2.5.0

2.2. A Class with M-finite Thickness 

   In this subsection, we consider a special type of language classes, called M-finite 

thickness, introduced by the present author and Moriyama [10]. We show that M-finite 

thickness has rich properties. 

   For a set T of strings, L is a minimal language of T within L if T C L and there 

does not exist L' E G such that T C L' C L. If T is ftt of L within L, then L is a 

minimal language of T within ,C. That is, the notion of minimal is dual to that of ftt. 

Let us denote 

MIN(T, G) = {L ELIL is a minimal language of T within G. }. 

DEFINITION 2.12. A class ,C is of M-finite thickness if for any nonempty finite set 

T of strings, (1) MIN(T, £) is finite and (2) for any L E C, T C L implies that there 

exists a language L' E MIN(T, C) such that L' C L.
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    Note that M-finite thickness is a generalization of finite thickness proposed by 

Angluin [1], but of much weaker condition. In fact, any classes containing all finite 
languages have M-finite thickness. 

    The following result is given immediately by the above definition. 

    LEMMA 2.13. Let  G be a class of M-finite thickness and L be a language. Then the 
subclass GL has M-finite thickness. 

    The following result corresponds to Lemma 2.2 for a class with M-finite thickness. 

    LEMMA 2.14. Let £ be a class with M-finite thickness. A language L has infinite 

cross property within G if and only if there exists a sequence of finite sets (Tn)nEN and 

a sequence of languages (Ln)nEN, each in G, such that 
00 

(1) T1 C T2 C • • •, (2) U Tn = L, (3) Tn C Ln, but Tn+1 g Ln, n E N, 
n=1 

(4) L1 C L2 C ..., (5) Ln E MIN(Tn, L), n E N. 

    PROOF. The if direction is obvious, so we will prove the only if direction. 
    Assume that L has infinite cross property within G. By Lemma 2.2, there exists a 

sequence of finite sets (Tn)nEN of strings and a sequence of languages (Ln)nEN, each in 

G, satisfying the conditions (1)-(3) in Lemma 2.2. Let us define a subsequence (Tnt )tEN 
of (Tn)nEN and a sequence of finite sets (Ft)tEN of languages in G recursively as follows: 

Without loss of generality, we can assume T1 0 (1). 

    For t = 1, let 

n1=1, and .T'1={L'EMIN(T1iG)IL L'}. 

   For t > 2, let 

nt = min{n E N Tn L' for every L' E }, and 

.~t={L'EMIN(Tnt,G) L¢L'}. 

    CLAIM A: The sequence of integers (nt)tEN is defined and strictly increasing, and 
for every t E N, .Tt is nonempty finite set and Yt n .Ft+1 = ~. 

   The proof of the claim A can be done similar to that of Lemma 2.2. 

    CLAIM B: For every t E N and every L' E .Ft+1, there exists a language L" E ,~t 
such that L" C L'. 

          t 

   PROOF OF THE CLAIM B. Let L' E .741. By the claim A, it follows that Tnt C 
Tnt+1 and L' ¢ J. This means that L' is not a minimal language of Tnt within G. Since 
G has M-finite thickness, there exists a language L" E MIN(Tn t, £) such that L" C L'. 
It implies together with L L' that L g L", and thus L" E Ft . 

   CLAIM C: There exists an infinite sequence of languages (Lt)tEN such that L't E 

for every tEN and Ll CL'2 C •-•. 

   PROOF OF THE CLAIM C. By the claim B, for every t E N and every L' E Ft , there 
exists a sequence of languages Li L2, •  , Lt(= L') such that Li E Tifor i = 1, 2, • • • , t
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and  L'1 C L'2 C • • C L. By the claim A, .T1 is finite. Thus there must exist an infinite 

sequence (L't)tEN satisfying the conditions in our claim. Otherwise, for every language 

L" E •~i 

max{t E N 3L:E =1,2,•• ,t) s.t. L" = L'1 CL'2C•••CL't} 

is bounded, and is denoted by tL,, . Since .F1 is finite, tmax = max{tL" L" E .F1 } is 

also bounded. This means that for any L' E .'tmax+1 there does not exist any language 

L" E Ftmax such that L" C L'. This contradicts the claim B. 

   The above claims yield that the sequences (Tnt )tEN and (L't)tEN satisfy the condi

tions (1)-(5) in our lemma. This completes our proof.^ 

   For a class with M-finite thickness, the following equivalence theorem is valid. 

