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Abstract 

A formal system is a finite set of expressions, such as a grammar or a Prolog program. 

A semantic mapping from formal systems to concepts is said to be monotonic if it  maps 

larger formal systems to larger concepts. A formal system I? is said to be reduced with 

respect to a finite set X if the concept defined by I' contains X but the concepts defined 

by any proper subset I" of I' cannot contain some part of X. Assume a semantic 
mapping is monotonic and formal systems consisting of a t  most n expressions that are 

reduced with respect to X can define only finitely many concepts for any finite set X 

and any n. Then, the class of concepts defined by formal systems consisting of a t  most n 

expressions is shown to be inferable from positive data. As corollaries, the class of 

languages defined by length-bounded elementary formal systems consisting of a t  most 

n axioms, the class of languages generated by context-sensitive grammars consisting of 

a t  most n productions, and the class of minimal models of linear Prolog programs 
consisting of a t  most n definite clauses are all shown to be inferable from positive data. 

1 Introduction 

Inductive inference [3] is a process to guess an unknown concept from its examples. 

What we call concepts here are subsets of a universe U of objects. For example, if we 
take the set Z+ of all words over an alphabet Z as the universe U, then concepts are so 
called formal languages. Positive examples of a concept R are elements in R. Negative 

examples are the others. Inductive inference from positive data is a process to guess a 

concept when only positive examples are available. We have a well-known theorem by 
Gold [7] that  indicates weakness of inductive inference from positive data. 

Immediately from this theorem we know even the class of all regular languages, which 



is probably the smallest in Chomsky hierarchy, cannot be inferred from positive data. 

For more than ten years after Gold showed this, inductive inference from positive data 

had received few attentions. 

Such a situation was broken down by Angluin [I, 21 who gave a theorem 

characterizing inferability from positive data and presented nontrivial classes. The 

class of pattern languages [I] is one of the most interesting classes shown by her to be 
inferable. From her results we know not a few possibilities remain in inductive 

inference from positive data, a t  least in principle. Following her, several studies have 

been developed. Nevertheless discovered classes are too poor and narrow for many 
people to believe powerfulness of inductive inference from positive data in reality. 

The author and his co-workers developed a unifying framework [5] for language 
learning, called elementary formal system (EFS for short), which is introduced by 
Smullyan [I61 to reconstruct recursion theory. In a word, EFS is a logic program over 

C+ [18]. Arikawa showed EFS's can be used as a natural device to define formal 
languages [4]. Using this framework we can introduce a hierarchy of language classes 

that are characterized by a syntactic restriction and the number of clauses. The class of 

pattern languages [I] is located a t  the bottom of the hierarchy. 

An EFS is a finite set of definite clauses. For example, 

r = {p(a, b, c)+- ; p(ax, by, cz) +p(x, y ,  2); q(xyd +- P(X, Y, 2) 1 

is an EFS, where a, b, c are constant symbols taken from an alphabet C, x ,  y, z are 
variables, andp, q are predicate symbols. Finite strings consisting of constant symbols 

and variables are also called patterns. In EFS's we use two inference rules: one is an 

application of a substitution for variables by nonempty words, and the other is modus 

ponens. The language L(I', q) defined by and q is 

{ w C C + I q(w) is provable from r } = { anbncn I n 2 1 }. 

A definite clause A + B1, ... , B, is called length-bounded if the total length of BIB, 
... , Bn8 does not exceed the length of A0 for any substitution 8, where the length of an 

atom is the sum of the lengths of patterns in it. The EFS I? in the example above is 
length-bounded. The class of languages definable by length-bounded EFS's coincides 

with the class of context-sensitive languages. 

Recently the author revealed powerfulness of inductive inference from positive data 
[15], by showing that the class of languages definable by length-bounded EFS's 
consisting of a t  most n clauses is inferable from positive data for any n. Here we 

should note that the restriction on the number of clauses in EFS does not trivially 

imply inferability from positive data because the class contains infinitely many 
languages. On the contrast, for example, the class of regular languages accepted by 



finite state automata with a t  most n states contains only finitely many languages, and 

therefore its inferability is obvious. 

