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ABSTRACT. Inductive limits of ascending sequences of finite dimensional
C -algebras are studied.   The ideals of such algebras are classified, and a
necessary and sufficient condition for isomorphism of two such algebras is
obtained.   The results of Powers concerning factor states and representations
of UHF-algebras are generalized to this case.   A study of the current algebra
of the canonical anticommutation relations is then being made.

Introduction. In this paper we study  C*-algebras which are the uniform closure

of ascending sequences of finite dimensional  C*-algebras.   We call these algebras

approximately finite dimensional (AF).   Similar classes of C*-algebras have been

studied before.   In [6] Glimm describes the  C*-algebras which are the uniform

closure of strictly ascending sequences of full  22 x 72  matrix algebras, all having

the same unit (uniformly hyperfinite algebras).   In [4] Dixmier removes the assump-

tion that the matrix algebras have the same unit (matroid C*-algebras).   In the

study of quantum mechanical systems with an infinite number of degrees of freedom,

the study of inductive limits of nets of factors and their locally normal representa-

tions plays an important role, see e.g. [lO].

The main algebraic feature which distinguishes the AF-algebras from UHF-

algebras and matroid C*-algebras is that the latter algebras are always simple,

while this is not the case for the former in general.   In fact the ideal structure,

and even the primitive ideal structure of an AF-algebra, may be fairly complicated,

and it seems that the structure space of an AF-algebra may have almost all kinds

of topological degeneracies,   see e.g. 5.9.

The AF-algebras overlap, without exhausting, a great range of the kinds of

C*-algebras which have been systematically studied, for example there exist non-

trivial AF-algebras which are liminal, postliminal, antiliminal, UHF etc.   As the

AF-algebras are relatively simple to handle without being trivial, they are espe-

cially well suited to test conjectures and to provide examples in the theory of C*-
algebras, and I think their principal interest lies herein.   As shown in §5  they may
also have some interest in physics.
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We give a brief outline of the paper.   In §1 the major tool for analyzing an AF-

algebra, the diagram, is introduced (see 1.8), and a graphical representation which

easily reveals the properties of a given AF-algebra is devised.   In §2 we give an

alternative characterization of AF-algebras (2.2), and prove a necessary and suffi-

cient condition for isomorphism of two AF-algebras (2.7).   In §3 the ideal struc-

ture of an AF-algebra is analyzed (3.3), and thus a criterion for simplicity appears

(3.5).   Then the primitive ideals of an AF-algebra are characterized (3.8), and by

means of this result and the diagram the topology of the structure space of a given

AF-algebra may be found.   In §4 criteria for a state to be a factor state is given

(4.4), and we find conditions for the quasi-equivalence of two factor representations

(4.5).   Then a necessary and sufficient condition for algebraic equivalence of cer-

tain representations of an AF-algebra is proved (4.12), and a corollary to this result

is that the automorphism group of an AF-algebra acts transitively on those pure

states of the algebra whose associated Gelfand-Segal representations are faithful

(4.15).   Another corollary is a simple characterization of the pure states of an AF-

algebra (4.16).   In §5 the results of the foregoing sections are applied to a speci-

fic example, the current algebra or the observable algebra of the algebra of the

canonical anticommutation relations.   The most striking result obtained is a classi-

fication of all the irreducible representations of the current algebra with kernel

/ {0} (see 5.6).   These representations are in a natural way divided into two series,

one of which is obtained by decomposing the Fock representation and the other by

decomposing the anti-Fock representation (see 5.9).

I wish to thank my supervisor Erling Stürmer.   Without his many helpful sug-

gestions this work could not have been done.   In §2 I lean heavily on the results

of Glimm in [6], and in §4 on the work by Powers in [12].   I thank G. Elliot for
pointing out an error in the original statement of Theorem 4.5.

1.   Definition and elementary properties of approximately finite dimensional

C*-algebras.
1.1. Definition.  A   C*-algebra   21 is called approximately finite dimensional

(AF) if  a has a unit  e,  and there exists an increasing (with respect to inclusion)

subsequence   (21 )   _i   2 ...  °^ finite dimensional subalgebras of  21,   such that  21

is the norm closure of II    21      i.e.   21 = M   21.*-rn      n' v-'77      72

1.2. If  21 and   21    are as in 1.1, then 21    + Ce  is trivially a finite dimensional
72 ' 72 J

C*-subaleebra of  21,  and  21    C2I    +CeC2I        + Ce.   We may therefore assume6 ' 72—72 —        72 + 1 '

that each  21    contains the unit of  21    and this is done in all that follows.
77

1.3. If  (21 )     is a sequence of finite dimensional  C*-algebras, and   a   : 21
72     72 " ö ' 7! 72

—* 21     ,   are morphisms, and each  a     is injective and maps the unit of 21     into77 + 1 tr ' n ' r 72

the unit of  21 then the diagram
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n1^u si2   "2.  si 3 —►-,

has a certain inductive limit SI  by [14].   The algebras  SI    may be considered as

subaleebras of SI.   Then SI = U    SI      and since each SI    has the same unit  e° ZZ        Z2' ZZ

and multiplication is norm continuous,  e  is a unit in  SI.   Hence  <•!  is  AF, and

each diagram of the considered type gives rise to an AF-algebra.

1.4.  In all what follows, the expression

si USI       fresp. B = UB , etc.)
zz      n      \       F zz      " / >

will mean

"SI (resp. B)  is an AF-algebra, and  <?!>_.,      (resp. <B >   _,  ,     )   is anr 6 72    72-1,2"- r n    77— 1 ,2 - - -

increasing sequence of finite dimensional subalgebras of SI (resp. B)  all contain-

ing the identity of SI (resp. B)  such that SI = Q    »    (resp. B = Q    B  )."
If SI = U    SI     and  e  is the unit of SI,  we set, for convenience,  SI   = Ce,  so

that SI0 Ç SIj Ç Si" Ç , and SI = U~=Q SK
1.5. Let SI=U   SI  ,  B = M B   .    Then it is trivial to verify that SI 0 B =*" n    n *^n    n '

Utz(SI ©B ),   and SI   ê  B = (J (SI.    ê B ).   Let SI „ \JW,   and let p  be aw™      n        n v^zz      zz zz zz    zz r
morphism of SI  onto a C*-algebra  B.   Then, since   ||p(x)|| < ||x||   for all x £ SI we

have that B = M p(SI ).    Since  SI     is finite dimensional,  B    = p(SI )   is a finite^*nr      n n n      '        n
dimensional  C*-subalgebra of B,  and since p   maps the unit of SI  into a unit of

B, B is AF.
It follows that the class of AF-algebras with their morphisms form a category

which is closed under finite sums and tensor products.

1.6. We introduce some notation which will be standard in what follows.   Let

SI = U SI  .    Then each SI     is a finite dimensional C*-aleebra with unit  e.   It isWZ2      72 7Z &

then well known that  SI    is a direct sum of finite dimensional factors:
72

"zz

SI   = ®  .M.  ...n        VJ>'        (tzts)
fe=l

The symbol (nk) serves to label the factor M    .. C SI  .   The square root of the

dimension of M.   ,.   is denoted by [72, k]  such that M    ,   = Mrn¡¡¿-\, where  zVIr^^^-1

is the full [22, k] x {n, k]  complex matrix algebra.

We let  e denote the maximal projection in  M,   ,v.   It is then well known

that the  e("   ',  k = 1, ■ ■ ■ , n  ,  ate the minimal projections of the center of SIzz r     ' n'
and we have that

"72

e=2Ze(nk)-
fe=l

We will let [e\.   '}■  •'_,   denote a set of matrix units for M.   ...   We will say that
ZZZ.Z-l (n¿) 7Z7 2.J-1 (nk)
"zz

' ij      'i,j = \        7e = l —     n i]
\e(nk,l{n,k]        n        Q ^ ^ ^   fc) y.

I7Z.7 — Ife — I    —       « ' -n 11 * *•
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linearly and satisfy

(i) e(.7*)e(B<,>=8.„8.ee(."*),v  ' ij sq kp   JS   iq

(ii) e(«*0* = e(nk)
it ji

We always choose the indices such that e'.     ' £ M,   ,.,  i.e. such that {e\"   'J    .'_ J7 Z7 («*) z;       1.7-1
are matrix units for M.   ,,   in the usual sense.   If the  e'7   ''s  satisfy (i) and (ii)(nk) ij >
without necessarily spanning  21    they are said to be matrix units in 21   .

1.7.  We shall now study how one finite dimensional C*-algebra may be embedded

into another.

Proposition.  Let  21   = (Q "   M    ,., n = I, 2, be two finite dimensional C*-

algebras with the same unit e,  and suppose that 21   C 21       Let {e\.   '\  be matrix° rr 1 —     2 ij

units for 21       Then there exist unique nonnegative integers  n,., k = 1, • • • , 72  ,

i = 1,- • • , 72,,   and there exist matrix units {e\     '} for 21    such that1 ij ' 2

"2    "qk
(1)     e{lk)= V   Y   ei2q)_

qTl  Tztl     ^:\%ki'-PV(rn'l)nqk+i)Œl:\nqp[l,p]Um-l)nqk+,)-

(In informal, but more illuminating language this proposition says:  If we iden-

tify 21     with ©£ = iM\n,kl  and define pM   = M    (g) C/        then the embedding of 21
into 21     is of the form

"2    / "1

©      ©
k=l  \z'=l
©        ©^z-Vz]

where we identify 0-.,»iAiiii with a subalgebra of  Mr2j2¿]-)
Proof.   Let  a    be an isomorphism of 21 „ onto ©?2,zMr„f¿"i,  and let ß = a    °

a~   .   Then /S   is an injective morphism of ©¿I.Mn/fe]   into ©kj7%2,fcV   Define

iS^ = a2(e(2fe))/3.   Since  a2(e(2k))  is a central projection in ©pi. %2 ,p]> ßz,   is a

morphism of ©,, = ,%!,/>]   into Mr2,/fel'  and we have ß(x) = ©¿.Íi/3¿(*), * e

©¡", = l%l,7el-   From [2, Chapter I, §4, Theorem 3] it follows that ß,   has the form
ß, = <p    ° cp    ° </>     where cp.   is an ampliation, cp     is an induction and çà     is a

spatial isomorphism.   There exists a Hubert space k  such that cp Ax) = x ® /  ,

x e a (21 ),  so </>j   transforms  a,(2l.)  onto the algebra  aA^A ® C/    =

(©fi = ,M[l,p]) ® C/K= ©*J (M[i,p] & C/K).   The commutant of this algebra is

"1

© C/ [up] ®8U).
zz = i     c

As cp     is defined by a projection in this commutant,  r/j    ° t/>     transforms

0"   Jn^i  into an algebra of the form
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1972] INDUCTIVE LIMITS OF FINITE DIMENSIONAL C*-ALGEBRAS 199

Since this algebra is transformed into ^\2,k\ by tne spatial isomorphism <p   ,  all
the  nk's  ate finite, and in fact we have  2"I, nkp^' ^ = '-2' ^'  since  ^i   anc*
SI    has the same unit  e.   More specifically, tp    ° tp     transforms an element x =

®p=lxp e ®p = iM{l.p]   into ®p = i (xp® ' nk¡}-   By using the spatial isomorphis m
C

ife      this last element may be viewed as an element in Mr2 ^t  and,doing this, we

see that ß  transforms  x  into Q), ^.(©   '  i   <g>  / ).   Now by choosing a set
fe     1 P~ l     P .~ Z2fe/>

of matrix units  {e(.   '|  for SI     and setting x = a,(e\.   ') above, and using theij I ° 1    ij a

fact that  a~    ° ß o a     is the identity mapping  SI   —> SI      one may easily define

matrix units  e(.2*'  in  SI     such that (1) is fullfilled.z; 2
1.8.  The remark after Proposition 1.7 makes the following definition natural:

With the same notation as in the theorem we say that M is partially embedded

in M.   ,, with multiplicity n, ..   If n, . > 1  we say that M     ..  is partially embedded
in zM..,..   These two relations are written as  M,, .. -v,  kl zM    ,     and zM,, „St   zM    , .( 2 fe ) ( 1 z ) ( 2 fe ) ( 12 ) ( 2k)

From the proof of the proposition it is easily seen that M . .   \  M    ,.   iff

e(U)e(2k) ^ q^   an(j tjlat |£ we ¿e[me

a= supÍ222| 3  272  mutually orthogonal projections  e , ■••, e     in  SI

suchthat  ei<e(li)e(2*),   z' = 1, • • •, 222!,

b= supizTzl  3 722 mutually orthogonal projections  e,, •••, e     in  21,

such that  e. < e       ,   z = 1, • • •, 272Í

and

then 72, . = a/b.ki
z —

Let SI = IJ  SI  .   Then the diagram  3)(SI)  of SI  is defined as the set of all
72      72 ö

ordered pairs  (222s),  zfe = 1, ••• , w  ,72=0, 1,---,  together with a sequence

( \     ) ._.   .       of relations defined by (nk) \p (mq)  iff 222 = 72 + 1   and M,   ,.   is
1 p-0 ,"• ' 2 (Z27e)

partially embedded in M with multiplicity  p.
This definition requires a couple of comments.

It is clear that -D(SI)  depends not only on  «,   but on the particular sequence

(SI  /    which generates  SI.   This dependence will be implicit in what follows.