   THEOREM 2.15 (SATO&MORIYAMA [10]). Let L be a class with M-finite thickness 

and let L E C. Then the following two statements are equivalent: 

            (i) L has ftt within C. (ii) L has pftt within C. 

   By Theorem 2.7, the above statements are also equivalent to that L has finite cross 

property within CL, that is, (L, CL). 
   The following result is important to establish a characterization theorem for induc

tive refutable inferability considered in §3.2. 

   THEOREM 2.16. Let C be a class with M-finite thickness and let L ¢ C. Then the 

following three statements are equivalent: 

   (i) L has ftt within C. (ii) L has pftt within C. (iii) L has pdftt within C. 

   PROOF. The proof of (i) = (ii) can be done similarly to the proof of Theorem 

2.15 given in [10]. 

   ((ii) (iii)) Let L C. Assume that L has pftt within C, say I = (T, F). Since C 
has M-finite thickness, MIN(T, C) is finite. If MIN(T, C) = q, clearly CON(I, C) = q5. 

It means that I is pdftt of L within C. Otherwise, we put MIN(T, C) = {L1i L2, • • • , Ln} 

for some n E N. Since L C and T is ftt within C, L2 L for i = 1, 2, • • • , n. Thus 

there is a string wi E Li \ L for i = 1, • • • , n. Let F' = F U {wi, w2, • • • , wn} and 

I' = (T, F'). Clearly L E CON(I'). We will prove CON(I', C) = q!). If there exists 

a language L' E CON(I', C), then for some language L2 E MIN(T, C), T C Li C L', 

because C has M-finite thickness. It implies wi E L'. This contradicts L' E CON(I', C). 

 Clearly (iii) implies (i).^ 

    Next we consider various operations for language classes, and discuss closure prop

erties of M-finite thickness under such operations. 

    Given classes C1 and L27 let us define the following union, intersection, concatena

tion and shuffle operations: 

C1 U C2 = {L() U L(2) I L(1) E £1, L(2) E £2}, 

C1 n C2 = {L(') n L(2) J L1) E C1i L(2) E £2), 

C1 ~G2 = {L(1) L(2) ~ L(1) E £1, L(2) E £21, 

C1 Q C2 = {L(1)0L(2) J L(1) E C1i L(2) E C2},
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where the operations in the right hand sides of the above equations are union, inter

section, concatenation and shuffle operation for languages, respectively, in the usual 

fashion. 

    Throughout this paper, the set theoretic union operation is called usual union in 

order to distinguish union defined above, and denoted by U. For a given class  C, let us 

define the following operations: 

Lrn = {Lm I L E C} (m E N), G+ = {L+ILEG}, 

C* = {L*ILEG},CC = {Lc I L E G}. 

Note that L7 C is different from G2. 

THEOREM 2.17. The property of M-finite thickness is preserved under the opera

tions U, (, Q,~" ,+ and *, respectively. 

   PROOF. We only give the proof for the operation ` . The proofs for the other 

operations can be done analogously. 

   Let L1 and G2 be classes with M-finite thickness and let ,C = G1 C2. We show that 

G has M-finite thickness. Let S = {w1, w2, • • • , wn} be nonempty finite set of strings 

for n E N. We call a pair of finite sets (51i 52) of strings a division of S (w.r.t. .) if 
             •Si ={w1,4),, wn~)} for j = 1, 2 and wi= w!1) w.2) for i = 1, 2,•••, n. By 

DIV(S, •), let us denote the set of possible divisions of S. Since the set S is finite, 

DIV(S, •) is finite. Let us define the following subset of C: 

F _ {L(1) L(2) 13(Si, S2) E DIV(S, •) s.t. L(i) E MIN(Si, Li), j = 1, 2}. 

Since C3 has M-finite thickness for j = 1, 2 and DIV(S, •) is finite, F is a finite subset 

of ,C, and thus MIN(S, F is finite. In order to prove our theorem, it is suffice to show 

the following Claim A and Claim B: 

   CLAIM A: MIN(S, C) = MIN(S, F). 

   PROOF OF THE CLAIM A. Assume first that there exists a language L E MIN(S, C) 

\MIN(S, F). Then there exist languages L(3) E C3, j = 1, 2 and a division (S1,52) E 
DIV(S, •) such that L = L(1).L(2) and S3 C L(i) for j = 1, 2. Since G; has M-finite thick

ness for j = 1, 2, there exist languages LOY E MIN (S, £3) such that S, C L(jY c L(i) . 

