
INDUCTIVE INFERENCE OF RECURSIVE FUNCTIONS: 

COMPLEXITY BOUNDS 

RQsi~ Freivalds, Janis B~rzdig~ and K~rlis Podnieks 

Institute of Mathematics and Computer Science 
The University of Latvia 
Raina bulv. 29, Riga, 226250, Latvia 

Abstract. This survey includes principal results on complexity 
of inductive inference for recursively enumerable classes of total 
recursive functions. Inductive inference is a process to find an 
algorithm from sample computations. In the case when the given class 
of functions is recursively enumerable it is easy to define a 
natural complexity measure for the inductive inference, namely, the 
worst-case mindchange number for the first n functions in the given 
class. Surely, the complexity depends not only on the class, but 
also on the numbering, i.e. which function is the first, which one 
is the second, etc. It turns out that, if the result of inference is 
Goedel number, then complexity of inference may vary between 
log n+o(log2n ) and an arbitrarily slow recursive function. If the 

result of the inference is an index in the numbering of the 
recursively enumerable class, then the complexity may go up to 
const-n. Additionally, effects previously found in the Kolmogorov 
complexity theory are discovered in the complexity of inductive 
inference as well. 

The time complexity of pridiction strategies (the value f(m+l) 
is predicted from f(0),...,f(m)) is investigated. It turns out that, 
if a prediction strategy F is "error-optimal" (i.e. it makes at most 
log2n+O(log21ogn ) errors on the n-th function of the class), then 

the time complexity of computation of F(<f(0), .... f(m)>) (i.e. a 

22cm 
candidate for f(m+l)) may go up, in some sense, to . 

Special attention is paid to inductive inference by 
probabilistic algorithms. It turns out that arbitrary recursively 
enumerable class of total recursive functions can be identified with 
in n + o(log n) mind- changes in an arbitrary numbering of the 
class. 

I. Introduction 

"Inductive inference" is the term coined for finding out the 

algorithm from sample computations. We restrict ourselves to the 

case when a total recursive function is to be identified. The first 

paper in this area was [Go 67], yet (sometimes indirectly) the 

research was influenced by the theory of experiments with finite 

automata [Moo 56]. 



112 

There are several ways how to make this problem precise but all 

of them are based on the same paradigm. There is a "black box" with 

a given total recursive function f in it. We cannot see the program 

of the device computing f but we can get the values of the function. 

Since the function is total, with no restriction of generality we 

can assume that the black box outputs the values in the natural 

order: f(0),f(1),f(2),f(3),... 

The inductive inference machine (or the strategy) tries to use 

the initial fragments of the function to figure out the algorithm 

computing it. Hence, from the recursion theory point of view, the 

strategy is a functional mapping the class of total recursive 

functions ~into the set of nonnegative integers N. This functional 

is to be computable in some sense. Theory of recursive functions 

[Rog 67] has developed a precise notion for such a functional - the 

notion of a recursive functional. Informally, recursive functional 

is computed by a Turing machine with an input tape containing the 

graph of the function f and a work tape. The machine works for some 

time and then stops after finite number of steps (the machine 

decides itself when to stop) and produces the result needed. 

Unfortunately, only very simple classes of functions are 

identifiable in this sense. Indeed, in finite number of steps only 

finite number of values of the function can be observed. If two 

functions differ only on a later value, then the machine 

nevertheless produces the same output. 

A more interesting type of identification was "identification 

in the limit" considered in [Go 67]. Instead of being printed once 

forever, the output ("hypothesis") is shown on a "screenboard" and, 

if there is a need, it may be changed later. We say that the machine 

has resulted in y if at some moment it has produced the output y and 

after that moment this output is never changed. 

Formally, the identifying strategy F is an arbitrary partial 

recursive function. <xl,x2,...,xn> is an effective numbering of all 

tuples of nonnegative integers, using as the numbers all 

nonnegative integers. {~i} is a Goedel numbering of all partial 

recursive functions of one argument. 

F(<f(0),...,f(n)>) is referred to as the n-th hypothesis by F 

on the function f. The hypothesis p is called correct for f if ~p=f. 

We say that f is identified in the limit by F (denoted feEX(F)) 

if there is an n o such that for arbitrary n>n0: 



113 

i) F(<f(0),...,f(n)>)=F(<f(0),...,f(n0)>), 

2) the hypothesis F(<f(0),...,f(n0)>) is correct for f. 

We say that the class U of total recursive functions is 

identified in the limit by F (denoted U~EX(F)) if every function f~U 

is identified in the limit by F. 

We say that the class U of total recursive functions is 

identifiable in the limit (U~EX) if there is a strategy F 

identifying U in the limit. 

The class U of total recursive function is called recursively 

enumerable if there is a total recursive function g(i,x) such that: 

i) for arbitrary i the function Ix-g(i,x) of one argument x is 

in the class U, 

2) for arbitrary f~U there is an i such that ~x.g(i,x)=f(x). 

The function g introduces a numbering r={rl} of functions in U, 

namely, the number i is called the index of the function f if 

ri(x)=Ix.g(i,x)=f(x). 

THEOREM i.i. (E.M.GOLD [Go 67]) If a class U is a subclass of a 

recursively enumerable class of functions, then U is identifiable in 

the limit. 

PROOF. The strategy produces as its n-th hypothesis 

i, if isn and i is the least 

nonnegative integer j such that 

<f(0),...,f(n)>=<rj(0),...,~j(n)>; 

n, if there is no such i for the given n. 

It is easy to see that the strategy is total recursive and it 

identifies U in the limit. Moreover, our strategy never allows more 

than n mindchanges on the functions with indices 0,1,2,...,n. 

[] 

The worst-case number of mindchanges for the first n functions 

in the class U (more precisely: in the numbering r of the class U) 

can be considered as a complexity measure for the pair (U,r). Our 

paper is written to find out how the numbering influences this 

complexity for the given recursively enumerable class U. We make a 

terminological distinction: recursively enumerable class U of total 

recursive func- tions but enumerated class (U,r), i.e. U with its 

fixed numbering r. 

This way, we try to understand in this paper how different 

complexities of distinct enumerated classes (U,~) based on the same 

recursively enumerable class U can be. 



114 

We will show that the linear complexity in the proof of Theorem 

i.i can be improved if we are interested only in getting a correct 

Goedel number for the given function. On the other hand, the proof 

of Theorem i.I yields us more than it is said in the formulation of 

Theorem I.I. The strategy with the linear complexity of mindchanges 

produces the T-index, one can effectively find a Goedel number for 

the same function but in the general case it is a recursively 

unsolvable problem to find a r-index, given arbitrary Goedel number. 

Hence we can expect higher complexity for identification of 

r-indices when compared with the identification of Goedel numbers. 

In Section 3 we will see that this really is the case. 

We will consider also a notion which appears to be closely 

connected with the identification in the limit, called prediction of 

functions. 

In the prediction of functions the result F(<f(0),...,f(n)>) is 

expected to be f(n+l). Nevertheless arbitrary finite number of 

errors is allowed (but it is not allowed for the value 

F(<f(0),...,f(n)>) to be undefined). 

Prediction turns to be closely connected with identification in 

the limit. Given arbitrary recursively enumerable class U of total 

recursive functions and its numbering r, if (U,r) can be predicted 

with ~g(n) errors, then (U,r) can be identified in the limit with 

sg(n) mindchanges (see Theorem 1.2 below). 

To be able to prove this (very simple) theorem and other 

results like it we introduce a useful notation. 

The string of integers f(0), f(1),...,f(n) is denoted by f[n]. 

This allows us to write F(<f[n]>) instead of F(<f(0),...,f(n)>). 

We denote by ~v(f) the number of errors while predicting f by 

the predicting strategy F. 

We fix a Goedel numbering ~={~i} of all partial recursive 

functions of one argument x. We denote by ~(f) the number of 

mindchanges by F on f, provided F correctly identifies in the limit 

a ~-index of the function f.(Please notice that for the sake of 

brevity we have omitted ~ in the notation ~x(f). Of course, it 

should be written). 
,v 

We denote by Fu. r ( n ) the maximum among { ~v ( r0 ), 
x 

~(rl),...,~(rn) }. Similarly, by __~.r(n) we denote the max among 

{zzx(~0) , ~x(T1) ,...,FZX(Tn) }. 

We denote by Fr(f) the number of mindchanges by F on f, 



115 

provided F correctly identifies in the limit a r-index of the 

function f. We denote by F~.r(n ) the maximum among {FT(r0), 

Fr(TI),...,Fr(T )}. 

THEOREM 1.2. For arbitrary enumerated class (U,r) and arbitrary 

total recursive strategy F predicting U, there is a total recursive 
Ex T(n). strategy G identifying U in the limit such that Gu.r(n)s 

PROOF. Let y0,Yl,...y n be a tuple of nonnegative integers and F 

be the total recursive strategy predicting U. We consider a partial 

recursive function n defined as follows 

Yx' if x~n, 

n(x) = F(<y0,yl, .... yn>), if x=n+l, 

F(<W(0),W(1) ..... W(x-l)>), if x>n+l. 

The algorithm for computing values of n is uniform in 

n,Yo,yl,...,y n. Hence there is a total recursive function j such 

that j(<y0,Yl,...,yn >) is a ~-index of the function n, corresponding 

the tuple (yo,yl,...,yn). 

If f is a total recursive function and the predicting strategy 

F makes no more errors on initial fragments (f(0),f(1),...,f(x)) 

containing (f(0),f(1),...,f(n)), then W is total and n=f. 

We consider a strategy G such that 

G(<Y0,Y~,''',Yn>)=j(<Y0,Yl,...,Yn>) 
for all values of the argument. For every total recursive function 

f, the number of mindchanges by G equals the number of errors by F. 

G 

A strategy F identifying r-indices for a class U is called 

consistent if for arbitrary n and arbitrary fEU the value 

F(<f(0),f(1),...,f(n)>) is a r-index i such that ri(0)=f(0), 

ri(1)=f(1), ... ,ri(n)=f(n ). 

THEOREM 1.3. For arbitrary enumerated class (U,r) and arbitrary 

consistent total recursive strategy H identifying for U T-indices in 

the limit, there is a total recursive strategy F predicting U such 

that <r(n)sH~,r(n ) . 

PROOF. If H(<f(0),f(1), .... f(n)>)=i, then set 

F(<f(0),f(1),...,f(n)>)= ri(n+l ). 

Since H is consistent, every error by F implies a mindchange by H. 

G 

We need a useful "folk lemma" used by nearly all authors in 

papers on inductive inference. We have added the complexity bounds 

to the argument used in this lemma. 



116 

LEMMA I.i. For arbitrary Goedel numbering {Fi} of all partial 

recursive strategies there is a family {F' } of total recursive 

strategies such that for arbitrary i and total recursive f if 

nl~mF1 (<fin]>) exists, then li_~ F~ (<f[n]>) exists as well, the 

limits are equal, and for all n 

(F~)~,r(n)~(Fi)u~,r (n)+l' (F~)~r(n)-<(Fl)Exu.r(n)+l" 

PROOF. The strategy F~ on <f[n]> simulates in total n steps of 

Turing machine computation for Fi (<f[0]>), Fi (<f[1]>), 

Fl (<f[2]>),... (in that order) . The result F~ (<fin]>) equals the 

last completely computed value in this sequence. If time n does not 

suffice to compute F1(<f[°]>), then F'|(<f[n]>)=0. D 

2. Prediction and EX-identification 

The proof of Theorem i.i. provides strategies for prediction, 

identification in the limit and identification of z-indices with the 

following complexity bounds: 

<r(n) ~ n, 

G ~x (n) ~ n, 
u,r 

H r (n) s n 
U,r 

for arbitrary enumerated classes (U,r). We prove in this section 

that the first two bounds can be lowered. 