A natural question to ask is:   If SI   and B  are isomorphic AF algebras, what

is the relation between ®(SI)  and 2(B)?   Alternatively, if SI = (J  SI   = M B  ,
J ^n    n       v^z2   zz

what is the connection between the associated diagrams?   An answer to this ques-

tion will be given in Theorem 2.7.   From that theorem it is in principle easy to de-

duce an algorithm which gives a method of constructing from a given diagram all

diagrams which define AF-algebras which are isomorphic with the original one.

Another question is: Does really the diagram 2)(SI) define SI up to isomor-
phism?   The answer is the affirmative, for if SI and  B  are two AF-algebras with
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the same diagram S),  an isomorphism  a: may be constructed inductively

as follows:  Since S=C^! there exists an isomorphism  a   : V Now

suppose we have constructed isomorphisms   a : ¿i   —> B ,  r = 0, 1, ■••,«— 1,   such

that  a   |2I     , = a     ,,  7=1, •••, 72-1.   Let {e.("_1,  'S be a set of matrix unitsr  '      r— 1 r— 1 ' Z7
for  21 and let /v? .   •  ^ = a      ,(e'."-1'   ')  be the corresponding matrix units72—1 '   ÏJ 72— 1        Z; r °

for S Let  72       be the nonnegative integer such that (n - 1, p)    \  qp (n, q).

Then, by definition of JX2I) and Proposition 1.7 there exist matrix units {e'",<?'|

for 21    such that equation (1) is fulfilled, with  e\.   '  replaced by e\"~   •  '  and

e(..       replaced by e\"'   ',  and  [l, p]  replaced by [n - 1, p].   In the same way,

there exist matrix units / ."'   '  for 8     such that (1) holds with  e  replaced by /.

Then one may define  a  (e."   ') = /."   ',  and extend the definition of  a     to 21     by' 72       IJ '   IJ ' 72 72 '

linearity.   Then   a     is an isomorphism 21   —»8     and from (1) it follows that

= a
72— 1 77— 1

Now, because of the last relation we may define a *-isomorphism  a: IJ  ¿I      '

U «     by  a I 21   = a   .   Since each  a     is an isometry,  a  is an isometry, and  a
**n      n J ' 72 72 72 "-£K- —_.-    '

may therefore be extended to a mapping of 21 = (J   A    onto 8 = U 21    by con-

tinuity.   Since all the operations in the definition of a C*-algebra are norm contin-

uous this extended map is an isomorphism, so 21 = 33.

The diagram of an AF-algebra may be given a graphical representation, which

we show by an example.

21,

21.

21, 12 12

etc.

M„This means that  21, QE M, 0 AF ,  21   3* M    © AC  ©AC,  21   â£ AI, © AC © AI . ©1 1 1 '      2 2 3 13 z 5 4
AI      etc. and the number of lines between the numbers indicate the multiplicity of

the partial embedding of the factor above into that below.   An an example, the

second factor in the central decomposition of 21     is partially embedded with multi-

plicity 1 in the first factor of 21      with multiplicity 2 in the second factor and with

multiplicity 1 in the third factor.
Given a set of 3)  of ordered pairs  (n, k), k = 1, ■ ■ ■ , n  ,  n = 0, 1, • • • ,  where

72   = 1, and a sequence    ( ^ ) of relations on J),  when is  J) = JJ(2I)  for
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1972] INDUCTIVE LIMITS OF FINITE DIMENSIONAL C*-ALGEBRAS 201

some AF-algebra  21?   We list some axioms that i)  must satisfy  (define    (72, zé) \

(m, q) «##> 3p > 1: (72, k)  \p (m, q))

(i)  If   (72, k), (m, q) £ JJ and  772 = ?2 + 1   there exists one and only one nonnega-

tive integer p such that (77, k) \p (m, q).

(ii)  If 772 / n + 1   no such integer exists.

(iii)  If (72, k) £ J)  there exists  a £ {1, • ■ • , 72   + A  such that (n, k) """* (72 + 1, q).

(iv) If (72, ze) £ j) and 72 > 1   there exists  q £{l, ■ • ■ , n     , i such that (72 - 1, a)— 72— 1 l

^   (72,    k).

It is not difficult to see that the diagram of a given AF-algebra satisfies

these axioms.   We only mention that (iii) expresses the trivial fact that the kernel

of the identity morphism 21   —► 21 is equal to Í0¡,  and (iv) expresses the fact

that the identity of 21     is mapped into the identity of 21 by the identity mor-

phism.
Conversely, if JJ  satisfies axioms (i)—(iv) one may by induction construct a

sequence of finite dimensional C*-algebras  (21   )     and injective morphisms   a.   :

21 -. 21 such that 21   = C,  a    | 21        = a     ,, 77 = 1, 2, • ■ • , and such that
n 7Z + 1' 0 tz'tz-I 72—1' '

for a given set of matrix units  e ."      in 21    there exists a set of matrix elements

.(■♦!.*)   in  SI suchthat
n 72 + 1

"72 + I      "qk
a (e("fe)) =    V       V   e{n + l:q)

¿i ±! (s":i"?P["^i+^-i)%,+z)(2^:1i%í)[7z./J]+(z7z-i)729¡e+;)

where n is such that (nk) N» * (n + I, q). This is done by choosing the dim-

ensions [72 + 1, a] of the factors M +. in an appropriate way; in fact we have

[?2 + 1, a] = 2"ö = , «   An, p\-   The inductive limit of the diagrarim

?[
0 1 2

will then have diagram J'.
1.9.  We mention some examples of AF-algebras  21.

(i)  <i finite dimensional.   Then the diagram has the following form:

pl

?1 ?2
¡ !

(ii) 21  is an UHF-algebra.   Then all 21    are factors and the diagram has the

following form:
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P !..

Pf¡ja

i

The number of lines between  p, ■ ■ ■ p    and  p, ■ • ■ p   ,,   is  p   ...r 1 rZZ r I r 72 + 1 rZ2 + l

(iii) We next give an example which is closely related to the algebra  M    ^

studied in  [4, 5-2].   Let k  be an infinite dimensional separable Hubert space, and

let SI = QE(k) + C/   .   Then  SI  is AF and has a diagram:

1 1

k 1
! "v> !

This is shown as follows:  Let  (<f )   _, be an orthonormal basis in  k,  and let= 7Z   72-1 ,-•■

k     be the subspace generated by tf   • • ■ ¿j .   Let  E     be the orthogonal projection

onto k   .   Define
72

SIn = ix £ B(k)| x(l-En)=(l- En)x £ C(l-En)l=^B(xn) ® C=Mn ®MX.

Then  SI    is embedded in SI as indicated on the diagram, and since each x £
n Z2+1 °

SI     is a sum of an operator of finite rank and a multiple of the identity we have

that SI   C?EU)+C/.
zz —

Conversely, by using the fact that the operators of finite rank are norm dense

in QE(k),  and that the finite linear combinations of <f,£2 ■ ■ ■   are dense in k,  it

is easy to show that QS(k) + C/   C Q SI  .' K  —    W7Z      7Z

1.10.  An AF-algebra is separable, but a separable C*-algebra with unit does

not need to be AF.   This follows from the example  SI = C[0, l].
Since [0, l]  is connected,  [0, l]  contains no nontrivial open-closed subsets,

hence  C[0, l]  contains no other projections than  0 and   1.   It follows that  C[0, l]

contains no other finite dimensional *-subalgebras than |0|  and  Cl,  thus  C[0, l]

cannot be AF.

2. New definition of AF-algebras.   Isomorphism of AF-algebras.

2.1.   Lemma.   Let  SI  be a  C*-algebra on a Hilbert space  k,  let e > 0 and let

n  be a positive integer.    Then there exists a 8(e, n) = 8 > 0 such that if
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1972] INDUCTIVE LIMITS OF FINITE DIMENSIONAL C*-ALGEBRAS 203

(1) \e[V;  i, j = 1, • • • , 72,, k = 1, ■ • • ,  m\  is a family of matrix units for a fi-
nite dimensional C*-algebra on k with unit I    such that  ^¿ = iw¿ = w'

(2) there exists x .    £ SI such that  llx^ - e^ll < 8, then there exists a
\       7 tj i|        Zj Zj       II

family \f(k)\  of matrix units in  SI such that   \\f {k) - e(¿fe)|| < e.

Proof.   The method of proof of this lemma is the same as that Glimm uses in

[6, Lemma 1.10];  thus the proof will be omitted.
The next theorem is analogous to Theorem 1.13 in [6].

2.2.   Theorem.   Let SI  be a C*-algebra with unit e.    Then SI  is an AF -algebra
if and only if the following two conditions are fullfilled:

(i) SI  is separable.
(ii) If x   ,■ • ■ , x    € SI and e > 0,   then there exist a finite dimensional C*-sub-

algebra  B C SI and elements  y .,•••, y    £ B  such that  \\x . — y ,|| < e,  i = I, ■ ■ ■ , n.

Furthermore, if SI  is AF, and SI     is a finite dimensional C*-subalgebra of SI,

there exists an increasing sequence SI   C SI   C ■ • •   of finite dimensional C*-sub-

algebras such that SI, C SI    fl72zi U-SI. = SI.° 1—2 i    z

Proof.   The proof is closely related to Glimm's proof in [6]-   The necessity of

conditions (i) and (ii) is clear.

To show sufficiency, let \d.\._ be a dense sequence in the open sphere

of radius  Vi about the origin in SI.   We may, without loss of generality, suppose

that the subalgebras we consider contain  e.   We shall construct an increasing se-

quence  (SI  )     of finite dimensional subalgebras of SI  such that for all 72  there

exists  bk £ SI , k = 1, • • • , 72,  such that \\b   - d,\\ < 2~n,  k = 1, • • • , 22.
Since   \\dA\ < Vi,  SI     may be chosen arbitrarily.

Suppose as induction hypothesis that  SI    has been constructed and has the

required properties.    Let   \e\"   '\    be  matrix  units  for SI  .    Define e =

2~"     (l + 4(2,"   [72, k])2)~   .   By using hypothesis (ii) of the theorem and Lemma
2.1 it follows that there exists a finite dimensional subalgebra  SI'   of SI and a

set of matrix units {/'. '!  in  SI'   (which does not necessarily generate  SI')  such

that  ||/(.*° - e^nk)\\ < 8,   1 < 2, ;< [22, k], where 5   is the 8(e, n.)  of [6, Lemma 1.8],27 xj ze
and such that there exists  b'   £ SI',   k = 1, ■ ■ ■ , n + 1,  such that   \\b' - d, \\ < e.

By [6, Lemma 1.8],  there exists a partial isometry w £ SI  such that wf\■   '  is

a partial isometry between ffj  and  e.j",*\  k = 1, ■ • • , 72   ,  and  Hei*^ - wf\k,\\ < c,

k = 1, • • • , 72   .   Define  zz = £"«   1^.1\k^ e["k)wf^k).   Then zz £ SI,  and by trivial
72 R-lz-lzl'lz *

algebra,  zz  is unitary and  uf\'u*=e^n^:

Define SI        = u^A-'u*.   Then  SI is a finite dimensional subalgebra of SI
7Z + 1 72+1 °

isomorphic with SI',  and  SI   C SI We must find  bk £ SI such that   ||c7    - d,\\
< 2~n-\ k= I,- • • , 72+ 1.   Let b, = ub'u* e SI Then

k k 7Z + 1
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B**-rfJI^K--*¿l+.ll*i-M<í + lí*;-«*I"*JI
= í +

fe<?sí

<<+     5> *1        sup ll/^V/^-^Wíf^fVe^-'ll
\zfe=l /      k<?s'

Now

< Wl(sk>'kfuq) - WkftfVW * tK/J¿> - .*■>/<*> ¿7//? W->||

< I!///' - //? W,»«'|| + |/») - .*;*WÄ1 < ll/ff> - •••fc«1

+ ll/iÍ)-4"i*)ll + ll4i*)-ci"*)HI<4í.
Henee

l**-¿J« + 4   El«.«    e--i-.
72 + 1

By induction, a sequence ( 21   )     with the required properties exists.   Then {d.\

eOTT, so tnr = 21.^^72      72 ' 77      77

2.3.   Cemma.   Let 21 = ^J 21    and let 8  be a finite dimensional subalgebra of

21.    Then for all e > 0 there exist a unitary operator a e 21 and a positive integer

n such that
(i)  ||a-e|| <(,

(ii) a8a*C 21   .— 72

Proof.  We may assume that e eS.   Let {/'.if-,   be matrix units for 8,  and

suppose  1 < i, i< N  fot all f\  '.   Let c, = c/3mN and let S  be the 8(e,, m)  ofxi— — 27 1 1

Lemma 1.8 in [6]-   Lemma 2.1 implies that there exist an 21    and a family Je'.■  !"_,

of matrix units in 21    such that  ||/(.. ' - e.(. ^|| <§.   From [6, Lemma 1.8],  it follows" ij 'J
that there exists a partial isometry w £ 21 such that e.7 >w = wf'7'   is a partial iso-

metry having f ). .' and e 7'  as initial and final projection, respectively, and such

that  ||e,(f -eiVu/H <€,.   Define  a = 2, 1 .e(kÁwf\k).   Then, since  £..*(.J>-"11 1 1       " 1 k      l     1 1       '   lz kl     11
2, ./'.  ) = e,   a  is unitary, and we have  e[  ' = uf[  'u*,  thus  a8a*C 21 .   Furthermore,fez ' 22 ' IJ '   IJ —       72
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,(*) e^u\\It        XX
,(*>. e(*)e(*)„,/(*)ll

•(Ä)-«S*iWx<fls|.ft>-/8Ji +
(*)_   /(*)H   a.   !!/(*)_   Jk),„f(kh

f(k)Ai

Kr-/ir« 11       e11 wi 11

Thus

,(*)
"li /»(*)||

11 li" + ll4i)-en)HI

'(AWifH

< 28 + ex < 3cv

E2>i?(k) ,(k) u)

k i
e(.k)u\\   <  772  •   N

2.4.   Lemma.   Let  SI be a C*-algebra with unit e,   let B , be two finite
dimensional ^-subalgebras of SI  containing  e.    Let  a: B   —>B     be a *-isomorphism

such that  ||a— / | B  || < 1, where I: SI —»21  is the   identity map.    Then there exists

a unitary operator u £ SI such that

a(x) = uxu,        x £ Br

Proof.  Let \e.^\ be a set of matrix units for B,, and define /(..   = a(e.k^).