Let L' = L(1)~ • L(2)'. Then L' E . and S c L' C L. Since is finite, for some 

L" E MIN(S, F), S C L" C L' C L. However, L is a minimal language of S. Thus 

L(1Y • L(2)' = L, which contradicts L (IF.  Hence MIN(S, C) C MIN(S, F). Similarly, 

we can prove the converse inclusion. 

   Note that Claim A implies MIN(S, C) is finite. 

   CLAIM B: For a language L E C where S c L, there exists a language L' E 

MIN(S, G) such that L' c L. 

The proof of Claim B is obvious from the Claim A. 

   By Claim A and Claim B, the class C has M-finite thickness. ^ 

   By the above theorem, it follows immediately that:
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    THEOREM 2.18. Given language  classes  with  M-finite thickness, a class obtained by 

finitely many applying the operations U, fl,~, Q,m ,+ and * to them has M-finite thickness. 

    THEOREM 2.19. The property of M-finite thickness is preserved under neither union 

0 nor complement C. 

    PROOF. Let E = {a}. Let us consider the following language classes Gi = {L(i3) 

iEN} for j=1,2: 

L(11) = L(12) = {a}+, L~ = {a'}, L = {a}, i > 2. 

As easily seen, L1 and G2 have both M-finite thickness. 

   First consider the class Li 0 £2. Let S = {a}. Then infinitely many languages 

L2(1) U L22)(= {a, ai}) (i > 2) are all minimal languages of S. Hence the class G1 U G2 
does not have M-finite thickness. 

    Next consider the complement language class of Li. Then clearly infinitely many 

languages (L1))c, (L(31))c, •  • are minimal languages of S defined above. It means that 

the class 4' does not have M-finite thickness. 

  Therefore our theorem is valid.^ 

    THEOREM 2.20. Let G1 and G2 be a language classes with M-finite thickness. Then 

the following class G has M-finite thickness: 

G=LiUG2u (Li U,C2). 

    PROOF. The proof can be done similarly to that of Theorem 2.17. Let S be a 

nonempty finite set. We call a pair of finite sets (Si, 52) a division of S (w.r.t. U) when 

Si and S2 are both nonempty sets and S = Si U S2. Since the set S is finite, the set of 

possible divisions of S, denoted by DIV(S, U), is finite. Let us put 

   = MIN(S, G1) U MIN(S, G2) 

        U {L(1) U L(2) I 3(Si, S2) E DIV(S, U) s.t. L(3) E MIN(Si, G.i ), j = 1, 2}. 

Since Li has M-finite thickness for j = 1, 2 and DIV(S) is finite, .7. is finite subset of G. 

Similar to the proof of Theorem 2.17, we can show the following Claim A and Claim B: 

   CLAIM A: MIN(S, L) = MIN(S, F). 

    CLAIM B: For a language L E G where S C L, there exists a language L' E 

MIN(S, G) such that L' C L. 

By Claim A and Claim B, the class G has M-finite thickness.^ 

    Let OPE = {u, n, , Q+ ,* }. Given a language class G, a nonempty set 0 C OPE 

and n E N, let us denote by G(n, 0) the class obtained by at most n times applying 

operations in 0 to languages in G. Then by Theorem 2.17 and Theorem 2.20, the 

following corollary may be derived: 

    COROLLARY 2.21. Let G be a language class with M-finite thickness. Then for 

n > 0 and a nonempty set 0 C OPE, the class G(n, 0) has M-finite thickness, where 

£(0, O) = G.
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    PROOF. The proof can be done easily by a mathematical induction on n.  ^ 

    Let w1, w2,  •  • be a recursive enumeration of Z* and G = L1, L2, • • •, where Li = 

{wi} for i E N. Then for n E N we denote GE(n) = G(n, {U, •,* }). Then it follows 
immediately that: 

   COROLLARY 2.22. For n > 0, the class GE(n) has M-finite thickness. 

