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INDUCTIVE LIMITS OF FINITE DIMENSIONAL C*-ALGEBRAS
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OLA BRATTELI

ABSTRACT. Inductive limits of ascending sequences of finite dimensional
C*algebras are studied. The ideals of such algebras are classified, and a
necessary and sufficient condition for isomorphism of two such algebras is
obtained. The results of Powers concerning factor states and representations
of UHF-algebras are generalized to this case. A study of the current algebra
of the canonical anticommutation relations is then being made.

Introduction. In this paper we study C*algebras which are the uniform closure
of ascending sequences of finite dimensional C*algebras. We call these algebras
approximately finite dimensional (AF). Similar classes of C*algebras have been
studied before. In [6] Glimm describes the C*algebras which are the uniform
closure of strictly ascending sequences of full n x » matrix algebras, all having
the same unit (uniformly hyperfinite algebras). In [4] Dixmier removes the assump-
tion that the matrix algebras have the same unit (matroid C*algebras). In the
study of quantum mechanical systems with an infinite number of degrees of freedom,
the study of inductive limits of nets of factors and their locally normal representa-
tions plays an important role, see e.g. [10].

The main algebraic feature which distinguishes the AF-algebras from UHF-
algebras and matroid C*algebras is that the latter algebras are always simple,
while this is not the case for the former in general. In fact the ideal structure,
and even the primitive ideal structure of an AF-algebra, may be fairly complicated,
and it seems that the structure space of an AF-algebra may have almost all kinds
of topological degeneracies, see e.g. 5.9.

The AF-algebras overlap, without exhausting, a great range of the kinds of
C*-algebras which have been systematically studied, for example there exist non-
trivial AF-algebras which are liminal, postliminal, antiliminal, UHF etc. As the
AF-algebras are relatively simple to handle without being trivial, they are espe-

cially well suited to test conjectures and to provide examples in the theory of C*
algebras, and I think their principal interest lies herein. As shown in $s they may
also have some interest in physics.
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We give a brief outline of the paper. In §1 the major tool for analyzing an AF-
algebra, the diagram, is introduced (see 1.8), and a graphical representation which
easily reveals the properties of a given AF-algebra is devised. In $2 we give an
alternative characterization of AF-algebras (2.2), and prove a necessary and suffi-
cient condition for isomorphism of two AF-algebras (2.7). In §3 the ideal struc-
ture of an AF-algebra is analyzed (3.3), and thus a criterion for simplicity appears
(3.5). Then the primitive ideals of an AF-algebra are characterized (3.8), and by
means of this result and the diagram the topology of the structure space of a given
AF-algebra may be found. In $4 criteria for a state to be a factor state is given
(4.4), and we find conditions for the quasi-equivalence of two factor representations
(4.5). Then a necessary and sufficient condition for algebraic equivalence of cer-
tain representations of an AF-algebra is proved (4.12), and a corollary to this result
is that the automorphism group of an AF-algebra acts transitively on those pure
states of the algebra whose associated Gelfand-Segal representations are faithful
(4.15). Another corollary is a simple characterization of the pure states of an AF-
algebra (4.16). In $5 the results of the foregoing sections are applied to a speci-
fic example, the current algebra or the observable algebra of the algebra of the
canonical anticommutation relations. The most striking result obtained is a classi-
fication of all the irreducible representations of the current algebra with kernel
£ 10} (see 5.6). These representations are in a natural way divided into two series,
one of which is obtained by decomposing the Fock representation and the other by
decomposing the anti-Fock representation (see 5.9).

I wish to thank my supervisor Erling Stérmer. Without his many helpful sug-
gestions this work could not have been done. In $2 I lean heavily on the results
of Glimm in [6], and in §4 on the work by Powers in {12]. I thank G. Elliot for

pointing out an error in the original statement of Theorem 4.5.

1. Definition and elementary properties of approximately finite dimensional
C*algebras.

1.1. Definition. A C*algebra U is called approximately finite dimensional
(AF) if ¥ has a unit e, and there exists an increasing (with respect to inclusion)
subsequence (?ln)n=l,2,-n of finite dim_ensional subalgebras of ¥, such that U
is the norm closure of Un ?ln, ie. U= LJ’z ?ln.

1.2. I ¥ and ?ln are as in 1.1, then ?In + Ce is trivially a finite dimensional
C*subalgebra of U, and an C ?ln +Ce C ?In+1 + Ce. We may therefore assume
that each gln contains the unit of ¥, and this is done in all that follows.

1.3, If (?Ir)n is a sequence of finite dimensional C*algebras, and a : ?In
- ﬁn+1 are morphisms, and each a  is injective and maps the unit of ?«[" into

the unit of U then the diagram

n+l?
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u, i, ow, 22

) )

3

has a certain inductive limit ¥ % by | [14]. The algebras QI may be considered as
subalgebras of Y. Then ¥ = U U n and since each 2[” has the same unit e
and multiplication is norm continuous, e is a unit in %. Hence U is AF, and
each diagram of the considered type gives rise to an AF-algebra.

1.4. In all what follows, the expression
A = 9521'1 (resp. B= L’ZJ%", etc.> .

will mean
“¥U (resp. B) is an AF-algebra, and (un)n 12
increasing sequence of finite dimensional subalgebras of U (resp %) all contain-

ing the identity of ¥ (resp. B) such that U = _ ﬁ (resp. B = U B).”

(R Un W and e is the unit of ?I we set, for convenience, ?I = Ce, so
that & C U, c?l C---yand U=, ﬁ

1. 5 Let U 0_91_ B-U, % Then it is trivial to verify that 4 ® B =
m_),and%é% U 93) Let U= U—?I_ and let p be a
morphism of ¥ onto a C*algebra % Then since [p(x)]| < lle forall x € ¥ we
have that B = Unp(ﬂn . Since ?In is finite dimensional, %n = P(an) is a finite
dimensional C*subalgebra of B, and since p maps the unit of ¥ into a unit of
B, B is AF.

It follows that the class of AF-algebras with their morphisms form a category

. (resp. (B_ > ,...) is an

which is closed under finite sums and ténsor products.
1.6. We introduce some notation which will be standard in what follows. Let
= Ungn. Then each %n is a finjte dimensional C*algebra with unit e. It is
then well known that ?In is a direct sum of finite dimensional factors:

pn

@ (nk)*

The symbol (nk) serves to label the factor M - ?1 . The square root of the

(nk) =
dimension of M(nk) is denoted by [2, %] such that M( k) = M[,, k]’ where M[n k)
is the full [n, k] x [n, k] complex matrix algebra.

We let ¢™*) denote the maximal projection in M It is then well known

(nk)"
that the e("k), k=1,--., n,, are the minimal projections of the center of an,

and we have that
npn
e= Z e(mk)

We will let {e(:’k)}[n k] denote a set of matrix units for M

(nk);[n k}
i,j=

We will say that
(flk))

(nk)*

n
{e 2e1 g%” isa set of matrix units for U , if the e."%”s span ?In
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linearly and satisfy

i ( k) ( P)_ (nk)
@) 7 g kaaysezq ’
(ii) e(nkY _ (nk)
1] ji
k
We always choose the indices such that e(:‘k) € M( k) i.e. such that {e "k)}En]_]

are matrix units for M in the usual sense. If the e(;‘k)’s satisfy (i) and (ii)

(nk)
without necessarily spanning ?I they are said to'be matrix units in ?I

1.7. We shall now study how one finite dimensional C*algebra may be embedded

into another.

Proposition. Let ?I @"" Mox
algebras with the same unzt e, and suppose that ul C uz Let {e (lk)} be matrix
10 kl' k = 1 .. P n

I=1,--, ny, and there exist matrix units {egfk)} for %[2 such that

p = 1, 2, be two finite dimensional C*

units for .. Then there exist unique nonnegative integers n

2’

ny "gk

(lk.)_ Z Z (Zq)

- A N1 5a! N
g=1 m=1 (Zp 1 qk[l»l’]+(m l)nqk+z)(2'p=1"qp[1’p]+(m_l)"qk+7)

(In informal, but more illuminating language this proposition says: If we iden-
tify ?I with ®k 1M[n,k] and define pM_=M @ C1

into ?I is of the form

b then the embedding of 2[1

n2 n]
@ anz (1, i)
k=1 \i=1

where we identify’ @ M[1 i with a subalgebra of M[2 k] J)

=17k
1 Proof. Let a_ be an isomorphism of U, onto ®k=1M["»k]’ and let B=a,o°
1

B, = az(e(Zk))B. Since dz(e(Zk)) is a central projection in @Z:IM[z,p], B, isa

a”*. Then B is an injective morphism of @ZLIM[Lk] into ®Z£1M[2-k]' Define

morphism of @:ilM[l,p] into Mp; 1}, and we have Blx) = @:ilﬁk(x), x €
@Z;M[l,k]. From [2, Chapter I, §4, Theorem 3] it follows that 8, has the form
By = $,°¢,°¢, where ¢, is an ampliation, ¢, is an induction and b, isa
spatial isomorphism. There exists a Hilbert space « such that q.')l(x) =x ® IK,
x eal(%l), so q.‘)l transforms al(ul) onto the algebra al(?ll) ® CIK =

($:;1M[1-P]) ® CIK= e);ll(M[l,p] R CIK). The commutant of this algebra is

n]

&P C 1] ® B(«x).

p=1
As ¢, is defined by a projection in this commutant, ¢, °¢, transforms

®Z=1M[1vt’] into an algebra of the form
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!

@ M[M] ® Cl_ngy-

Since this algebra is transformed into M[z k] by the spatial isomorphism ¢>3, all
kp ’s are finite, and in fact we have 2 [1 p) = [2, £, since ?Il and
QI has the same unit e. More specxflcally, ¢>2 ¢1 transforms an element x =

the »

p=1xp € @p=1M[1,p] into ®p=1 (xp® Icnkp). By using the spatial isomorphism

¢3, this last element may be viewed as an element in M[z_k] and, doing this, we

see that 8 transforms x into @: 1(®p 1% ® IC ). Now by choosing a set
of matrix units {egjlk)} for 911 and setting x = al(eg;k)) above, and using the
fact that a;l o oa, is the identity mapping ?II - ?«[2, one may easily define
matrix units egk) in ?Iz such that (1) is fullfilled.

1.8. The remark after Proposition 1.7 makes the following definition natural:
With the same notation as in the theorem we say that M(1 ) is partially embedded
in M(zk) 2
in M(zk)' These two relations are wrxtten as M(“)_\ ki M(zk) and M(li)\‘ M(zk)‘

From the proof of the proposition it is easily seen that M(“) N M(Zk) iff

e(1e(28) £ 0 and that if we define

with multiplicity ny .. If n,. > 1 we say that M ;y is partially embedded

a = supi{m| 3 m mutually orthogonal projections e, +++, e in U,

(16) (2k) j_ 1 ..

such that e, < e ., mi,

and

b = supi{m| 3 m mutually orthogonal projections € vvvy €, in ?ll

such that e, < e(“), i=1, e+, m}
then 7, =a/b.

Let ¥ = U 2[ . Then the diagram D) of U is defined as the set of all
ordered pairs (nk) k=1,.-., n,n=0,1,-.., together with a sequence
(N p>p=0 ... of relations defined by (nk) NP (mq) iff m=n+ 1 and M(nk) is

partially embedded in M ) with multiplicity p.

This definition requ(iﬂrqgs a couple of comments.

It is clear that D) depends not only on ¥, but on the particular sequence
(?In )n which generates ¥. This dependence will be implicit in what follows.