THEOREM 2.1. ([BF 72], [BF 74]) For arbitrary enumerated class 

(U~r) and arbitrary positive integer k, there is a total recursive 

strategy F such that for all n 

F~r(n) ~ log n+log21ogzn+...+log21og . . . l o g  n+ 

k t i m e s  

+o(log21og2-.-log2n) 
k tlmes 

PROOF. The main idea is as follows. We associate a certain 

weight Pl (ZPi=l) to every r-index i, and, then, to predict the next 

value y~+1=F(<y0,yl,y2,...,ym>), we consider a parameter s, and for 

arbitrary fixed value of s we total the weights for all integers j 

such that 

rj (0)=Y0&rj (1)=Y1&rj (2)=y2&... &rj (m)=ym&rj (m+l)=s. 

Our prediction of y' is the value of s for which the 
m+1 

abovedescribed total is maximal. 



117 

We assert that if our strategy of prediction makes k errors on 

the function rn, then 

2 k p-~l. ( 2.1 • ) 

Indeed, consider a graphical representation of the class U by 

an infinite tree. 

[ > >I ' ~ ' .... > ) ..... ,I , 1 ,l , 
Y0 Yl Y2 Y3 Ym Ym+1 

The infinite path drawn here corresponds to the function r (which 
n 

may have more than one r-index, by the way). The outgoing arrows 

correspond to functions declining from r . 
n 

The function r n has the total weights no less than p . Consider 

the last error, the error number k. If our strategy has chosen to 

predict a value differing from that of rn, it is only because the 

weight of the declining arrow has had a weight no less than Pn" 

Hence the weight of the correct prediction at the moment of the 

(k-l)-th error has been at least 2"Pn. Since the (k-l)-th error has 

been commited, another declining arrow has had a weight ~-2-p. Hence 

the weight of the correct prediction at the moment of the (k-2)-th 

error has been at least 4"Pn. Continuing this consideration we get 

(2.1.). 
1 We conclude that our strategy makes no more than log~ < errors 

on the function r . If we use the distribution of weights 
n 

p_ c 

n" ( log2n ) ( log21og n ) ... ( log2.., log2n ) ( log 2 ... log2n ) 2 

k-1 times k times 

(where c is a constant such that ~p=l), we get the upper bound 

< r(n)~logen+log21og2n+...+log21og2...log2n + 

k t i m e s  (2.2.) 

+o(logzlog2-..log2n) 

k times 

We have been slightly incorrect so far. We cannot guarantee the 

recursiveness of the strategy since absolutely precise computation 

of an infinite series of weights is expected. Now we redefine the 

strategy expecting the totals of weights being computed only 

approximately, namely, the totals needed for the current prediction 

being computed only up to a certain c t where c t depends only on the 

number of errors already commited. 

We have that the total of weights p for the prediction at the 



118 

moment of the k-th (the last) error always satisfies 

P+~kZPn--~k 
i.e. the weight of the right arrow at the previous moment is no less 

than 

2p-28 k • 

For £he moment of the last but one error we have 

P'+Ck_IZ2Pn--2Ck--Ck_I 
and for the right arrow at the previous moment we have the weight 

Z22"pn-22"Ck-2Ck_1. 

Continuing this argument we finally get a weight 

z2k'pn--2k'Ck--...--22C2--2Cl 

which cannot exceed i. If we take c]=2 -2j, we have 2k'pnS2 and the 

same inequality (2.2.). 

D 

THEOREM 2.2. ([BF 74]) For arbitrary enumerated class (U,r) and 

arbitrary positive integer k, there is a total recursive strategy G 

such that for all n 

G zxu,r('n) . . . . .  < log2n+logzlog2n+. .+logelog 2 logzn + 

k tlmes 

+o(loglog 2. . .log2n) . 

k times 

PROOF. Immediately from Theorems 2.1 and 1.2. 

D 

In order to prove the lower bounds of the complexity of 

prediction we introduce some auxiliary notions and prove an 

important lemma. 

We consider prediction of the values of nonrecursive functions. 

It is easy to see that the number of errors should equal infinity. 

However, we can consider the initial fragments f[n]=<f(0),f(1), 
. -[n] ...,f(n)>. By F v(Z ) we denote the number of errors made by the 

strategy F when predicting the first n values f(1),f(2),...,f(n). 

A.N.Kolmogorov [Kol 65] introduced a fundamental notion of 

complexity of finite objects. According to this idea the complexity 

of a function in a fixed numbering of functions is the binary 

logarithm of its minimum index. In the class of all partial 

recursive functions of one argument x, as shown by Kolmogorov [Kol 

65], there is an optimal numbering x such that, if ~ is an arbitrary 

computable numbering of partial recursive functions, then there is a 



119 

constant c such that for arbitrary partial recursive function f its 

complexity in ~ does not exceed the complexity of f in ~ plus c . 

We consider a counterpart of this complexity for numberings of 

total recursive functions. Note that there may exist no optimal (in 

this sense) numbering. 

Let r={T i } be an arbitrary computable numbering of total 

recursive functions. We consider the complexity of initial fragments 

of functions. By kr (fin]) we denote the minimum T-index of a 

function h such that h[n]=f In] • By Kr ( fin] ) we denote 

[log kr(f[n])].~ If f is nonrecursive, then Kr(f[n])~ with n--9~. We 
• fin] fin] try to find out a relation between F v ( ) and Kr( ). 

LEMMA 2.1. Let (U,r) be an arbitrary enumerated class and W(P) 
NV < 

be a function such that Fu. r ( p ) -n ( P ) - Then for arbitrary 

(nonrecursive) function f and arbitrary n, FNv(f[n])-<n(kr(f[n])). 

PROOF. We have --.F~Vr(P)-<n(P). Hence for arbitrary p it is true 
_ . [ y ]  

that ~ v(rp )-<W(P) for all y. Let Pn=kr(f(n)). Then for x-<n we have 

pn(X)=f(x). Hence FNV ( )=FHv 

Q 

THEOREM 2.3. ([BF 74]) For arbitrary enumerated class (U,r) and 

arbitrary positive integer k, there is a total recursive strategy F 

such that for arbitrary (nonrecursive) total function f and for all 

n, 

~.v(i- .-In] ) _K r< ( r~[n] ) +log2K r ( f[n] )+... +log2. •. iog2Kr ( r.[n] )+ 

k tlmes 

+o(lo%... log2K r(f[n] ) ). 

k times 

PROOF. Immediately from Lemma 2.1 and Theorem 2. I. 

O 

THEOREM 2.4. ([BF 74]) There is an enumerated class (U,r) such 

that for arbitrary strategy F and arbitrary positive integer k: 

I) (Vn) (b -'~vu,r(n)>logen-3) 

2) ( 3~n ) ( F~u.r (n) >log2 n+log2 log2 n+ . . . +log210g z . . . log2n ) 

k tlmes 

PROOF. We define two enumerated classes (V,r') and (W,r") and 

then join them making the class U=VuW and the numbering 

[r~, i f  n=2k-l, 

~n=Ir~, if n=2k. 



120 

The enumerated class (V,r") is constructed to have the 

property i. 

Let binary 0-i strings be enumerated lexicographically. The 

infinite string of values r~(0)r~(1)r~(2).., is obtained from the 

i-th string in the lexicographical numbering by adding infinitely 

many zeros after the string. It is easy to see that 

(vn) (<r' (n)->l°g2n-2) " 

To construct the class (W,r") and to prove 2) we make use of 

the following theorem by P.Martin-L'of [ML 66] (see also [ZL 70]). 

Let h(n) be an arbitrary total recursive function such that the 

series ~2 -h(") diverges. Then for every 0-i valued function f it is 

true that 

(KB (fin])-<n-h(n) . 

In the abovecited theorem one can take, for instance, the 

function h(n)=log2n+log2n+...+log21og 2...log2n+a(n ), where a(n) is a 

function growing to infinity sufficiently slowly. 

The Martin-Lof theorem uses an optimal numbering B of partial 

recursive functions. Hence we cannot use this result directly. On 

the other hand, the proof of the theorem is based on the 

construction of an effective coding of initial fragments of 

sequences. The effectiveness of the coding allows us to construct a 

numbering ~={~i} of total recursive functions as well, such that 

(3=n) (K (fin])-<n-h(n) ) . 

For (W,r") we take the numbering T"=(T and the class W numbered by ~. 

Assume from the contrary that 

( V=n ) ( Fw~ ~ ( n ) -<log2n+log21og2n+... +log21og 2 ... log2n ) 

k times 

Hence there is a constant c such that 

( Vn ) ( <~ ( n ) -<log2n+log21og n+... +log21og 2 ... log2n+C ). 

k t i m e s  

We denote log2n+log21og2n+... +log21og 2 ... logzn+C by W ( n ) and use 

Lemma 2.1. We get 

fin] ) _<log2k ( fin] ) +. • . + (Vn)(F ( )+log21ogk (fin] 

< -[n] . ~[n] -[n] )+C)-K~(f ) +log2K~( r )+. + +log21og ~...logk (f .. 

k times 
fin] ) +C' +log21og 2 - •. log2K ~ ( 

k-I times 

Up to now our function f was arbitrary. Now we take a specific 



121 

one, and, namely, we take the 0-I valued function which is predicted 

incorrectly at every step. Thus (¥n)(F (f[n])=n). We have 

(¥n)(n-~K (f[nl)+log2E ~(f[n])+...+log21ogz...IOgzK ~(f[.])+C,. 

k - 1  t i m e s  

On the other hand, from the modified Martin-Lof theorem we have 

(3ran) (K (f[n])_<n_log n_Iog21og2n_. " .-log21ogz. " .log2n-a(n) ) . 

Hence 

( 3ran ) ( n -< ( n-log n-log21og2n-.. • -log21og 2 . . . log2n-a ( n ) ) + 

+log 2 ( n-log2n-log21og2n-... -log21og 2 . .. logzn-a ( n ) ) + 

+log21og ~ ( n-log n-log21og2n-... -logzlog . .. log2n-a ( n ) ) + 

+...+ 

log log 2 ... log2 ( n-log2n-log21og2n-... -log21og2... log2n- 

-a(n) )+C' ). 

Contradiction. 

a 

We are going to prove the counterpart of Theorem 2.4 for 

identification in the limit. For this, we need a counterpart of 

Lemma 2.1. 

( fc.1 By G x ) we denote the minimum (over all functions g such 

that g[n]=f[n]) of GEX(g). 

LEMMA 2.2. Let (U,r) be an arbitrary enumerated class and W(p) 
EX < be a function such that Gu. r ( p ) -W ( P ) • Then for arbitrary 

fin] f[n] (nonrecursive) function f and arbitrary n, G x( )-<n(kr( )). 

• We have <~r ( p )-<n(p)" Hence for arbitrary p PROOF it is true 
r [yl ~W that GEx ( p )- (p) for all y. Let pn=kr(f [nl ) Then for x-~n we have 

- .-[n] r[nl)_<n(pn)=n(kr(f[n]) ) rpn(X)=f(x ). Hence GEX(Z )=%X( Pn 

D 

THEOREM 2.5. ([BF 74]) There is an enumerated class (U,T) such 

that for arbitrary strategy G and arbitrary positive integer k: 

1 ) ( Vn ) (" GEXu,r ( n ) >log2n-const ), 

2) (3"n) (~x (n)>log n+log log n+ .+log21og~. .log2n ) 
U,~ 2 2 2 " " " " 

k times 

PROOF. As in proof of Theorem 2.4. we define two enumerated 

classes (V,T') and (W,r") and then join them making the class VuW 

and the numbering 



122 

I rTk, if n=2k-l, 

Tn=~T~, if n=2k. 