   Note that U GE (n) is equal to the class of regular languages. 
n=0 

2.3. A Language Class with Finite Elasticity 

    In this subsection, we are concerned with a special type of language classes, called 

finite elasticity, introduced by Wright [14] as a sufficient condition for inferability from 

positive data, defined as follows: 

   DEFINITION 2.23. A class G has infinite elasticity if there exists an infinite sequence 

of strings (wn)n>o and an infinite sequence of languages (Ln)nEN, each in G, such that 

              (1) {wo, • • • ,w_1} C L,,, and (2) wn Ln 

for all n E N. A class G has finite elasticity if G does not have infinite elasticity. 

   Note that Motoki et al.[7] showed that finite elasticity defined by Wright [14] is not 

a sufficient condition for inferability from positive data, and corrected the definition as 

the above. Wright's results given below are valid for the above corrected definition of 

finite elasticity. 

   We first present a theorem characterizing finite elasticity in terms of finite cross 

property as follows: 

   THEOREM 2.24. G has finite elasticity if and only if (L, G) for every language L. 

   PROOF. (=) Assume that G has finite elasticity and there exists a language L 

which has infinite cross property within G. By Lemma 2.2, there exist two infinite 

sequences (Tn)nEN and (Ln)nEN satisfying the conditions (1)-(3) in Lemma 2.2. Without 

loss of generality, we can assume that T1 # 0. Let wo E T1. Due to the the condition 

(2), Tn+1 \ Ln for n E N, and thus there is a string wn E Tn+1 \ Ln. It can be 
easily shown that two infinite sequences (wn)n>o and (Ln)nEN satisfy the conditions of 

infinite elasticity. This contradicts our assumption. 

(~) Assume that G has infinite elasticity. Let (wn)n>o and (Ln)nEN be two 
infinite sequences satisfying the conditions in Definition 2.23.Let us put L = {wn 

n > 0} and Tn = {wo, wi, • • • , wn_1 } for n E N. As easily seen, two infinite sequences 

(Tn)nEN and (Ln)nEN satisfy the conditions (1)-(3) in Lemma 2.2. Hence L has infinite 
cross property within G.^
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   By Theorem 2.9 and Theorem 2.24, it follows immediately that if  G has finite 

elasticity, then every language has pftt within  G. 

    Next we consider the operations for classes introduced in the previous subsection. 

In [6] and [14], it has been shown that the property of finite elasticity is preserved under 

such operations as described below. 

   THEOREM 2.25 (WRIGHT [14]). The property of finite elasticity is preserved under 

union operation U. 

   THEOREM 2.26 (MORIYAMA&SATO [6]). The property of finite elasticity is pre 

served under the operations U,f1, •,"'',+and *, but is not true for the complement oper

ation. 

    THEOREM 2.27. The property of finite elasticity is preserved under the shuffle op

eration Q. 

    PROOF. The proof can be given similarly to that of Theorem 2.26 given in [6]. ^ 

    By Theorem 2.25, Theorem 2.26 and Theorem 2.27, the following two theorems 

may be derived: 

    THEOREM 2.28. Given language classes with finite elasticity, a class obtained by 

finitely many applying the operations U, U, f , Q, n ,+ and * to them has also finite 
elasticity. 

    By the above theorem, the following two corollaries may be easily derived: 

COROLLARY 2.29. Let G be a class with finite elasticity. Then for n > 0 and a 

nonempty set 0 C OPE, the class G(n, 0) has finite elasticity, where QPE and G(n, 0) 

are defined in §2.2. 

    COROLLARY 2.30. For n > 0, the class Gz(n) has finite elasticity, where GE(n) is 

defined in § 2.2. 

    PROOF. It is trivial since the class G = {wi }, {w2}, • • • has finite elasticity, where 

w1, w2, • • is a recursive enumeration of E*.0 

3. Inference Machines and Inferability 

    In this section, we consider inductive inference of formal languages. At the be

ginning, we define briefly basic notions on inductive inference. For more details about 
inference machine, we refer to [1]. 

    An inductive inference machine is an effective procedure that requests inputs from 

time to time and produce outputs from time to time. An output produced by an inference 

machine is called a hypothesis or a guess. The set of hypothesis is called the hypothesis 

space. 

    Hereafter, we assume that a hypothesis space is an indexed family of recursive 

languages defined as follows:
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    DEFINITION 3.1. An infinite sequence of languages  G =  L1, L2, • • is an indexed 

family of recursive languages if there exists a recursive function f : N x Z* --> {0,1} 
such that 

1, ifwELi, f (i
, w) = 0

, if w Li. 