A natural question to ask is: If ¥ and B are isomorphic AF algebras, what
is the relation between D(U) and D(B)? Alternatively, if U = Unm:n = U’;%n,

what is the connection between the associated diagrams? An answer to this ques-

tion will be given in Theorem 2.7. From that theorem it is in principle easy to de-
duce an algorithm which gives a method of constructing from a given diagram all
diagrams which define AF-algebras which are isomorphic with the original one.

Another question is: Does really the diagram DAY define U up to isomor-
phism? The answer is the affirmative, for if U and B are two AF-algebras with
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the same diagram D, an isomorphism a: ¥ — B may be constructed inductively

as follows: Since QIO = CQ%O there exists an isomorphism a: QIO - 930. Now

suppose we have constructed isomorphisms a : ¥ — 8B  r=0,1,-..,7-1, such
that a | ?I =a _,,r=1,---,2~1. Let {el(""l )} be a set of matrix units
for 2["_1, and let /("‘1 k) =a _ (e(""l %)) be the corresponding matrix units

for %n Let n be the nonnegatxve integer such that (n-1,p) N2 (p, q)

1
Then, by definition of D) and Proposition 1.7 there exist matrix umts {e(" 2}

(lk) -1,k)

for ¥  such that equation (1) is fulfilled, with e; and

n
52k) replaced by e(;’ k) and (1, p] replaced by [n -1, p]. In the same way,

replaced by ei].
there exist matrix units f(" k) for 93” such that (1) holds with e replaced by /.
Then one may define a (e("k)) /("k), and extend the definition of a_ to ?In by

linearity. Then a, is an xsomorphxsm 2[ - .SB and from (1) it follows that
%, l 2[n--l = an—l'

Now, because of the last relation we may define a *isomorphism a: Un?«[n—’
U % by a | ?I =a_ . Since each a, is an isometry, @ is an isometry, and
may therefore be extended to a mapping of U = U 2T onto B = U 2[ by con-
tinuity. Since all the operations in the definition of a C*algebra are norm contin-
uous this extended map is an isomorphism, so U & B,

The diagram of an AF-algebra may be given a graphical representation, which

we show by an example.
1 1
PN
- |><|\|\
3
. l\lj |||\|
|

etc.

—— ——]

This means that 211 =M O M, %Izg M,® M, &M, %3;" M, @M, ®M &
M, etc. and the number of lines between the numbers indicate the multiplicity of
the partial embedding of the factor above into that below. An an example, the
second factor in the central decomposition of ?Il is partially embedded with multi-
plicity 1 in the first factor of ?I'z' with multiplicity 2 in the second factor and with
multiplicity 1 in the third factor.

Given a set of D of ordered pairs (n, k), k=1,..., n, n=0,1,.-., where

n, =1, and a sequence (\'), ., , ... of relations on D, when is D= D) for
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some AF-algebra U? We list some axioms that D must satisfy (define (n, &)
(m, q) < Ip>1:(n, &) NP (m, q)
(i) If (n, k), (m, q) €D and m=n+ 1 there exists one and only one nonnega-

tive integer p such that (n, &) \? (m, ¢).

(ii) If m# n+ 1 no such integer exists.

(iii) If (n, &) € D there exists ¢ €{l,-- -, n_,,} such that (n, k) > (2 + 1, g).

(iv) If (n, k) €D and 7> 1 there exists g €{1,---, nn_l§ such that (n - 1, ¢)
~ (n, k).

It is not difficult to see that the diagram of a given AF-algebra satisfies
these axioms. We only mention that (iii) expresses the trivial fact that the kernel
of the identity morphism %n — ?Inﬂ is equal to {0}, and (iv) expresses the fact
that the identity of ?«[n is mapped into the identity of ?I”ﬂ by the identity mor-
phism.

Conversely, if D satisfies axioms (i)=(iv) one may by induction construct a
sequence of finite dimensional C*-algebras (an)n and injective morphisms a:
?In-—»?lnﬂ, such that 2[0=C, a_ | i =a n=1,2,---, and such that

n-1 n-1’
for a given set of matrix units eg.;'k) in ?In there exists a set of matrix elements

LB g 1
nt

: such that
ij

1

Thtl "gk

(nk)y _ (n+1,q)
a,,(ez'j ) g El e(zg; i"qp[”"’]ﬂm_l )nqk+i)(2:;inqp[n,p] *m=1)mp+5)
where ok is such that (nk) ~"7% (n + 1, q)- This is done by choosing the dim-
ensions {7 + 1, 4] of the factors M(n+1,q) in an appropriate way; in fact we have
[n+1,4)= E::l nqp[n, pl. The inductive limit of the diagram
N oy

?IO - 2{1 ?IZ seo e

will then have diagram P.

1.9. We mention some examples of AF-algebras .

(i) U finite dimensional. Then the diagram has the following form:

Tl 2 oooooooooooTn
I|31 }|32 ...........Tn
?1 1.32 sseeccscee Pn
: i

(ii) ¥ is an UHF-algebra. Then all ?In are factors and the diagram has the
following form:
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The number of lines between p,---p and p,---p 4, is p ;.

(iii) We next give an example which is closely related to the algebra Ml’w
studied in [4, 5.2). Let « be an infinite dimensional separable Hilbert space, and
let W=QC(k) + Cl,. Then ¥ is AF and has a diagram:

7

L1/

/

’
4__.

/

e

This is shown as follows: Let (fn)n=1 ... be an orthonormal basis in «, and let
k, be the subspace generated by fl cee .fn. Let E, be the orthogonal projection

onto « . Define
U =tx e BW| x(1-E)=(1-E)x e CLU-E)I =Bk )DCEM, &M,

Then un is embedded in QI"H as indicated on the diagram, and since each x €
2[" is a sum of an operator of finite rank and a multiple of the identity we have
that & C 8€(x) + CIL

Conversely, by using the fact that the operators of finite rank are norm dense
in L€(x), and that the finite linear combinations of t_.‘:"lrfz --. are dense in k, it
is easy to show that 8€(x) + C1 ¢ U:ﬁ:

1.10. An AF-algebra is separable, but a separable C*algebra with unit does
not need to be AF. This follows from the example ¥ = C[0, 1].

Since [0, 1] is connected, [0, 11 contains no nontrivial open-closed subsets,
hence C[0, 1] contains no other projections than 0 and 1. It follows that C[0, 1]
contains no other finite dimensional *-subalgebras than {0} and C1, thus C[0, 1]

cannot be AF.
2. New definition of AF-algebras. Isomorphism of AF-algebras.

2.1. Lemma. Let ¥ be a C*algebra on a Hilbert space k, let € > 0 and let

n be a positive integer. Then there exists a 8¢, n) =8 > 0 such that if
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(1 {e(k); Lj=1,-,m, k=1,..., m} is a family of matrix units for a fi-
nite dzmenszonal C*-algebra on k with unit I such that 2 n, = n,

(2) there exists x(f) € ¥ such that Hx(k) (f)” <8, tben there exists a
family {f(k)} of matrix units in W such that H/(k) (:)H <e

Proof. The method of proof of this lemma is the same as that Glimm uses in
[6, Lemma 1.10}; thus the proof will be omitted.

The next theorem is analogous to Theorem 1.13 in [6].

2.2. Theorem. Let U be a C*algebra with unit e. Then W is an AF-algebra
if and only if the following two conditions are fullfilled:

) U is separable.

() If x)5-0-5 % € U and € > 0, then there exist a [inite dimensional C*-sub-
algebra BC U and elements Yyrrtta ¥, € B such that lx,-yl<e i=1,.-,n

Furthermore, if U is AF, and ?Il is a [inite dimensional C*subalgebra of U,
there exists an increasing sequence ?Iz C %3 C --- of finite dimensional C*-sub-
algebras such that ?Il - ?Iz and Ui%i = U

Proof. The proof is closely related to Glimm’s proof in [6). The necessity of
conditions (i) and (ii) is clear.

To show sufficiency, let {a’ } be a dense sequence in the open sphere

of radius ! about the origin in 21. %vi may, without loss of generality, suppose
that the subalgebras we consider contain.e. We shall construct an increasing se-
quence (2[71)” of finite dimensional subalgebras of ¥ such that for all 7 there
exists b, G%n' k=1,--.,n, suchthat |6, -4,[[<27", k=1,.-.,

Since |d,] <%, ?II may be chosen arbitrarily.

Suppose as induction hypothesis that ?«[n has been constructed and has the
required properties. Let {eg’.‘k)} be matrix units for %n. Define € =
2= 11 + 4(2::’__1 {n, k1)?)~1. By using hypothesis (ii) of the theorem and Lemma
2.1 it follows that there exists a finite dimensional subalgebra %' of U and a
set of matrix units {/Ek)} in ' (which does not necessarily generate U ') such
that Hfgf) - eg;’k)ll <8, 1<, j<[n k], where & is the 8(e, n,) of {6, Lemma 1.8],
and such that there exists b € %', k=1,.-.,n+1, such that &), - d.| <e

By [6, Lemma 1.8], there exists a partial isometry w € & such that wf (lkl) is
a partial isometry between /(k) and e("") k=1,---,n , and Ile(k) (k)n <e

k=1,---,n . Define u = 2"" 2[" k] ("k) /l(f') Then z € U, and by trivial

algebra, u is unitary and uf Ef) *= l(]"k')

Define anﬂ =uW'y* Then 2[71*'1 is a finite dimensional subalgebra of U
isomorphic with 4, and %n C ?Inﬂ‘ We must find &, € ?Inﬂ such that |6, - 4, ||
< 2"""1, k=1,-v.,n+1. Let bk = ub;u*eﬂnﬂ. Then
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16y = dpll <lldy = byl + 16y = Byl <+ 16y ~ ubyu™|

Z(f(k)b (@) _ (nk)wfllc)b (D e (n2))
kgst

k I £ 3
<e+ Z {n, k] ksupt "/s(s)bk/t(tq) (ﬂk)wf(k)bk/’(q) (:14)”.
as

Now

”/(k)b (q) - e(snlk)wf(k)bkf(q) (r:q)"
(& k
<||/ )b (q) f( ! /(q) * (nq)" + "(/s(g) (nle)wflk)) blcft( (Ir:q)”
%
SN = 1Pt T + 1 = eiuf () <10 - w*eno)

k
I~ eGRul < I/0 = G + G~ eu

78 - TR 4 k) _ olnkiy)| « 4.

Hence

2

nn
6, - d,] <e+4<z [n, &) €= znlﬂ.

k:l

By induction, a sequence <9I ) with the required properties exists. Then {di}

ceUT W .

2.3. Lemma. Let U = Unﬁn and let B be a finite dimensional subalgebra of
U. Then for all € > O there exist a unitary operator u € W and a positive integer
n such that

(1) Ilu - e|| < €,

(ii) uBu*C U .