Then {/'. M  is a set of matrix units for B   .   We have

\\f^-e^\\ = \\(a-,)e[\\<\\e^\\ = l

fot all k. Lemma 1.8 in [6] implies that there exists a partial isometry 222 e SI

such that f). .'we\ ' is a partial isometry having e\. .' as initial projection and

/ [■ .' as final projection.   Define  zz = 22^>-f ■ 2we\ ■ •   Then zz  is unitary and

27 'Z7 v    2;   "

so zz  has the required property.

2.5.   Lemma.   Lez:  u = IJ  u ,   and let B  be a finite dimensional ^-subalgebra

of SI such that ÎI. C B.   Then there exist a positive integer n and a unitary oper-

ator u £ SI such that
(i) aBzz*C SI   ,

(ii) uxu* X,   X   £ SI

Proof.   By Lemma 2.3 there exist a unitary v £ SI and a positive integer

such that   || f - e|| < 1/3  and tyBiz*C S
isomorphism  a: SI    —> 21     by

Define  SI' = 12SI z;*C SI    and define an1 1     —    zz

a(x) x eSIr
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||a(x) - X||  = \VXV* - X||  < \\VXV* - V*\\  + ||X77* - x||

<2||x||  -\\v-eW < (2/3) ||x||;
thus   I)ct — 7 | 21  || < 2/3 < 1.   By Lemma 2.4 there exists a unitary w £ 21     such

that a(x) = wxw*, x £ 21  .   Let  u = w*v.   Then

a8a   = w 72872 w C w 21  w = 21  ,— 72 72*

since w   £ 21   .   For x e2I,,  we have
72 1

axa   = w vxv w = w a(x) w = a    (a(x)) = x,

thus  a  solves our problem.

2.6.   Cemma.   Let  21 = M 21   = M 8  .    Then there exists an automorphism  a.w72     n w72     72 r

of 21 such that
For every positive integer n  there exists a positive  integer m such that

a(8 ) C 21   , 2Í" C a(8  ).
72     —        77T 72   —

Proof.   By induction we shall find two strictly increasing sequences  777=1,

m , to   , ■ - • ,  and 72, 72, n., • • ■ ,  of positive integers, two sequences  a., a   , • • •

and v., v  , ■ ■ • ,  of unitary operators, in  21  such that if  a. (resp. ß .)  are the iso-

morphism 21 —» 21  implemented by  a. (resp. v), restricted to 8      (resp. 21    ),

then  a.(8m ) C 21     (ß .(21   ) C 8 ) and the following diagram commutes:
I tlj J Tlj m ï + 1

m i
-*►    21

(1)

etc.
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Here f—> denotes the inclusion map.

We construct a., v., a , v , a   ,- • •   successively by induction.

By Lemma 2.3 there  exist a  positive integer ?2.   and a unitary operator  a    £

21 such that a,8,aï C 21     .   This is the first step in the induction.1      1    1  —       72 j r

Suppose now that a,, v,, a„,- • • , a    have been constructed   such that the fol-1       I       ¿ n
lowing diagram commutes:

We shall construct v  .   Let 21' = u* 21     a   .   Then  21'   is a finite d
72 72    nn   n

*-subalgebra of 21    and since  a  S     a* C 21       we have  8      C 21'.e 72      77Z„    72   -        72„ 772^  -

By Lemma 2.5 there exist a unitary v £ 21 and a positive integer

such that v2I'ii*C 8„   .   ,  and such that vxv* = x, x £ 8      .—        "'72+1 ' m72

lmensional

72 + 1
>   772

Let v Then

id if x £

7721      17     =   17«   21       U   V     -   1)21  V     C
72      72«    72 72      72«    72 -      m„+i'

ozzw *    * * ** *
P   (O-   (x)) =  V   U   XU   V     =  VU    U   XU   U   V     =  Z7XI7     =  X.
•n       72" 72727Z72 77727272

Hence the following diagram commutes:

21.

mn + l

u is then constructed in an analogous fashion by "rotating"  v* 8m       i>

into an algebra  2In by means of a unitary operator a  such that  un     is kept

fixed, and define  a   +. = uv*.   By induction we obtain the commutative diagram (1).

Because of the commutativity we have  a   ,,  I 8m    = a   .   Hence, we may define a1 72 + 1    '        mn 72 ' '

morphism a: M 8„,    —, M 21      by a I 8_    = a  .   a  is surjective, because ifr \sn    mn \jn    nn      i i      mn n i

y £Unk  we have  y = <*k + 1(ßk(y)) = a(ß¿y))  and ß¿y) £ 8mfe + r
Furthermore, since a | 8m. is injective and hence isometric, a is an isometric

isomorphism of U¡8m, onto KJu n,. Since these two sets are dense in 21, a may

be extended to an automorphism of 21.
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If 72 is a positive integer there exists an integer k such that n < m, and n <

nk. Thus a(8r)ça(8^)ç2I^ and ^ ç «„, = ^(ß^)) ç «T^O^f
■= a(8      + )   which implies the proposition.

2.7. Theorem.   Let 21 = U 21    and 8 = M 8  .    Then 21  is isomorphic to 8'"'«      72 ^^72      72 r

if and only if  (21 )     contains a subsequence  (21   , ) £ and each 21       contains a

finite dimensional *-subalgebra  8,   sac/z í/zaí  e e 8    a72z7

(i)  (8   )     z's a« increasing sequence, and there exists an isomorphism  a:

MB    __ l"l g«   SKC¿ ÍAflí  a(S  ) = g«   for aii n_

(ii) For all positive integers  n there exists a positive integer k such that

«.£■«;•

Proof.  Sufficiency.  Suppose that there exists a sequence (8   )    and a *-iso-

morphism a. such that (i) and (ii) are fulfilled.   Since a | 8    is an isometry,  a. is

an isometry.   By (ii) we have   U 21   = (J S    .   Hence  a  is an isometric isomor-

phism between a dense subalgebra of 8  and a dense subalgebra of 21 and may be

extended by continuity to an isomorphism from 8  onto 21.

Necessity.  Suppose that S  and  21 are isomorphic, and let ß: 8 —»21  be a

*-isomorphism.   Let 8    = ß(8  ).   Since ß   is an isometry,  (J  8"   is a dense sub-

set of 21, so  21 = (J 8   .   Lemma 2.6 then implies that there exist an automorphism

y  of 21 , and an increasing sequence   («.).  of positive integers such that y(8/') C

21     ,  k = 1, 2, • • • ,  and such that for all 72  there exists a  k such that 21   C y(8").
Define  8^ = y&"k)  and  a = y ° ß \ (J 8        Then (i) and (ii) of the theorem are

fulfilled.
2.8. Glimm has given in [6, Theorem 1.12],  a necessary and sufficient condi-

tion for isomorphism of two uniformly hyperfinite algebras  21 and 8.   His result is

essentially that  21  and  8  are isomorphic if and only if the following condition is

fulfilled:   If 21  contains a type  I  -factor with the same unit as  21 ,  then  8  con-

tains a type  I  -factor with the same unit as  8  and vice versa.   One might suspect

that a similar result would be true for an AF-algebra with the condition replaced

by:  If 21  contains a finite dimensional *-algebra  S  with same unit as  21 l  then  8

contains a *-algebra with the same unit as  8  which is isomorphic to E.   Such a

result is however not true, and the reason is roughly as follows:  If SER     is a factor

of type   I  , ¡Dl,   is a factor of type  I     , n, m < <x    then 3R,   can be embedded in1 r       72'       2 'r       nm ' 1

™.   in essentially only one way.   By this is meant that if  a     a     ate two injec-

tive morphisms 3)1    —»SI     which map the unit of SDL   on the unit of SDL,  then there

exists an automorphism ß  of SOI     such that a   = ß ° a.      That this is the case fol-

lows easily from [2, Chapter 1, §4, Theoreme 3].   Because of this, if 21 = (J SDÎ
is a UHF algebra, where all SDÍ   's are factors, then the isomorphism class of 21  de-

pends only on the factors themselves and not on the way they are embedded into

each other.   In fact, the isomorphism  a  of Theorem 2.7 will automatically exist if
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all the  B    are factors isomorphic to B   ,  so Glimm's result is a corollary to this

theorem.
On the other hand, a finite dimensional C*-algebra  21    may in most cases be

embedded into another finite dimensional C*-algebra  SI     in essentially different

ways.   Thus we may expect that the isomorphism class of an AF-algebra  SI =

JJ SI    depends not only on the SI  's, but also on the way they are embedded into

each other.   This dependence is reflected in the condition (i) of the theorem.   Of

course condition (i) may be replaced by the equivalent condition that all- B     are

isomorphic to B' ,  and that corresponding factors in the central decomposition of

B    and B    are partially embedded in corresponding factors of B and B

with the same partial multiplicities. This will then enable us to construct a by

using the method which in 1.8 is used to show that the diagram of an AF-algebra

determines the algebra up to isomorphism.

We shall give an explicit example of two AF-algebras  SI = \\J SI    and  B =

M B    such that SI     is isomorphic to B„   for all 22,  but  SI  is not isomorphic to B.

By Lemma 2.3, each finite dimensional *-subalgebra of SI (resp. B)  is isomorphic

with a subalgebra of one   SI    (resp. B  )  so SI and B  contain the same finite di-

mensional subalgebras.   Thus the condition (i) of Theorem 2.7 is essential.

SI and B  have the following diagrams:
B

For all 22,   SI   = B   = ffl     M,,  where  Éft    M,   is the direct sum of 2n replicas72 zz       ^s 2n    \' vf 2 zz    1 *
of M   .   From the classification of ideals to be given in §3 it immediately follows

that B  has ideals of dimension 1 while all the ideals / \0\ in  SI are infinite di-

mensional.   Since the dimension of an ideal is an isomorphism invariant,  SI and

B are not isomorphic.

A little remark at last:  At first sight it perhaps does not seem to be essential

that the isomorphisms between finite dimensional subalgebras considered in Lemmas

2.3 through 2.6 are unitary implemented.   And in fact, the only use which is made

of this fact is in the proof of 2.6, where it is important that an isomorphism between

subalgebras may be extended to an automorphism of the algebra in which they are

embedded.   The existence of this extension is assured by the unitary implementation.

3.   Algebraic structure of an approximately finite dimensional C*-algebra.

3.1.   Lemma.  Let  SI  be a C*-aleebra and let |B   ¡°°_,   be an increasing se-
tz 7Z-1 _ °

quence of finite dimensional subalgebras of SI such that SI = U°°_.B  .    Let  }  be

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



210 OLA BRATTELI [September

a closed two-sided ideal in SI.   Then
-—

Proof.  Set   /    = / O B   .   Then   /     is a closed, two-sided ideal in B     and we
J n      J n 72   _      ' 77

must prove that U =1/    = /•    Trivially [J   _. /    C /.    On the other hand, suppose

that x é U°°=si/   ■   ^e must prove that x it ]■

Let p: SI —► 21/^  be the quotient mapping.   Let (x  )     be a sequence such

that x    eB    and x  —» x.   Since x i U°°-,7   ,  we have that
72 ZZ ZZ W7Z-1J 72'

inf      \\x- y\\ =e > 0.
^nJ n

Since x   —» x  there exists an N  such that n> N  implies   ||x - x   || < e/2.   Forzz — f " n"
n > N  and y £ J     we therefore have

— J       ' n

\\xn-y\\ >\V - y\\ -\\xn- x\\>< -1¡2 = e/2.

Now, since  ker p I 8    =/n8    =/     we have'     ■      n n n

\\p(xn)\\=    inf    \\xn-y\\>e/2,
y £ J n

because the norm on the  C*-algebra p(B  )  is the same whether p(B  )  is viewed

as a subalgebra of p(SI)  or as the image of the quotient mapping B   —» B  //   .