    A positive presentation of a nonempty language L is an infinite sequence of strings 

w1i w2, • such that {wn n E N} = L. A complete presentation of a language L is an 

infinite sequence of pairs (w1, t1), (w2, t2), • • • such that {wn I to = 1, n E N} = L and 

{wnitn=0, nEN}=Lc. 

    DEFINITION 3.2. A class of languages G = L1, L2, • • • is inferable from positive 

data (resp., complete data) if there is an inductive inference machine M such that the 

sequence of outputs produced by M converges to j with Li = Li for any index i E N, 

where Li � 0, and any positive presentation (resp., complete presentation) of Li. 

   It is well known that every indexed family of recursive languages is inferable from 

complete data (cf. [3]). In the next subsection, we deal with inductive inference from 

positive data. 
   When the target language does not belong to the hypothesis space, how does the 

machine work? It is impossible to identify the target language in the limit. Recently, 

Mukouchi&Arikawa [9] have presented the following inductive refutable inference as a 

framework of machine discovery: 

    DEFINITION 3.3. An inductive inference machine that can refute hypothesis spaces 

is an effective procedure that requests inputs from time to time and either (i) produces 

hypotheses from time to time or (ii) refutes the class and stops after producing some 

hypothesis. 

    A language class G = L1, L2, • • • is refutably inferable from positive data (resp., 

complete data) if there is an inductive inference machine M that can refute hypothesis 

space such that for any language L and any positive presentation (resp., complete pre

sentation) of L, (i) if L E G, then M infers L from the presentation, (ii) otherwise M 

refutes the class G from the presentation. 

   Refutable inferability from positive data is known to be of small power (cf. [9]). In 

§3.2, we consider inductive refutable inference from complete data. 
   Before going into the detailed discussions on inductive inference, let us give the clo

sure properties of indexed families of recursive languages under the operations considered 

in §2.2. 

   By Z.FR, we denote the collection of indexed families of recursive languages. 

   LEMMA 3.4. ZFR is closed under the operations U, 0, fl, Qm ,+ and * defined in 

§2.2, respectively. 

  PROOF. It is trivial from Definition 3.1.^
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3.1. Inductive Inference from Positive Data 

    In this subsection, we consider inductive inference of languages from positive data. 

   Angluin [1] presented the following characterization theorem which is of fundamen

tal importance in the study of inductive inference from positive data: 

   THEOREM 3.5  (ANGLUIN [1]). Let G = Ll, L2, • • • be a class of Z.FR. Then G is 

inferable from positive data if and only if there is an effective procedure that enumerates 

all strings of ftt of Li for any i with Li ~. 

   By the above theorem, the condition that a language of a class has ftt within the 

class is necessary for the inferability from positive data. 

   The following two sufficient conditions for inferability have to be presented: 

   THEOREM 3.6 (WRIGHT [14]). Let G E Z.FR. If G has finite elasticity, the class 

is inferable from positive data. 

   THEOREM 3.7 (KAPUR [4], SATO&UMAYAHARA [11]). Let G E I.FR. If any lan

guage of G has pftt within G, then G is inferable from positive data. 

   Note that the class has uniformly inferable from positive data under the above 

condition (cf. [4] and [5]). Theorem 2.9 and Theorem 2.24 imply that finite elasticity is 

a stronger sufficient condition that the above condition of pff for inferability. 

   Theorem 2.15 and the above theorem imply the following equivalences: 

   THEOREM 3.8 (SATO&MORIYAMA [10]). Let G E Z,FR. If G has M-finite thick

ness, then the following three statements are equivalent: 

     (i) G is inferable from positive data. 

     (ii) Every language of G has ftt within G. 

    (iii) Every language of G has pftt within G. 

   By Theorem 2.28, Lemma 3.4 and Theorem 3.6, it follows immediately that: 

   THEOREM 3.9. Given language classes in Z.FR each of which has finite elasticity, 

a class obtained by finitely many applying the operations U, 0, fl, .0.,771,+ and * to them 
is inferable from positive data. 

   By the above theorem, the following two useful corollaries are given immediately: 

   COROLLARY 3.10. Let G E Z.FR. If G has finite elasticity, then for n E N and a 

nonempty set 0 C OPE, the class G(n, 0) is inferable from positive data, where OPE 

and G(n, 0) are defined in §2.2. 