The enumerated class (W,r") is defined precisely as in the 

proof of Theorem 2.4, only instead of Lemma 2.1 we use Lemma 2.2. 

The class V is a subclass of the one as in the proof of Theorem 

2.4. Now we define the numbering r'. With pairs (i,j) we associate 

2 ] T'-indices. The corresponding functions are defined in such a way 

that the strategy F' (from Lemma i.i) either makes on one of these 
I 

functions no less than log221=j mindchanges or does not identify at 

least one of these functions. 

We divide the sequence of all nonnegative integers (the 

potential r'-indices) into segments. The integers 2k~m<2 k÷1 make the 

segment Sk+ I. Every segment is associated with a strategy from {F~}. 

Namely, the segments S0,S2,S4,Se,Ss,... are associated with F~. The 

segments S 1 , S s , S s , $13,... are associated with F'I " The segments 

$3,$I,,$Is,$27 ,... are associated with F' 2' etc. 

Thus we have the following property. If S and S i÷i are two 
r r + 2  

adjacent segments associated with the same strategy F' i' and 

deS r,leSr÷21+l, then 1 exceeds d no more than constant number of 

times. Every r'-index in the segment Sr÷21+I does not exceed 
i÷l 

2 r÷1÷2. Our construction allows us to assert that at least one 

function f in S r is such that (F~)EX(f)zr. Hence, for every n from 

the segment Sr÷21÷l or from the preceding segments, it is true that 

( F~ )~ ( r~ ) alog2n-const. 

It remains to describe the functions in the segment S 
k+1 

associated with F'. We define them in steps, first all the functions 
i 

in the segment for x=0, then for x=l, x=2, x=3, .... For 0~xsi+k+l 

the functions are defined to encode i and k (the string of the first 

i+k+l values equals 0110kl). After that one half of the functions 

gets the current value 0 and the other half gets i. The strategy F" i 
is to change the hypothesis at least on one of these two functions. 

When it has changed the hypothesis for the corresponding indices we 

define again one half of the functions to be equal 0, and the other 

half to be equal i, etc. Either there is a function in the segment 

which is not identified by F' or F' has at least k mindchanges. 
I I 

O 



123 

3. Identification of T-indices 

The trivial strategies for prediction and identification in the 

limit provided by the proof of Theorem I.i were improved in Section 

2. However, the counterpart of these improvements for identification 

of r-indices was not proved there. We will show that such a 

counterpart is impossible. 

THEOREM 3.1. ([Ba 74-1]) There is an enumerated class (U,T) of 

total recursive functions such that for arbitrary total recursive 

strategy H there is a constant c>0 such that for all n (but a finite 

number of them) 
r n 

H u , r ( n ) >  ~ - 

PROOF. The construction of the class U={r0,rl,r2,... } is based 

on a diagonalization. At first we divide the sequence of all 

nonnegative integers (the potential r-indices) into segments. The 

integers 2k~m<2 k÷1 form the segment Sk+ I . Every segment is 

associated with a strategy from {F~} (see Lemma I.I). Namely, the 

segments S 0, $2, $4, $6, $8, .. . are associated with F'0. The segments 

S I , S s , S s , Si3,... are associated with F' . The segments 
1 

$3 , $11, $Is , $27 ,... are associated with F' etc. 
2 r 

Thus we have the following property. If S and S i÷I are two 
J j+~ 

adjacent segments associated with the same strategy F" i' and deSj, 

IES]÷21+I , then 1 exceeds d and the length of Sj no more than 

constant number of times. 

Now we define the functions r where 2ksm<2 k÷1, i.e. in the 
m 

segment Sk÷ I. Let this segment correspond to F'. Then 
i 

I i, if x<i, 
0, if x=i, 

rm(X) = i, if i+l~x~i+k, 
0, if x=i+k+l, 
to be defined below, if x>i+k+l. 

Thus we have coded i and k into an initial fragment of the 

function. 

Let z>0, and we define Tm(i+k+l+z ) . We consider F''-i (<rm[i÷k+z]>) 

supposed to be the r-index of r. If rtl+k+z] = ( 11 0 ik0 z ) and 
m 

F'i (<rl l÷k÷z]>)=m" then we define rm(i+k+l+z)=l and rm(x)=l for all 

x>i+k+l+z. 

Let r (2ksm<2 k÷~) be either a function with i+k values 1 only 
m 

or the function of this segment which has no less zeros than any 



124 

other function r in this segment. Then either F' does not identify 
m i 

its T-index correctly or F' makes no less than 2k--i mindchanges. 
i 

Thus we have proved that the worst-case mindchange complexity 

(F~)r(r) in the segment Sk+ I is no less than 2k--lz~. Hence the 

worst-case mindchange complexity for the first segments S0,Sl,...,S r 
i +2 

(where k+l<rsk+l+2 I÷I) is no less than 2k-lzn/2 2. 

(U,T) of total 

total recursive 

THEOREM 3.2. There is an enumerated class 

recursive functions such that, for arbitrary 

strategy H and for infinitely many n, 

H~.r(n)>n-o(~). 

PROOF differs from the proof of Theorem 3.1 only in the length 
k 

of the segments. Now the length of the segment S k is 2 2 . Hence the 

length and the worst-case mindchange complexity of every segment is 

no less than the square of the total length of all of the preceding 

segments. 

Infinitely many segments are associated with every strategy F'. 
i 

The functions in these segments which are the most complicated for 

identification of T-indices by F' provide the needed complexity 
i 

bound. 

[] 

THEOREM 3.3. For arbitrary enumerated class (U,r) of total 

recursive functions and for arbitrary constant c>0 there is a total 

recursive strategy H such that for infinitely many n, 

H r (n)<~. 
u,r c d 

n 
PROOF. We denote by @ the real number p=lim sup n--/T' where d n 

is the number of pairwise distinct functions among r0,r1,rz,...,r .. 

The number p needs not to be a constructive real number but it can 

be approximated by rationals. 

It is possible to find effectively infinitely many n such that 
d 

p-c<--5-~+c Let n I be effective increasing sequence of such -n+l-~ • ,n2,n 8, •.. 
n 

n's. Such that for arbitrary k, nk>2 k-1 

The strategy E searches the r-index for the given function f, 

first, among r 0,r I, . . . ,T n . It begins with computing the initial 
I 

segments of r0,rl,...,rn until z(p-c)(n1+l ) distinct functions are 

found. Then with no more than 2c. (n1+l) mindchanges the strategy 

either stabilizes to the correct output or finds out that f is not 



125 

in this initial segment. In the latter case the strategy H goes on 

to search the T-index among r0,rl,...,r n , and so on. 
2 

Any case, the total number of mindchanges does not exceed nk-2C 

for every function among r0,rl,...,r n . For n ~ {nk-[nk/2], 

nk-[nk/2]+l , ... ,nk} this makes no more than n.c mindchanges. 

o 

4. Influence of the numbering 

We have proved several lower bounds in Sections 2 and 3. We 

prove in this section that most of these lower bounds express the 

complexity of the numbering rather than the complexity of the class 

of functions. 

THEOREM 4.1. ([BKP 74]) If the class U of total recursive 

functions has a numbering r such that the property (r1~rj) is 

decidable, then, for arbitrary total recursive function g(n) which 

nondecreasingly grows to the infinity, there is a strategy H 
r identifying in the limit r-indices of U such that Hu.r(n)sg(n ) for 

all n. 

PROOF. Let nl,nz,n3,.., be the sequence of the least numbers 

such that g(nl)~i. The strategy computes initial fragments of 

r0,rl,...,r n sufficiently long until all functions which are 
I 

different (as shown by the decidable property) really turn out to be 

different. Then solely one of these functions can be equal to the 

function under identification. The first hypothesis (with 

insufficient information about the function) is 0, and the second 

hypothesis is the abovementioned sole function in the segment. 

If the function turns out to be this function, then the only 

suitable function is found among T0,T1,...,Tn (at cost of one 
2 

additional mindchange), and so on. 
D 

COROLLARY. If the class U of total recursive functions has a 

numbering r such that the property (rlmr]) is decidable, then for 

arbitrary total recursive function g(n) which nondecreasingly grows 

to the infinity there is a strategy G identifying U in the limit 

such that G Ex (n)sg(n) for all n. 
u.T 

PROOF. Immediately from Theorems 4.1, 1.2 and 1.3. 



126 

For the contrast, we note that the counterpart of Theorem 4.1 

for the prediction fails. 

THEOREM 4.2. ([BKP 74]) If for an enumerated class (U,r) it is 

true that for arbitrary total recursive function g(n) which 

nondecreasingly grows to the infinity there is a strategy F 

predicting U such that F ~v (n)~g(n) for all n, then there is a 
Nv 

nonrecursive strategy K such that Ku.T(n)=o(l ). 

PROOF. We use the term "pxq table of (U,T)" for the table of 

values ri(x ) with i~p, x~q. All possible strategies H provide us 

only a finite number of variants which function into prefered when 

• and for xsq. All these variants predicting values for T0,rl, ..,Tp 

can be enumerated and a number S(p,q) be found such that: 

a) arbitrary strategy H makes no less than S(p,q) errors at a 

line of the (pxq)-table of (U,T), 

b) there is a strategy H ° which makes at an arbitrary line of 

the (pxq)-table of (U,T) no more than S(p,q) errors. 

Evidently, S(p,q) is a total recursive function which is 

monotonic both in p and q. It is easy to see that 

(Vp)(Vq)H~r(p)~S(p,q) (4.1) 

Since there is a total recursive strategy F with the property 
FRY • . < u,T(p)-p, we conclude that for a fixed p the function S(p,q) is 

bounded. Indeed, if S(p,q) were unbounded, then it would be possible 

to find a total recursive function t(p) such that S(p,t(p))--9~ 

monotonically. By (4.1), this contradicts the provisions of the 

theorem. 

We have proved (Vp)(Vq)(S(p,q)~C). Now we can prove the 

existence of the needed strategy K. 

The inequality S(q,q)~C implies that, for every q the set H of q 
those strategies which make no more than C errors within the 

(qxq)-table of (U,T), is nonempty. The set H is divided into a q 
finite system of equivalence classes where one class consists of 

strategies which function equally within the (qxq)-table of (u,r). 

We denote this system by {H~,...,H~q}. It is easy to see that 

( Vk~kq+ 1 ) ( 31~kq ) ( H~+I~ ) .  

Hence from the compactness theorem for trees with the finite 

branching property, there is a strategy H such that 

(Vq)(3k~kq)(HeH~) 



127 

or just He~ for all q . Thus H makes no more than C errors on every 
q 

(qxq)-table of (U,~), and H~r(q)=o(1). 

O 

5. Prediction and identification of finite automata 

We saw in Section 2 that prediction and identification in the 

limit can be performed with a small number of errors 

(resp.,mindchanges). Section 3 contained disappointing results 

(Theorems 3.1 and 3.3) showing that for identification of r-indices 

many mindchanges may be inevitable. On the other hand, we saw in 

Section 4 that the negative results just indicate that these are 

numberings which are complicate, not the classes of functions. Now 

we are about to ask whether "natural" numberings make identification 

easy or complicate. 

For arbitrary classes of functions it is not possible to answer 

such a question since we do not know the criteria according to which 

numberings could be called "natural". Nevertheless, there is a happy 

exception. There are classes of objects that can be considered as 

recursively enumerable classes of total recursive functions, and 

simultaneously they have nontrivial natural numberings, the 

naturalness of which is widely accepted. We are talking about finite 

automata. 