Proof. We may assume that e € B. Let {f(l")}k=l be matrix units for B, and
suppose 1 <7, j< N for all /(k). Let ¢, = e/3mN and let 3 be the 8(e , m) of
Lemma 1.8 in [6]. Lemma 2.1 1mp11es that there exist an YI" and a family {e(k)}

of matrix units in ?I such that H/(k) (k)H <. From [6, Lemma 1.8], it follows

that there exists a parual isometry w € ?I such that e (k)w = w/(k) is a partial iso-

metry having /<kl) and el(lf) as initial and final projection, respectively, and such
that ||e1(f) wH <€, Define u= E 2 e(k) /(k). Then, since X, . (f')

l/( Y =e, uis umtary, and we have e(:‘) = u/ (k) u*, thus uBu*C ?I Furthermore,
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k
lefh ~ o] = e - efPelbur ()
k k k
< "e( ) _ (“) ( )" < "e(k) k)“ + "/(k) (lkl) (k)"
<Pelf) - 100 + 1R - eBur B

< e = 10+ 1/~ B + o) - Bul <25+, < 3¢,
Thus

Z(e(k) (k)
szznew— Bl <o N 3, -

2.4. Lemma. Let U be a C*algebra with unit e, let % % be two finite
dimensional *-subalgebras of W containing e. Let a: % —-»% be a *isomorphism
such that |la~1|B <1, where I: & —> U is the zdentzty map. Then there exists

e~ al =

a unitary operator u € U such that
*
al(x) = uxu N x € Bl'

Proof. Let {e(k)§ be a set of matrix units for §B1’ and define /(k) = a(e(k))

Then {/(k)} is a set of matrix units for §B We have
1780 - B = o= D B <] = 1

for all k. Lemma 1.8 in [6] implies that there exists a partial isometry w € U
such that /(k)we(k) is a partial isometry having e(lkl) as initial projection and

f(lki) as final projection. Define u = Ekzifﬁ.f)we(ll:). Then u is unitary and
uel®u® = (¥ = a(elh,
so u has the required property.

2.5. Lemma. Let U = U?I;, and let B be a finite dimensional *subalgebra
of & such that ?II CB. Then there exist a positive integer n and a unitary oper-
ator u € U such that

(i) u%u*_C_'?In,

(ii) uxu®*=x, x € ?II'

Proof. By Lemma 2.3 there exist a unitary v € ¥ and a positive integer
such that v - e|| < 1/3 and »Bv*C ?In. Define ?Ill = vﬂlv*g'un and define an
isomorphism a: ?Il —v?Il' by

alx) = vxv™, x € %1'
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Then, for x 62[1’
las) = = flox® = x| < Jors® — o + 50" - ]

20 < v - el <@/3) |5l
thus |la~1| 911" <2/3< 1. By Lemma 2.4 there exists a unitary w € 2[" such
that alx) = wxw* x €U . Let u=w*. Then
uBu* = w*vBv*w C w*ﬂnw =,

since w 62[n. For x e ¥ , we have

1’
uxu* = w*vxv*w = w*a(x) w=a l(a(x)) = X
thus u solves our problem.

2.6. Lemma, Let U = U}In = Ijn%n. Then there exists an automorphism o
of ¥ such that

For every positive integer n there exists a positive integer m such that

aB)c¥ U Cal®).

Proof. By induction we shall find two strictly increasing sequences my =1,

m,, m -, and TR YRR of positive integers, two sequences u,, u,,: -

-, of unitary operators.in ¥ such that if a; (resp. ,81.) are the iso-

.

and Uy Uyot

morphism ¥ — ¥ implemented by u, (resp. v)), restricted to B_ (resp. ?In ),
- 1 3

then a’i(%m,-) E:uni (Bj(g[n,-) c %mi+1) and the following diagram commutes:

%

o

m — 2[,,1

5B —)

m2

¢))

B —)

m3

-
-¢

etc,
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Here (— denotes the inclusion map.

Ve construct u,, v,, u,, v,, Ugy: successively by induction.

By Lemma 2.3 there exist a positive integer », and a unitary operator u, €
¥ such that ul%lu"l‘ C glnl. This is the first step in the induction.

Suppose now that u,, Up Uyseoos U have been constructed such that the fol-
lowing diagram commutes:

-1

Brmn-t - A,

> 4,

We shall construct v . Let q = u: %[n u,. Then U’ is a finite dimensional
n
*-subalgebra of ¥, and since u B_ «*C U we have B_ C U,
n my n— g my —
By Lemma 2.5 there exist a unitary v € ¥ and a positive integer Mmopg > M
' o~
such that vA'v*C B4

Let v = vu*. Then
n n

n
and such that vxv*=x, x € %mn.

* % * *
v U V= vu W uwv =AYV CB ,
nn, n n ny,on = Tmp4

and if x € §an,

*_ % * * % *
(e} = = = VXV = X.
B(a (%) VU KU U = VU U XU U Y
Hence the following diagram commutes:
aﬂ
§an —> ?I"n

2]

Mpyl

. . . " T
%41 is then constructed in an analogous fashion by *‘rotating’ v7 %mn"‘lun
into an algebra uﬂnﬂ by means of a unitary operator # such that ?I"n is kept

fixed, and define u = uv:. By induction we obtain the tommutative diagram (1).

ntl
Because of the commutativity we have a_,, | %’”n = a . Hence, we may define a
morphism a: Y B, — U, by a|B, =a . a is surjective, because if
y Eunk we have y = a‘k‘+1(Bk(y)) = a(Bk(y)) and Bk(y) € %’"lzﬂ'

Furthermore, since a | Bmk is injective and hence isometric, @ is an isometric
isomorphism of Uk%,,* onto Uku"k' Since these two sets are dense in U, a may

be extended to an automorphism of .
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If n is a positive integer there exists an integer & such that n <m, and n<
n,. Thus a(%r)g a(%”lk) C %"k and ?In C ?'Ink = ak+1(Bk(?I"k)) C ak”(%mkﬂ)
=By,
2.7. Theorem. Let U=U ¥ and B=U B_. Then U is isomorphic to B
n n n n

if and only if (?«[n)n contains a subsequence (%"k)k and each ?I"k contains a

), which implies the proposition.

[inite dimensional *-subalgebra %; such that e €§B; and

(1) (%; )" is an increasing sequence, and there exists an isomorphism a:
Un%" — Un%; such that a(%") = 58; for all n.

(ii) For all positive integers n there exists a positive integer k such that
U CB,.

n="k

Proof. Sufficiency. Suppose that there exists a sequence (58; )n and a *-iso-
morphism a such that (i) and (ii) are fulfilled. Since a | %n is an isometry, @ is
an isometry. By (ii) we have Un?In = Un%'n. Hence a is an isometric isomor-
phism between a dense subalgebra of B and a dense subalgebra of ¥ and may be
extended by continuity to an isomorphism from B onto U.

Necessity. Suppose that B and ¥ are isomorphic, and let 8: B — U be a
*-isomorphism. Let—%:l = B(%n). Since B is an isometry, U"%Zz is a dense sub-
setof U, so U= Un%";. Lemma 2.6 then implies that there exist an automorphism
y of U and an increasing sequence (nl.)i of positive integers such that y(%lg) -
?Ink’ k=1, 2,---, and such that for all n there exists a k& such that ?ln - y(%;).
Define 53; = y(%';e) and a=yof | Un%n. Then (i) and (ii) of the theorem are
fulfilled.

2.8. Glimm has given in [6, Theorem 1.12], a necessary and sufficient condi-
tion for isomorphism of two uniformly hyperfinite algebras ¥ and B. His result is
essentially that U and B are isomorphic if and only if the following condition is
fulfilled: If A contains a type I -factor with the same unit as U then B con-
tains a type I -factor with the same unit as B and vice versa. One might suspect
that a similar result would be true for an AF -algebra with the condition replaced
by: If & contains a finite dimensional *-algebra € with same unitas ¥, then B
contains a *-algebra with the same unit as B which is isomorphic to €. Sucha
result is however not true, and the reason is roughly as follows: If 9)11 is a factor
of type I , 9]32 is a factor of type 1 ., n, m < co, then ?IRl can be embedded in

Il in essentially only one way. By this is meant that if a,, @, are two injec-

2
tive morphisms ml — !Rz which map the unit of Wll on the unit of fmz, then there
exists an automorphism 8 of ‘.IRZ such that a, =R ° ,. That this is the case fol-

lows easily from [2, Chapter 1, §4, Théoréme 3]. Because of this, if U = Unmn
is a UHF algebra, where all .‘mn’s are factors, then the isomorphism class of ¥ de-
pends only on the factors themselves and not on the way they are embedded into

each other. In fact, the isomorphism @ of Theorem 2.7 will automatically exist if
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all the 93" are factors isomorphic to %;, so Glimm’s result is a corollary to this
theorem.

On the other hand, a finite dimensional C*-algebra %1 may in most cases be
embedded into another finite dimensional C*-algebra 2[2 in essentially different

ways. Thus we may expect that the isomorphism class of an AF-algebra U =

Un‘l[n depends not only on the an’s, but also on the way they are embedded into
each other. This dependence is reflected in the condition (i) of the theorem. Of
course condition (i) may be replaced by the equivalent condition that all- %n are
isomorphic to 55;, and that corresponding factors in the central decomposition of
§Bn and 58; are partially embedded in corresponding factors of %n"’l and %;4»1
with the same partial muleiplicitics. This will then enable us to construct a by
using the method which in 1.8 is used to show that the diagram of an AF-algebra
determines the algebra up to isomorphism.

We shall give an explicit example of two AF-algebras U = Eﬁ; and B =
—D:%: such that QI" is isomorphic to B, for all », but ¥ is not isomorphic to B.
By Lemma 2.3, each finite dimensional *-subalgebra of U (resp. B) is isomorphic
with a subalgebra of one Hn (resp. %n) so ¥ and B contain the same finite di-
mensional subalgebras. Thus the condition (i) of Theorem 2.7 is essential.

% and B have the following diagrams:

B
Pl
1/1\1 l/l\l /E 1
NANNN =111

For all =, ?In = %ng @anl, where @ M, is the direct sum of 2" replicas
of M,. From the classification of ideals to be given in $3 it immediately follows
that B has ideals of dimension 1 while all the ideals # {0} in ¥ are infinite di-
mensional. Since the dimension of an ideal is an isomorphism invariant, ¥ and

$ are not isomorphic.

A little remark at last: At first sight it perhaps does not seem to be essential
that the isomorphisms between finite dimensional subalgebras considered in Lemmas
2.3 through 2.6 are unitary implemented. And in fact, the only use which is made
of this fact is in the proof of 2.6, where it is important that an isomorphism between
subalgebras may be extended to an automorphism of the algebra in which'they are

embedded. The existence of this extension is assured by the unitary implementation.
3. Algebraic structure of an approximately finite dimensional C*-algebra.

3.1. Lemma. Let U be a C*-algebra and let {55"}:;1 be an increasing se-
quence of finite dimensional subalgebras of U such that U = U>. B, Let ] be
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a closed two-sided ideal in W. Then

]=]n<L_JIBn>.

Proof. Set | =] NnB_. Then J_is a closed, two-sided ideal in B_ and we
7__-~__ n n n

must prove that U:‘;l]n = J. Trivially U:=l J, € ]. On the other hand, suppose
that x ¢ UJ.,J,. We must prove that x ¢ J.

Let p: & = U/] be the quotient mapping. Let (x,), bea sequence such
that x_ €B and x —x. Since x ¢ J],J , we have that

inf |jx-y| =¢>0.
yeu,J,

Since x - x there exists an N such that »> N implies [x - x || <¢/2. For

n>N and y € J,, we therefore have
B, = 2 lx =yl = llx, -5l >e —e/2=¢/2.
Now, since ker p | §Bn =] 0 81: = J  we have
Il = inf lhx, - ol > e/2,
vel,
because the norm on the C*-algebra p(%n) is the same whether p(%n) is viewed
as a subalgebra of p(¥) or as the image of the quotient mapping ‘an - §Bn/]n.
Now, since x_— x and p is continuous, p(x ) — p(x). In particular, ||p(x)| =
lim loCx )| > €/2, so x ¢ ].
7n—00 n’il 2
3.2. Let U= UnQIn' In the following the term ‘‘ideal in ¥ will mean *‘norm-
closed two-sided ideal in ¥,”” while the term *‘ideal in Unun” will mean ‘two-
sided ideal in Un?ln.” The ideals in Unun are.described as follows:

Lemma. Let I be an ideal in Un?In. Then 1 has the form

a) =U @ M,

n=1l k:(nk)eA

where A is some subset of D= DU) satisfying the two conditions:
(1) I/ (nk) e and (n/e) ~ (n+ 1 q) then (n+ 1 q) eA.