   COROLLARY 3.11. For n > 0, the class G, (n) is inferable from positive data, where 

GE(n) is defined in §2.2.
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3.2. Inductive Refutable Inference from Complete Data 

   In this subsection, we consider inductive refutable inference of a language class 

from complete data introduced by  Mukouchi&Arikawa [9]. 

   For a language class G and a pair of finite sets I = (T, F) of strings, let 

econL(I) = 1, if CON(I, G) 0 0,                                   0
, o.w. 

Let ECM = {G I econL is recursive}. 

   A characterizing theorem of refutable inferability from complete data has been 

obtained: 

   THEOREM 3.12 (MUKOUCHI&ARIKAWA [9]). Let G be a class of L'FR. Then G is 

refutably inferable from complete data if and only if G E ECM and every language L ¢ G 

has pdftt within G. 

    By Theorem 2.16 and the above theorem, a characterization theorem for a class 

with M-finite thickness is established as follows: 

   THEOREM 3.13. Let G E fl ECJV. If G has M-finite thickness, then the fol

lowing four statements are equivalent: 

     (i) G is refutably inferable from complete data. 

     (ii) Every language L G has ftt within G. 

    (iii) Every language L G has pftt within G. 

    (iv) Every language L G has pdftt within G. 

   Furthermore, the following sufficient condition may be derived: 

   THEOREM 3.14. Let G E Z.FR fl SCAT. If G has M-finite thickness and finite elas

ticity, then G is refutably inferable from complete data. 

   PROOF. As mentioned in §3.1, if G has finite elasticity, then every language has 

pftt within G. Thus Theorem 3.13 implies our theorem.^ 

LEMMA 3.15. ECM is closed under the operations U, U, fl, Qm + and *, defined 

in §2.2, respectively. 

   PROOF. We only prove for the operation Let G1 and G2 be classes in ECN and 

I = (T, F) be a pair of finite sets of strings. Then DIV (T, •) and DIV (F, •) defined in 

the proof of Theorem 2.17 of §2.2 are both finite and moreover, recursively generable 

(cf. [9]). Besides, as easily seen, econ; (T, F) = 1 iff there exists a division (T1, T2) E 
DIV (T, •) and a division (F1, F2) E DIV (F, •) such that econ~ (T~, = 1 for j = 1, 2. 

Since econL, is recursive for j = 1, 2, econL
1:c2 is also recursive. This completes our 

lemma.^ 

   By Theorem 2.18, Theorem 2.28, Lemma 3.4, Theorem 3.14 and Lemma 3.15, the 

following closedness theorem on inductive refutable inference is established:
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   THEOREM 3.16. Given language classes  in  Z.FR  n  ECM each of which has M-finite 

thickness _ick_ne_ss andfinite elasticity, a class obtained by finitely applying the operations U, n,-: 

, .0.,m,+ and * to them is refutably inferable from complete data. 

   Note that the operation U is not included in the above theorem, because the prop

erty of M-finite thickness is not always preserved under the operation U as illustrated in 

the proof of Theorem 2.19. However, Theorem 2.20 implies the following closedness for 

union operation U: 

   THEOREM 3.17. Let Li and L2 be classes in IFIZ n ECM. If these classes have 

M-finite thickness and finite elasticity, then L1 U L2 U (L1 U L2) is refutably inferable 

from complete data. 

   By the above theorem, the following two corollaries may be derived as well as 

Corollary 3.10 and Corollary 3.11. 

   COROLLARY 3.18. Let L E I.FR n ECN. If L has M-finite thickness and finite 

elasticity, then for n E N and a nonempty set 0 C OPE, L(n, 0) is refutably inferable 

from complete data, where OPE and L(n, 0) are defined in §2.2. 

COROLLARY 3.19. For n E N, the class LE(n) is refutably inferable from complete 

data, where LE(n) is defined in §2.2. 

  PROOF. It is clear since LE(n) E ECM.^

3.3. Relationships 

   In this section, we have investigate inductive (refutable) inferability for classes with 

M-finite thickness. The following Figure 1 shows the relationships obtained so far.

4. Inductive Inference of Elementary Formal Systems 

   In this section, we deal with a special type of elementary formal system's (EFS's, 

for short), called lengthbounded as a framework defining target languages. That is, a 

hypothesis space of an inductive inference machine is assumed to be a class of length

bounded EFS's. 