This paper is devoted to extend the previous results [15]. First we show a sufficient 
condition for inferability from positive data in a more general setting. A concept 

defining framework is specified by a triple (U, E, M) of a universe U of objects, a 
universe E of expressions, and a semantic mapping M from finite sets of expressions to 

concepts. A finite set of expressions is called a formal system. We say M is monotonic if 
for any formal systems I" and I?, I" I' implies M(I") M(I'). A formal system I? & E is 

said to be reduced with respect to a finite set X C U, if X & M(F) but X M(r') for any I" 
5 I'. We say a concept defining framework (U, E, M) has bounded finite thickness, if M 

is monotonic, and for any finite set X G U and any n 2 0 

{R  c - U I R = M(I'), r G E, #I' 5 n, I' is reduced with respect to X} 

consists of finitely many concepts. In any concept defining framework ( U ,  E, M) that 

has bounded finite thickness, the class of concepts defined by formal systems consisting 
of a t  most n expressions is shown to be inferable from positive data for any n. 

Then, we apply this general result to several concept defining frameworks. As 

corollaries, not only the class of languages definable by length-bounded EFS's with a t  

most n clauses, but also the class of context-sensitive languages generated by 

grammars consisting of a t  most n productions, and the class of minimal models of 

linear Prolog programs [ I l l  or reducing Prolog programs [6] consisting of a t  most n 
definite clauses are all shown to be inferable from positive data. 

2 Preliminaries 

We start with a brief review of basic definitions and results on inductive inference 

according to [I,  2,7,17] in slightly modified forms to be appropriate for our discussions. 

Let U and E be sets, whose elements are called objects and expressions, respectively. 

A concept is a subset R & U. A formal system is a finite subset I' & E. A semantic 
mapping is a mapping M from formal systems to concepts. When M(r) = R, we say a 

formal system I' defines a concept R or R is a semantics of I'. 

DEFINITION A concept defining framework is a triple (U, E, M) of a universe U of 

objects, a universe E of expressions, and a semantic mapping M. 

To deal with context-sensitive languages as concepts, for example, we may use 

nonempty finite strings over an alphabet Z as objects and context-sensitive productions 



as expressions. Here after in this section we fix a concept defining framework (U, E, M) 
arbitrarily. 

DEFINITION A class of concepts C = R1, Rz, ... is said to be an indexed family of 

recursive concepts if there exists a computable function f : NX U-+ {O, 1) such that 

1, if S C R ~  

0, otherwise. 

When concepts in a class C are defined by formal systems, the index i of Ri can be 

considered as a formal system J? such that M ( r )  = Ri. From here on, we assume that 

classes of concepts are an indexed family of recursive concepts. 

DEFINITION A complete presentation of a concept R is an infinite sequence (sl,tl), 
(sz,tz), ... such that ti is 0 or 1, {si I t i=l)=R, and {si I ti=O)= U-R. A positive 
presentation of a nonempty concept R is an infinite sequence of sl, sz, ... such that { s 

( s = s ~ ~ o ~ s o ~ ~  i}=R. 

An inference machine is an effective procedure that requests input from time to time 

and produces output from time to time. An output produced by an inference machine is 

called a guess. Let CJ = sl, s2, ... be an infinite sequence, and gl, gz, ... be the sequence of 

guesses produced by an inference machine IM when elements of CJ are successively 

given to IM. Then we say that IM on input (T converges to g, if the sequence gl ,  g2, ... of 

guesses is finite and ends with g, or there exists a positive integer ko such that g k  = g 

for all k 2 ko. 

DEFINITION A class of concepts C = R1, Rz, ... is said to be inferable from positive 

(or complete) data if there exists an inference machine IM such that IM on input 0 

converges to g with Rg =R i for any index i and any positive (or complete) presentation 

(T of Ri. 