Finite automata were intensively studied in the fifties, and 

the pioneering paper [Moo 56] was a starting point in several 

directions of research, inductive inference including. Hence it is 

natural to consider such an example. 

Initial finite automata with input and output are considered. 

The input alphabet is fixed X={l,2,...,a}. The output alphabet may 

vary. We restrict it only to be a subset of {l,2,...,n}. The class 

of all such automata is denoted by U . The subclass of U obtained 
a a 

by fixing the output alphabet to be Y={l,2,...,b} is denoted by 

Ua, b " 

Automata are considered as "black boxes". We know only that 

they are in U . Let the sequence of the inputs of such an automaton 
a 

A be 

~={x(1), x(2), .... x(t) .... }, 

and 

{y(1), y(2), ..., y(t), ...} 



128 

be the corresponding output sequence. The problem is, for an 

arbitrary t, given {x(1) ..... x(t)}, {y(1) ..... y(t)}, x(t+l), to 

predict y(t+l). Arbitrary effective rules (called strategies) are 

allowed. 

We see that the problem cannot be solved without errors. We 

study the minimal number of errors needed for such a prediction. The 

main result of this section shows that the worst-case number of 

errors can be very small, namely, o((a-l).k.log2k ) for automata with 

k states and this estimate cannot be asymptotically improved. Note 

that any exhaustive search gives the upper bound of k k type. 

Let Z be a strategy, i.e. a total recursive function of one 

argument. We say that Z commits an error at moment t working on the 

sequence ~ and the automaton A, if 

Z(<x(1),...,x(t),y(1),...,y(t),x(t+l)>)~y(t+l). 

Z (~,A) is the cardinality of the set of those t when Z commits 

an error at work on ~ and A. For arbitrary class U of automata 

Z'(~,U,k)--max Z (~,A), 

where the maximum is taken over all automata AeU with no more than k 

states. 

THEOREM 5.1. ([Ba 74-2]) Let az2. There is a strategy Z such 

that for arbitrary input sequence ~, 

X'(~,Ua,k)~(a-l)k.log2k+o((a-l).k.logak). 

PROOF. Instead of automata from U we consider the 
a 

corresponding automata graphs (see [TB 72]) with input alphabet 

X={l,...,a}. We take one representative per class of isomorphic 

graphs (isomorphism for graphs with a fixed initial vertice is 

considered). We order these representatives by the number of 

vertices. We remove the graphs for which the part reachable from the 

initial vertice coincides with a graph considered earlier (such 

graphs do not generate new automata operators). The graphs with the 

same number of vertices are ordered arbitrarily. We get a sequence 

of graphs ~(GI,G2,...,GI,... }. Evidently, if the number of vertices 

[GII in the graph G i does not exceed k, then 

i~I(a,k), (5.1) 

where I(a,k) is the number of all pairwise nonisomorphic initial 

automata graphs with k vertices and a-letter input alphabet. It 

follows from [Kor 67] that 



129 

I ka k 
-~!ik, if az3, 

I(a,k) - (5.2) 

kak 
e 2"e4 k! .k, if a=2. 

(Since we consider initial automata graphs, we have the multiplier k 

in (5.2), in contrast to the original version of the formula in [Kor 

67]). 

Following the idea of the proof of Theorem 2.1 we associate 

weights 
C 

p(Sl)_ 0 (5.3) 
i(log2(i+l)) 2 

to graphs G i. (Bere the constant C o is chosen to have ~p(G1)=s0<l. 

It is easy to see that the series converge effectively.) 

First, we construct a nonrecursive "strategy" ~ which provides 

the needed complexity bound. This strategy in the computation 

process observes all the infinite sequence ~. Next, we use the 

effective convergence of ~p(Gl) and modify this "strategy" making it 

recursive. 

The "strategy" ~ is described as a sequential process of 

predicting which ascribes output letters to the edges of the graph 

(thus converting the graph into an automaton). The "strategy" 

crosses out the graphs which have turned out to be inconsistent with 

the input x(1),...,x(t) and output y(1),...,y(t). Let the path 

x(1)...x(t) in the graph G be the path starting in the initial 

vertice and following the input word x(1)...x(t). 

We start the prediction at t=l when we are to predict y(2) by 

x(1), y(1), x(2). For the starting sequence of automata graphs we 

take the sequence ~={G~,...,G°I,...} which is essentially the same 

~, only on the edges outgoing from the initial vertice and labelled 

by input letter x(1) the output symbol y(1) is written. The weights 

of the automata graphs remain the same as before. This way, we get a 

sequence ~={G~,. G I .., i,... } with ascribed weights. 

At the stage t we have the information x(1),...,x(t), 

y(1), . . . .  ,y(t),x(t+l) We take the sequence 9 -I={'G t-11 '''''Git-1''''} 

produced at the previous stage. All graphs in this sequence have 

output letters y(1), y(2),...,y(t) written on the edges of the path 

x(1) x(2) ... x(t), and no edges have been ascribed contradicting 

letters. In the general case ~-i may have not all automata graphs, 



130 

since some of the graphs may contradict the existing information on 

the input-output relation. In other terms, if Gt-lis considered as a 
i 

partially defined automaton, then it produces y(1)...y(t) as its 

response to x(1)...x(t) and goes to the state gt=glx(1)...x(t). 

We say that G t-1 at input x(t+l) outputs y if the edge outgoing ! 

gt and corresponding x(t+l) is on the path x(1)...x(t) and has the 

output symbol y. If G t-1 produces an output symbol in response to | 

x(t+l), i.e., if the edge x(t+l) from gt is on the path x(1)...x(t), 

then we say that G t-1 participates the prediction. 
i t-1 

Additionally, the elements of ~-i have got weights p(G l ) and 

G t-1 <I The "strategy" ~ predicts the output symbol the total ~p( i )=So " 

with the maximal total weight. 

To complete the description of the current stage t we have to 

say that the new information is used to transform ~-I into ~. The 

output symbol y(t) is ascribed to the edge of the graph 

corresponding to x(t) on the path x(1)...x(t-l)x(t). If this output 

symbol contradicts to the earlier information for this graph, then 

the graph is removed from the sequence. 

The new weight is defined as follows. If the graph has not 

participated in the prediction, then its weight is not changed. If 

the graph has participated and has not been removed, then its weight 

is multiplied to st/rt, where s t is the total of weights of the 

automata having participated in the prediction and r t is the total 

of weights of the automata having produced the right outcome. 

Evidently, the total of weights over all the sequence ~ has not 

changed, i.e. ~p(G~)=S 0. 

Note that, if ~ has made an error, then 

S t 
a2. (5.4) 

r t 
Hence, every graph having produced a right prediction at least 

doubles its weight. 

Let G~ be the first graph in the sequence which is consistent 

with the input-output information. At every moment of error, either 

G gets a new output symbol or doubles its weight. Hence the maximal 
2 z-ak G 1 number of errors does not exceed a number z such that .p( ~)= . 

From this equality, using (5.1), (5.2), (5.3), we can get 

~'(~,Ua,k ) < z ~ (a-l)k-log2k. (5.5) 

It remains to modify ~ and to get a recursive strategy Z which 

computes the infinite series only approximately and does about the 



131 

same as ~. We use the constructive convergence of the series of 

weights. This allows us to consider only finite initial fragments of 

this series. The strategy Z predicts y only when it has checked that 

any other output symbol y" may have the total of weights 

p(y')~p(y)+3~+l'p(y ) , (5.6) 

where Jt is the number of errors already made up to this moment 

(instead of p(y')sp(y) for ~). This modification does not influence 

(5.5). D 

THEOREM 5.2. ([Ba 72-2]) Let aa2. There exists an input 

sequence ~0 such that for every strategy Z and for every ba2 

Z (~0,Ua,b,k)a(a-l)-k-log2k+o ((a-l)-k-log2k ) 

(consequently, Xt(~0,Ua,k)a(a-l).k.log2k+o ((a-1).k.log2k)). 

PROOF. Let X={xl,...,xa} be an input alphabet and Y={0,1} be an 

output alphabet. Given any natural number ka64, we define the 

automata class R k as follows. A typical automaton in R k is drawn in 

Fig.5.1 (containing only those arrows essential for further 

considerations). As it is shown in Fig.5.1, automata in R k have 
[log2k-log21og2k] 

s+~=2[logzk]+6+2 "[iog2k-log log2k]=k-o(k ) 

states. First s-I states specify a subautomaton called 

k-encipherator (the same for all automata in Rk) , the next k states 

form a different subautomaton called the main. 

First we give the formal description of k-encipherator. Given 

the binary representation of the number k, we replace every 

occurrence of the symbol 1 by the word x2xl,replace every symbol 0 

by the word xlx 2 and add x,xlx I to the end of the word obtained so 

far. Let ~ denote the word we have obtained. Apparently, 

s=2[logek]+6 is the length of ~; let ~=v1,vz, .... v s . The word 

contains no subword xlxlx I . ~-encipherator is supposed to "let 

through" (to the main subautomaton) only the words containing a 

subword ~, provided it starts updating in the initial state q1" The 

definitions of k-encipherator (see Fig.5.1) and the word k imply 

that, provided x I repeated tree times preceeds ~, k-encipherator 

will reach the state ql and will stay in this state while x I is on 

input. 

Now we describe the main subautomaton. It consists of many 

distinct blocks. The i-th block begins with the state qs.i~ (initial 

states in Fig.5.1 are marked by *), the length of each block (i.e., 



I ~
 •

 

O
~

 

l~
-e

nc
Zp

ke
ra

~°
~ _

_ 

II 
II 

II 
I'

~ 
~ \V

 

O
-~

h
 b

lo
cx

 

- 
b

in
a

ry
 

re
/o

re
se

nZ
~

a{
io

n 
q

o
 

m
a

in
 

su
b

ct
u

to
m

ct
~

o
n

 

X
 

i-
~

k
 b

lo
cx

 

-b
in

ar
~[

 re
pr

e3
en

~a
~io

n 
o

fi
 



133 

the number of states) is equal to ~=[log2k-log21og2k]~3, the total 

2~< k number of blocks is ~= -l-~2k. The output labels on the arrows from 

the states in the i-th block labelled by x z form the binary word 

c ...c that is the binary representation of the number i 
11 12 I ~  

(containing so many zeros in the beginning that the total length is 

~). 

The word e c ...c is said to be the characteristic sequence 
i l  12 I ~  

of the block i. Hence, every block specifies its own characteristic 

sequence. Note, that the number of distinct binary words of the 

length ~ is just equal to the number of blocks; therefore, every 

binary word of the length ~ is the characteristic sequence for some 

block. Arrows outgoing from the initial states of the blocks (i.e., 

from the states qs+i~' i=0,1,...,~) and labelled by the input symbol 

x 2 link initial states with the state qs" Arrows outgoing from inner 

states of blocks and labelled by input symbols differing from x 1 
(call these arrows variable ones) link these states with arbitrary 

initial states of blocks (there are 2 ~ states of this kind). Just 

the latter property differs any automaton in R k from any other. 

Now we consider variable arrows. The total number of these 

arrows is equal to u=(a-l)u(~-i). Let us fix a linear ordering of 

these arrows: dz,d2,...,d u. Given any main subautomaton, associate 

with it the binary sequence 

~11,''',~1~,''',~jl,''',~j~,''',~ul,''',~u~ 
of the length ~u defined as follows: ~jl,...,~j~ is the 

characteristic sequence of the block having the initial state the 

arrow d goes to. This sequence is called the characteristic 
J 

sequence of the given main subautomaton. It is easy to see (taking 

into account values of ~ and ~) that every binary sequence of the 

length ~u is the characteristic sequence for some main subautomaton. 