(ii) If (nk) > (n+1q) implies that (n+1q) €A, g=1,.-. then (nk)

? nn+1l
eA.
Conversely, if AC D satisfies (i) and (ii) then the subset 1 of U U  defined

by (1) is an ideal in Un?«[n such that 1 N QIn = @k;(rzk)EAM(nk)'

Proof. Suppose I is an ideal in {J,¥ , and define I =1 NYU . Then I_is
n n n n
an ideal of ¥ , and =y.r.
. 7 n n. 7
It is well known that the ideals of ?In = Q}kgl M(nk) are the subsums of this
finite direct sum of factors. Hence I has the form I = ®k;(nk)€AM(nk)’ where
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A is some subset of .(D, so I has the form (1). We show that A satisfies (i) and (ii).
(i) If (nk) €A then M, CI CI. In particular, e™® €. Now, if (nk)

(n+1gq) then ek)e(mtl @) £ 0 (see 1.8). Since e**1 @) €M(n‘,_1 2 Ve have that

e(nk)(ntl g) 6M(n+1 o Since I is an ideal e{™®)e(?*1 @) ¢ Hence M(n+1 2

N1#£1{0}, and since I is an ideal and M(n+l . is a finite dimensional factor,
Misg C 1 i (m+1g) €A
(ii) Suppose that (7k)  (n + 1 q) implies that (n+ 1 q) €A, g=1,---, 7 , .

(nk) is partially embedded in M(M_1 ay’ then

is contained in the sum of the factors M

This is equivalent to saying that if M

M( + q)Cl But since M(nk)

which it is partially embedded, M ., C/I; thus (nk) € A.

Conversely, assume that A satisfies (i) and (ii), and define I by (1). Define
Inzeak;(nk)sAM(nk)' From (i) it follows that if M( k)C I and M(nk)
embedded in M_ .. ., then M el Hence M and by this [

(n+l q) n+ 1 n

(nt1 ¢y 10

is partially
(nt+1 q) 1’ (n k) n+
Cl 4, Hence, if x € Uk?lk’ y €l= Uk I, there exists an n such that x € ?In,
y €1 . Since I_ is an ideal in ¥_ this implies that xy, yx €I C I. Hence I is
n n n n -
an ideal in Un%n.
It remains to show that I N 2[ =1 . Clearly, I C In ?I To show equality
cm?l , then M, C1 . Sosuppose M

(nk) = (nk) = (n k)—
has a finite basis (as a vector space), and the Im s are in-

it is enough to show that if M
I. Since M(nk)
creasing linear subspaces of I, there exists an m such that M(nk)g Im

If m < n there is nothing more to show, so suppose m > n. Suppose ad ab-
surdum that M(nk) g In. From (ii) it follows that there exists an M(n+1 kp) such
that M(nk) (n*1 k) and (n+ 14 ) ¢ A. By (ii) again
it follows that there exists M such that M

in M(n‘,,2 ky)

M(nk) is then partially embedded in M( 2 ky)’

a factor M(mq) such that M(nk is partially embedded in M

is partially embedded in M
w2 ko) (n+1 kq) is partially embedded
and (n+ 2% ) ¢ A. As partially embeddmg is a transitive relation,
Proceeding by induction we find
(ma)’ but (mq) £ A.
Hence M(mq) N Im =1{0}. Therefore M(nk) is not contained in Im, which is a
contradiction. Thus I N 9«[" =1.

3.3. Theorem. Let 91:(]?2, and define
A = set of norm closed ideals in uq,

Az1 = set of ideals in Un%n,

A3 = set of subsets A of DAY satisfying (i) and (ii) of Lemma 3.2.

Then there exists a natural 1-1 correspondence between the elements of A,
A, and A3. This correspondence may be defined by bijections:

¢ A — A A ad U @ M(nk)’
n=1 k; (nk)€A

b A, AL
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Proof. From Lemma 3.2 it follows that 9523 is bijective.
Lemma 3.1 implies immediately that ¢, is surjective. To show that ¢,

is injective suppose that I,, I, are two ideals in U"un such that I, £ 12. From

Lemma 3.2 it follows that thetf: exists a factor M(nk) which is contained in one
but not the other of the ideals I, and I,. Suppose that M(nk)g_ I, ~1,. Then
R ¢ | ﬁum, m=n n+1, .-, because if k) 612 N ?«[m for some m, then
enk) € I, and thus M. = e("")M(nk) €l,. Hence e"®) is mapped into a pro-
jection #£ 0 by the canonical mapping-%[m — um/(l2 N %m), m=n,n+1,---.
erynt, le®™® —yll = 1, and since 1, = U1, 0¥ ), inf [l -y

= 1. Hence e(™*) ¢ 72 while e(7k) el _C_Tl; thus Tl ;472, and hence ¢, is in-

Hence, inf y

jective.
" 3.4. As an example of the use of Theorem 3.3 we look at the algebra 2€(k)
+ CI mentioned in 1.9.

The only ideal of this algebra, except for the trivial ones, is the algebra generated
by the factors lying inside the boundary indicated. From the description of this
algebra given in 1.9 it follows that this ideal is €(«), and we thus get the well
known fact that the only nontrivial norm closed ideal in 8€(«) + CI is {€(x).

3.5. Using Theorem 3.3 we shall find a condition for U = U?I_n to be simple:

‘Corollary, Let U = Ungn' Then the following conditions are equivalent:
OR'ED simple.
(ii) ¥ is algebraically simple.
Gid) If M,
m>n such that M
- (nk

is a factor in the central decomposition of ?In there exists an
) is partially embedded in all factors in the central decompo-
sition of ?In.

(iv) For all e"®) there exists an m > n such that e(mk)p(ma) £ o g=1,,

(The equivalence of (i) and (ii) is a well known general result for Banach-
algebras with unit, and is stated only for completeness. See [15, Chapter XI,

Propositions 1.1 and 1.2].)
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Proof. By 1.8, (iii)<>(iv).
Now, suppose (iii) and suppose that I is an ideal of U which is not {0}. By

Theorem 3.3, I contains some factor M By (iii) and condition (i) of Lemma

(nk)’
3.2 there exists an m > n such that ?Im CIl. Then e €I; hence I = % ; hence (iii)
=> (i).

Now, suppose (i). We show (iv) by using the fact that the ideal generated by

is ¥ . This ideal is

1= U (3] M

m2n . (ma), (nk) .

some M(nk)

(mq)’

as we see in the following manner. Define

I = 37

m m=n,n+1,.--.
q;e(mq)e(nk)#o

M(mq)’

(nk)

Then Im is an ideal of le, and it is the least ideal which contains e , and

1t M(nk) (mq)
then M(nk) is partially embedded in

thus the least ideal which contains M is partially embedded in M

(nk)*
and M(mq) is partially embedded in M(m+1p)
M .4+15) hence I CI . . It follows that U, is an ideal of Um?Im’ and it
is the least ideal which contains M(nk)' Thus I = Umlm is the least ideal of ¥

Since ¥ is simple, A = I. Now, suppose ad absurdum that

which contains M(nk)'
for all m > n exists a g such that e™Pe™®) = 0. For each m is then I_#£ U
had i/} m

% €Uy Ly le - x| = 1; hence e ¢ Umlm =

and thus inf_,, |le - x|l = 1; hence inf
m
I =%, which is a contradiction. Hence (i) => (iv).

3.6. We show an example of an infinite dimensional AF-algebra which is sim-

1 2
X
3 4

)%

ple but not UHF. Its diagram is

N~
etc.

From 3.5 it follows that this algebra U = Unan is simple. Furthermore

2[n = M[n,l] ® M[n.Z]

where [n, 1], [n, 2] are defined recursively as
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[1,11=1, [1,21=2,
[, N =lrn-1,114[n=-1, 2],
[n, 21 =2[n-1,10+[n-1, 1l

By the Euclidean algorithm we have the following equivalences:

[n, 1] and [n, 2] are relatively prime

¢

(7, 21 -{n, 11 ={n -1, 1] and [n, 1] are relatively prime

¢

{n, 1 -[n-1,11=[n~1, 2] and [»- 1, 1] are relatively prime.

Since 1 and 2 are relatively prime it follows by induction that [, 1] and [#, 2] are
relatively prime for all n.

Now, suppose that M C un is a factor of type I~ with unity e. Then Me(?D)
is a type Im factor in M(m.) with unit e("i), i=1, 2, thus m must divide [z, 1]
and [n, 2; thus m=1, i.e. M=Ce. Now if M is a type I factor in ¥ with
unit e, then M is isomorphic with a factor in some ?In with the same unit by
Lemma 2.3. Thus M = Ce.

Hence ¥ does not contain any factor of type I, m< oo, with unit e, except
from Ce, so ¥ is not UHF.

3.7. We now proceed to study the primitive ideals of an AF algebra A=
W;. Since the property of being primitive is not an intrinsic property of the
ideal I itself, but in fact is a property which solely depends on A/I, we first

study the structure of U/I, for U and I given.

Proposition. Let U= Unﬁn, and let 1 be an ideal of W. Index the factors
in the central decomposition of QI” in such a way that the subset A C D) cor-

responding to 1 has the form
A={(nk); m + lg'kSnn, n=0,1,.--1
Let p: & = U/I be the quotient mapping. Then U/I = Unp(gn) (in the AF-sense)
and the central decomposition of p(?In) is
mn
p(U) =D p(M(nk ),
k=1

(nk)) gM(nk) for (nk) € A. Furthermore, the diagram of U/l consists
of the pairs (nk), k=1,---,m ,n=0,1,-.., together with the relations NP
inberited from D), i.e. (nk) ~P (mq) in DU/I) if and only if (nk) P (mq) in

where p(M

D).
Proof. U = Un piﬂr) in the AF-sense by 1.5. By Theorem 3.3, I N (Ungfn)
7 : n
= Un kgm,,ﬂM(nk) and then, by Lemma 3.2, I N %n = ®k:m"+lM(nk)' Hence
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o | ?I has kernel @ ez, +1 M(nk) and since ?I is the direct sum of this kernel
and @k 21 Mz, the central decomposition of p(% ) is p(¥ ) = @7 P )
where p(M( k)) = (nk) >~ M[n k] for k=1,.-.,m . Indexing the factor p(M ))
by (nk) it is clear that the underlying set of fD(?I/I) consist of the pairs (nk),
k=1, ,m ,n=01,.-.

Now, suppose that (nk), (mg) ¢ A and suppose m > n. Let { be a minimal
projection in M(nk) and let /1 / be a maximal set of mutually orthogonal mini-
mal projections of M, such that 2f=l/z <[, i.e. we have 2” ;= e{ma)f By
Proposition 1.7, p is the multiplicity of the partial embedding of M(nk) in M(mq)
(nk) 2nd p | M ., ate injective, p(f) is a minimal projection in
p(M (nk)) p(f ) are minimal in p(M ) and 2€=1P(fi) = p(e{™)p(f). Therefore

the multiplicity of the partial embeddmg of p(M(nk)) in p(M(mq.)) is also p, and

Now, since p | M

the last assertion of the proposition follows.