Gold [7] showed that any indexed family of recursive concepts is inferable from 

complete data. He also proved that inference from positive data is impossible for any 

class of concepts that contains all finite concepts and a t  least one infinite concept. By 
his theorem we can easily show that even the class of regular languages is not inferable 

from positive data. By this result most researchers in the field of grammatical 
inference had been disappointed until Angluin [I,  21 gave a new life to inductive 

inference from positive data by proving a theorem, which characterizes classes 
inferable from positive data, and presenting nontrivial classes including the class of 

pattern languages. 

Here we give one of the sufficient conditions for classes to be inferable from positive 

data shown by her. Using this condition the class of pattern languages is proved to be 



inferable from positive data. For more details the reader should be referred to 

literatures [ l ,  21. We denote the number of elements in a set S by #S .  

DEFINITION A class C has finite thickness if #{ R E C I A C R } is finite for any 

object A C U. 

THEOREM 1 [I,  21 If a class C has finite thickness then C is inferable from positive 

data. 

The author showed in his previous work [13] that unions of two pattern languages 

are inferable from positive data. Wright [I71 extended this result to unions of three or 

more languages by showing that the following condition is sufficient for inferability 
from positive data and it is closed under unions. 

DEFINITION A class C has infinite elasticity if there exist two infinite sequences Ao, 
A1, ... andR1, Rz, ... , where Ai E U, Ri C C, such that for any k 2 1 

C has finite elasticity if C does not have infinite elasticity. 

Here we should note that Ao, A1, A2, ... and R1, R2, R3, ... in the definition above 

have to be pairwise inequivalent. 

LEMMA 2 [17] If a class C has finite thickness then C has finite elasticity. 

THEOREM 3 [17] If both of classes C1 and C2 have finite elasticity then the class of 

unions C = {R1 U R2 I R1 C C1 and R2 C Cz } has finite elasticity. 

THEOREM 4 [I71 If a class C has finite elasticity then C is inferable from positive 

data. 

REMARK The condition "{ Ao, Al, ..., Ak - } c R k  but Ak B Rk" in the definition of 

infinite elasticity is stated as 

Aj C R k  if and only i f j  < k, 

in 1171. Note that our definition does not care whether Aj is contained in Rk or not for 
any j > k. However, if we adopt the original definition, it is shown that finite elasticity 
is not sufficient for inferability from positive data [9]. 

In [I41 the author showed a theorem, which is one of the special cases of our results 

in this paper, that the class of languages defined by elementary formal systems 

consisting of two axioms is inferable from positive data. Such a result on formal 



systems does not follow immediately from Theorem 3, because formal systems may 

define concepts that cannot be represented by simple unions. 

3 Inductive Inference of Monotonic Formal 
Systems 

DEFINITION A semantic mapping M is monotonic if 

I" G r implies M(r") C M(I'). 

DEFINITION A formal system I' is reduced with respect to a set X U if 

X M(r) but X g MU'') for any I" I?. 

Intuitively, when a formal system I' does not have any redundant expressions to 
cover all objects in X, I' is said to be reduced with respect to X. 

DEFINITION A concept defining framework (U, E, M) has bounded finite thickness if 

M is monotonic , and 

#{ M(I') I I' is reduced with respect to X, #I' S n} < 

for any finite setX U and any n 2 0. 

Here we should note that bounded finite thickness is a natural extension of finite 

thickness. That is, if the class of all concepts in a concept defining framework (U, E, M) 

has finite thickness then (U, E, M) has bounded finite thickness. However the converse 

does not hold in general. The following is the main result of this paper. 

THEOREM 5 Let a concept defining framework (U, E, M) have bounded finite 

thickness and C = { M(I') I I' & E, #I' 5 n }. Then, the class C is inferable from 

positive data for any n 2 0. 

Proof By mathematical induction on n, we show C has finite elasticity. 

For the base case n = 0, finite elasticity is trivial. Because Co contains only one 

concept. 