Now, since x   —» x  and p   is continuous, p(x  ) —» p(x).   In particular,   ||p(x)|| =

lim„^JIP<*JH >f/2'   so x ¿ J-
3.2.  Let  SI = (J SI  .   In the following the term "ideal in SI" will mean "norm-

closed two-sided ideal in  21 "  while the term "ideal in U 21  "  will mean "two-
ZZ      7Z

sided ideal in U 21   ."   The ideals in vj 21    are described as follows:

Lemma.   Let  I  be an ideal in LJ SI  .    Then I has the form
^*n   zz '

oo

a) /=u    e   M(nk)
n=1   k;(nk)e\

where A   is some subset of i) = D(SI)  satisfying the two conditions:

(i) // (nk) £ A  Z272ZÍ (nk) \ (t2 + 1 q)  then (n + I q) £ A.
(ii) // (727e) ̂s (72 + 1 q)  implies that (n + \q) £ \, q = I,- ■ ■ , n  +],   then (nk)

eA.
Conversely, if A C 2) satisfies (i) and (ii) then the subset  I of [J  SI    defined

by (1) is an ideal in N ^    suc^ that  I O SI   = ©,  ,   .,   .M,  ...
J '-'n   72 72       ^L^k;(nk)eA    (nk)

Proof.  Suppose  /  is an ideal in  ILSI   ,  and define  /   = / H SI   .   Then  /     isrr ^^"    n n n n

an ideal of SI      and  /=!]'■
72 ^■'TZ   72

It is well known that the ideals of SI    = ©z.-, M,   , .   are the subsums of this
72 2€— 1 (7ZZÇ. )

finite direct sum of factors.   Hence  /    has the form  /    = ff),   .   , . , . M,   , ,,  where72 zz       ^z^ZeítTzZeíeA     (zzzi)
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A is some subset of  JJ,  so 7 has the form (1).   We show that A   satisfies (i) and (ii).

(i) If (nk) eA then M,   ,,C /   C /.   In particular, e(nk) e/.   Now, if (nk) ^(nk) —    72 — r ' '

(n+lq)  then  efn*Vn + 1 q) / 0 (see 1.8).   Since  e(" + 1 q) £ Al(n + 1        we have that
e(72fe)e(72 + l    q)   eM since    ,     ■       an   ideal    e(72fe)e(72 + l    q)    £ |"      Hence     „

(72 + 1    tj) (72 + 1    q)

Ci I / {0\, and since  /  is an ideal and Al.   , ,    ,  is a finite dimensional factor,
(72 + 1  q)

^(72 + 1 q)-1'  i-e"  ^n + 1 ^ € ^'

(ii) Suppose that (nk) N (« + 1 a)  implies that (n + 1 q) € S., q = \, • • • , n  +..
This is equivalent to saying that if M    ,.   is partially embedded in AI    +. then

Af.   a,     . C /.    But since  Al.   ,,  is contained in the sum of the factors  Al,   ,,     .   in(72 + 1  q) — (nk) (n + 1  q)
which it is partially embedded,  M    ,. C /;  thus  (nk) £ A.

Conversely, assume that A  satisfies (i) and (ii), and define  / by (1).   Define

/   = ©, ,   ,,,. M.   ...   From (i) it follows that-if Al,   ,   C /    and M,   ,.   is partially72       vt'fe;(7jfe)eA     (72*) ' ' (nk) —    n (nk) r '
embedded in  Al,   .,     ,,   then  Al,   .,     ,£/.,.   Hence  Al,   , , C /   .,   and by this  /

(72 + 1   q)' (72 + 1    q) 72 + 1 (72fe)  —     72 + 1 ' 72

C /  +..   Hence,  if x £ U,2I      y e / = U, /,   there exists an  n  such that x £ 21  ,

ye/.   Since  /     is an ideal in  21    this implies that xy, yx £ l   CI.   Hence  /  is
■^72 n 72 r J    J n —

an ideal in   N 21  .^72      72

It remains to show that / Cl 21   = /   .   Clearly,  /   C / O 21  .   To show equality
7277 ' *      »I — 72 ^ '

it is enough to show that if Al,   , , C / Cl 21      then M,   , , C /  .   So suppose  M,   ., C° (nk) — n (nk) —    n rr (nk) —
I.    Since   AI.   , ,    has a finite  basis  (as  a  vector space),   and the    /   's   are  in-

(72fe) v ' "* 77!

creasing  linear subspaces of /,  there exists an  ztz  such that M    ,. C /   .
1 (77fe )  —     771

If  7?2 < 72  there is nothing more to show, so suppose  m > n.   Suppose ad ab-

surdum that Al,   , . (Z /   .   From (ii) it follows that there exists an  Al,   .,  ,   .   such(72fe) ^72 x (n + 1   * j)

that  Al    ,     is partially embedded in M ,       and  (n+1 k A ¿ A.   By (ii) again
it follows that there exists  M,   .. ,   .  such that Al,   . ,   ,   .   is partially embedded(72+2    k2) (72 + 1    k\ ) r '
in M ,       and  (72 + 2 k A 4 A.   As partially embedding is a transitive relation,

Al    ,     is then partially embedded in AI     +    ,   ..   Proceeding by induction we find

a factor Al,      .   such that Al,   , ,  is partially embedded in  Al,      ,,  but (772a) 4 A.(mq) (nk) r J (mq)' ^
Hence  Al,      , Cl /    = JOS-   Therefore  Al,   ,.   is not contained in  /   ,  which is a

(77ZZ?) 772 (72fe) 772'

contradiction.   Thus  / Cl 21   = /   .

3.3.   Theorem.   Let  21 = \J 21 ,   and define
72      72

A    = set of norm closed ideals in 21,

A, = set of ideals in  I J  21
A    = set of subsets A  of J)(2I) satisfying (i) a72zi (ii) of Lemma 3-2.3
Then there exists a natural 1-1 correspondence between  the elements of A  ,

and A  .    This correspondence may be defined by bisections:

<p2l:A^A2:K-+  U © M(nk)
"=1   k; (nk)eh.

<Pl2:A2^ Ayl-
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Proof.  From Lemma 3.2 it follows that tp       is bijective.

Lemma 3.1 implies immediately that cfe       is surjective.   To show that efe x
is injective suppose that  /,, /„   are two ideals in   IJ SI    such that  /, / /_,.   From' rr 1 2 72     72 12

Lemma 3-2 it follows that there exists a factor M,   , .  which is contained in one(nk)
but not the other of the ideals  /,   and  /..   Suppose that M,   ,   C /    ^ /  .    Then1 2 rr (nk) —    1 2
,(nk) i h n 22, 22 + 1, ••• ,  because if e(nk) £ I    D for some  272,  then

e(nk) £ ,    and tjjU    M _ e^nk)M,   .. e /„.   Hence  e("fc)  is mapped into a pro-2 (727«) (nk) 2 rr r

jection ^ 0 by the canonical mapping- SI     —> SI   /(/   n 21   ), 222 = 72, 22 + 1, • ■ • .' ' rr     a      m zzz       2 Tzz

Hence, «¿¿^ |K"*> - A = 1, and since ¡2 = UJ^Cl&J, infye/2 \\e^ - y\\
= 1. Hence e{nk) i 12 while e{nk) £¡x çT x; thus I x / 12, and hence tpl2 is in-

jective.

3.4.  As an example of the use of Theorem 3-3 we look at the algebra GS(k)

+ C/  mentioned in 1.9.

F^-vn;

Ils I
The only ideal of this algebra, except for the trivial ones, is the algebra generated

by the factors lying inside the boundary indicated.   From the description of this

algebra given in 1.9 it follows that this ideal is  QS(k),  and we thus get the well

known fact that the only nontrivial norm closed ideal in QE(k) + C/  is QE(/<).

3.5- Using Theorem 3-3 we shall find a condition for SI = \J SI     to be simple:

Corollary.   Let  SI = {J SI .    Then the following conditions are equivalent:

(i) SI  is simple.
(ii) SI  is algebraically simple.

(iii) If M    ,     is a factor in the central decomposition of SI    there exists an

272 > 72 such that  M    ,     is partially embedded in all factors in the central decompo-

sition of SI   .' 72

(iv) For all e(nk)  there exists an  m > n such that  e(nk)e{mq) / 0,  q = 1, ••-,

72   .
zzz

(The equivalence of (i) and (ii) is a well known general result for Banach-

algebras with unit, and is stated only for completeness.   See [15, Chapter XI,

Propositions 1.1 and 1.2]-)
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Proof.  By 1.8, (iii)<^(iv).
Now, suppose (iii) and suppose that / is an ideal of 2Í which is not í0Ï.   By

Theorem 3.3,  /  contains some factor Al        .   By (iii) and condition (i) of Lemma

3.2 there exists an  m > n  such that  21    C /.   Then e £ I; hence  / = 21 •  hence  (iii)— 772   —

=£>(i).

Now, suppose (i).   We show (iv) by using the fact that the ideal generated by

some Al.   ,,   is  21.   This ideal is
(77*)

/=    U © AC     .,
^f / N     I      LN (772?)'m-n   q;e<-mq)e'-"k)*0

as we see in  the following manner.   Define

/      = © Al,        s, 772 =  72,   72 +   1,  • • • .m i_.IT/   n (mq)' ' '
q;e(mq)e(nk)*0

Then /     is an ideal of 21       and it is the least ideal which contains  etn   ',  and
772 772' '

thus the least ideal which contains  M,   ...   If Al,   ,,  is partially embedded in Al,     ,(nk) (nk) r 7 (mq)
and Al,      .   is partially embedded in Al,   _,-,  then  Al.   ■ ,   is partially embedded in(mq) r ' (m + lp) (nk) r '
AC   i,.»  hence  /    C /    .,.   It follows that   U   /     is an ideal of  M   21       and it(771 + 1/7) 771—772 + 1 v772   772      _ ,-^772      772'

is the least ideal which contains  Al,   ...   Thus  /= M   /     is the least ideal of 21
(72*) ,~'77Z   771

which contains  Al    ,   .   Since  21  is simple,  21 = /.   Now, suppose ad absurdum that

for all 777 > 77   exists  a  a   such that e^mq'e^n   ' = 0.   For each 772  is then  /    / 21— * 772 772

and thus  inf     ,    ||e - x|| = 1;  hence  inf ,    ||e - x|| = 1;  hence  e i [J   I    =
_r x£,772 xe^->m m m  m

I = U, which is a contradiction.   Hence  (i)=£>(iv).

3.6. We show an example of an infinite dimensional AF-algebra which is sim-

ple but not UHF.   Its diagram is

3 4

7 10

17 24

etc.

From 3.5 it follows that this algebra  21 = (J 21     ¡s simple.     Furthermore

21       ==t   Mr .,    ©    Mr ^
72 [71,11 t"'2!

where [72, l], [n. 2] ate defined recursively as
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[1, 1]= 1,       [1, 2] = 2,

[t2,   1]  =[t2-   1,   1]  + [t2-   1,   2],

[tí, 2] = 2{n- 1, 1] + {n- 1, l].
By the Euclidean algorithm we have the following equivalences:

[t2, l]   and [72, 2]   are relatively prime

%

{n, 2] - {n, 1] = [72 - 1, l]  and [72, 1]   are relatively prime

t
[72, l] - [72 - 1, l] = {n - 1, 2]  and [22 - 1, ll   are relatively prime.

Since 1 and 2 are relatively prime it follows by induction that [22, l] and [72, 2]  are

relatively prime for all 72.
Now, suppose that M C SI     is a factor of type  I     with unity e.    Then  Me^nl'

is a type  I     factor in M,   ..   with unit e("!', i = 1, 2,  thus  772  must divide [n, l]lr      m (ni) '    ' '

and [72, 2];  thus  272 = 1,  i.e.  M = Ce.    Now if M   is a type I     factor in  SI with
unit  e,  then M  is isomorphic with a factor in some SI    with the same unit by

Lemma 2.3.   Thus  M = Ce.
Hence SI  does not contain any factor of type  I   ,   222 < 00,  with unit  e,  except

from Ce,  so SI is not UHF.
3.7.   We now proceed to study the primitive ideals of an AF algebra  21 =

U 21  .   Since the property of being primitive is not an intrinsic property of the

ideal /  itself, but in fact is a property which solely depends on 21//,  we first

study the structure of 21//,  for  21  and  /  given.

Proposition. Let 21 = (J 21 , and let I be an ideal of 21. Index the factors
in the central decomposition of SI in such a way that the subset A C J)(2I) cor-

responding to I has the form

A = link); 222    + 1 < k < 72      72 = 0, 1, • • • !.

Let p: SI —* SI// be the quotient mapping.   Then SI// = (J p(2I )   (272 the AF-sense)
and the central decomposition of p(2I  )  is

zzz

p(sg=ëp(AW,
k=\

where p(zM    ,  ) = zM for ink) i A.   Furthermore, the diagram of SI//  consists

of the pairs  ink),  k = I, ■ ■ ■ , m  ,22=0, l,---,  together with the relations   ^v

inherited from 3)(SI),  z'.e.   ink) ^-A imq)  in D(SI//)  if and only if ink) ^*p imq)   in
5XSI).

Proof.  SI = Unp(2M  in the AF-sense by 1.5.   By Theorem 3.3,  / O iUJ1^
= U   ©!-     +,Mz   7.Ï  and then, by Lemma 3.2,  / n 21   = ®"ü      .,/M,   ...   HenceV^Z2 Klyk-mn + l    (nk) '     ' ' n       wzt =z?z„ +1    (nk)
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p \ 21     has kernel   ©, "      ., Al,   ,,  and since  21     is the direct sum of this kernelr   '      71 ^^k-mn + l     (nk) n
and  ©l = iM(nfe)  the central decomposition of pWj  is pWj = ©" = , p(M(„fey)

where p(M(nk)) = M(n/t) = M[„,fe] for k = 1, • • •, m^.   Indexing the factor piM(nk))
by (nk)  it is clear that the underlying set of D(2I//)  consist of the pairs  (nk),

k — 1, • • •, m , n — Ö, li ■ • •.
Now, suppose that (nk), (mq) d A  and suppose  m > n.   Let / be a minimal

projection in Al    ,    and let /'. • • • /'    be a maximal set of mutually orthogonal mini-

mal projections of Al,      ,  such that  S^., /. < /,   i.e.  we have  £?_, /. = e^mq'f.    Byr     ' (mq) i-l'z— '' i = l'z ' '
Proposition 1.7,  p  is the multiplicity of the partial embedding of Al in  M .