   Let E,17 and X be mutually disjoint sets. We assume that E is finite and H is 

finite or a countable set. Elements of E,H and X are called constant symbols, predicate 

symbols and variables, respectively. Each predicate symbol is associated with a positive 

integer termed arity. Let HB be the set of all ground atoms. For detailed definitions 

and results on EFS's, we refer to [2] and [15] . 

DEFINITION 4.1. A clause A 4 B1i • • • , Bn is lengthbounded if 

IAOI > IBA +...+IBn01 

for any nonempty substitution 0. An EFS F is lengthbounded if any clause in F is 

lengthbounded.
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                                    (i)  VL E G, 3F C_ Lc s.t. (L, GFC ) 
                                               (i.e., L has pftt within G) 

V E G, (L, G) —.(ii) G is inferable from positive data 

                               (iii) VL E G, (L, GL) 
                                              (i.e., L has ftt within G) 

VL, (L, G) 

(finite elasticity)(i) VL st G, (Lc, GLc) and 

G E ECN3F C LC s.t. (L, GFC ) 
                                             (i.e., L has pdftt within G. ) 

                                  (ii) G is refutably inferable 
VL f G, (L, G)from complete data 

                                 (iii) VL f G, 3F C Lc s.t. (L, GFC ) 
                                                (i.e., L has ftt within G) 

                               (iv) VL 41 G, (L, GL) 
                                                (i.e., L has ftt within G)

Figure 1: Relationships, where L E IFR. has M-finite thickness.

   Let us denote by LB the class of all lengthbounded EFS's. 

   We first give the following result on EFS model shown by Arikawa et al.[2]. 

   THEOREM 4.2 (ARIKAWA ET AL. [2]) . For a lengthbounded EFS F, the least Her

brand model M(F) is recursive. 

   For an EFS F and a fixed unary predicate symbol p E H, we denote by L(F, p) the 

language over E defined by F and p. 

   The next result shows the power of lengthbounded EFS's. 

   THEOREM 4.3 (ARIKAWA ET AL. [2]) . A language L C E+ is definable by a length

bounded EFS if and only if L is contextsensitive. 

    For a class G =1'1,1'2,  • • • of EFS's, we put 

L(g,p) = L(Fi,p),L(F2,p),... • 

By Theorem 4.2, if G is a recursive enumeration of lengthbounded EFS's, then L(G, p) 

is an indexed family of recursive languages, that is, L(G, p) E I FR,. 

    Hereafter, we confine ourselves to recursive enumerable classes of lengthbounded 

EFS's. 

   DEFINITION 4.4. A class G is closed under subset operation if for any F E G and 

any F' C F, F' belongs to G. 

   The following notion has been introduced by Shinohara [12] and [13].
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    DEFINITION 4.5. Let  5 be a nonempty subset of HB. An EFS F is reduced w.r.t. S 

if S  C M(F) and S g M(F') for any F' C F. 

   For a nonempty set T of strings over E and a class g of EFS's, let us put 

RED(p(T), g) _ {F ECIF is reduced w.r.t. p(T). }, 

where p(T) = {p(w) ( w E T}. 

    DEFINITION 4.6. An EFS F is equivalent to F' w.r.t. p, denoted by F  F', if we 

can identify them by renaming predicate and variable symbols, except p. 

    Clearly, the relation  is an equivalence on any class g of EFS's. As easily seen, 

given F, F' E g, if F -p F', then L(T, p) = L(T', p) and moreover 

F E RED(p(T), g) if and only if F' E RED(p(T), g). 

for every nonempty finite set T. This means that RED(p(T), Cg) consists of some 

equivalence classes of g. Let RED(p(T), g)/ -p be the set of equivalence classes of 

RED(p(T), C). 

   The following notion introduced in [10] plays an essential role related to inferability 

for classes with M-finite thickness discussed in the previous section. 

   DEFINITION 4.7. A class g is R-finite w.r.t. p if RED(p(T), G)/ -p is finite for any 

finite nonempty set T C E+ 

LEMMA4.8 (SATO&MORIYAMA [10]). Let g be a class of lengthbounded EFS's 

closed under subset operation. If G is R-finite w.r.t. p, then L(c, p) has M-finite thick

ness. 

    We consider what classes are R-finite w.r.t. p below. 

   LEMMA 4.9 (SHINOHARA [12], [13]). 