For any n < i ( i 2 1 ), we assume that C has finite elasticity. Let C i  have infinite 

elasticity. Then there exist an infinite sequence of objects Ao, A1, ... and an infinite 
sequence of formal systems I'l, I'z, ... such that for any h 2 1, #I'k 5 i, { Ao, Al, ... , 
Ak- C M(rk) but Ak f M(I'k). Let h be a function defined by 



h(k) = min { j k I I'k is reduced with respect to { Ao, ... , Aj ) or j = k }. 

We consider two cases depending on whether the set { h(k) I k = 1, 2, ... ) has a finite 

bound or not. 

Case 1 If { h(k) I k = 1,2,  ... ) has a finite bound j o  such that h ( k )  5 jo for all k. Then 
for any k > jo, I'k should be reduced with respect to {Ao, ... , Aj, }. However, bounded 
finite thickness of ( U ,  E ,  M) claims that the number of concepts defined by such formal 

systems is finite. This contradicts our assumption on the infinite elasticity of C '. 

Case 2 If { h(k) ( k = 1, 2, ... ) does not have any finite bound, then it contains an 

infinitely ascending sequence 1 < h(k1) < h(k2) < ... such that k l  < h2 < ... . Let X = 

{Ao, * * *  , Ah(kj)} and X' = 1'0, * * *  Ah(kj)-l)* 

If I'kj is reduced with respect to X, then X M(I' 'k,) for any I? 'kj 5 rkj.  However X 
M(I' 'k,) for some I' 'kj 5 I'kj because I'k, is not reduced with respect to X. Therefore 

there exists I' 'k, E; I'k, such that A? M(I' 'k,) but Ah(k,) tF M(I' 'k,). 

Otherwise, if I'kj is not reduced with respect to X, then h(kj) = kj. From our 
assumption on infinite elasticity of C i, A A ~ . )  = Ahj B M(I'k,). Since I'kj is not reduced 

J 

with respect to X ,  X M(I' 'k,) for some I' 'kj 5 I'k,. 

Therefore there always exists a formal system r"kj such that r"kj I; I'k, and A? & M(I' 

'kj) but Ah(kj) B M(r9kj). Here we should note #I' 'kj S i - 1. Thus we have two infinite 

sequences 

that show the infinite elasticity of C "I. This is a contradiction to the inductive 

hypothesis. 

Since we can show a contradiction in each case, C has finite elasticity for any n 2 
0. Therefore by Theorem 4 C is inferable from positive data. U 

4 Corollaries 

In the previous section we have shown a sufficient condition for inferability from 
positive data in an abstract way. In this section we apply i t  to several classes of 

concepts. First the class of languages defined by elementary formal systems is 

considered. General results in the previous section are extracted from those for EFS 
languages 1151. Then, the class of context-sensitive languages and the class of minimal 
models of Prolog programs called linear in [Ill or reducing in [6] are considered. 



4.1 Elementary Formal Systems 

Let Z, X, and II be mutually disjoint sets. We assume that Z is finite. Elements in Z, 

X ,  and IT are called symbols, variables, and predicate symbols, respectively. Each 

predicate symbol is associated with a nonnegative integer called arity. We assume a 

special predicate symbol po with arity 1. A+ denotes the set of all nonempty finite 

strings over a set A. 

DEFINITION A term is an element of (C UX) +. A ground term is an element of C+ . 
Terms are also called patterns and ground terms are also called words. 

DEFINITION An atomic formula (or atom for short) is an expression of the form 

p(n1, ... , n,), where the arity of p C II is n, and nl,  ... , n, are terms. An atom p(n1, ... , 
n,) is ground if terms nl ,  ... , n, are all ground. 

DEFINITION A definite clause is a clause of the form 

A t- B1, ... , B,, 

where n 2 0 and A, Bl, ... , and B,  are atoms. 

DEFINITION An elementary formal system (EFS for short) is a finite set of definite 

clauses. 

DEFINITION A substitution is a homomorphism from terms to terms that maps each 

symbol a C X to itself. By n0 we denote the image of a term n by a substitution 0. For 

an atom A = p(n1, ... , n,) and a clause C = A + B1, ... , B,, we define A0 = p(nl0, ... , 
nnO) and C0 = A0 t- Bl0, ... , BnO. A renaming of variables is a substitution 0 such that 
x0 is a variable for any variable x and x f y implies x0 + y0 for any variables x and y. 