Now, since p \ M    k    and p \ M ate injective, p(f)  is a minimal projection in

p(M{nk)), p(f .) are minimal in piM, J and 2P=1 p(f.) = p(e(mq))p(f). Therefore
the multiplicity of the partial embedding of p(M , ) in p(M ) is also p, and

the last assertion of the proposition follows.

3.8.   Theorem.   Let 21 = M 21 ,   let I  be an ideal in  21,   let A  be the subset
77      71

of D(2I) associated to I.   Then the following conditions are equivalent:
(i) /  is primitive.

(ii) There does not exist two ideals  I , I     in 21 such that  I   ■/ I / I    and

/=.\n>
(iii)  If (nk), (mq) 4 A then there exists a  p > n, m and a (pr)   ¿ A  such that

M.   ,. and M,      .   both are partially embedded in M,    ,.
(life) (772ÍJ) ^ } (pr)

(The implication (i)^»(ii) is well known for an arbitrary C*-algebra, while

the implication (ii)==>(i) is proved for separable  C*-algebras by Dixmier in [l].)

Proof.   Let p: 21—>2I// be the quotient mapping.   Then  /  is primitive in 21

iff {Oi  is primitive in  21/7 = p(2I).   There is a one-one correspondence between

the ideals in  21 containing / and the ideals of 21// given by / —» p(j);  I Ç / C 21;
/  ideal in  21,   This mapping (and thus its inverse mapping) preserves inclusions,

so (ii) holds iff {0¡  is not the intersection of two ideals both different from {0|  in

21//.    By Proposition 3.7, (iii) holds iff for any two factors of the form piM,nkA,

p(M,     .), (nk), (mq) i A  in  21//  there exist p > n, m and  (pr) i A  such that
'        (mq) ' —
p(M    ,) and p(M        )  both are partially embedded in p(M      ,)•

From the remarks just stated it follows that we may assume in the rest of the

argument that  / = {Oi-
That (i)=^»(ii) follows from [3, Corollaire 2.8.4 and Lemme 2.11.3- (ii)].
(ii)=^»(i).   This is proved for separable C*-algebras in [l, Corollaire 1 to

Théorème 2].   We shall later, in 4.17, give a direct argument for this fact which

applies for AF-algebras.
(ii)=^> (iii).   Assume (ii).   Then the intersection of any two ideals both / {Oi

is / {Oi.   Now, let («ft), (mq) £ JJ(2I).   By the argument used in 3.5 the ideal in
U 21    generated algebraically by AC  fe.   (resp.  Al        )  is
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/,=   U © M...        (resp.  /2=U © M.\.

By (ii), Tj n T2 / lof, and then, by 3.1, loi / Tx n T2 n (U„ttB) = (7j n (U„SIn))
n(/„ n (U SI  )) = /, n /    where the last equality follows from Theorem 3.3.  /,2 w72     72 1 2 ^ ' 1

and /2   are defined as the union of some subspaces indexed by p,  and by the argu-

ment in 3-5 these subspaces are increasing with p.   Since  /. n /   >= ÏOi  there must

exist a p such that the intersection of the corresponding subspaces in /.   and />

are not JO},  i.e. there exist ipr) e 3)(SI) such that e(mq)eipr) ¿ 0 /= e(nk)e(pr).

Then M.   ,,  and M,      .   are both partially embedded in z\L    ..(nk) (mq) r I (pr)
(iii)^>(ii).   Assume (iii) and let /., /.   be two ideals in  SI different from \0\.

Then there exist ink), imq) £ 5)(SI)  suchthat   M,   ,.Cl,,M,     .CL.   Then the
(nk) —    1        (z7zij) —    2

ideal generated by M    ,    (resp. M        )  is contained in  /    (resp. / ),  so

/,=   U © AL    , CI.,       and        J2 =   U © *(w>£'2'
i>>«   T,e(nk)e(pr)^      {pr<-~    V 2       P>m   r.e(mq)e(pr)      {pr) 2

By (iii) there exist  p > n, m and  r such that e(mq)e(pr) ¡¿ 0 ¿ e<-nk)e(pr);  thus

M,pT)QJ1 n72Ç/,ni2;  hence (ii) holds.

3.9-   Corollary.   Lei  SI = IJ SI  .    T/zezi ¿¿e following conditions are equivalent:

(i) 21  z's primitive.
(ii) There do not exist two ideals in 21 different from \0\ whose intersection

is JO}.
(iii) // (tzts), imq) £ ÍD(SI)  í/We exz'sz:  p > n, m and ipr) £ 3)(SI) such that M

and M,     ,  both are partially embedded in M,(mq) r 7 (p,)

4.   States and representations of approximately finite dimensional C*-algebras.

4.1.  In subsections 4.1—4.5 we shall show under which conditions a state co

of SI = (J 21     is a factor state, and we shall find necessary and sufficient condi-

tions for two factor representations of 21 to be quasi-equivalent.   As the methods

of proof are essentially those used by Powers in [12] to prove the same results

for UHF-algebras, we will mostly only state the results.

If B  is a C*-subalgebra of a C*-algebra  21,  then Bc  is the commutant of B

relative to 21.

Lemma.   Let  21 be a C*-algebra with unit  e,  and let B C 21  be a finite di-
mensional ^-subalgebra of 21 such that  e £ B.    Let W be a representation of 21.

Then

in(Bc)i" = in(B)i'n 111(21)1".

Proof.  As proof of Lemma 2.3 in [12].
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4.2. Lemma.   Let 21  be an AF-algebra, and let j  be the set of finite dimen-

sional *-subalgebras of 21 with unit  e. Let   II  be a representation of 21 and let

% = Sn(2I)i".    Then the center of &   is

Snt'=   H    in(8c)i".
Be?

Proof.  As proof of Lemma 2.4 in [12].

4.3. Lemma.  Let 21 be a C*-algebra with unit e,  and let I be an ideal in 21.
Let S  be a finite dimensional *-subalgebra of 21 containing  e.    Let p: 21    > 21//

= 21    be the quotient morphism and let 8    = p(S).   Then 8^ = p(8c).

Proof.  Since   p  is  a  morphism,  p(8c) C 8^.

Let {e^S  be a set of matrix units for 8,  and let  e. = p(e) = p(2,2.e(.,'e(*')27 UlrfeZlllZ

= 2^S¿p(e|.*0p(e(*')  be the unit of 8   .   Now, suppose that x = p(y) £ 8£.   Then

k       i k       i

^EE^ÍVi^pfEE^V^k       i \  k       i

It is straightforward to verify that S.le^ye^' eBc;  thus  x €p(Bc); i.e.  B£ C

P(sn.
4.4.   Theorem.   Let 21 = IJ   21    and suppose that co   is a state of 21 anc? II

//>e representation associated to co  by the Gelfand-Segal construction.    Then the

following conditions are equivalent:

(i) co   is a factor state.

(ii) For all x £ 21  there exists an integer r > 0 such that  |tu(xy) - cu(x)&j(y)|

< ||n>)||   for all y £ 2IC.
(iii) For all x £ 21 there exists a finite dimensional *-algebra  8 C 21  contain-

ing  e such that   \co(xy) - co(x)co(y)\ < \\Rj.y)\\  for all y £ 8C.

Proof.  Suppose first that II     is faithful.   Then   ||II  U)|| = ||x||   for all x £ 21,
and the argument which shows the equivalence of (i), (ii)   and (iii) is exactly the

same as the argument Powers uses in showing Theorem 2.5 in [12] if we replace

Lemmas 2.3 and 2.4 in Powers' work by Lemmas 4.1 and 4.2.

Then, suppose that 11^ is not faithful.   Let  7 = ker II7,  and let p: 21 —» 21//
be the quotient morphism.   Then by Proposition 3-7,  21// = [J p(2I) (in the AF-
sense).   We may lift co  to a state coQ   of 21// and II^ to a faithful representation

n70   of 21// such that co = coQ °p  and 11^= 11^    ° p.   Then lT70   is the Gelfand-
Segal representation of 21// associated to &_>..   Therefore the following conditions

are equivalent:
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(i)' cofl  is a factor state of p(2I).
(ii)' For all x e p(2I)  there exists an integer r> 0 such that  \coQixy) -

coQix)co0iy)\ < Hn^WH   for all y e p(%T)c.
(iii)'  For all x £ p(SI)  there exists a finite dimensional  *-algebra  B C p(SI)

such that p(e) £ B,  and such that  \coAxy) - <y0(x)oj0(y)| < Ull^Jy)!!   for all y eBc.
Now, since IÏ(SI) - IIn(p(?I)),  we have  (i)' <&> (i).   Since p(SIr)c = p(2Ip  by Lemma
4.3, (ii)  ^^ (Ü).   If S C SI  is finite dimensional then p(S)  is finite dimensional;
thus (iii) ^^ (iii) .   Furthermore, by Lemma 4.3 again, we have that (ii)  =^(iii).

We have then established the following implications:

(ii)

(iii) '-*-     (iii)

Hence (i), (ii) and (iii) are equivalent.

4.5-   Theorem.   Let SI = M  SI ,   and let II,   and II,   be two factor representa-ban   zz 1 2 ' r

tions of SI such that  ker II. = ker IT  .    Let co.   and co     be vector states of W

and II    respectively.   Then the following statements are equivalent:

(i) IL   and Il    are quasi-equivalent.

(ii) For all e > 0 there exists an integer r > 0 such that   \co .ix) — eo Ax)\ <

e\\Uxix)\\  for all x e«*.
(iii) For all e > 0 there exists a finite dimensional *-algebra  B C SI  contain-

ing  e such that  \co Ax) - co Ax)\ < e\\U Ax)\\   for all x £ Bc.

(iv)  There exists a finite dimensional *-algebra  S C SI  containing  e such

that

sxiv\\co xix) - co 2ix)\\  x £ Ec, UIIjU)!!  <  li < 2.

Proof.   If Wx   and II.,   are faithful,   \\Ux(x)\\ = ||II2(x)|| = ||x||   for all x £ SI  and
the proof goes exactly as the proof of Theorem 2.7 in [12].

Suppose then that  ker II    = ker II   = /,  and let p : SI —* SI//  be the quotient
map.   Then II.   and II     may be lifted to faithful representations of p(SI): Let  (i)',

(ii) , (iii)    and (iv)    be the statements (i)—(iv) expressed for these lifted represen-

tations.   Then, in the same way as in the proof of Theorem 4.4 one may establish

the following implications:
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(!)<«=►   (i)

(ii)

(iii)

livM-^ (iv>

This proves   the equivalence of (i)—(iv).

4.6. We shall now prove a result concerning algebraic equivalence of repre-

sentations of AFalgebras (4.12) and a result concerning the orbits of the automor-

phism group of an AF-ialgebra 21 in the set P(2I)  of pure states of 21 (see 4.15).

The results are analogous to some results obtained by Powers in the UHF case in

[12, §3]¡   In the case of AF-algebras the methods of Powers have to be modified.

This is due to the following facts:  Let 21     21    be two isomorphic AF-algebras on

a Hubert space  k,  and let 8     8    be two isomorphic finite dimensional *-subalge-

bras of 21     21    resp. containing  e.   Suppose that 21"   = 21" = SDi.   Then the follow-
ing two conditions hold if 21.  is a UHF algebra and 8 .  is a factor, but they do

not hold in general:

(i) There exists a unitary operator a £ SDÍ   such that a8  a*= 8     (see [12,

Lemma 3.3])-
(ii) S'j n 2Ii   and 8!, n 2I2   are isomorphic (see [12, Lemma 3.2]).

These two facts play an essential role in Powers'   argument.   Since they do

not hold in general we must restrict the class of von Neumann algebras SDi   to be

considered.   Furthermore, this class must depend on  21       Roughly speaking, the

simpler 21    is the more complicated SDI may be. This is reflected in the following definition.

Definition.   Let 21 be an AF-algebra and let SDi  be a von Neumann algebra.

Then  21  is permanently locally unitary equivalently embedded in SDI  is there exists

a faithful representation II  of 21 such that 11(21)    = SDI     and if for any pair IL, II
of such representations and any projection / £ 21 we have that II  (/) ~ II  (/)  (i.e.

the projections  II  (/)  and II (/)  are equivalent relative to the von Neumann

algebra 1).   We then write  21 c SDi.
For explanation of the term perm. loe. un. eq. em-, see Lemma 4.8.

4.7.   Proposition.   For the following pairs  21, SDi,   where  21 = (J  21    and SDI
is a von Neumann algebra we have that 21 C SDi   if there exists a faithful representa-

tion n  of 21 such that 1 = IL(2I)'.'
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(i) SI  is a UHF -algebra.   3K   is arbitrary.
(ii) SI  is £272 AF-algebra.   3Jt   is a type  I factor.

(iii) SI  is an AF-algebra.   3Ä   is a type  III factor.

Proof,  (i) Let / e SI be a projection in SI.   Then  e  and / generate a two

dimensional subalgebra £  of  SI,  and by Lemma 2.3 there exist a unitary  zz £ SI

and an 72  such that  zzEzz*   C SI   .   Define  B = z/*SI  u.   Then B  is a finite dimen-
—     zz n

sional factor in ?l  containing /.   Let II    and I]     be two faithful representations

of SI  such that II (SI)" = 3)1;   i = 1, 2.   Let   (e ..)  be a set of matrix units for B.
2 ' ' z;'

Then  ( IL (e ..)) ..   is a set of matrix units for II, (B), k = 1, 2, - - - .   Now, by using
FC ZJ Z] r£

the technique in the proof of Lemma 3-3 in [12] one shows that there exists a

partial isometry W e SOI  with initial projection II (e    )   and final projection IL(e. .).