3.8. Theorem. Let U = Un%n, let I be an ideal in W, let A be the subset
of D) associated to I. Then the following conditions are equivalent:
(i) 1 is primitive.
(ii) There does not exist two ideals 1, I, in W such that I A1£ L and
I = 11 N 12.
" (iii) If (nk), (mq) € A then there exists a p>n, m and a (pr) ¢ A such that

M(nk) and M(mq) both are partially embedded in M

(pr)’

(The implication (i) =>(ii) is well known for an arbitrary C*algebra, while
the implication (ii)=> (i) is proved for separable C*algebras by Dixmier in [1].)

Proof. Let p: ¥ —U/I be the quotient mapping. Then I is primitive in U4
iff {0} is primitive in %/I = p(¥). There is a one-one correspondence between
the ideals in ¥ containing I and the ideals of U/I given by | — p(J); IC ] C U,
J ideal in . This mapping (and thus its inverse mapping) preserves inclusions,
so (ii) holds iff {0} is not the intersection of two ideals both different from {0} in
U/I. By Proposition 3.7, (iii) holds iff for any two factors of the form p(M( k))’
p(M ) (nk), (mq) ¢ A in /I there exist p > n, m and (pr) € A such that
p(M(nk)) and p(M ) both are partially embedded in p(M(pr))
From the remarks just stated it follows that we may assume in the rest of the
argument that | = {0}.

That (i) = (ii) follows from [3, Corollaire 2.8.4 and Lemme 2.11.3. (ii)l.

(ii)=> (i). This is proved for separable C*-algebras in [1, Corollaire 1 to
Théoréme 2]. We shall later, in 4.17, give a direct argument for this fact which
applies for AF-algebras.

(ii)=> (iii). Assume (ii). Then the intersection of any two ideals both # {0}
is £10}. Now, let (nk), (mg) € DA). By the argument used in 3.5 the ideal in
U"%n generated algebraically by M(nk) (resp. M(mq)) is
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h= pl‘éjn ,;e<nke)2(pr)¢0 Yeor <reSP' 2= pLZJm i e(mi?i(?r)¢o M“’”>'
By (ii), T,n T, #10}, and then, by 3.1, 10} AT NnT,n (U ¥ ) =T nUUY)
ﬁ(TZ N (Unun)) = I, NI, where the last equality follows from Theorem 3.3. [,
and I, are defined as the union of some subspaces indexed by p, and by the argu-
ment in 3.5 these subspaces are increasing with p. Since I, N1, # {0} there must
exist a p such that the intersection of the corresponding subspaces in I, and I,
are not {0}, i.e. there exist (pr) € D) such that e™Pe P L 0 £ e(nk) (7))
Then M(nk) and M(mq) are both partially embedded in M(pr)’

(iii) => (ii). Assume (iii) and let Il' I2 be two ideals in ¥ different from {0}.
Then there exist (nk), (mg) € D) such that M(nk) o M(mq) C1,. Then the

ideal generated by M (resp. M(mq)) is contained in I, (resp. 12), so

(nk)

]1=U @ M

p2n . (nk) (67 40

and I,= U

(Pr)gll’ p>m M(pr)glz'

r; e (ma) (07)

By (iii) there exist p > n, m and 7 such that e™PeP7) £ 0 £ *)(P7); hys

M(Mg JynJ,C1, N L; hence (ii) holds.

3.9. Corollary, Let U = U_n?l: Then the following conditions are equivalent:
Q) W is primitive.
(ii) There do not exist two ideals in W different from {0} whose intersection
is {0}.
(iii) If (nk), (mq) € D) there exist p >n, m and (pr) € D) such that M(nk)

and M(mq) both are partially embedded in M(pr)'

4. States and representations of approximately finite dimensional C*-algebras.

4.1. In subsections 4.1-4.5 we shall show under which conditions a state w
of U = Ungln is a factor state, and we shall find necessary and sufficient condi-
tions for two factor representations of ¥ to be quasi-equivalent. As the methods
of proof are essentially those used by Powers in [12] to prove the same results
for UHF -algebras, we will mostly only state the results.

If B is a C*-subalgebra of a C*-algebra U, then B is the commutant of B

relative to U.

Lemma. Let U be a C*-algebra with unit e, and let B C A be a [inite di-
mensional *-subalgebra of W such that e € B. Let 1l be a representation of Y.
Then

(B = TR n T (",

Proof. As proof of Lemma 2.3 in [12].
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4.2. Lemma. Let U be an AF-algebra, and let F be the set of finite dimen-
sional *subalgebras of U with unit e. Let Il be a representation of W and let
R =AY, Then the center of R is

ROR = N LB

€

Proof. As proof of Lemma 2.4 in [12].

4.3. Lemma. Let ¥ be a C*algebra with unit e, and let 1 be an ideal in U.
Let B be a finite dimensional *-subalgebra of U containing e. Let p: U — U/I
= ?Io be the quotient morphism and let B = p(B). Then By = p(B°).

Proof. Since p is a morphism, p(B°) C Bf.
(k) (k)

1

i

Let {e{*)} be a set of matrix units for B, and let ey = ple) = p(zkzie
= Zkzip(eg.’; )p(e(llj.)) be the unit of B . Now, suppose that x = p(y) € B. Then

im g =2 Tl pletthx = I 5 plelh) aplelh)
ki k i

X ot oE T efthett).
l 1

It is straightforward to verify that EkEieE,I;)ye(lki) € BC; thus x € p(B°); i.e. %g -
p(B°).

4.4. Theorem. Let U = _LIQ_I; and suppose that o is a state of U and I |
the representation associated to w by the Gelfand-Segal construction. Then the
following conditions are equivalent:

(i) w is a factor state.

(ii) For all x € U there exists an integer r> 0 such that |w(xy) — w(x)w(y)|
<IN for all y eg[f.

(iii) For all x € U there exists a finite dimensional *-algebra B C U contain-
ing e such that |w(xy) ~ w(x)o(y)| < I (M| for all y € BC.

Proof. Suppose first that IT_ is faithful. Then [II (x)|| = [|x|| for all x € ¥,
and the argument which shows the equivalence of (i), (ii) and (iii) is exactly the
same as the argument Powers uses in showing Theorem 2.5 in [12] if we replace
Lemmas 2.3 and 2.4 in Powers’ work by Lemmas 4.1 and 4.2.

Then, suppose that Hw is not faithful. Let I = ker Hw, and let p: U — Ui
be the quotient morphism. Then by Proposition 3.7, %/I = Unp(?l’) (in the AF-
sense). We may lift © to a state w, of /1 and Il to a faithful representation
e, of U/I such that & = w,°p and II =1l , ©p. Then Il is the Gelfand-

Segal representation of U/l associated to w,. Therefore the following conditions

0
are equivalent:
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i)y w, is a factor state of p(?«[)-
(ii)’ For all x € p(¥) there exists an integer 7 > 0 such that lwo(xy) -
w, ¥ ()] < "Ha,o(y)“ for all y € p(¥)°.

(ii1)’ For all x € p(¥) there exists a finite dimensional *-algebra B C p(U)
such that p(e) € B, and such that |w (xy) - 0 (Ko ()] < [Ty ()| forall y €B°.
Now, since II¥) = Ho(p(gl)), we have (i)' <> (i). Since p(?Ir)C = p(uf) by Lemma
4.3, (i)' < (ii). If € C % is finite dimensional then p(@) is finite dimensional;
thus (iii) =3 (iii)'. Furthermore, by Lemma 4.3 again, we have that (i1)" => (iii).
We have then established the following implications:

(i)A'O(i)

\

(ii) ' (ii)
(iii)'— liii)
Hence (i), (ii) and (iii) are equivalent.

4.5. Theorem. Let U = Unﬂn, and let 11, and 11, be two factor representa-
tions of U such that ker I, =kerIl,. Let w,

and Hz respectively. Then the following statements are equivalent:

and w, be vector states of 11|

(1) Hl and H2 are quasi-equivalent.
(ii) For all €> 0 there exists an integer r > 0 such that l(ol(x) - a)z(x)l <
eHHl(x)H forall x € ?If.
(iii) For all ¢ > 0 there exists a finite dimensional *-algebra B C A contain-
ing e such that lml(x) - wz(x)l < e“Hl(x)” for all x € B°.
(iv) There exists a finite dimensional *-algebra € C U containing e such
that

supflo (%) - w (I | x € €, |I,(2)] < 1} < 2.

Proof. If 11, and I, are faithful, "Hl(x)“ = "HZ(")" = |lx|| for all x e & and
the proof goes exactly as the proof of Theorem 2.7 in [12].

Suppose then that ker I, = ker I, = I, and let p: U — /I be the quotient
map. Then II, and II, may be lifted to faithful representations of p(U): Lee (i),
(ii)’, (iii)’ and (iv)’ be the statements (i)—(iv) expressed for these lifted represen-
tations. Then, in the same way as in the proof of Theorem 4.4 one may establish

the following implications:
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(i) (i)

(iii)eC— (iii)

A

(iv) - (iv)
This proves the equivalence of (i)—(iv).

4.6. We shall now prove a result concerning algebraic equivalence of repre-
sentations of AF -algebras (4.12) and a result concerning the orbits of the automor-
phism group of an AF-algebra ¥ in the set P(¥) of pure states of U (see 4.15).
The results are analogous to some results obtained by Powers in the UHF case in
(12, §3]. In the case of AF-algebras the methods of Powers have to be modified.
This is due to the following facts: Let ?Il’ ?Iz be two isomorphic AF-algebras on
a Hilbert space k, and let %1, %2 be two isomorphic finite dimensional *-subalge-
bras of U , U, resp. containing e. Suppose that U =% =M. Then the follow-
ing two conditions hold if %i is a UHF algebra and %i is a factor, but they do
not hold in general:

(i) There exists a unitary operator u €M such that uBlu*= %2 (see [12,
Lemma 3.3]).

(ii) %ll n 911 and %; s} 212 are isomorphic (see {12, Lemma 3.2]).

These two facts play an essential role in Powers’ argument. Since they do
not hold in general we must restrict the class of von Neumann algebras I to be
considered. Furthermore, this class must depend on 2[1. Roughly speaking, the
simpler ?Il is the more complicated I may be. This is reflected in the following definition.

Definition. Let ¥ be an AF-algebra and let : be a von Neumann algebra.
Then W is permanently locally unitary equivalently embedded in I is there exists
a faithful representation II of ¥ such that M(A)" = ml and if for any pair I, II,
of such representations and any projection f € & we have that (/) ~ Hz(/') (i.e.
the projections HI(/) and Hz(/) are equivalent relative to the von Neumann
algebra M). We then write LC M.

For explanation of the term perm. loc. un. eq. em., see Lemma 4.8.

4.7. Proposition. For the following pairs U, M, where U = Unﬁn and Tt
is @ von Neumann algebra we have that WC M if there exists a faithful representa-

tion Il of W such that M = Hi(?l)'.'
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i) U isa UHF -algebra. N is arbitrary.
(ii) ¥ is an AF-algebra. W is a type 1 factor.
(iii) U is an AF-algebra. M is a type I factor.

Proof. (i) Let / € ¥ be a projection in U. Then e and { generate a two
dimensional subalgebra € of U, and by Lemma 2.3 there exist a unitary u € U
and an 7 such that «8z* C ?In. Define B = u*%nu. Then B is a finite dimen-
sional factor in U containing f. Let Hl and HZ be two faithful representations
of & such that (W) =MW; i=1, 2. Let (e,;) be a set of matrix units for B.
Then (ﬂk(ei’.»ﬁ is a set of matrix units for HkGB)’ k=1,2,---. Now, by using
the technique in the proof of Lemma 3.3 in [12] one shows that there exists a
partial isometry W € I with initial projection II (e ) and final projection {l,(e, ).
Define U = Zinz(eil)wnl(eli)' Then U is unitary, and Hz(x) = UIL, (x)U* for all
x €B. By setting x = [ one then sees that Hl(/) ~ Hz(/)‘

(ii) If | is a type I factor, then M has the form Blx) ® CI where « is some
Hilbert space and I is the identity mapping on some other Hilbert space. The
map I — B(«): x ® I — x is then an isomorphism, so we may assume I = B(x),
since equivalence of projections is an isomorphism invariant property. Now let
I, and II, be two faithful representations of U such that Hl(?l)”= Hz(?l)"= B«),
i.e. Hl and HZ are irreducible. Then two cases may occur:

(1) Hl(?l) contains a compact operator. Then it follows from {3, Corollaire
4.1.10] that I"I1 and H2 are unitary equivalent, and in particular Hl(/) ~ Hz(/)
for all projections f € 4.