DEFINITION A definite clause C is provable from an EFS I', we write I' t- C, if C is 

obtained from I' by finitely many applications of substitutions and modus ponens. That 

is, we define the relation I' I- C inductively as follows: 

(1) If I' C C then I' I- C. 

(2) If I' I-- C then I' I- C8 for any substitution 0. 
(3)IfI' F A  +Bl,... ,B,+land I' I -B,+l thenr  I- A t-Bl,..., B,. 

DEFINITION For anEFS I'andp C IT with arity n, we defineL(I',p) = {(wl, ... , wn) 

C (X+)" I I' I- p(w1, ... , wn)+ }. If p is unary then L(r ,  p) is a language over C. A 
language L is definable by EFS or an EFS language if such I' and p exist. L(r ,  po) is 

abbreviated to L(I'). 

From definitions i t  is clear that the semantic mapping L for EFS's is monotonic. 



DEFINITION A renaming ofpredicate is a one-to-one mapping h : H-It preserving 

arity. For an atom p(n1, ... , n,) and a clause C = A + B1, ... , B,, we define h(p(n1, ... , 
nn)) = h(p)(nl, ... , n,) and h(C) = h(A) + h(Bl), ... , h(Bn). 

DEFINITION Let I'l and I'2 be EFS's. If I'l = { h(C)0 I C E I'z } for some renaming of 
variables 0 and some renaming of predicates h such that h(p0) = po, then we say I'l is 

equivalent to I'2, and denote it  by I'l = I'2. 

LEMMA 6 If rl = I'2, then L(rl) = L(I'2). 

Let In1 denote the length of a term n. For an atomp(n1, ... , n,), we define 

DEFINITION A clause A + B1, ... , B,  is length-bounded if 

for any substitution 0. An EFS I' is length-bounded if axioms of I' are all length- 

bounded. 

Here we should note that any substitution may not erase any variable, that is, x 0  
may not be empty word for any variable x.  This is an essential point for our discussion 

here. We need another discussion when we allow erasing substitutions as in [12]. 

The class of languages definable by length-bounded EFS's is characterized by the 

following theorem. 

THEOREM 7 [5] A language L Z+ is definable by a length-bounded EFS if and 

only if L is context-sensitive. 

THEOREM 8 [5, 181 Let I'l, I'2 ... be any recursive enumeration of length-bounded 

EFS's. Then the class C = L(rl),  L(r2), ... is an indexed family of recursive languages. 

LEMMA 9 Let X & C+ be finite and I' be a length-bounded EFS that is reduced with 

respecttox. ThenforanyA +B1, ... ,B, C r ,  IAlS max{Iwl; w € X). 

From Lemma 9 and the fact that there exist only finitely many patterns shorter 

than a fixed length except renaming of variables, we have the following. 

LEMMA 10 For any finite set X C+ and any n 2 0, 

{ L(r)  I I' is length-bounded, #I' 5 n, I' is reduced with respect to X } 

consists of finitely many languages. 



Proof. Let X Z+ be finite, 1 = max { Iwl; w E X }, I' be a length-bounded EFS such 

that I' is reduced with respect to X and #I' 5 n, and C = A +- B1, ... , B ,  E I'. By 
Lemma 9, IA I 5 1. Since C is length-bounded and lBil 2 1 for any i = 1, ... , m ,  m 5 1. 
Therefore each clause in I' contains a t  most 1 + 1  distinct predicate symbols, so I' 
contains a t  most n X  ( 1  + 1) distinct predicate symbols. It  appears that there exist only 
finitely many pairwise inequivalent length-bounded EFS's I' such that #I' 5 n and A 

t B1, ... , B ,  E I' implies IAl S 1. From Lemma 6 the number of languages defined by 

such EFS's is finite. 