Now we define one specific input sequence. Let d' stand for the 
J 

input symbol labelling dj, and Vj be the sequence "transferring" qs 

to the state the arrow d is outgoing from. We set J 

Dk={Vl, d ~ ,xl, • • • ,Xl, x2, .... ,Vj,d~ ,xl,. • ., xl,x2, ..... , 
times ~ times 

L,du,Xl ,--,,xl}, 
times 

Consider, for a while, the main subautomaton as an independent 

automaton with the initial state qs" For input string D k the 

automaton outputs the sequence 



134 

E={WI,0,~11,-..,~l~,0,-.-,W],0,6j1,..-,6]~,0,--- 

where Wj is the output sequence corresponding to the fragment Vj and 

~D,...,~j~ corresponds to the piece xl,...,x I directly following 
t i m e s  

Vj. The subsequence 

611t...t~1~v...t~jlr.-.t~jGi---t~ult..-,~uG 
of the sequence E is, obviously, the characteristic sequence of the 

given main subautomaton. 

Let Z be any strategy. Now it is not difficult to show that 

there is a main subautomaton A Z that, provided ~ is treated as an 

independent subautomaton with the initial state qs' the strategy Z, 

being applied to the automaton ~ and the input sequence Dk, will 

make mistakes just in those places corresponding to the fragments 

xl,...,x I of D, i.e., for every j and I~i~, l~jsu, the inequality 
times 

Z{V i d" 
'''" xl i-1 times 

' 1'~iti.o ~ ' x 2 '  . . . .  , V j , d j , x ~ , . . . , x l ;  

i 10 , ~ll~''',~l~,0,''',Wj~0,~jll''',~j(l_l)tXl)~j~ 

will hold. 

This inequality shows how the characteristic sequence of the 

required automaton A Z should be defined. Furthermore, given the 

characteristic sequence, one can easily restore unambiguously the 

automaton A Z. Hence, 

Z (Dk,Az) a U~ = (a-l)~(=-l)~. 

Finally, we are able to define the required input sequence: 

ko=64. 
0 0 

Let A be an arbitrary automaton in R k. As it follows from the 

definition of k-encipherator the automaton A reaches for the first 

time the state qs on the input string ~0 just after the initial 

fragment 

0 

Before A has reached qs' k-encipherator runs on ~0(k) (let ~0(k) 

denote the sequence k-encipherator outputs on ~o(k)). The sequence 

~o is constructed so that D k follows ~0(k). Therefore, after the 

string ~0(k) is updated, the main subautomaton can be considered as 

an independent automaton with the initial state qs' input string D k 

and prediction strategy according to 



135 

Z'(~,~;X i)=Z(~0(k),~;~0(k),~;xl). 
Let us choose ~, as the main subautomaton for A. Then, clearly, 

o 

Z (~0,A)zZ' (Dk,~,)z(a-l)~(~-l)~. 

Therefore, Z (~0,Ua.~,s+~)z(a-l)~(~-l)~. Using values of s,~,~, we 

obtain 
o 

Z (~o,Ua.e,k)~(a-l)k'logek+o((a-l)k.log2k) . 

D 

One can consider identification in the limit of automata 

instead of prediction of their behaviour. In this case, given a pair 

{x(1),...,x(t)}, {y(1),...,y(t)}, one has to construct an automaton 

A" non-distinguishable from the "black box" A on the string 

~={x(1) ..... x(t),...}. Let {A } stand for the class of all such A'. 

Strategy Z in this case is a general recursive function which, given 

any string {x(1),...,x(t)}, {y(1),...,y(t)}, finds an automaton in 

Ua(more precisely, given the number of the string, it finds the 

number of an automaton in Ua). 

At=Z(x(1),...,x(t)~y(1),...,y(t)) 

is said to be the hypothesis generated at the moment t. Let us 

suppose that 

a) for every t, the automaton A t transforms the input word 

x(1)...x(t) into y(1)...y(t), i.e. A t is not an "explicitly" 

incorrect guess; 

b) there exists t such that At=At÷1 ..... A' and A'~{Aw}. 

Then we say that the strategy Z identifies in the limit the 

automaton A on the sequence ~. 

By Z#(~,A) we denote the number of mindchanges, i.e. the number 

of moments when the automaton produced at this moment differs from 

the automaton produced at the previous moment. Additionally, 

Z#(~,A)=~ if the strategy Z does not identify in the limit the 

automaton A on ~. By analogy, we define Z#(~,Ua,k) = maxX#(~,A), 

where the maximum is taken over all automata AeU with no more than 
a 

k states. 

THEOREM 5.3. ([Ba 74-2]) Let aa2. There exists a strategy Z 

such that for every input sequence 
m 

Z (~,Ua,k)~(a-l)k-log2k+o((a-l)k-log2k) . 

PROOF. Instead of the "strategy" ~ from the proof of Theorem 

5.1 we use a "strategy" ~" which differs only in one aspect. The 

"strategy" ~" changes the sequence ~ only at the moments when an 



136 

error is made. It is easy to see that the estimate (5.5) remains 

valid since it was proved actually using only those moments t when 

the strategy fails (i.e. the inequality (5.4) holds). Let 

t1'tz''''tn denote moments when errors were made, n=~"(~,A). 

Therefore, our strategy 2' will use only subsequences 
% % t 

9, 4 1 , 4 2 ..... 4 n. 

Now we are about, given the strategy ~', to define an effective 

strategy Z'. The symbol y, Z' outputs at the moment t, has to 

satisfy the inequality 5.6. Let te(tl,ti÷1]. Then inequality is 

transformed to 

p(y')~p(y)+ ~ p(y). (5.7) 

For any given t~(tl,ti÷1] , the symbol y can be defined using at most 

an initial fragment of the sequence ~i. This fragment is said to be 

essential for the given moment t. Taking into account constructive 

of the series ~p(~) one can show easily that it can be convergence 

effectively computed, given the pair {x(1),...,x(t)}, 

{y(1),...,y(t)}. Note, that, if an initial fragment, essential for 

the moment t, is long enough, then it can be equally essential for 

the next moment, and so on. Now, let t i ,t i ,...,t i be the moments 
1 2 n 

in (tl,ti÷1] when one has to change (i.e. to make longer) the 

essential initial fragment chosen earlier (in order to make it 

possible to check the inequality (5.7)). Note, furthermore, that, if 

an essential initial fragment containing the required graph G is 

found and this fragment contains a sufficiently long "tail" after 

G , then at least the inequality (5.7) protects it from replacement 

(it will be changed when an error is made, and ~ is to be changed 

itself). This consideration implies that, if we choose every next 

essential initial fragment sufficiently longer than the preceding 

one (for instance, of the length 2", where n is the length of the 

preceding fragment), then the total number of changes of essential 

initial fragments implied by inequality (5.7) will not exceed 

o(IG llog21G I ). On the other hand, the number of changes of 

essential initial fragments implied by changes of the sequence ~ is 

equal to the number of ~ changes, i.e. the number of errors Z' 

makes on the input string. The latter number, as it follows from the 

proof of Theorem 5.1, does not exceed (a-l)k.log2k+o(k.log2k). We 

obtain now that our strategy Z" changes essential initial fragments 

at most 



137 

(a-l)k'log2k+o(k'log2k)+o(IG~llog21G~I)= 

=(a-l)k-log2k+o(k'log2k) 

times. While essential initial fragment is not changed the strategy 

Z' predicts the next value using only this fragment and the current 

vertex of each graph from the fragment. Namely, it means the 

following. The current vertex of G] at the moment t is just the 

vertex the automaton reaches reading x(1)...x(t) from the initial 

state. Therefore, if we know the current vertex of the graph Gj, 

then we can find the symbol y G] (as an automaton) outputs reading 

x(t+l); there is no need to store information reflecting the word 

x(1)...x(t). 

It means that a finite automaton is able to perform prediction 

which Z" is making while essential initial fragment is not changed. 

The states of the required automaton are all possible orders of 

current vertices in the chosen initial fragments (i.e., each state 

is a chosen initial fragment, where just a single vertex, called 

current, is marked in every graph; the choice of current Vertices 

distinguishes one state from the other). Transition from one state 

to another is performed according to the transition of current 

vertices in every graph while reading x. The automaton outputs the 

symbol the strategy Z" is supposed to output in the given case. 

The above automaton is just the hypothesis the required 

strategy Z is suppoosed to guess during the timefragment under 

consideration. Evidently, the number of hypothesis changes is equal 

to the number of changes of essential initial fragments. Therefore, 

Z#(~,A)~(a-l)k-log2k+o((a-l)-k-log2k). 

[] 

The lower bound proved in Theorem 5.2, clearly, holds in the 

given case too. 

The cases considered above resemble in a way simple experiment. 

Now we consider the case which resembles multiple experiment. Let 

the sequence 

~={~,,~2,.-.,~t,...} 

be used as an input for a "black box" A and {Wt,W2,...,Wt,... } is 

the corresponding sequence of output words (A reads every new word 

starting from the initial state). 

Prediction by the 3-tuple {~1,...,~t} , {nl,n2, o..,nt~ , ~t÷l 

means prediction of nt+ I. In our case Z (~,A) is the number of 

distinct t such that 



138 

z(@i,...,@t;ni,nz,...,~t;@t+1)~nt+1 • 

Given any pair {@1,...,@t} , {#1,n2,...,nt}, the goal of the 

identification in the limit is to define an automaton A' 

non-distinguishable from A on the input words ~. Z#(~,A) is defined 

like Z#(~,A), but the words @t,W t are used instead of x(t) and y(t) 

respectively, and the hypothesis A t is defined as 

x(~it...,~t;nl,n2,...fnt). 
Extending slightly proofs of Theorem 5.1 and Theorem 5.3, we 

obtain the following, slightly more general results. 

THEOREM 5.1'. ([Ba 74-2]) Let az2. There exists a strategy Z 

such that for every sequence ~ of input words 

Z*(n,Ua,k)~(a-l)k'logek+o((a-l)k'logek ) • 

THEOREM 5.3'. ([Ba 74-2]) Let aa2. There exists a strategy Z 

such that, for every sequence ~ of input words, 

Z#(~,Ua,k)~(a-l)k'log~k+o((a-l)k'log2k). 

Theorem 5.3' is a very important tool for investigation of the 

synthesis of programs by hystories of their behaviour (see Section 

6). 

6. Notes on program synthesis from computational hystories 

One of the most important problems in the theory of learning 

evidently is program synthesis from computational histories. Note, 

that even learning of such algorithms as addition and multiplication 

usually proceeds as follows: the teacher demonstrates how the 

algorithm is working on particular samples, i.e., gives the 

histories of computation and then the learners are synthesizing 

general algorithm (program) on the basis of this information 

themselves. In 1972 Bierman [Bie 72] proposed heuristic algorithms 

of synthesis from computational histories and implemented them on 

computer. Still the mathematical basis of the process of such 

synthesis have not been studied much at the time. Below we give the 

first results in this field we obtained in 1974 (first published in 

[Ba 74-3]). 

As a model we consider the Post machine. All the results can be 

easily transformed for more general programming languages (to within 

multiplying constants in evaluations). 



139 

0 
)5 

()6 
Fig. 6.1 

I tol  
Fig.6.2 

Fig. 6.3 

Let us consider one-tape Post machine with outer alphabet 

{0,i}. It is given by the instructions of the type: 

- shift the head one cell leftwards, 

- shift the head one cell rightwards, 

V - print 'i' in the current cell, 

0 - print '0' in the current cell, 

? - conditional instruction: transfer by 1 if I, transfer by 0 

if 0, 

! - instruction 'HALT' 

An example of a program is given in Fig.6.1. 