Define   U = III (e .AWUAe, .).   Then  U  is unitary, and IL(x) = UlI,U)U* for alli    2     ll 1     li ' 2 1
x £ B.   By setting x = / one then sees that IL(/) ~ II if).

(ii) I£ 33Ï  is a type  I factor, then 3)1 has the form B(k) ® C/ where k  is some

Hubert space and  /  is the identity mapping on some other Hubert space.   The

map 3K —» B(z<): x ® / —► x  is then an isomorphism, so we may assume 3It = B(k),

since equivalence of projections is an isomorphism invariant property.   Now let

II    and II    be two faithful representations of SI such that II (SI)"= II  (SI)"= B(k),
i.e. IL   and II    are irreducible.   Then two cases may occur:

(1) II (21) contains a compact operator. Then it follows from [3, Corollaire

4.1.10] that IL and II are unitary equivalent, and in particular II (/) ~ II (/)

for all projections / e SI.

(2) II.(SI)  contains no compact operator.   Then, by using the same corollaire

as in  (1), II (SI),  contains no compact operator.   In particular, if / is a projec-

tion in  SI and / / 0,  then II  (/)  and II  (/)  are infinite.   Now,  SI  is separable and

II     is isometric and II  (SI)  is strongly dense in B(k),  so by applying II     of a

countable dense subset of SI  on a fixed nonzero vector of k,  one obtains a count-,

able dense subset of k.   Hence k  is separable, so WAf) ~ II  (/).

(iii) Suppose that 3)1  is a type III factor on a Hubert space  k,  and that there

exists a faithful representation II  of SI  such that II(SI)" = 3IÍ.   Let f be a nonzero

vector of k.   Let  P  be the projection onto 3)l(f.   Since 11(21)  is norm separable,

n(2I)tf is separable, and since 11(21)  is strongly dense in 3)1, Itf = II(SI)cf is separ-

able.   Now,  P effl' = n(SI)' so 3)1   is isomorphic to lp. lp   is a type III factor
on a separable Hubert space, so all nonzero projections in 3Hp   are equivalent.

Therefore,  SIçlp,  and so SI Ç 1.

4.8.   Lemma.   Lez:  SI    and SI    be two AF-algebras on a Hilbert space k,  let

a: SIj —» SI    be an isomorphism, and suppose that  21"   = SI" = 1 and that SI   Ç HL
Let S   C SI    be a finite dimensional *-algebra containing  I ,  and be   £    = a(E  ).

Tie72 there exists a unitary operator ¡J £ 3)1 such that  UxU*= a(x),   Vx £ £..
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Proof. Let {e'.M  be matrix units for &,.   Since  21   C SDi,  there exist partialz; 1 1 — r

isometries   Ck £ 1  suchthat  Ufeí7* = a(e^), and   U*U k = e^'.   Define   U =
2,1.a(e[k))U,e\k).   Then UU*= a(l) = / = UHJ so U  is unitary, and furthermore

rC I 11 fZ 1   1

Ue(k)U* = a(e(.k)).
ij ij

4.9. Lemma.   Let  21     21      a, £   , k and SDi   be as in Lemma 4.8.   Suppose
that 8 C 21   Cl 21     ¿s a finite dimensional ^-algebra containing I  ,  that 8 C S
a72í7 ¿¿ai  a I 8  ¿s í/íe identity mapping.   Let e > 0 and let {¿L • ••£   !  be a finite

set of vectors in k.   Then there exist a unitary operator  U £ SDi  and an isomorphism

ß: 2Ij -> 212  such that
(i) c/S1i7*ç2I2,

(ii)  \\Uf.-f.\\ <£,  z= 1,...,72,
(iii) l/xf/*= x, % e8,
(iv) ß(x)= UxU*, x e£j.

Proof.   By Lemma 4.8 there exists a unitary operator  V £ SDi  such that  a(x) =

VxV*, x e£   .   In particular,  x= VxV*, x eS,  so v £ 8'.   Let 8C  be the relative

commutant of 8   in 21,,.   By Lemma 4.1 we have  8C" = 8' Cl 21"   = 8'n 1.   By  [8,
Theorem   2],  the unitary operators in  8C   lie strongly dense in the unitary opera-

tors in 8C .   Since  V £ 8'n SDi  there exists then a unitary operator   s £ 8C   such

that  ||S - V*)(VÇ.)\\ <■«.  i = C- • ■ , «•   Define   U = SV.   Then, since  S £ 21
(i) í/Ejí/ = SV&^S* = 5a(Sj) S* ç SU2S* = 2Ir

Furthermore,

(it) ||(l/ - 0 effl = IICSV - /) e,.| = ||(5 - V*) VQ < e.
Since  v e 8' and  S  € Bc  we have,   for x e B,

(iii) UxU* = SVxvV = x.

Since 5 e 21     ¡s unitary,  x—»SxS* is an automorphism of 21      so ß(x) = 5a(x)5*,

x £ 21      defines an isomorphism of  21    onto 21      such that,  for x eE

(iv) ß(x) = Sa(x) S* = SVxV*S* = UxU*.

4.10. Lemma.  Lez" 21^, 2I2, «, a, SDi, £  , S    aTzaí (7 ¿e as 272 Lemma 4.8.   Le/
8   C 21    be a finite dimensional *-algebra such that (S   C S  .    Lez" <r > 0, awzT7 7e/

{zf,, •••,7;  !  7>e a finite set of vectors in k.   Then there exist a finite dimensional

*-algebra 8     077 k, a unitary operator  U    £ SD!  and an isomorphism ß: 21    —> 21

such that
(i)e2ç82ç2I2,

(ii) (7181u* = 82,
(iii) L/jXii* = UxU*, x eEj,

(iv) llt/jF/^.-^H <e,  i-l,...,«,
(v) ß(x)= UyxU*, x e»j.
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Proof.  Define   SI» = (/Sí í/*,  and B° = 1/8^*2 U<S. XU* = £2-   Define an iso-
morphism S: 21° -»21    by S(x) = aiU*xU), x eSI°.   If x£®2  then i/**!/ e£r thus
z5(x) = UU* xUU* = x.   From Lemma 4.9 it follows that there exist a unitary opera-

tor  V £ 1  and an isomorphism y : 21° — SI2   such that   VB° V* = B., C ?I2.
(vi)   ||Vf.-f.||<e,   2= l,.--,72,

(vii) VxV*= x, x £ £

(viii) y(x) = VxV*, x eB°.
Define  U. = VU.    Then  U     is a unitary operator in SB.   Define /3(x) = y(UxU*),

x e SIj. Then /3: 211 -» 21° -♦ SI2    ¡s an isomorphism.   We verify (i)-(v):
(i) B2 = VBJV*= VUBil/*V*= U1B1ÎJ*ÇSI2.   This also shows (ii).    By (vii),

E2 = v£2v*= vu&xu*v*c V8° V* = S
(iii) If x e£j  then UxU* e£2, so, by (viii), UyXU* = VUxt/*V* = UxL/*.
(iv) Since  U  U* = V,  (iv) is an immediate consequence of (vi).

(v) If x £ Bj   then  UxU* e 8°,  so, by (viii), ßix) = yiUxU*) = VUxU*V* =
CjXU*.

4.11. Lemma. Lez: SI a22z<? SI be two isomorphic AF-algebras on a separable

Hilbert space k, and assume that SI" = SI" = 3)1 07222? that SI C 3K. T¿e72 there exists
a unitary operator  U £ ffi  szzc¿ /¿az1  t/SI  {/* = SI

Proof.  We construct  U  by using a method which is similar to that used by

Powers in [12, Lemma 3.6].

Let \a .\ i' = 1, 2, ■ • • \  and \b ] i' = 1, 2, • • • \  be sequences which are dense in

the unit spheres of  SI    and  SI    resp., and let itf .| z = 1, 2,- • •!  be a sequence

dense in the unit sphere of k.

By induction with respect to r we shall construct increasing sequences

(SI,    )   and  (SI      )    of finite dimensional *-subalgebras of SI    and SI    resp., andl,rr 2,r'z- & I 2r'
a sequence   (a )    of isomorphisms from SI     onto  SI      and a sequence   (U )    of

unitary operators in 3K  such that

(i)  For all  r > 0,  there exists  c . £ SI d. £ SI        such that  ||c . - a .|| <
z 1 ,r'      z 2 ,7 "    z z" —

2~T+l, and  \\d.-b.\\ <2~r+1   for z= 1,---, r.

(ii) For all r> 0,   U SI     f/*= 21    .  for  z= 0, 1,---, r,  and if r > 1, 1/xU* =
U     ,xU*   ,   for all x e 21r- 1       r- 1 1 ,r- 1

(iii)  For all   r> 0,   ||(U,. + 1 - l/;)fj < 2~r fot z = 1,. • • , r.
(iv) For all  r> 0,  a ix) = (7 %!/* for x e 21,    .

— r r       r 1 ,7
For r = 0,   set 21       = SI       = C/,  and  Í7    = /  and let  a    be an isomorphism

from 21     onto SI       The conditions (i)—(iv) are then trivially satisfied.

Suppose that SI        SI    ., U . and  a.  are constructed for  i= 1,- •• , r,  suchrr 1,1 2,2 i z

that (i)—(iv) are satisfied.   We shall then construct SI      .,,21 U        and  a  ...1 ,r + l        2,r + l        r + 1 r + 1
From Theorem 2.2 it follows that there exist a finite dimensional *-algebra  B

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1972] INDUCTIVE LIMITS OF FINITE DIMENSIONAL C*-ALGEBRAS 223

suchthat  21      C 8 C 21      and elements  c.eS   suchthat   lia . - c .|| < 2~T fot  i =1   7  — — 1 Z "     z Z"   —
1, • • • , r + 1.   By Lemma 4.10 there exist a finite dimensional *-algebra  E and an

isomorphism  a: 21   —> 21    and a unitary operator  V € SSI   such that

(v)2I2irç£ç2I2,
(vi) vsV*= s,

(vii)  VxV*= UxU* for x e SIj t,
(viii)  \\VU*- l)(Ur¡)\\ = |(V - U)^\\ < 2~r- »   for  z = 1, • - • , r + 1,

(ix)  a(x)'= VxV* for x eS.
By Theorem 2.2 there exists a finite dimensional *-algebra  21 such that

£ C 21 C 21      and such that there exist elements  a", e 21 suchthat  ||¿>.-—     2 ,r + l —     2 z 2,7 + 1 "   i
d]\ < 2~r fot i = 1, ■ • ■ , r + 1.   By a new application of Lemma 4.10 there exist

a finite dimensional *-algebra  21 and an isomorphism  <x ~   : u   —► 21    and a

unitary operator  {/*      e SDi   suchthat

(x)Bç2Ilrr+1ç2ii;

(xi)c/*+12i2;r+1í;r+1 = 2ii)r+i,
(xii) U*.,xU ., = V*xV foi x e£,r + 1       r + 1

(xiii)  ||U*+1Kzf.-rf.|| < 2~r~l   for  z= 1,.. -, 7+ 1,

(xiv) ar7\(x) = U*+\xi/r+1 for x e2I2_r+r
We now show that (i)—(iv) hold for r+1.
(i) holds by the construction of 21        and 21      .1 ,r 2 ,r

(ii) By  (xi),   U  .,21      ..//*     =21      ...   11x621,      we have'     V       " 7 + 1      l,r+l      7+1 2,7 + 1 1 ,r

ur+1xu%l=urnv*vxv*vu*+l

= VxV        by  (vi) and  (xii),

= UrxU*     by  (vii).

By using this and induction hypothesis, (ii) holds.

(iii) \\(ur+l - ufol < ||((7r+1 - v)^.|| + ||(v - u)^\\ = \\u*+l (ur+l - V)C.\\ +
||(V - U)£.\\ < 2~T- l + 2~r- l = 27 by (viii) and (xiii).

(iv)  If x CÄj   +J>  ctr+1(x) = U + yXU*¥l by (xiv) and (xi).
This ends the induction.
Now, by using (i)—(iii) one may show by the method used by Powers to prove

Lemma 3-6 in [12] that ( U )    converges strongly towards a unitary operator  U £ SDi

which has the property which is required in the lemma.   The details of that proof

are omitted.

4.12.   Theorem.   Let  21 be an AF-algebra and let SDi    a72z7 SDI     be von Neumann
algebras such that  21 C SDi. for  i= 1, 2.   Let II    and II    be faithful representations
of 21 such that 11.(21)" =SDi. /o7 i = 1, 2.   Then SDi    a72z7 SDi    are isomorphic ij and if there
exists an automorphism a of 21 such that II    a72zi II   ° a are quasi-equivalent.
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This is proved from Lemma 4.11 in the same way as Powers proves Theorem

3.7 from Lemma 3.6 in [12].

4.13-   Corollary.   Let  SI  be an AF-algebra and assume that W    and W    are

two faithful type III factor representations of 21.    Then 11.(21)"   and W (21)" are

isomorphic if and only if there exists an automorphism  a  of 21 such that   II    z772zi

Il    ° a. are quasi-equivalent.

Proof.   Follows from Theorem 4.12 and Proposition 4.7(iii).