LEMMA 11 Let U = C+,  E be the set of all length-bounded clauses, and M(r) = L(r,  
PO). Then (U, E, M) is a concept defining framework that has bounded finite thickness. 

From this lemma we have the following as a corollary of Theorem 5. 

COROLLARY 12 For any n 2 0, the class of languages definable by length- 

bounded EFS's consisting of a t  most n clauses is inferable from positive data. 

4.2 Context-Sensitive Grammars 

Let C be a finite set of symbols as in the previous section and V be a set disjoint from C. 

An element in V is called a nonterminal symbol. We assume V contains a special 

nonterminal symbol So. 

DEFINITION A production is an expression of the form a -- P, where a, P C (C U V )  +. 
A grammar is a finite set of productions. A production a -+ fi is said to be context- 

sensitive if la1 5 101. A context-sensitive grammar is a grammar whose productions are 

all context-sensi tive. 

DEFINITION Let I' be a grammar. We define a binary relation 3, on (Z U V)+ by 

where a, p, r , 6  C (Z !: V)+. By +,* we denote the reflexive transitive closure of +,. 
The language L(r) of a grammar I' is defined by 

Similar discussion as for length-bounded EFS's can be made for context-sensitive 

grammars. That is, it  can be shown that (U, E,  M) has bounded finite thickness, where 

U = Z+, E is the set of all context-sensitive productions, M(I') = L(r). Thus we have 

the following corollary. 

COROLLARY 13 For any n ,  the class of languages defined by context-sensitive 

grammar consisting of a t  most n productions is inferable from positive data. 



4.3 Linear Prolog Programs 

Let X, F and II be mutually disjoint sets. An element in X, F or II is called variable, 

function symbol or predicate symbol, respectively. We assume F and II are finite. Each 

function or predicate symbol is associated with a nonnegative integer called arity. 

Function symbols with arity 0 are also called constant symbols. 

DEFINITION A term is a variable, a constant symbol, or an expression of the form 

Atl, ... , tn), where f is a function symbol with arity n 2 I and t i ,  ... , t, are terms. A 
ground term is a term that does not contain any variable. 

Atomic formulas (atoms), ground atoms and definite clauses are defined in a similar 

way to those for EFS's. A program is a finite set of definite clauses. Substitutions, 
Herbrand base, minimal models and other notions are defined in the ordinal ways 183. 

DEFINITION The length of a term t, denoted by it1 is defined inductively as follows: 

(1) If t is a variable or a constant symbol, then It1 = 1. 

(2) If t = Atl? ... , tn), then It1 = ltll + ... + Itnl + 1. 

For an atom A = p(tl, ... , tn), we define IAl = ltll + ... + It,l. 
DEFINITION A definite clause A - B1, ... , B ,  is linear if lA0l 2 lBiOl for any 

substitution 0 and any i = I ,  ... , n. A program I' is linear if clauses in I' are all linear. 

For linear programs almost the same discussions as for length-bounded EFS's can 

be done. From such discussions we can show that (U, E,  M) has bounded finite 

thickness, where U is the Herbrand base, E is the set of all linear clauses, and M(r) is 
the minimal model of a program r. 

COROLLARY 14 For any n 2 1, the class of minimal models of linear programs 

consisting of a t  most n clauses is inferable from positive data. 

If we construct an inference machine IM for linear programs based on Corollary 14, 

any example about every predicate symbol should be presented to IM,  as in Model 

Inference System by Shapiro [lo]. However, in some situation, examples about other 

predicate symbols than a special one might not be available. For example, 

identification of an EFS languages should work on words, which can tell nothing about 

predicate symbols but a special one po. Fortunately, even in such a situation, linear 

Prolog programs can be inferred from positive data. 

Let po be a special predicate symbol with arity m, T denotes the set of all ground 
terms. Further, let U' = Tm = { (ti, ... t,) I ti C T ( i  = 1, ... , rn) ), E be the set of all linear 



clauses, and M'(r) = { i E 7'"" po(i) E M(r) ). Then, we can show that a triple (CT, E, M') 

is also a concept defining framework that has bounded finite thickness. 
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