Given the input x=lll (Fig.6.2), the program produces y=llll 

(Fig.6.3) executing the following sequence of instructions: 

? ~ ? ~ ? ~ ? V ~ ? ~ ? e ? ~ ? ~ ? ~ !  

The sequence is formed from all the instructions which are run 

by the program working on the given x. Such a sequence will be 

called operationally-logic history of the given program for the 

given x (the notion is introduced in [Er 71]). 

Now let us state the problem. Let P be an arbitrary program of 

the Post machine and 

Q={xl,x2,...,xt,...} 

be an infinite sequence of natural numbers. We assume that the 

program P halts for any x t from ~ and gives the result P(xt) (we 

call such ~ permissible for P). Let h t - operationally-logic history 

of program P for x t . Let there be given 

{(xl,hl),...,(xt,ht)}- 

It is required to determine a program P' such that P' coincides with 



140 

P on Q, i.e., P'(x)=P(x) for xe~. We denote a collection of all such 

P' by {P~}. An arbitrary total recursive function ~ mapping 

<xl,hl,...,xt,ht> to programs for Post machines is called strategy. 

The program Pt=~(xl,hl,...,xt,ht) is called the hypothesis produced 

in the moment t. Let: 

a) a program P coincide with P for any t at least for 

XltX2r'''tX t , 

b) there exist r such that P =Pr+I=...=P ' and P'e{P~}. 

Then we say that the strategy H synthesizes from operationally-logic 

histories the program P on the sequence ~ in the limit. We denote by 

~#(~,P) the number of changing the hypothesis, i.e., the number of 

~P . Otherwise, ~#(~,P)=~. Our aim is to different t, such that Pt t÷1 

evaluate ~(~,P). Let us denote by IIPH the number of conditional 

instructions in P. 

THEOREM 6.1. ([Ba 74-3]) There exists a strategy ~ such that 

for any program P and any sequence 

~(~,P)~llPlllogzllPll+o(llPlllog211Pll). 

Using advanced enough algorithmic languages IIPI[ usually is not 

too large. For instance, for the program of multiplication of 

matrices lIPll=3. Therefore Theorem 6.1 shows that there exists a 

strategy which makes quite a few mistakes in the process of 

synthesis (almost comparable with the number of mistakes the 

programmers usually do when writing similar programs). 

To prove Theorem 6.1 we associate with any program P the 

following automaton P with input alphabet {0,I}. Let program P 
aut 

begin with a conditional instruction (this does not restrict the 

generality), and let us represent it as a graph. Let us keep in the 

graph only those vertexes corresponding to instructions "?" and "'" o, 

the paths consisting of other vertexes we replace by arrows. More 

precisely, if the path is of the type given in Fig.6.4a, we replace 

it by the arrow with entry label c and exit label (~i,72,...,~ ,~) 

(Fig.6.4b). As the result we obtain a diagram of a certain 

automaton, which we denote by Paut" For the program given in Fig.6.1 

the corresponding automaton is shown in Fig.6.5, the input alphabet 

is {(~,?),(V,e,?),(e,?),(~,!)}. 



141 

0 0 
Fig. 6.4 

t 

< 
Fig. 6.5 

, o ,  (--,.-, 

Evidently it is possible to restore the program P by Pa,t q(we 

denote it by (Paut)progr). 

We associate the input word ~t=ct ~t ""ctl (8tje{0,1}) with 
I 2 t 

x t and ht=?u1?u ?...?u I , where uj is the sequence of instructions 
t 

(unconditional) between conditional constructions, in the following 

way: c t c t ...ctl are the sequences of values which take the 
I 2 t 

conditional instructions working on x t in correspondence to history 

h t (we assume that conditional instruction "?" takes 1, if the cell 

in question contains 1, and 0 otherwise). To put it differently, the 

word ~t in the diagram of automaton Paut determines the same path as 

the word x t with history h t in the program P. Now, substituting ~s 

for x s in ~={xl,...,xt,... } we obtain the sequence of words 

~'={~l,---,~t,--- } . 
The following assertion stating the relationship between 

synthesis of automata and programs is evident now: 

A. If A is an arbitrary automaton undistinguishable from P 
aut 

on the sequence of input words ~' (input of all words starts on 

state i), then the program (A)prog r obtained from automaton A is 

undistinguishable from program P on the sequence ~ (i.e., they have 

the same histories and give the same results). 

Let us apply the strategy Z from Theorem 5.3". We obtain 

Z#(n',Paut)<JPausJlog2JPausJ = (IIPII+I)Iog2(UPII+I) (6.1) 

The strategy Z uses 2t-tuple 

Kt=<~1'''''~t'Paut(~1 )'''''Paut (~t)> 
to produce (t+l)-hypothesis. On the other hand, the intended 

strategy H can use only 2t-tuple Nt=<xl,hl,...,xt,hs>. Nevertheless, 

evidently it is possible to construct K t effectively from N s . 

Therefore the strategy E works as follows. First, it finds the 

2t-tuple K s from Nt, then it applies the strategy Z to K s and finds 



142 

hypothesis At=Z(Kt) and finally it transforms the automaton A t to 

program (At)prog r and gives it as a result for N t . From assertion A 

and (6.1) it follows that 

~#(~,P)~llPlllog211Pll+o(llPlllog2flPil). 

[] 

NOTE. Actually we have proved a bit stronger assertion: the 

obtained strategy synthesizes a program which produces not only the 

same results as P on ~, but also the same operationally-logic 

histories. 

Let us consider the so-called operational histories [Er 71] 

instead ~ of operationally-logic histories. Usually they are the 

minimal necessary information given to the learner in the process of 

learning some algorithm. They can be obtained from 

operationally-logic histories by omitting all conditional 

instructions. For instance, operational history corresponding to the 

example given above equals ~ ~ ~ V e • • • ~ !. Let us denote the 

number of changing the hypothesis in this case by ~'(~,P). Let IPI 

be the number of instructions in P. Then the following theorem 

holds. 

THEOREM 6.2. ([Ba 74-3]) There exists a strategy H such that 

for any program P and any sequence 

n'(n,P)~IPllog21pl+o(IPllog~iPl). 
Theorem 6.2 follows easily from Theorem 6.1. Note, that any 

program P can be transformed to an equivalent program P' putting the 

conditional instruction "?" 0 >0---~0 between any two instructions ) 
0 )0. Obviously, liP'li~iP I and operational histories of P and P' 

coincide. On the other hand, it is possible to restore 

operationally-logic history ?KI?K2?...?Ks! by operational history 

K K ...K 1. Consequently, it is possible to use Theorem 6.1 for 
1 2  s 

program P'. Therefore H'(~,P')~ItP'ilIog211P'II~IP ilog 21Pi. 

[] 

The question whether a complete analogy with Theorem 6.1 holds 

in the case of operational histories is open. It is also interesting 

to study the synthesis of programs with small llPll : the given 

evaluations cannot be used reasonably for the case. 



143 

7. Errors versus complexity 

Following the proof of Theorem 2.1 for an arbitrary enumerated 

class (U,T) a total recursive prediction strategy F can be 

constructed such that for all n: 

~v (n)slog n+log log n+o(logloglog n). 
U,~ 2 2 2 

In this chapter a general result will be proved from which it 

follows that for such "error-optimal" strategies the time complexity 

of computation of the prediction F(<f(0),...,f(m)>) (i.e. a 
cm 

candidate for f(m+l)) may go up, in some sense, to 2 2 . 

To put it precisely, we investigate general algorithms of 

strategy construction instead of particular strategies. Such 

algorithms are called uniform prediction strategies. The precise 

definition is as follows. 

Any numbering r of total functions (not necessarily computable) 

can be treated as an oracle which answers to queries like "ri(j)=?". 

Uniform prediction strategy F is a Turing machine with oracle r 

which computes a candidate for f(m+l) from the given values 

f(0),...,f(m) (it is assumed that the function f is in the numbering 

r). We denote this candidate value, as usual, by 

F (<f(0),...,f(m)>). If the function f is not in the numbering r, 

then the computation, maybe, does not halt. Thus, given any r, F r is 

a partial recursive prediction strategy in the sense of Section I. 

The number of errors committed by the strategy F during the 

prediction of a function f from a numbering r we denote, as usual, 

by 

F Nv r (f)=card {m I Fr(<f(0),---,f(m)>)~f(m+l)}- 

Let h(x) be any function of a real variable x defined for all 

xz0. We say that a uniform strategy F uses h(m) queries, if for any 

numbering r, any function f from T, and all mz0 the computation 

process of Fr(<f(0),...,f(m)> ) issues ~h(m) queries "ri(j)=?" to 

oracle r. The number of queries can be viewed as a rough lower bound 

for time complexity of the prediction. 

Our main interest is to investigate the power of uniform 

prediction strategies which use h(m) queries for h(m)=2 m, 2 cm, x X, 
2 m c m  

2 , 2 2 However, the obtained upper and lower bounds hold for any 

"reasonable" function h such that exp~hs2 exp (i.e. h(x) grows at 



144 

OX 

least as fast as 2 cx , but not faster than 22 ). To put it 

precisely, we introduce the following conditions for h: 

CI) h is a computable function of real variable, h(x) is 

defined, positive and twice differentiable for all sufficiently 

large x. For any integers m,nz0 it can be decided effectively 

whether h(m)=n or not. 

C2) There is a real constant a>0 such that for all sufficiently 

large x: 

(log2h(x))'>a , (log h(x))"z0. 

These conditions are satisfied by any "reasonable" function growing 

at least as fast as 2 cx. 

C3) There are two real constants b,d~0 such that for all 

sufficiently large x: 

(logzh(x))'~2 bx+d. 

This condition is satisfied by any "reasonable" function growing not 
cx 

faster than 22 

One can verify easily that if the function h satisfies 

CI,C2,C3, then: 

C4) so does the function h(x) 
x+2 ' 

C5) h(x) is strongly increasing and continuous for all 

sufficiently large x. This assures the existence of the inverse 

function h-1(x). 

C6) For all sufficiently large integers m: 
m 

h'm+l%>h(m), .'-l+a.. ~h(i)<~h(m+l). 

i=O 

THEOREM 7.1.([PO 77-1]) Let function h satisfy the conditions 

CI,C2, and let F be a uniform prediction strategy using h(m) 

queries. Then there is a computable numbering r such that for 

infinitely many n: 

F~V(~n)>logn+h-1(n)-O(1). 

All functions of r are of the type N-*{0,1} with a finite number of 

l's. 

PROOF. For the given strategy F we define a numbering r and 

some function f. 

First, since C6 holds for h, let m 0 be an integer such that for 

all mzm0: h(m+l)>h(m)+l.} Then, for ish(m0) let all functions r L 

equal to zero. For all i>h(m0) and j~m 0 set f(j)=0 and r1(j)=0. When 



145 

during the computation of some Fr(<f(0),...,f(s)>), ssm0, F issues a 

query "r1(j)=?", set r,(j)=0. 

Suppose now that for some m~m0 we have defined: 

a) the functions r for all nsh(m), 
n 

b) the values f(0),...,f(m), such that f coincides up to m 

with all rn for a sufficiently large n, and F r makes m-m0 false 

predictions on f up to m, 

c) the values ri(0),...,r1(m ) for all i>h(m). 

Maybe, we have also defined a finite number of some other values 

ri(J)- 

Now we define all functions • for h(m)<n~h(m+l), the value 
n 

f(m+l) and the values ri(m+l ) for i>h(m+l). Let us simulate the 

computation process of Fr(<f(0),...,f(m)> ). When F issues a query 

"r,(j)=?" and the value ri(j) is not defined yet, set ri(j)=0. The 

process will end up and yield the prediction F (<f(0),...,f(m)>). 