4.14. Corollary.   Let  21  be an AF-algebra and suppose that W    and II    are

two faithful irreducible representations of 21.    Then there exists an automorphism

a. of 21 such that II.   and W    ° a are unitary equivalent.

Proof.  Since  SI  is separable and II. are irreducible the representation spaces

of II.  must be separable for  1=1,2,   If there exists an integer ?z  such that the

representation space of II     is isomorphic to C",  then II. (21) iii M   ,  thus  21 ^t

M    and so the representation space of II     must also be isomorphic to C".   If 21

is not finite dimensional the representation spaces of II     and II    must be infinite

dimensional, and so isomorphic to  /2(Z).    In all cases, IL(2I)"~ II  (21)"   (= all

bounded operators on the representation space).   Hence, by Theorem 4.12 and

Proposition 4.7(ii), there exists an automorphism  a of 21  such that II     and II    °

a are quasi-equivalent.   Since II  (a(SI)) = II  (SI), II    ° a  is irreducible, and then,

by [3, Proposition 5.3-3], IL   and II   ° a ate unitary equivalent.

4.15. Corollary.   Let  SI  be an AF-algebra and let <u     and co.   be pure states

of SI such that the associated representations II    and II    are faithful.    Then

there exists an automorphism  a  0/ SI such that co    = co7 ° <x .

Proof.   By Corollary 4.14 there exists an automorphism ß  of SI  such that II.

and II    ° ß  ate unitary equivalent.   Therefore <y     and co2 ° ß  ate vector states of

the same irreducible representation, and so, by [8, Corollary 8],  there exists a

unitary operator v £ SI  such that co Ax) = co Avßix)v*)  fot all x e SI.   Then  a(x) =

vßix)v*  is the desired automorphism.

4.16. Corollary.   Le/.  SI  be an AF-algebra and let co   be a state of SI such

that the associated representation II     ¿s faithful.    Then co   is pure if and only if

there exists an increasing sequence \ SI„)„   of finite dimensional ^-subalgebras of

SI,   all containing  e,  such that 21 = M  21    and co | 21     is pure for all n.1 ° ^* n    n '      n r '

Proof.  Suppose first that  SI = JJ 21    and that co j SI     is pure for all 72.   We
show that co  is pure.   Suppose co = hco . + (l - X)co     where tu.   and co     ate states

of SI and  0 < A < 1.   Then cú | 2^ = /W    | %n + (l - \)co2 \ %n,  thus co | SI^ =
co,  I 21   =(ü    I 21   ,  thus co \  U SI   =w,  I (J SI   =&J    I M  SI   ,  and so, by the1    ' ZZ 2    ' 72 ' 7Z      Z2 1    '   v77      72 2    '    ^^72      72' '
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norm continuity of co, co ̂    and co   , co = co. = co2,  i.e. co   is pure.

Conversely, suppose that co   is pure and that II     is faithful.   Then II     is

irreducible, and so 21  is primitive.   Let 21 = M B    where  e e8   C 21    and   (8 )r ^^TZ      72 72   — 72     72

is an increasing sequence of finite dimensional *-subalgebras.   Let \e  ..   '...   be

matrix units for 8   .   We shall construct a pure state p   of 21    by defining induc-

tively p | 8n., z'= 1, 2,---,  where  (zz.).  isa strictly increasing sequence of

integers which are chosen in the course of the induction.

Let 72. = 1  and define

,(*«•* Íf q

Then p | 8     is pure.   Now, suppose that the matrix units for S      have been chosen

in such a way that

t   ("fe<?\      j1     if a= 7= /= 1,p(e..      ) = s
21 (0    in other cases.

Since 21  is primitive it follows by repeated application of Corollary 3.9 that there

exist 72, +    > 72,   and a factor M^n        pj  in the central decomposition of 8

such that all factors in the central decomposition of 8       are partially embedded

in Al(„,+ ,,p).   By a suitable choice of indices one may assume p = 1,  and by a

suitable choice of matrix units in  8_, ,,   one obtains"fe+1
m (nkl)(nk + 1l) _     (nk + ll)

Now, define p \ ^„k + ,   by

p(e^k + iq>)
1     if i = / = a,
0'   in other cases.

The" P I \k + l  is a Pme state' and for x e Bife+i  we have PW = p(e("^ + ll)^e<i"/+ll))-
By combining this with (1) we see that p | 8n   +     is really an extension of p | 8    .

For simplicity we now write 8,   instead of 8     .   Then 21 = Ul8, .   Since   |p(x)|

< ||x||   for x £ Ui,8      p  may be extended by continuity to a state of 21.   Since

p | 8,   is pure for all  k, p  is pure by first part of the proof.

We now show that II     is faithful.   By Lemma 3.1 it is enough to show that

ker nnB    ={0i,  77= 1,2,----   We show this by showing that for each minimal

projection  e'"   '  in the center of 8     there exists an i f8 „   suchthat o(xe<-n \*)r        ' 72 72 + 1 r

/ 0.   Then, by definition of the Gelfand-Segal representation,  e'"   ' i  ker II    and

the result is obtained.

Now, by construction of 8 we have that  e'"   'e'"      *  '   is a nonzero pro-

jection.   This is included in the factor M so there exists a partial isometry

x eAl(n + 1  1}  suchthat xx* =e(1"1+1'1),  and x*x < e("*)e(" + 1'''.   Thus,
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pixe(nk\*) = pixe^ + lA)e(nk)e(n^l,l)x*)

- pixx*) = pie\n2lA)) =1^0;

thus II    is faithful.
By Corollary 4.15 there exists an automorphism  a of  21  such that p = co ° a,.

Let 21    = a(B  ).   Since  a  is an isometry,  21 = M  21   .    /("*>= a(e(."¿))  are matrixzz zz J *^n    n      ' ij ij
units for 21    and

,(/.<»*>) = pie(nk))
1     if i = ;' = ze = 1,

0    in other cases;

thus co | 21    is pure.
4.17. In the course of the proof of 4.16 we gave in fact a proof for the implica-

tion (ii)=>(i) in Corollary 3-9 which is independent of Dixmier's proof in [l], i.e.

we proved that if the intersection of any two nonzero ideals in an AF-algebra  21  is

nonzero, then SI  is primitive.   This is because the equivalence (ii)el^'(iii)  in 3.9

was established independently of Dixmier's   result, and the only property of  21

which was used in the construction of the pure state p   in the proof of 4.16 was

(iii).   Since II     is faithful, (iii) implies that SI  is primitive.
4.18. By using techniques closely related to those in 4.16 one may give a

direct proof for the fact that, if 21 = JJ 21    is a primitive, infinite dimensional AF-

algebra, then the closure of the set of pure states of  SI  in the iz/*-topology is the

set of all states of SI.   This is proved in general for primitive, antiliminal C*-alge-

bras by Glimm in [7],  see also [3, Lemme 11.2.4].   The argument is roughly as

follows:     By using Corollary 3.9 and an induction argument one may prove that for

any 72  there exists an  222 > 22  such that all the factors in the central decomposition

of  SI    are partially embedded in one single factor M in the central decomposi-

tion on  SI     in such a way that M          is embedded in M     ,    with partial multiplicity

> [22, q\.   Then it is not difficult to show by methods similar to those in [6, Theorem

2.8]  that if <u   is a state of SI     there exists a pure state p  of M,   , ,  such that

coix) = p(e(m   'x)  for x e SI  .  p  may be extended to a pure state of SI     by p(x) =

p(e(m   'x) for x e SI   ,  and still p | SI   = co.   Then p   may be extended to a pure

state of  SI  by  [3, Lemme 2.10.1].   In short, each state of SI    has a pure extension

to  SI.   Since  U  SI    is dense in  SI  it then follows that the set of pure states of SI

is U7*-dense in the set of states of SI.

5.   An example.   The current algebra.

5.1.  In this section we shall apply the machinery developed in §§1 to 4 to

one specific AF-algebra.   This will be the algebra of all gauge invariant elements

of the algebra of the canonical anticommutation relations.   This algebra is named

the fermion current algebra in [9].

We recall some basic facts from [ll].   Let K  be a separable infinite dimensional
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complex Hubert space.   Then  2I(K),  the CAR-algebra of K,  is the C*-algebra gen-

erated by elements  «(/),  where / —»«(/)  is a linear map of A  into 21(a)  satisfy-

ing the canonical anticommutation relations

a(f)a(g) + a(g)a(f) = 0,

a(/)*a(g) + a(g)a(/)* = (g, /)/.

(We adapt the convention that the inner product on A   is linear in the first factor.)

If  U  is a unitary operator on A,  then by [ll]  there exists a unique automorphism

cp  of  21(a)  such that cp(a(f)) = a(Uf),  and this defines a homomorphism from the

unitary group on  A  into the automorphism group of 21(a).   The unitary group on a

has a subgroup isomorphic to the circle group, namely the unitaries of the form /

—r e    /,  0 < 6 < 2î7.   The corresponding automorphisms of 21(a),  which we shall

denote by ~%q,  are called the gauge group of automorphisms.   The elements  x e

21(a)  such that Xe^ = x ^or a^ ^ e ^' ^n)  form a C*-algebra which we shall de-

note by 21 (X),  and call the current algebra.

If x = a(fy)*. ■ - a(fn)*a(gl)---a(gm),  one has that x9W = e,ö(m-"'x,  so

x £ 21 (a.)   if and only if m = n.   We shall see in 5.4 that the linear span of the x's

of this form with  m = n  lies dense in 21 (X).

We shall now use the fact that 2I(X)   is a UHF-algebra to deduce that  21  (X)
is an AF-algebra.   We use the description of 2I(X)  given in [ll].   Let {/  S  =1       be

an orthonormal basis in X.   Define

V0=7,

72-1

Vn= ll (1- 2a(/.)*a(/.));       «>1,
z'=l

■ft = fl(// Vn> 4f«**//a(4>-
Then it follows from the anticommutation relations that the {e\"'j  form a set of  2

Z7
x 2  matrix units, which commute for different 72's.   The set of all e'   '   e^2\   ■ • ■

(n) nn    '212
e\  '.   ,  where  (z  , ;  , i   •• •/  ) runs through all 2«-tuples consisting of the elementsZ„7„ 1 1 ¿ 72 o

1 and 2, therefore constitutes, by suitable indexing, a set of 2" x 2"  matrix units.

These matrix units generate the algebra of all polynomials in the field operators

a(f)  and a(f)*, where / runs throught the linear span of /.,-■-, /  .   We denote

this algebra by 21   .   Then 2I(X) = U 21   ,  so 2I(X)  is a UHF-algebra.   Let 21°   be0 ' 72 ^^72      72 & 72

the gauge invariant elements in 2Í . In the next lemmas we shall study the struc-

ture of 21°, and the embedding of 21° into 2I° + j. Then we shall show that 2I°(X)
= U 2Í0,  and thus establish that  2I°(X)  is AF.
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5.2.   Lemma.   21    has the central decompositionn r

K=®M(nkY
k = 0

where  M are factors of type  I „ ,  where  (?) = 72!/ze!(72 - k)\  is the binomial(nk) i) fe

coefficient.   zM,   , ,   is partially embedded in M,   ,,    .  with" (nk) c ' (n + 1 q)

partial multiplicity
1     ifq=korq=k+\,
0     in other cases.

Proof.  It is easily verified that the matrix units  ei .    mentioned in 5.1 trans-

form under the gauge-group by the formula Xe^ek    ' = e k       Hence

xé
11 zz'zz l'l n r.

Since the elements  |e.   '   • - • e\nl  \.    .     .      form a basis for the vector space
2121 Zz22„ zzWze-1,2 - r

21  ,  it follows  that  SI     is the algebra spanned by those elements  e\  '. e\  '   ■ ■ ■
72 72 & r ' i\i\   i2j2

e<g.n  for which ^ = 1^=^ = 1V
Now, define A    ,   as the set of functions cfe  from {l, 2,- ■ ■ , 721  into {1, 2{

such that cfe  assumes the value 1 exactly k times,  k = 0, 1, ■ ■ ■ , n.   If cfe, iff £ A   .,
define   fink)   - A1) e^ An"> Then   /("*=>  P 21°detine  ¡M     -e4>(l)<P(l)ed>(2)<P(2)---  e<P(n)f(nY    Then  f ^    6 \ '

Define  zW    , .   as the linear span of \f A% ■ cfe,xfe£\    A.   It is then clear that
21   =©?=f)zVL   ,    as a direct sum of vector spaces.   If <p, xfe ate functions from

Í1, • ■ • , 22!  into 11, 2[,  we define

8      = \1    if ^ = *'
**       |0     if cfe ¿xfe.