     (i) If H is finite, £13 is R-finite w.r.t. p. 

    (ii) For n, EB is R-finite w.r.t. p, where 

£13Pn={FEL13(#F<n}. 

    DEFINITION 4.10. A clause A 4- B1, • • , B is strongly lengthbounded if the clause 

is lengthbounded and in case n = 1, iA91 > IBA for any substitution 0. An EFS F is 

strongly lengthbounded if any clause in F is strongly lengthbounded. 

   THEOREM 4.11. A language L C E+ is context-free, then L is definable by a 

strongly lengthbounded. 

   LEMMA 4.12 (SATO&MORIYAMA [10]). Let g be a class of strongly lengthbounded 

EFS's closed under subset operation. Then L(g,p) is R-finite w.r.t. p.
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    The above three lemmas mean that the collection of classes with M-finite thickness 

is sufficiently large. 

    As shown in Theorem 3.8 or Theorem 3.13, the set theoretic aspect of inferability 

can be characterized by ftt in the criteria considered in this paper. The following notions 

correspond to infinite cross property and finite cross property introduced in order to 

clarify the notion of ftt in §2.1. 

 DEFINITION 4.13. A language L is of infinite hierarchy w.r.t. p within L(g ,p) if 
there exists an infinite sequence of finite sets (Tn)nEN and an infinite sequence of EFS's 

(rn)nEN, each in C, such that 

(1)T1CT2C..., (2) UTn=L, (3)T1CF2C..., 
n=1 

     (4) for n E N, I'n is reduced w.r.t. p(Tn) within c, 

    (5) for n E N, L(Fn, p) C L. 
A language L is of finite hierarchy w.r.t. p within L(g,p) if L is not of infinite hierarchy 

w.r.t. p within L(g, p). 

    Note that if L is of infinite hierarchy w.r.t. p, then the sequence of L(F1i p), L(I'2, p), 
• • • in the above definition is strictly monotone increasing

, and the class L(g,p) has 
infinite elasticity. 

    In terms of the above notion, a characterization of ftt in the framework considered 

is given as follows: 

    THEOREM 4.14. Let g be an R-finite class of lengthbounded EFS's w.r.t. p closed 
under subset operation. A language L has ftt within L(g,p) if and only if L is of finite 

hierarchy w.r.t. p within L(g,p). 

    PROOF. The proof can be done similarly to that of Theorem 4.4 in [10]. 0 

    A characterization of inferability for an R-finite class considered from positive data 

has been given in [10] as follows: 

   THEOREM 4.15 (SATO&MORIYAMA [10]). Let g be an R-finite class of length

bounded EFS's w.r.t. p closed under subset operation. Then the following two statements 

are equivalent: 

     (i) L(g,p) is inferable from positive data. 

    (ii) Every language L E L(g,p) is of finite hierarchy w.r.t. p within L(g,p). 

   Concerning inductive refutable inferability, the following characterization can be 

derived immediately from Lemma 4.8, Theorem 3.13 and Theorem 4.14: 

   THEOREM 4.16. Let g be an R-finite and recursive class of lengthbounded EFS's 

w.r.t. p closed under subset operation and L(g,p) E ECN. Then the following two 

statements are equivalent: 

     (i) L(g,p) is refutably inferable from complete data. 

    (ii) Every language L cl L(g,p) is of finite hierarchy w.r.t. p within L(g,p).
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    LEMMA 4.17  (MUKOUCHI& ARIKAWA [9]). For any n E N, econL(LB<n p) is re

cursive, that is, L(LZ3-' , p) E (C.N. 

   By Lemma 4.9, Lemma 4.17 and Theorem 4.16, it follows immediately that: 

COROLLARY 4.18 (MUKOUCHI&ARIKAWA [9]). For n E N, the class L(GBn, p) 

is refutably inferable from complete data. 

   Note that Shinohara has proved that L(GB-n, p) has finite elasticity, and thus it is 

inferable from positive data (cf. [12] and [13]). On the other hand, the class G consisting 

of all finite languages has infinite elasticity, but is inferable from positive data. This 

means that L is not contained in L(LB�n, p) for any n E N. As shown in [9], L is not 

refutably inferable from complete data. In fact, as easily seen, any language L ft G does 

not have ftt within G. As mentioned in §2.2, every class containing G considered has 

M-finite thickness. However, such a class is not refutable inferable from complete data.
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