2) Hl(%) contains no compact operator. Then, by using the same corollaire
as in (1), HZ(?I), contains no compact operator. In particular, if / is a projec-
tion in ¥ and [ £ 0, then Hl(f) and ﬂz(/) are infinite. Now, ¥ is separable and
II, is isometric and Hl(%) is strongly dense in B(«), so by applying II, ofa
countable dense subset of U on a fixed nonzero vector of k, one obtains a count-:
able dense subset of k. Hence « is separable, so Hl(/) ~ Hz(/)‘

(iii) Suppose that M is a type III factor on a Hilbert space «, and that there
exists a faithful representation Il of ¥ such that I(U)' =M. Let & be a nonzero
vector of k. Let P be the projection onto !’th_ Since II(Y) is norm separable,
oA is separable, and since M) is strongly dense in I, _WT{? = m is separ-
able. Now, P elt' = I(A)’ so M is isomorphic to SRP. WP is a type III factor
on a separable Hilbert space, so all nonzero projections in ?IRP are equivalent.

Therefore, ?Ié WP, and so %égﬁ.

4.8. Lemma. Let ?«[1 and ?IZ be two AF-algebras on a Hilbert space «, let
a: ?Il — ?Iz be an isomorphism, and suppose that 2["1 = ?I'; =R and that 2[1 c .
Let @1 - ?II be a [inite dimensional *-algebra containing o and be @2 = a(@l).
Then there exists a unitary operator U €M such that UxU*= alx), Vx € @1'
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Proof. Let {e(k)} be matrix units for (5:1. Since 211 C M, there exist partial
isometries U, Em such that U, U} = a(e(k)) and UyU, = e(lkl) Define U =
2.2 a(eflf))U el(k). Then UU* a(l) = I_ U*U so U is unitary, and furthermore

Ue(k)U* a(e(k))

4.9. Lemma. Let ?«[ ?Iz’ a, @1, « and M be as in Lemma 4.8. Suppose
that B C ?Il N ?l isa /zmte dimensional *-algebra containing 1, , that BcC @
and that a | B z's the identity mapping. Let ¢> 0 and let £ ---& } bea /znzte
set of vectors in k. Then there exist a unitary operator U € It and an isomorphism

B: ?Il - 2[2 such that
(i) u€,u*c U,
Q) |Uf, -1l <e i=1,---,m,
(iii) UxU*=x, x € B,
(iv) Blx) = UxU*, x € (5:1.

Proof. By Lemma 4.8 there exists a unitary operator V € ! such that alx) =
VxV¥* x 6@1. In particular, x = VxV* x € B, so v € B". Let B be the relative
commutant of B in 2[2. By Lemma 4.1 we have 8¢ = B'n ?IHZ =8'NnN. By (8,
Theorem 2], the unitary operators in B lie strongly dense in the unitary opera-
tors in B, Since V € B'N 1 there exists then a unitary operator s € B such
that || - VH(VE )| <e, i=1,-.-, n Define U=SV. Then, since S €,

@ UG U* = sVE v*s* = sa(€)) 5" C sU,s% = U,.
Furthermore,
(ii) Ku=DE]=]sv=DEN=Is-VIVE] <e

Since v € B’ and § € BC we have, for x € B,
(iii) UsU* = svaxv*s® =
Since § € %2 is unitary, x — $x5* is an automorphism of ?IZ, so Blx) = Salx)S*,

x E?Il, defines an isomorphism of ?II onto ?IZ’ such that, for x € @1,
(iv) B(x) = Salx) s* = svxv*s* = uxU*.

4.10. Lemma. Let 2[1, 212, K, a, |, @1, @2 and U be gs in Lemma 4.8. Let
%l C ?Il be a [inite dimensional *-algebra such that @1 C %1. Let ¢> 0, and let
{fl, ceey fﬂ} be a finite set of vectors in k. Then there exist a finite dimensional
*.algebra %2 on K, a unitary operator U, €M and an isomorphism B: ?Il — 2[2
such that

i €,cB,c¥U,

(i) U B, U%=B,,

(ii1) U xU* UxU*, x E(g

(iv) HUIU*fi rf,ll <€ i= 1, s, on,

(v) Blx) = U xU%, x €B ..
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Proof. Define U9 = U¥ U% and BY = UB U*D UC U*= €. Define an iso-
morphism §: %(1) —’912 by 8(x) = a(U%U), x EQI?. If x 6‘@2 then U*U 6@:1,
8(x) = UU*xUU*= x. From Lemma 4.9 it follows that there exist a unitary opera-
tor V €M and an isomorphism y: ?I(l) — ?IZ such that V%(I)V*E %2 C 2[2.

(vi) "Vfi_{:i“ <€ i=1,-++,m,

(vii) VaV*=x, x 6@2,

(viii) y(x) = VxV¥% x € BY.

Define U, = VU. Then U, is a unitary operator in . Define B(x) = y(UxU*),
x € ?Il’ Then f3: 2[1 - ?I? — ?«[2 is an isomorphism. We verify (i)—(v):

(i) B, = vBIv*=vUB UW*=U B U C U, This also shows (ii). By (vii),
€, =VE,v*=vU€ U*v*C vBIVv* =8 .

(ii1) If x E@l then UxU* 6@2, so, by (viii),leU’i‘ = VUxU*V* = UxU*

(iv) Since UIU* =V, (iv) is an immediate consequence of (vi).

(v) If x € B then UxU* €BY, so, by (viii), Blx) = y(UxU*) = VUxU*V* =
U,xU7.

thus

4.11. Lemma. Let ?Il and 2[2 be two isomorphic AF-algebras on a separable

Hilbert space k, and assume that 2['; = ?I'; =% and that ?«[1 C . Then there exists

a unitary operator U €} such that U?IIU* = ?Iz.

Proof. We construct U by using a method which is similar to that used by
Powers in [12, Lemma 3.6].

Let {ai| i=1,2,---} and {bil i=1,2, .-} be sequences which are dense in
the unit spheres of 2[1 and 2[2 resp., and let 1| i=1, 2, .} be a sequence
dense in the unit sphere of «.

By induction with respect to r we shall construct increasing sequences
(?Il',r )r and <2[2,r )r of finite dimensional *-subélgebras of ?Il and 9'[2 resp., and
a sequence (ar>7 of isomorphisms from ?II onto %[2, and a sequence (Ur)r of
unitary operators in 3 such that

(i) For all > 0, there exists c; 62[1'7, di E?«[z,r
2="*1 and l4,-&]< 272" for i=1,-0-, 1.

(ii) For all 7> 0, U}Il'iU;‘E ?Iz,x. for i=0,1,.--,7, and if r> 1, U xU*=

U,_xU* | forall x ¥

11" "7l =17
(iii) Forall r>0, (U ,, - U || <277 for i=1,---, 1.
(iv) Forall r> 0, ar(x) = Uer’r" for x E?Il -
For r=0, set ?Il,o = ?Iz'o
from Qll onto ¥_. The conditions (1)—(iv) are then trivially satisfied.

2
Suppose that % U

such that |lc. - a | <

=CI, and U, =1 and let a be an isomorphism

5 Ui and a, are constructed for i=1,.-..,r, such
i}

that (i)—(iv) are satisfied. We shall then construct 2[1 U and a

1’ 2[2,74‘1 P Urtl
From Theorem 2.2 it follows that there exist a finite dimensional *-algebra B

1
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such that 911 ,CBc ?Il and elements ¢, € B such that [la, - ¢, <277 for i=

l,---,r +1. By Lemma 4.10 there exist a finite dimensional *-algebra € and an
isomorphism a: 21 - 2[2 and a unitary operator V €Il such that

v) ?I e 62 C ?I

(vi) v%v* €,

(vii) VxV*=U xU* for x E?II ,

(viii) ||vu*-1)(uf)u = (v - U)fll <27l fori=1,---,7r+1,

(ix) alx) = VxV* for x € B.

By Theorem 2.2 there exists a finite dimensional *-algebra uz,rﬂ such that
€c %2 41 C U ,» and such that there exist elements di € ?Iz,rﬂ such that ”bi -
df < 277 for i=1,---,r+ 1. By a new application of Lemma 4.10 there exist
a finite dimensional *-algebra %l,rﬂ and an isomorphism 0.'l ?I - QI and a
unitary operator U¥,, €M such that

xBcU , c¥,

(xi) U +1?’[2 rrUrer =%y e

(xii) U¥, er =V*%V for x €€,

(xiii) |\U*,,VE, - 5 l<2=™! for i=1,---,7r+1,

xiv) a +11(x) = +1 xU 41 for x 62[2,r+1'

We now show that (i)—(iv) hold for 7 + 1.

(i) holds by the construction of ?Il , and ?I

(i) By (xi), U ¥, Uk =¥, 4. K x e% , we have

1,r ,

xU ,, = U  VvaV'vur,

VxV* by (vi) and (xii),

UxU; by (vii).
By using this and induction hypothesis, (ii) holds.

Gi) [0, 0y = UDEN <N, 4y = VIEL + 10V = UDE] = 1%, (W, = VI +
(v -u)E ) <21 y2mr=1l7 , by (viii) and (xiii).

(iv) If x € ul,rﬂ’ a +l(x) = U,,xU%,, by (xiv) and (xi).

This ends the induction.

Now, by using (i)-(iii) one may show by the method used by Powers to prove
Lemma 3.6 in [12] that (U ) converges strongly towards a unitary operator U eht
which has the property which is required in the lemma. The details of that proof

are omitted.

4.12. Theorem. Let U be an AF-algebra and let Wl and §m2 be von Neumann
algebras such that %éfmi for i=1,2. Let Hl and [I2 be faithful representations
of U such that Hi(?l)” =§Ri'/or i=1,2. Then éml and 51)22 are isomorphic if and if there

exists an automorphism a. of U such that I, and 11, © a are quasi-equivalent.
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This is proved from Lemma 4.11 in the same way as Powers proves Theorem
3.7 from Lemma 3.6 in [12].

4.13. Corollary. Let U be an AF-algebra and assume that Hl and H2 are
two faithful type W factor representations of U. Then HI(QI)" and Hz(u)" are
isomorphic if and only if there exists an automorphism a of W such that Hl and

I, o a are quasi-equivalent.

Proof. Follows from Theorem 4.12 and Proposition 4.7(iii).

4.14. Corollary. Let U be an AF-algebra and suppose that I, and 1L, are
two faithful irreducible representations of L. Then there exists an automorphism

a of U such that I1, and 11, © o are unitary equivalent.