By straightforward computations one verifies fffif ^ = S^S^fr», fffi* =
/&fe)>and ZLoht^.kf** =e- Thus the f*îhs form a set of matrix units

for 21  .   The  M    ,   's are factors, and the square root of their dimensions are equal

to the number of elements in A    , ,  which is  t2!/&!(?2 - k)\ = (").   Thus the first72, k' k
part of the lemma is established.   To prove the second part, assume efe, y £ A    , .
Since  el¡"   l) + e.n   l) = e we have

i(nk)_ f(nk)(n + l),   ,(nk)(n + l ) _  f(n + l,k + l),   i(n + l,k)
!<p<J>    ~ '¿t/r   ell        + ¡4,41   e22        "Visi-i + '<p2J>2      '

where <fe , xfe  eA   +    ,+    are defined by

I cfe(q)     fot  q = 1, • • -, 22, I xfe(q)     fot  q = I, • • •, n,
4>Tiq) = \ . , ^rw) = \ , J_"1(r tot  q = 22 + 1, Ir for  q = n + 1,

where  r = 1,2.   Thus a matrix unit in M,   , ,   is a sum of one matrix unit in' (nk)
A4,   .,  , ...   and one in M.   .,  ,.,  hence the lemma follows,(zz + l.fe + l) (zz + l.fe)'
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5-3-   Lemma.   Let  21 = (J  21    be an AF-algebra,  G a compact group,   a a

strongly continuous representation of G as a group of automorphisms of 21.   Suppose

that  a (21 ) C 21    for all g £ G and n > 1.   Let 21°   be the G-invariant elements in
g        72     —        72    ' ° — 72 -

21    and 21°  the G-invariant elements in 21.    Then  21° = U 21°.
71 72      71

Proof.  Since g —> a (x)  is continuous, the Bochner integral  P(x) = J7 a (x)dg

exists for all x e 2Í,  where dg  is normalized Haar measure on G  (see [15, V, 5]).

Since  a     is isometric for all g,   ||P(x)|| < jG ||ct (x)|| dg = ||x||,  so

(1) I|P||<1-

Furthermore, if g £G, x e 21,  then

a P(x) = a     j_a,(x)i/fc=   / _ a  Ax)dk=   I _ a,(x)dk = P(x),g g   J G     fe J G     gk J C     k

so

(2) P(2I)ç2I°.

If x e 21°,  then

(3) P(x) =   [xdk=x.
J G

If x 6 8   ,  then  a (x) e u    for all e 6 G,  and so by combining with (2) and (3)n g n " * °

(4) P(2I) = 2I°.7Z 72

Now, let x e 21°. Then there exists a sequence (x ) . with x^ £21^, such that
x = lim x . Then, by (3) and (1), x = P(x) = lim" " P(x ). Then, by (4), x e
\JW and so 21° C JJW.   Since trivially   U ^° C 21°  and    21°   is a C*-algebra,
v"'«      72 —    >'n      71 ' 71      72   — °

the lemma is obtained.

5.4.  Corollary.   2I°(X) = JjTW.
Proof.   The circle group is compact and in the proof of Lemma 5.2 we verified

that X$(     ) Ç 21    for all 72,  so by Lemma 5.3 we have only to prove that if x £

2I(X)  then 6 —* Xft^  i-s continuous.   In the proof of Lemma 5.2 we saw that

XéMVí, "' ein) )=  eí(í*-l/¿"2t-li*)^c¿!!:1 ••• e(n)   and  since  each  element
or1 ? .  " "   . .      . in '"'"

y £ ¿I    is a finite linear combination of such matrix elements, 6 ■>-* Xgv'  is in

fact uniformly continuous for y e 21   .   Let x e 2l(X)  and let c > 0.   Then there

exists an 21    and a  y e 21     such that  ||x - y|| < e/3  and then there exists a 8 > 0
72 y 72 " ' "

such that  |öj - Ö   I < 8  implies   Hx^jiy) - X02iy)\\ <  f/3-   Then, since all ye  are
isometries,   |ö    - 0A < 8   implies

ilxei(^) - Xe2(*)H < llx* <* " 3»>l + \\x0l(y) - xe2WW + (be*/*" ?>H
<2||x-y|| +e/3<c.

Thus 6 —» yfl(x)   is continuous, i.e. 0 —» y^  is strongly continuous.
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5.5-  From 5.2 and 5-4 it follows that the current algebra is an AF-algebra with

diagram looking like Pascal's triangle:
0

A       A/v/\
/.Wn1

\

This may now be used to reveal the algebraic structure of 21 (a).   Theorem

3.3 implies that the ideals of 2I°(K)  except ¡OS  are represented by "pyramids" on

the diagram, starting from one point in J)(2I (K)).   I.e. the most general ideal in

2I°(K)  except Í0¡   is_
00 k—m

„!„ =        U ©     M(kj), 72,222=0,1,2,.-..
Ze=ZZZ +Z7      7=72

These ideals are all distinct.   On the figure we have indicated the ideal    /..   The

ideal    /     may be characterized in a couple of other ways.

(i)    /     is the ideal in  2I°(K)  generated by M,   .       ,.   This is immediate from'   n m & J       (n+m,n)
the definition.

(ii) We may also describe the ideal    /     directly in terms of the annihilators

aif)  and the creators  aig)* of the field algebra  21(a).   Let  p  be a polynomial in

the field operators such that each addend in  p  contains equally many creators and

annihilators.   Then  p  is gauge invariant.   Using the anticommutation relations one

may order each addend in p  such that all creators are standing to the left of all

annihilators.   We then say that  p  is in normal form.   If the creators and annihila-

tors are in reverse order in each addend we say that p   is in anormal form.   Now,

if p  is a gauge invariant polynomial in the field operators, we may by integrating

over the gauge group as in the proof of Lemma 5.3 assume that each addend of p

contains equally many creators and annihilators.   Consider the set of gauge in-

variant polynomials  p  such that each addend of p  in the normal form contains at

least  m  creators, and each addend of p  in the anormal form contains at least 72

creators.   From the anticommutation relations it follows that this set is an ideal

in the algebra of gauge invariant polynomials.   The matrix units f ?V  tot M.

constructed in 5.2 are polynomials in the field operators and it is not difficult to

verify that f ¿1    m norrnal form has an addend of minimal "degree" in the field

operators which contains q - r creators, while f ATA  in anormal form has a term

of minimal "degree"  r  in the creators.   It follows that the closure of the ideal of

the algebra of field operators described above is     /   .
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5.6.   Proposition.   The primitive ideals of 2I°(X) are the following:

O»  0!n
(iii) Soi

(i)n/0,   72=1,2,-

(Ü)   QI„,   72 = 1, 2,- - - ,

072e has that

and

2I°(K)/1/0^2I°(X)/0/1^C,

72V72 + l/0=0V0,72+l  =  ^(X),

for n = 1, 2, • ■ ■ .   Within unitary equivalence there exists for each n only one irreducible

representation   Al     with kernel „7    and 072/y o?2e irreducible representation    II„c On 0 72. J r n    0

with kernel    /„.
72   0

Proof.   From the figure in 5-5 and Theorem 3.8 it follows that the list (i), (ii),

(iii) exhausts the set of primitive ideals in 21 (X).   Using Proposition 3.7 we see

that both  2l°(X)/1/0  and  2I°(X)/()/1   have the diagram

1

I

so they are both isomorphic to AC = C.   By Proposition 3.7 again 2I°(X)/   +./n

has the diagram

K

K|\
72+2

0
77+2)-

1

The ideal    /„/   .,/„   of  2I°(X)/   ,,/„   is then represented by that part of the dia-
72   0    72 + 1    0 72 + 1    U

gram which is lying inside the shaded boundary.   By using exactly the same kind

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



232 OLA BRATTELI [September

of argument as in 1.10 example (iii), we then show that    /./   +./_ = Q£(J0.   By

a similar argument,   ./ IA   ., = C£(K).° '    0  72    0  ZZ + 1

Now, if II  is an irreducible representation of SI  (a)  with kernel    /„,  then IIr 7Z    0

may be lifted to a faithful irreducible representation of SI (K.)/  /   = 8.   As shown

above,  B   contains an ideal isomorphic to the compact operators on some Hilbert

space (which is  C   if 72 = 1   and J\  if 72 > l).   Since the only irreducible representa-

tion of the compact operators is the identity representation (except for unitary

equivalence) (see [3, Corollaire 4.1.5]),  and there is a one-one correspondence

between faithful irreducible representations of B  and faithful irreducible represen-

tations of the ideal given simply by restriction of representations ([3, Lemme 2.11.3]

and the fact that the ideal is minimal), it follows from [3, Corollaire 4.1.10]   that

each irreducible representation of SI (a) with kernel    /_   is unitary equivalent to

II.   An analogous argument for the ideals  fl/    establishes the proposition.

5.7.  We shall now prove that the representations   nII    and    II    are subrepre-

sentations of the Fock representation    II and the anti-Fock representation II

resp. (see [11, 1.3]  for definitions).   For the sake of completeness we state a

lemma, the constituents of which are well known.

Lemma.   Let  SI be a C*-algebra,   G a compact abelian group,   a. a strongly

continuous representation of G as a group of automorphisms of 21,   21    the algebra

of G-invariant elements in  21,  co  a pure G-invariant state of 21,   II  the irreducible

representation of 21 associated with co, k the Hilbert space of II, tf a cyclic vec-

tor in k such that co(x) = (Il(x)rf, <f ) for all x £ 21,   G  the character group of G,  dg

normalized Haar measure on G,  W     the restriction of W to 21  .

Then there exists a unique strongly continuous representation  U  of G  on k

such that

(1) VHx)i7* = n(ag(x))

for all g £ G and x £ 21,   and such that  U £ = rf for all g £ G.   If x e G  define

(2) Ex = jc x(g)Ug dg

(the integral being taken in strong topology).   Then  E     is an orthogonal projec-

tion such that.

(3) Ug=   £ Xig)Ex.
xeG

for all g £ G.   Moreover the projections E„ , x e G,  form a set of mutually orthog-

onal minimal projections   in IL (SI )    such that S     p. E    = I.   Hencer    ' 0 xeG    x

(4) u0=     .0       Exn0
x

zs a decomposition of IL   ¿22Í0 irreducible subrepresentations.
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Proof.   The existence of the representation  U  with the given properties is a

well-known result of Segal, see [13]-   Since  G  is compact and abelian,  U  has the

decomposition (3), see [3, Théorème 15.1.3],   amd (2) then follows from the ortho-

gonality relations for characters, see [3, Théorème 14.3-7].   From [5, Lemma 3-1

and Lemma 3.2] it follows that the weak closure of II(¿Í )  is equal to the commutant

of  Uc,  and hence the commutant of H  f21 )  is equal to the von Neumann-algebra

generated by  Ur.   By (3) the projections Ex   are minimal in this algebra, and thus

the last assertion of the lemma follows.

5.8.  We now study the decomposition of the Fock and anti-Fock representation,

when these representations are restricted to 2I°(X).   We remind the reader on some

facts from [ll].   The Fock   representation  .II  and anti-Fock representation II

are both operating on the Hubert space  k = ©°°=n^  a> where A  X = C,  and A"X

consists of those vectors in X ® X ® ■ • • ® X  (?2-times) which lie in the closure of

those vectors in the algebraic tensor product of X with itself tz times, which are

antisymmetric under permutation of the factors in X,    II  (II.)  then has the property

that  on(a(/))(A°X) = 0 (n0(a*(/))(A°X) = 0)  and
0ll(a(/)):  A" + 1X-+A"X, il0(a(/)):  AnK -+ An + iK,

(1)
0ll(a(f)*): A"X^A" + 1X;       Il0(a(/)*): A" + 1X   - A"X;

for 72 = 0, 1, • • ■ ,  and / £ X.     II  and II    are irreducible, and if 0  is a unit vec-

tor in A  X,  then the associated vector state is gauge invariant and pure in both

representations.   This state is called respectively the Fock state    co  and the anti-

Fock state Cl)     in the two representations.   We shall soon see that    co  and con,

restricted to  21 (X),  are the multiplicative linear functionals corresponding to the

two ideals     /     and     /     resp., both having codimension  1 in  2I°(X).

The homogeneous polynomials of degree  72  in the creators  a(f)*,  applied to

Q  in the Fock representation, generate a dense subset of A"X.   Since Xß acts on

these polynomials by multiplication by  e~ln   ,   it follows that if  U.  is the unitary

operator on k  associated Xg by Lemma 5.7, then

UeÇ=e-"ei;    fot Í£ A"K.

It follows from Lemma 5.7 that the subspace A"X  is invariant and irreducible under

II restricted to 21  (X).   Using (1), one easily deduces that the kernel of the cor-

responding subrepresentation is generated by those gauge invariant polynomials

for which each addend in their normal form contains at least ?z + 1   annihilators,

thus this kernel is   „/   +.   and thus by Proposition 5.6 the subrepresentation is

unitarily equivalent to   .II  +   .   Using analogous arguments for the anti-Fock

representation we obtain

Proposition.   Let    II (resp. IL)  be the Fock representation (resp. the anti-

Fock representation) restricted to 2I°(X), acting on the direct sum k = (J)""_n A"X
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of n-particle subspaces.    Then each subspace AnS\  is invariant and irreducible in

both representations, and the corresponding decomposition into irreducible subrep-

resentations is

0n=© 0nn+x,     n0= ©  a+1n0.
72=0 ZZ=0

5.9.  In [l, Théorème 3],  Dixmier gives an example of a primitive separable

C*-algebra  SI such that its structure space  Prim(SI)  contains no nonempty open

set which is separated.  (U  is separated if for each point p £ U we have that, for

all points  q  not lying in the closure of \p\,  p and  q  have a pair of disjoint

neighbourhoods.)   SI (a) provides another such example.   Indeed, from the diagram

of SI (a) we see that the open nonempty sets of Prim(SI (JO)  are of the form

i   /J 22 > 22„S U ! „/   I 222 > 772   ! U \0\.   Thus all neighbourhoods of    /„   contain72    0' —       0 OZTZ1—        0 ° 720

,, /_   although     ., /.   does not lie in the closure of    /„,  which is 1   IA 1 < 222 < 72a.72 + 1    0 6        72 + 1    0 72   0' ZZZ   0' — —
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