(Suppose, this is not the case. Then we can set all the values r1(j) 

and f(j) (not defined yet) equal to zero. Since f is now in r, the 

prediction Fr(<f(0),...,f(m)> ) must be defined.) 

Then we define f(m+l)=s such that sE{0,1} and 

swFr(<f(0),...,f(m)> ). Thus, this prediction of F is false, and the 

total of errors is now m+l-m 0. Next we define r1(m+l ) for all i (if 

this value is not defined yet): 

I 
s, if r coincides with f up to m, 

ri(m+l)= l 
[0, otherwise. 4") 

Since only a finite number of ri(m+l ) has been defined before, the 

function f will coincide up to m+l with all functions r for a 
i 

sufficiently large i. 

It remains to define other values of rn, h(m)<n~h(m+l), which 

have not been defined. Set rn(J)=O for all j, m+l<jsk, where k is 

such that no value ri(j) has been defined up to now for i>h(m) and 

j>k. The functions rn, h(m)<n~h(m+l), fall into natural equivalence 

classes: 

n1= n z ( ) (Vj~m+l)~n(j)=rn(j) 
I 2 

(the values rn(j) , m+l<j~k, are equal to zero, i.e. they do not 

influence the equivalence). Let A be any of these classes, set 

t=[log2card(A)]. If t>0, we define for n~A the values 

rn(k+l),...,rn(k+t ) using all 2 t binary words of length t. For j>k+t 

and nEA set rn(j)=0. Thus, predicting the values r (k+l),...,rn(k+t) 



146 

any strategy will fail t times on some r , neA. 
n 

Iteration of such steps gives full definition of the numbering 

r. Let us show that r is the required numbering of the theorem. 

One can easy verify the following 

LEMMA 7.1. If r1(j)=f(j ) for all J<J0' and rl(j0)~f(j0), then 

ri(j)=0 for all j, j0<J<k. 

The rank r(A) of an equivalence class A (see above) is defined 

as the maximum number rsm+l such that 

(VrneA)(Vj~r)Tn(j)=f(j)- 

Clearly, r(A)zm0, and by the Lemma 7.1, different classes A have 

different ranks. So we can denote all these classes by A m , ..., At, 
O 

• .., A . Predicting the values Tn(0), rn(1), ..., r (r) (neAr) the 
m+l n 

strategy F r will fail at least r-m 0 times. After that, predicting 

the values rn(k+l), ..., rn(k+t ) for some neAr, the strategy F r will 

fail another t times, t=[log2card(Ar) ] . Hence, F r fails on some rn, 

neAr, at least r+log2card(Ar)-m0-1 times. 

Some of the classes A are sufficiently large: 
P 

LEMMA 7.2. There exist three constants c,d,e (depending on 

function h) such that for all sufficiently large m there is r, 

m+l-csrsm+l, such that 

card(Ar)>dh(m+l)-e. 

Having this lemma we can easily prove the assertion of Theorem 

7.1. Indeed, take any sufficiently large m and the class A of the 
r 

lemma. The strategy F r fails on some rn, neAr, at least 

r+log2card(Ar)-m0-1 

times. Now recall that h(m)<n~h(m+l): 

i) h(m+l)an, hence m+lah'1(n) and rzm+l-cah-l(n)-c. 

2) h(m+l)an, hence 

log2card(Ar)zlog2(dh(m+l)-e) ~ log2(dn-e)~log2n-e' 

(e' - a constant depending on d,e). Hence, 
NV -1 

F r (rn)>log2n+h (n)-c-e'-m0-1. 

D 

PROOF OF LEMMA 7.2. First, let us note that the classes A 
F 

(m0~rsm+l) cover all the numbers n, h(m)<n~h(m+l). Hence, using C6, 
m+l 

> icard(Ar) > h(m+l)-h(m)-I > (l-l~a)h(m+l)-l. 

r=m 0 

Let us prove now that, if c is fixed but sufficiently large, then 



147 

m-c 

1 l+a)-Ch(m+l), card(A) s ~( 
i 

r=m 0 

i.e. most of classes A are relatively small. Indeed, if r<m+l and 
r 

neAr, then during the computation of some Fr(<f(0),...,f(j)> ), 

l~j~r, the query "~n(r+l)=?" must have been issued (otherwise, 

according to (*), rn(r+l ) would have been defined equal to f(r+l), 

and the rank of A were not r). Hence, the total of queries issued 
r 

is at least 

m-c 

~card (A). 

r=m O 

On the other hand, for the prediction Fr(<f(0),...,f(j)> ) at most 

h(j) queries could have been used, hence, using C6, 
m-c m-c 

~ card(A) ~ h(j) ~ !h(m+l-c)-<!l(l+a)-eh(m+l). a a 
r=m O J=O 

Now we have: 
m+1 

~card(A) > (l-l~a)h(m+l)-l-~(l+a)-Ch(m+l)= 

m+l-c 

=(i i i l+a a (l+a)-c)h(m+l)-l' 

and for some r, m+l-csr~m+l: 

1 1 !(l+a)-C)h(m+l 1 card(A) > c--/T(l l+a a )-c--+l" 

It remains to make c large enough to satisfy 
1 1 

I-i--~- ~ - ~(l+a)-C>0. 

EXAMPLES. El) For any uniform strategy F using 2" queries: 
3r3n ~ NV F r (rn)>21og2n-O (i) . 

E2) For any uniform strategy F using 2 cm queries: 

3r3~ FNV(r )>(i+i) log2n-O ( 1 ). 
n C 

E3) For any uniform strategy F using m m queries: 

3r3n ~ NV l°g2n 
FT (rn)>l°gzn +log log n O(I). 

E4) For any uniform strategy F using 22mqueries: 
NV > 

3r3n ~ F r (r n) log2n+log21og2n-O(1) 

E5) For any uniform strategy F using 22Cmqueries: 
3r3n ~ HY 1 F r ( r n ) >logzn+~log 2 log2n-O ( 1 ) . 



148 

COROLLARIES. a) If h(x) is growing slower than any exponent 

2 cx, then no uniform strategy F using h(m) queries can provide an 
NV < 

upper bound F r (r)-const.log n. 

b) If h(x) is growing as an exponent 2 cX, then no uniform 

strategy F using h(m) queries can provide an upper bound 

F~V(rn)~log2n+o(log n). 
CX 

c) If h(x) is growing slower than any super-exponent 2 2 , then 

no uniform strategy F using h(m) queries can provide an upper bound 

F~V(~n)~log2n+const.loglog n. 

d) The uniform strategy F defined in the proof of The- orem 2.1 

uses (for some numbering r and for infinitely many n) at least 
cm 

2 2 queries to compute F (<rn(0),...,rn(m)>). 

Now let us turn to upper bounds. Let h(x) be a function 

satisfying the condition C1 and ~={~n} be a recursive series of 

real numbers. By {h~} we denote the following modification of the 

uniform prediction strategy from the proof of Theorem 2.1. 

The prediction {h~}r(<f(0),...,f(m)> ) is computed as follows. 

We consider the functions r i only for i~h(m) and the weights ~i 

assigned to them. Find all numbers t such that 

Et={i I i~h(m) & (Vj~m)(ri(j)=f(j) & ri(m+l)=t)}~0. 

If there are no such t's, set the prediction equal to zero. For each 

t found compute its weight 

wt=~ {~i I i~Et} 
with the precision 2 -2m, i.e. find rational number r% such that 

Irt-w Is2 -2m.~ Now find t with maximum rt, and set 

{h~}r(<f(0),...,f(m)>)=t. 

{h~} is a total recursive prediction strategy using (m+2)h(m) 

queries. There are two different types of errors committed by the 

strategy {h~} r during the prediction of values of the function rn: 

- type i: 

{h~}r(<ra(0),...,~n(m)>)~rn(m+l ) & h(m)<n 

(i.e. when computing the prediction, the function r is ignored), 
n 

- type 2: 

{h~}r(<rn(0),...,rn(m)>)~rn(m+l ) & h(m)zn. 

Slightly modifying the proof of Theorem 2.1 we obtain the following 

LEMMA 7.3. Let the function h satisfy conditions CI,C2 and the 

predictions {h~}r(<rn(0),...,rn(m)> ) be false for m--ml,m2,...,m .. 

Let us denote: s I - the number of type 1 errors, s 2 - the number of 



149 

type 2 errors (s=s1+s 2) . Then: 

a) s1<h-1 (n) , 
S -1 

2 m 

s2 ~ +2+% 'T[ 
b)2 I~ < 21~ +i ~ J' 

n s 1 

I=l J=O 

where (~i=~ {1% I h(mi)<J-<h(ml+1)}" 

Now we d e f i n e  a s p e c i a l  s e q u e n c e  7t : 

o 1 
7 t  = 

n - 1  

h,h-1  (n )  2h (n) 

LEMMA 7.4. Let the function h satisfy conditions CI,C2 and C3. 

Let t h e  s t r a t e g y  { h ~ ° } r  p r e d i c t  t h e  f u n c t i o n  r n .  L e t  u s  d e n o t e :  s I - 

the number of type i errors, s a - the number of type 2 errors. Then: 

a) s1<h-1 (n) , 

b) s1+sz-logzs e < h-1(n)+logzh'h-1(n)+O(1). 

PROOF. One can v e r i f y  e a s i l y  t h a t  0 i s  a d e c r e a s i n g  f u n c t i o n ,  
x 

hence for all n: 
n 

o I dx < 
n -i 

n_ lh,h-l(x)2 h (x) 

Summing up we have 
h(m )+I 

i+1 

°'i < I dx -i 
h,h-l(x) 2 h (x) 

h(m ) 
i 

S u b s t i t u t e  h ( t )  f o r  x :  
co 

dx 
-I 

h,h-I (x) 2 h (x) 
h(m ) 

i 

Thus  we h a v e :  

GO CO 

h,(t)2 t = 2 t - in2 i . 

i i 

~i <~2 2-ml < 2_L2-I 
- in2 

(since mlzi-i ) . Hence, by Lemma 7.3: 
S -1 
2 CO 

o +2+~ T[ ° < const.s 2-sl, 2s2~ < ÷i ~ J 2 
1 

i=I J=O 

sa+loger~ ~ < l o g a s  ~ - s l + c o n s t  , 

s2-1og2h'h-1(n)-h-1(n) < log2s ~ - s1+const. 



150 

Now we can prove the upper bound: 

THEOREM 7.2. ([Po 77-1]) Let the function h satisfy conditions 

CI,C2,C3. There is a total recursive uniform strategy F using h(m) 

queries such that for any numbering r and all n: 

FNV'rn)~log2n+(b+l)h-1(n)+O(loglogr ( n )  

(the constant b is from condition C3). 

h x . also PROOF. Take h1(x)~ and the strategy {h1~ °} Since h I 

satisfies CI,C2,C3 (with the same constants b,d), we have: 
h'1 (x)shl (x) 2bx+d' 

-I 
h Eh; 1 (n)sh lhl I (n) 2bhl (n)+d, 

log2h ~ hi I (n) ~logen+bh[ I (n)+d. 

Hence, by Lemma 7.4: 

s I +se-l°g2s2~l°g2 n+ ( b+l ) h~ I ( n ) +O ( 1 ) . 

Since x-log2x~y implies x~y+log2y+O(l ) , and by C6, h-*(n)=O(logl n): 

s1+s2~log2n+(b+l)h11(n)+O(loglog n). 

Since F NvT (rn)=S 1 +s 2 and hl (n)=h-1(n)+O(l°gl°g n) , the proof is 

completed. 
[] 

EXAMPLES. EEl) Let h(x)=2 x, then b=0 in C3. There is a uniform 

strategy F using 2 m queries such that 

FNv'TT ( n)~21°g2n+O(l°gl°g n) 

Compare example El. 