Proof. Since ¥ is separable and Hl. are irreducible the representation spaces
of II, must be separable for i =1, 2. If there exists an integer n such that the
representation space of Il is isomorphic to C”, then Hl(?l)ﬁ‘z M _, thus U =~
M_ and so the representation space of HZ must also be isomorphic to C”. If U
is not finite dimensional the representation spaces of Hl and H2 must be infinite
dimensional, and so isomorphic to [2(Z). In all cases, Hl(?l)"ﬁ HZ(?I)" (= all
bounded operators on the representation space). Hence, by Theorem 4.12 and
Proposition 4.7(ii), there exists an automorphism a of ¥ such that Hl and H2 o
a are quasi-equivalent. Since Hz(a(?l)) = HZ(?I), I, o a is irreducible, and then,
by (3, Proposition 5.3.3], Hl and Hz © a are unitary equivalent.

4.15. Corollary. Let U be an AF-algebra and let w, and w, be pure states
of U such that the associated representations Hl and HZ are faithful. Then

there exists an automorphism o of W such that W, =w,%a.

Proof. By Corollary 4.14 there exists an automorphism 8 of ¥ such that I,
and I, © B are unitary equivalent. Therefore w, and o, © B are vector states of
the same irreducible representation, and so, by [8, Corollary 8], there exists a
unitary operator v € & such that w,(x) = mz(vﬁ(x)v*) for all x € &. Then alx) =

vB(x)v* is the desired automorphism.

4.16. Corollary. Let U be an AF-algebra and let w be a state of U such
that the associated representation Il  is faithful. Then w is pure if and only if

there exists an increasing sequence (?In)n of finite dimensional *-subalgebras of

U all containing e, such that L =Y U and | ?In is pure for all n.

1 n n
Proof. Suppose first that U = Un%n and that | ?In is pure for all n. We
show that w is pure. Suppose w =Aw, + (1 - Ao, where w, and w, are states
of ¥ and 0< A< 1. Then w | 21ﬂ=)m)1 | Hn+(l —)\)wz | ?In, thus o | ?In:
@, | q =w, | 2[", thus o | Unun =, |Un%n =w, | Un?ln, and so, by the
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norm continuity of w, ®, and @, W =0, =w,, .. is pure.

Conversely, supposL that @ is pure landtlzlil'[w is faithful. Then II  is
irreducible, and so ¥ is primitive. Let ¥ = Un%n where e € 93" c ¥, and (§Bn)n
is an increasing sequence of finite dimensional *-subalgebras. Let {e(?jk)}iik be
matrix units for 93". We shall construct a pure state p of ;ZII by defining induc-
tively p | ‘SB"i’ i=1,2,-.-, where (n ), is a strictly increasing sequence of
integers which are chosen in the course of the induction.

Let n, = 1 and define

1 fg=i=j=1
(lg)y _ ’
]))_3

p(ei. .
0 in other cases.

Then p | ?31 is pure. Now, suppose that the matrix units for %nk have been chosen

in such a way that

(("kfﬂ) 1 ifg=i=j=1,
P eij = .
0 in other cases.

Since U is primitive it follows by repeated application of Corollary 3.9 that there

exist 7, ,, > n, and a factor M("k+1-l’) in the central decomposition of %"kﬂ

such that all factors in the central decomposition of %"k are partially embedded
in M(p, 4,0)- By a suitable choice of indices one may assume p = 1, and by a

suitable choice of matrix units in B one obtains

nk+]

(ngl) (np+11) _ (ng+11)
(1) 11 °n =€ :

Now, define p | B by

nk+1
p(e(nkﬂq)): 1 ifi=j=g9
H 0- in other cases.

Then p | ankﬂ is a pure state, and for x € %'lkﬂ (e(lﬂlkﬂl)xe(l"lkﬂl)).

By combining this with (1) we see that p | §B"k+1 is really an extension of p | SBnk’

we have p(x) =p

For simplicity we now write §Bk instead of %nk‘ Then U = Uk%k' Since |p(x)|
< x|l for x € Uk%k’ p may be extended by continuity to a state of ¥. Since
p | B, is pure for all k, p is pure by first part of the proof.

We now show that Hp is faithful. By Lemma 3.1 it is enough to show that

ker II_N §Bn ={0}, n=1,2,.... We show this by showing that for each minimal

(nk)

projection e in the center of %" there exists an x € B +1 such that p(xe("k)x"e)

# 0. Then, by definition of the Gelfand-Segal representation, e(®®) ¢ ker Hp and

the result is obtained.

(nk)g(n+1,1)

Now, by construction of B we have that e is a nonzero pro-

ntl
jection. This is included in the factor M(n+1 1y SO there exists a partial isometry

x 6M(n+1 1 such that xx* = e(l"lﬂ'l), and x*x < ekl (1, 1) - Thys,
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(nk) (n+l,l)e(nk)e(n+l,l)x*)

plxe x*) = plxe

= o (xx™) = pen*11) _ :
= p(xx) = p(el? )= 1# 0;
thus Hp is faithful.

By Corollary 4.15 there exists an automorphism a of ¥ such that p=woa.
Let ?In = a(%"). Since a is an isometry, U = LJnit . /E;‘k) = a(eg;'k)) are matrix

n
units for 2[” and

nk L ifi=j=k=1,
“’(/,'(,' )) - p(egf 7) o in other cases;
thus | 2[" is pure.

4.17. In the course of the proof of 4.16 we gave in fact a proof for the implica-
tion (ii)=> (i) in Corollary 3.9 which is independent of Dixmier’s proof in [1], i.e.
we proved that if the intersection of any two nonzero ideals in an AF-algebra ¥ is
nonzero, then ¥ is primitive. This is because the equivalence (ii)&»(iii) in 3.9
was established independently of Dixmier’s result, and the only property of U
which was used in the construction of the pure state p in the proof of 4.16 was
(iii). Since Hp is faithful, (iii) implies that U s primitive.

4.18. By using techniques closely related to those in 4.16 one may give a
direct proof for the fact that, if U = _U_ngr; is a primitive, infinite dimensional AF-
algebra, then the closure of the set of pure states of U in the w*-topology is the
set of all states of ¥, This is proved in general for primitive, antiliminal C*-alge-
bras by Glimm in {7], see also [3, Lemme 11.2.4]. The argument is roughly as
follows: By using Corollary 3.9 and an induction argument one may prove that for
any 7 there exists an m > n such that all the factors in the central décomposition

of 2[" are partially embedded in one single factor M in the central decomposi-

(mk)
tion on %m in such a way that M(nq) is embedded in M(mk) with partial multiplicity
>{n, gl. Then it is not difficult to show by methods similar to those in [6, Theorem

2.8] that if w is a state of ?In there exists a pure state p of M such that

(mk) (mk)

wlx) = p(e"™*)x) for x € 2[”. p may be extended to a pure state of %m by p(x) =
p(e(mk)x) for x € %m, and still p | %n = . Then p may be extended to a pure
state of U by [3, Lemme 2.10.1]. In short, each state of %In has a pure extension
to &, Since Unﬂn is dense in ¥ it then follows that the set of pure states of U

is w*-dense in the set of states of U.

5. An example. The current algebra.

5.1. In this section we shall apply the machinery developed in $§1 to 4 to
one specific AF-algebra. This will be the algebra of all gauge invariant elements
of the algebra of the canonical anticommutation relations. This algebra is named
the fermion current algebra in [9].

We recall some basic facts from [11]. Let X bea separable infinite dimensional
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complex Hilbert space. Then U(K), the CAR-algebra of K, is the C*-algebra gen-
erated by elements a(f), where { —alf) is a linear map of K into WK) satisfy-

ing the canonical anticommutation relations

a(f)al(g) + alg)alf) =0
a(f)*alg) + al@ a(N* =(g, NI

(We adapt the convention that the inner product on K is linear in the first factor.)
If U is a unitary operator on X, then by [11] there exists a unique automorphism
¢ of WK) such that ¢la(f)) = a(Uf), and this defines a homomorphism from the
unitary group on K into the automorphism group of AK). The unitary group on K
has a subgroup isomorphic to the circle group, namely the unitaries of the form [
— %, 0 <0< 27. The corresponding automorphisms of U(K), which we shall
denote by y 4, are called the gauge group of automorphisms. The elements x €
WXK) such that Xe(") =x for all 8 €{0, 27) form a C*-algebra which we shall de-
note by A%(K), and call the current algebra.

If x= a(/l)*- - a(/n)*a(gl) . a'(gm), one has that y (x) = e
x € UUK) if and only if m = n. We shall see in 5.4 that the linear span of the x’s

O (m-n)y 5o

of this form with m = n lies dense in U%(K).
We shall now use the fact that. W(K) is a UHF -algebra to deduce that U%(K)

is an AF-algebra. We use the description of WK) given in [11]. Let {/n}n"-l , be
an orthonormal basis in K. Define
Vo=1
n-1

(1-2a(f)*af)); n>1,

=1
(")_a(/)a(/) (")—a(/)V

e =al(f)v, el = a(f ) alf).

Then it follows from the anticommutation relations that the {e 5")5 form a set of 2
x 2 matrix units, which commute for different n’s. The set of all eglz eEZ;
o 11 212
~e£."’). , Where (zl, Ty f Ty ) runs through all 2n-tuples consisting of the elements
n'n

1 and 2, therefore conszututes, by suitable indexing, a set of 2” x 2" matrix units.
These matrix units generate the algebra of all polynomials in the field operators
a(f) and a(f)* where f runs throught the linear span of f,---, f,- We denote
this algebra by ?I . Then WK) = U ur ) SO AUK) is a UHF -algebra. Let 2[0 be
the gauge mvauant elements in ?In. In the next lemmas we shall study the struc-
ture of 910’ and the embedding of ?IO into ?IO Then we shall show that A9(K)

= U‘nun, and thus establish that ?IO(K) is AF

+1°
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5.2. Lemma. ?Ig has the central decomposition

n
0 _
= @ M(nk)’
k=0

where M(nk) are factors of type I(,,), where (Z) = nl/kin - k)! is the binomial
k
coefficient. M("k) is partially embedded in M(n‘.,1 2 with

1 ] =k o =k + ]_,
partial multiplicity = if q rq
0 in other cases.

Proof. It is easily verified that the matrix units e{®) mentioned in 5.1 trans-

.j
form under the gauge-group by the formula xe(e (m)) - iU~ k)eei’;.). Hence

XglelD) «v el ) = ‘(Zk=11k'2k=1 k)eegl). R C
3t taln 7 € ]

Since the elements {e(l) el form a basis for the vector space

i1 1,,] i, R=1,2
?In, it follows that ?IO is the algebra spanned by those elements 6511)1 g; “e
2
(n) n :
€ in for which Ek =i = 2 =1 Ta-

Now, define An p 2S the set of functions ¢ from {1, 2,..., n} into {1, 2}
such that ¢ assumes the value 1 exactly k times, £=0,1,...,n If ¢, gbe/\nk,

. (nk) ) (nk) _ 910
define [/, = e¢(1)¢(1) ¢<z>¢(z> ¢>(n> (n;' Then /4, e
b, zﬁeA k . It is then clear that

Define M (nk) 3S the linear span of {/
?I: = Z=0 M(nk) as a direct sum of vector spaces If ¢> Y are functions from
{1,..-, n} into {1, 2}, we define
5. 1 if ¢=14,
eV o if ¢ # 4.
By straightforward computations one verifies /("k)f (na) _ kq \llx/g:f)’ /("k)*

/(”k), and Ek 02¢5A k/("k) = e. Thus the / "‘z)’s form a set of matrix units

0
for ?I— . The M( k)

to the number of elements in A

’s are factors, and the square root of their dimensions are equal
b’ which is nV/k!{n - E)! = (Z) Thus the first

part of the lemma is established. To prove the second part, assume ¢, y EAn,k‘

Since e(l"1 by e(z’;ﬂ) = e we have
/(nk) /(nk.) (nl*'l) /(nk) (n+1) f(n*'l WkFL) f(n;lzk)’
where ¢, i1 6An+1,k+l are defined by
A ¢(g) for g=1,--4, m ¢(q) for g=1,+++, n,
) = r for g=n+1, v la) = for g=n+ 1,
where r =1, 2. Thus a matrix unit in M(nk) is a sum of one matrix unit in
M(n+1,k+1) and one in M(n+1,k)’ hence the lemma follows.
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5.3. Lemma. Let 21=TJ”—?I': be an AF-algebra, G a compact group, a a
strongly continuous representation of G as a group of automorphisms of . Suppose
that a (?I )C ?1 forall g €G and n>1. Let 2[2 be the G-invariant elements in
?I and ?IO the G invariant elements in L. Then U0 = U QIO.

Proof. Since g — a (x) is continuous, the Bochner integral P(x) = [ a (x)dg
exists forall x € U, where dg is normalized Haar measure on G (see [15, V, 5])

Since a, is isometric for all g, |P(x)| < fG Hag(x)” dg = ||x||, so
M 1Pl < 1.
Furthermore, if g € G, x e, then

CLgP(x) =a, fG ak(x)dk = fG agk(x)dk = fG o, (x)dk = P(x),

SO

) P(U) A,

If x e?lo, then
(3) P(x) = fodk=x.

If x € an, then ag(x) € an for all g € G, and so by combining with (2) and (3)
g 0
@) P(Y,) = 2.

Now, let x € 0. Then there exists a sequence (xn)n; with x € %n, such that
x = lim X - Then, by (3) and (1), x = P(x) = lim a00 P(x ). Then, by (4), x €

72000

U"ﬁnn and so U0 ¢ -U,,ﬁnn- Since trivially U ?IO cuo and U0 is a C* -algebra,

the lemma is obtained.
5.4. Corollary, ¥O(X) = Ungtnn.

Proof. The circle group is compact and in the proof of Lemma 5.2 we verified
that xe(%n) Cc 2[" for all n», so by Lemma 5.3 we have only to prove that if x €
WK) then 6 — Xe(x) is continuous. In the proof of Lemma 5.2 we saw that

(e(lll)]l e E:)n)_ eil®y=ik-2f=ik) 0! )1 . E"; and since each element
y € ?In is a finite linear combination of such matrix elements 0 — xe(y) is in
fact uniformly continuous for y € ?In. Let x € WK) and let ¢ > 0. Then there
exists an 2[" anda y € ?In such that ||x — y|| < ¢/3 and then there exists a § > 0
such that |6, - 02| <& implies ||x91(y) - X492()’)" < ¢/3. Then, since all x, are

isometries, |6, —~60,| <& implies

||X91(x) - Xaz(x)". < HXgl(x -+ HX@l(y) - xez(y)ll + ”Xez(x -yl
<2x -y +e/3<e.

Thus § — Xe(") is continuous, i.e. § — ¥, is strongly continuous.
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5.5. From 5.2 and 5.4 it follows that the current algebra is an AF-algebra with

diagram looking like Pascal’s triangle:

This may now be used to reveal the algebraic structure of U%(K). Theorem
3.3 implies that the ideals of U°(K) except {0} are represented by *‘pyramids’’ on
the diagram, starting from one point in DUC(K)). I.e. the most general ideal in

UKD except {0} is

0o k-
Jdn= U Mgy mm=0,1,2,---.

k=m+*n jin

3

These ideals are all distinct. On the figure we have indicated the ideal ,I,. The
ideal I ~may be characterized in a couple of other ways.

(i) nlm is the ideal in U%(K) generated by M(n‘_m‘"). This is immediate from
the definition.

(ii) We may also describe the ideal nlm directly in terms of the annihilators
a(f) and the creators alg)* of the field algebra A(K). Let p be a polynomial in
the field operators such that each addend in p contains equally many creators and
annihilators. Then p is gauge invariant. Using the anticommutation relations one
may order each addend in p such that all creators are standing to the left of all
annihilators. We then say that p is in normal form. If the creators and annihila-
tors are in reverse order in each addend we say that p is in anormal form. Now,
if p is a gauge invariant polynomial in the field operators, we may by integrating
over the gauge group as in the proof of Lemma 5.3 assume that each addend of p
contains equally many creators and annihilators. Consider the set of gauge in-
variant polynomials p such that each addend.of p in the normal form contains at
least m creators, and each addend of p in the anormal form contains at least =
creators. From the anticommutation relations it follows that this set is an ideal
in the algebra of gauge invariant polynomials. The matrix units 2" for M

Py (qr)

constructed in 5.2 are polynomials in the field operators and it is not difficult to

(qr)

verify that /¢¢ in normal form has an addend of minimal “‘degree’’ in the field

operators which contains g — r creators, while /E;‘?\Z) in anormal form has a term

iR}

of minimal ‘‘degree’’ r in the creators. It follows that the closure of the ideal of

the algebra of field operators described above is ol
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5.6. Proposition. The primitive ideals of UO(K) are the following:
(i) nlof n=1, 27' 1
(i1) 0In, n=1,2,---,
(iii) {0}.
One bas that

UAK)/ 1, = UK/ 1, = C,

and
nIO/n+l 0= 01 /o ntl = 8@(}0,

for n=1,2,--.. Within unitary equivalence there exists for each n only one irreducible
representation 11  with kernel | and only one irreducible representation Il
0'n 0 n n 0

with kernel I .
n 0

Proof. From the figure in 5.5 and Theorem 3.8 it follows that the list (i), (ii),
(iii) exhausts the set of primitive ideals in AI(K). Using Proposition 3.7 we see
that both UO(K)/ 1, and UOUK)/ I, have the diagram

1
|
1
|
1
I

so they are both isomorphic to M, = C. By Proposition 3.7 again AK)/ 2+100
has the diagram

The ideal I, / at1lo of UO(K)/ n+1lo is then represented by that part of the dia-
gram which is lying inside the shaded boundary. By using exactly the same kind
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of argument as in 1.10 example (iii), we then show that nlo/nﬂlo =~ 2E(K). By
a similar argument, Oln/01n+l =~ 2E(K).

Now, if Il is an irreducible representation of UO(K) with kernel Ao then I
may be lifted to a faithful irreducible representation of QIO(K)/nIO =B. As shown
above, B contains an ideal isomorphic to the compact operators on some Hilbert
space (which is C if n=1 and K if »> 1). Since the only irreducible representa-
tion of the compact operators is the identity representation (except for unitary
equivalence) (see [3, Corollaire 4.1.5]), and there is a one-one correspondence
between faithful irreducible representations of B and faithful irreducible represen-
tations of the ideal given simply by restriction of representations ([3, Lemme 2.11.3]
and the fact that the ideal is minimal), it follows from [3, Corollaire 4.1.10] that

each irreducible representation of UO(K) with kernel nI is unitary equivalent to

0
II. An analogous argument for the ideals ol, establishes the proposition.

5.7. We shall now prove that the representations Hn and nHO are subrepre-

0
sentations of the Fock representation (Il and the anti-Fock representation Il
resp. (see [11, 1.3] for definitions). For the sake of completeness we state a

lemma, the constituents of which are well known.

Lemma. Let U be a C*algebra, G a compact abelian group, o a strongly
continuous representation of G as a group of automorphisms of U, UC the algebra
of G-invariant elements in U, w a pure G-invariant state of U, 11 the irreducible
representation of U associated with w, k the Hilbert space of I, £ a cyclic vec-
tor in k such that w(x) = M=), &) forall x €Y, G the character group of G, dg
normalized Haar measure on G, HO the restriction of Il to A0,

Then there exists a unique strongly continuous representation U of G on k

such that
ey U (0 Ug = T(a (=)

forall g €G and x €W, and such that Ug{::f forall g €G. If x €G define

@ B = J, X000, ds

(the integral being taken in strong topology). Then E, is an orthogonal projec-

tion such that

3) U= 2 x(Ex

g
XeG
for all g € G. Moreover the projections Ey ,x € G, form a set of mutually orthog-

onal minimal projections in HO(?IOV such that Exea Ex = 1. Hence

(4) = & g
X€G; Ex#O

is a decomposition of HO into irreducible subrepresentations.
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Proof. The existence of the representation U with the given properties is a
well-known result of Segal, see [13]. Since G is compact and abelian, U has the
decomposition (3), see [3, Théoréme 15.1.3], amd (2) then follows from the ortho-
gonality relations for characters, see [3, Théoréme 14.3.7]. From [5, Lemma 3.1
and Lemma 3.2] it follows that the weak closure of II(U°) is equal to the commutant
of U, and hence the commutant of HO(QIO) is equal to the von Neumann-algebra
generated by U.. By (3) the projections E, are minimal in this algebra, and thus
the last assertion of the lemma follows.

5.8. We now study the decomposition of the Fock and anti-Fock representation,
when these representations are restricted to £°(X). We remind the reader on some
facts from [11]. The Fock representation (II and anti-Fock representation II
are both operating on the Hilbert space « = @:=OA"K, where A°K 2 C, and A”K
consists of those vectors in K@ K ®...® K (n-times) which lie in the closure of
those vectors in the algebraic tensor product of X with itself # times, which are
antisymmetric under permutation of the factors in K, oIl (I, then has the property
that (THa(/)NA4°K) = 0 (T (a*()NA°K) = 0) and

Jla(M: AP IR = A", i1 (a(f): A"K — A"TIK,
1
v oL a(NM: AK — A*1K; 1T (a(N): 47FIK - 47K
for n=0,1,---, and { € K. OH and Ho are irreducible, and if £ is a unit vec-
tor in AK, then the associated vector state is gauge invariant and pure in both

representations. This state is called respectively the Fock state .o and the anti-

Fock state w, in the two representations. We shall soon see thar Oocu and ©,,
restricted to A%(K), are the multiplicative linear funceionals corresponding to the
two ideals I, and |/, resp., both having codimension 1 in UO(K).

The homogeneous polynomials of degree n in the creators a(f)* applied to
 in the Fock representation, generate a dense subset of A”K. Since X g acts on
-in6

these polynomials by multiplication by e , it follows that if U, is the unitary

operator on k associated x, by Lemma 5.7, then
Ugé=eT% for £ e AnK.

It follows from Lemma 5.7 that the subspace A”K is invariant and irreducible under
OH restricted to LK), Using (1), one easily deduces that the kernel of the cor-
responding subrepresentation is generated by those gauge invariant polynomials
for which each addend in their normal form contains at least » + 1 annihilators,
thus this kernel is I ., and thus by Proposition 5.6 the subrepresentation is
unitarily equivalent to II . . Using analogous arguments for the anti-Fock

0" ' ntl
representation we obtain

Proposition. Let oIl (resp. HO) be the Fock representation (resp. the anti-
Fock representation) restricted to U(K), acting on the direct sum k = @:___OA"K
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of n-particle subspaces. Then each subspace A"K is invariant and irreducible in
both representations, and the corresponding decomposition into irreducible subrep-
resentations is - -
°H=,,€?o ollp s ﬂo:i}o n+1lor

5.9. In [1, Théoréme 3], Dixmier gives an example of a primitive separable
C*algebra ¥ such that its structure space Prim(¥) contains no nonempty open
set which is separated. (U is separated if for each point p € U we have that, for
all points g not lying in the closure of {p}, p and ¢ have a pair of disjoint
neighbourhoods.) U(K) provides another such example. Indeed, from the diagram
of UUK) we see that the open nonempty sets of Prim(U%(K)) are of the form
Ll n2ndull | m> m,} U {0}. Thus all neighbourhoods of I contain

0

I, does not lie in the closure of I, whichis { I |1<m<nl

n+1lo although Do

+1
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