EE2) Let h(x)=2CX.There is a uniform strategy F using 2 c" 

queries such that 

F~v(~n)~(i+~) log2n+O ( loglog n). 

Compare example E2. 

EE3) Let h(x)=xX.There is a uniform strategy F using m TM queries 

such that 
.v io n 

F r (r .)~l°g2n+O(log~og n )- 
Compare example E3. 

X 

EE4) Let h(x)=22 . There is a uniform strategy F using 
m 

22 queries such that 

F~V(rn)~logn+O(loglog n). 

Compare example E4. 



151 

8. Probabilictic strategies 

In Sections 3,4 the complexity of deterministic identification 

of r-indices was investigated, and the corresponding exact estimates 

were obtained. In this section we obtain the exact estimate in n for 

the number of mindchanges for the probabilistic identification of 

r-indices. 

The hypotheses F(<f(0),...,f(m)>) of a probabilistic strategy F 

are random natural numbers which take their values over some fixed 

probability space P. Formally, probabilistic strategy F is a mapping 

which associates with each elementary event e~P some deterministic 

strategy F e. Thus the hypothesis F(<f(0),...,f(m)>) takes its values 

n with fixed probabilities 

pF(<f(0), .... f(m)>,n)=P{F(<f(0), .... f(m)>)=n}. 

Recursive probabilistic strategies can be defined by means of 

probabilistic Turing machines introduced first in [LMS 56]. Let a 

random Bernoulli generator of some distribution (p,l-p) be fixed, 

0<p<l. The generator is switched into deterministic "apparatus" of a 

• uring machine. As a result, the operation of the machine becomes 

probabilistic, and we can speak of the probability that the 

operation satisfies certain conditions. 

Consider the following Turing machine M operating with a fixed 

Bernoulli generator. With input sequence 

f(0),f(1), .... f(m) .... 

this machine prints as output an empty, finite or infinite sequence 

of natural numbers (hypotheses): 

h0,h~,---,hm,..-, 

where h depends only on the values f(0),...,f(m). To each infinite 

realization of Bernoulli generator's output (i.e. an infinite 

sequence of O's and l's) corresponds a completely determined 

operation of the machine M as a deterministic strategy in the sense 

of Section i. 

By P{M,r,f} we denote the probability that a probabilistic 

strategy M identifies in the limit a r-index of the function f. 

By P{M,f,sk} we denote the probability that probabilistic 

strategy M makes no more than k mindchanges by the function f. 



152 

THEOREM 8.1. ([Po 75]) For any enumerated class (U,r) there 

exists a probabilistic strategy M such that P{M,r,f}=l for all feU, 

and as n~ 

P{M,rn,~in n+O(oV~6g-~.loglog n)}--~l. 

For a computable numbering r, a recursive probabilistic strategy M 

can be constructed.. 

THEOREM 8.2. ([Po 75]) For any countable set # of probabilistic 

strategies there exists an enumerated class (U,T) such that for any 

strategy ME#, if P{M,r,f}=l for all feU, there is an increasing 

sequence {nk} such that as k--9~ 

P{M,T n ,~in nk--O(oV~--~k.loglog nk)}--~0. 
k 

For the class of all recursive probabilistic strategies a computable 

numbering r can be constructed. 

Let M,r,f be given. We consider some sufficient condition for 

P{M,r,f}=l. Let us denote by f[m] the code <f(0),...,f(m)>, then the 

random variable M(<f(0),...,f(m)>) can be denoted by M(f[m]). By 

Pm(M,f) we denote the probability that M changes its hypothesis at 

step m, i.e. P{M(f[m])~M(f[m÷1])}. 

We say that strategy M is T-consistent on the function f if, 

for all m, 

a) M(f [m] ) is defined with probability I, 

b) if P{M(f[m])=n}>0, then rn(j)=f(j ) for all j~m. 

By Borel-Cantelli lemma, M is r-consistent on the function f, then 

~Pm(M,f) <m implies P{M,r,f}=l. Thus in the case of consistent 
M 

strategies the fact of r-identification can be established in terms 

of summing up the probabilities of mindchanges. 

The upper bound in n is proved by means of probabilistic 

counterpart of the strategy from the proof of Theorem 2.1. Essential 

difficulties arise, however, not in the construction of the 

strategy, but in its analysis. 

Let (U,r) be an enumerated class of total functions. Take some 

probability distribution {~n} , where ~n>0 for all n and ~=i. Let 
n 

MT~ be the following r-consistent probabilistic strategy. 

If the set E0={n I rn(0)=f(0)} is empty, then we set Mr~(f[°] ) 

undefined with probability i. If E ° is nonempty, we put Mr~(f[°])=n 

with probability ~n/~ for every neE ,u where ~=Z{~,InEE }.u 
[j] 

Let us assume now that the hypotheses Mr~(f ) have already 

been determined for j<m, and Mr~(f[m-*])= p. If p is "undefined", 



153 

then we set Mr~(f[~] ) undefined with probability I. Else, if 

rp(m)=f(m) (i.e. the hypothesis p is correct also for the next 

set Mr~(f['))= p with probability i. Now argument m), we suppose 

rp(m)~f(m). 

Let us take the set of all (for the time being) appropriate 

hypotheses, i.e. 

E ={n I (Vj~m)rn(J)=f(j)}. 
f[m] If E m is empty, we put MT~ ( ) undefined with probability I. If E m 

is nonempty, we put Mr~(f['])=n with probability ~n/~ for every 

neE , where ~=Z{~n[n~E }. 

LEMMA 8.1. For all n, 

P,( M, r n )~ln~ I-- • 
m n 

From this it follows that for an arbitrary choice of 

distribution ~, if ~>0 for all n, the strategy Mr~ identifies in 

the limit T-index of an arbitrary function in the class U with 

probability i. 

LEMMA 8.2. Let the function f~U be fixed. Then the following 

events are independent: 

Am={Mr~(ftml)~Mr=(f[m+l]}, m=0,1,2, .... 

It is curious that the events A (i.e. "at the m-th step 

strategy MT~ changes its mind") do not display any striking 

indications of independence; nevertheless, they do satisfy the 

formal independence criterion. 

If we take 
~,~ , C 

n n(in n~ 2 ' ! 

with the convention that I/0=i and in 0=i, then by Lemma 8.1 the sum 

of the probabilities of hypothesis correcting of strategy MT~ , with 

the function r will not be greater than in n+O(loglog n). Lemma 8.2 

and Chebyshev inequality allow to deduce from this that, as n--~, 

P{Mr~,,rn,~in n+O(oVT6g-~-loglog n)}--~l. 

It is easy to see that if the numbering r is computable, the 

strategy MT~ , can be made recursive. 

The lower bound in n is based upon Lemma 8.3, below. Let {X]} 

be a sequence of independent random variables such that 
P{Xj=I}=-~_I, P{Xj=0}=I- I 

J J 
It can be shown that, as n--~, 

n 

P{~Xjzln n-O(oV~6g-~.loglog n)}--~l. 
I 



154 

LEMMA 8.3. Let M be a probabilistic strategy, k and n natural 

numbers with k<n, and ~>0 a rational number. Then there is a set of 

n functions ~I'''''~ such that if M identifies with probability 1 

the ~-number of an arbitrary function of the set, then with one of 

these functions M changes its mind zk times with probability 
n 

z(l-~)p{~ Xjak}. 
j=1 

If M is recursive strategy, the set ~1,...,~n can be constructed 

effectively. 

Let {MI} be an enumeration of all probabilistic strategies from 

countable class ~. With every pair (i,s) we associate the set of 

functions of Lemma 8.3 for M=MI, n=2 s, k=s in 2 - V~ log s, e=2 -s. 

Following the method of Section 4, a numbering r can be constructed 

from these sets, thus proving Theorem 8.2. 

For detailed proofs of lemmas see [Po 77-2]. 

References 

[Ba 74-1] J.Barzdin. Limiting synthesis of r-indices. Theory of 

Algorithms and Programs, vol.l, Latvia State University, 1974, 

pp.l12-116 (in Russian) 

[Ba 74-2] J.Barzdin. Prediction and limiting synthesis of finite 

automata. Theory of Algorithms and Programs, vol.l, Latvia 

State University, 1974, pp.129-144 (in Russian) 

[Ba 74-3] J.Barzdin. A note on program synthesis from 

computational histories. Theory of Algorithms and Programs, 

vol.l, Latvia State University, 1974, pp.145-151 (in Russian) 

[BF 72] J.Barzdin, R.Freivald. On the prediction of general 

recursive functions. Soviet Math. Dokl. 13, 1972, pp.1224-1228 

[BF 74] J.Barzdin, R.Freivald. Prediction and limiting synthesis 

of effectively enumerable classes of functions. Theory of 

Algorithms and Programs, vol.l, Latvia State University, 1974, 

pp.101-111 (in Russian) 

[BKP 74] J.Barzdin, E.Kinber, K.Podnieks. Speeding up prediction 

and limiting synthesis of functions. Theory of Algorithms and 

Programs, vol.l, Latvia State University, 1974, pp. I17-128 (in 

Russian) 



155 

[Bie 72] A.W.Biermann. On the inference of Turing machines from 

sample computations. Artificial Intelligence, 1972 

[Er 71] A.P.Ershov. Theory of program schemata. IFIP Congress 71, 

Ljubljana, 1971, i, pp.144-163 

[Go 67] E.M.Gold. Language identification in the limit. 

Information and Control, 10:5, 1967, pp.447-474 

[Kol 65] A.N.Kolmogorov. Three approaches to the definition of the 

notion "quantity of information". Problemy peredachi 

informacii, I:i, 1965 (in Russian) 

[Kor 67] A.D.Korshunov. On asymptotic estimates of the number of 

finite automata. Kibernetika, 2, 1967 (in Russian) 

[LMS 56] K. de Leeuw, E.F.Moore et al, Computability by 

probabilistic machines. Automata Studies (Ann. of Math. 

Studies, No.34), Princeton Univ. Press, Princeton, N.J., 1956, 

pp.183-212 

[ML 66] P.Martin-L6f. On the notion of random sequence. Teoriya 

veroyatnosti i ee primeneniya, 2:1, 1966 (in Russian) 

[Moo 56] E.F.Moore. Gedanken-experiments on sequential machines. 

Automata Studies (Ann. of Math. Studies, No.34), Princeton 

Univ. Press, Princeton, N.J., 1956, pp.129-153 

[Po 75] K.M.Podnieks. Probabilistic synthesis of enumerated 

classes of functions. Soviet Math. Dokl. 16, 1975, pp.1042-1045 

[Po 77-1] K.M.Podnieks. Computational complexity of prediction 

strategies. Theory of Algorithms and Programs, vol.3, Latvia 

State University, 1977, pp.89-I02 (in Russian) 

[Po 77-2] K.M.Podnieks. Probabilistic program synthesis. Theory of 

Algorithms and Programs, vol.3, Latvia State University, 1977, 

pp.57-88 (in Russian) 

[Rog 67] H.Rogers, Jr. Theory of recursive functions and effective 

computability. McGraw-Hill, New York, 1967 

[TB 73] B.A.Trakhtenbrot, J.M.Barzdin. Finite Automata (Behaviour 

and Synthesis). North-Holland, Amsterdam, 1972 

[ZL 70] A.K.Zvonkin, L.A.Levin. Complexity of finite objects and 

foundations of the information and randomness notions by the 

theory of algorithms. Uspekhi matematicheskikh nauk, 25:6, 1970 

(in Russian) 


