
Inductive Negotiation

in Answer Set Programming

Chiaki Sakama

Department of Computer and Communication Sciences
Wakayama University, Sakaedani, Wakayama 640-8510, Japan

sakama@sys.wakayama-u.ac.jp

Abstract. This paper provides a logical framework of negotiating agents
who have capabilities of evaluating and building proposals. Given a pro-
posal, an agent decides whether it is acceptable or not. If the proposal
is unacceptable as it is, the agent seeks conditions to accept it. This at-
titude is captured as a process of making hypotheses by induction. If an
agent fails to find a hypothesis, it would concede by giving up some of its
current belief. This attitude is characterized using default reasoning. We
provide a logical framework of such think-act cycle of an agent, and de-
velop a method for computing proposals using answer set programming .

1 Introduction

Negotiation is a process of reaching agreement between different agents. In a
typical one-to-one negotiation, an agent makes a proposal on his/her request and
the opponent agent decides whether it is acceptable or not. If it is unacceptable,
the opponent tries to make a counter-proposal. Negotiation proceeds in a series
of rounds and each agent makes a proposal at every round until it reaches a
(dis)agreement. Our primary interest of this paper is a process of evaluation and
construction of proposals. A proposal is acceptable if it does not conflict with the
interest of an agent. When a proposal is unacceptable for an agent, he/she seeks
conditions to accept it. Those conditions would be found by updating his/her
current beliefs: in one way, by introducing new beliefs, and in another way, by
giving up some of his/her current belief.

Consider the following dialogue between a buyer B and a seller S (subscripts
represent rounds in negotiation).

B1: “I want an external HDD with 200GB”.

S1: “It costs 120USD”.

B2: “I want to get it at 100USD.”

S2: “We can provide it at the discount price if you pay by cash.”

B3: “I don’t want to pay by cash”.

S3: “We can provide an external HDD with 180GB at 100USD”.

B4: “OK, I accept it”.

In this dialogue, the buyer does not accept the initial offer S1 made by the seller.
Then, the buyer made a new proposal B2 for a discount price. In response to
this, the seller provides a condition to meet the request (S2). The buyer does
not accept it (B3), and the seller proposes downgrade of the product (S3). The
buyer accepts it, and negotiation ends.

In the second round, the seller seeks conditions to accept B2. The process
of finding a condition to accept a proposal is logically characterized as follows.
Suppose a knowledge base K represented by a first-order theory, and a proposal
G represented by a formula. Then, K could accept G under the condition H if
the next relation holds:

K ∪H |= G .

Here, H is a set of formulas and bridges the gap between the current belief K
of an agent and the request G made by another agent. At this point, there are
structural similarities between the problem presented above and the problem
of induction, a method of machine learning in artificial intelligence. In fact,
viewing G as an observed evidence, the problem of finding H is considered a
process of building a hypothesis to explain G under K. Induction is an ampliative
reasoning and extends the original theory to explain observed new phenomena.
In negotiation, an agent also extends his/her original belief to accommodate
another agent’s request. Back to the negotiation dialogue, in response to the
proposal S3, the buyer concedes to accept it. This is done by withdrawing her
original request. The process of concession is also formulated as follows. Given
a knowledge base K of an agent and a proposal G by another agent, K could
conditionally accept G by concession if the next relation holds:

(K \ J) ∪H |= G .

Here, J is a part of belief included in K, which could be given up to accept G.

In this paper, we provide a logical framework of negotiating agents who have
capabilities of evaluating and building proposals. We first consider an agent who
has a knowledge base represented by first-order logic and characterize a process of
making proposals using induction. We show that different types of proposals are
built in terms of induction. Next, we formulate a process of making a concession
in negotiation. We show that concession is done by inference from a default
theory. Finally, the proposed method is realized using answer set programming
[8], a logic programming framework for nonmonotonic reasoning. The rest of
this paper is organized as follows. Section 2 characterizes processes of building
proposals and making a concession in terms of induction and default inference.
Section 3 provides methods for computing proposals in answer set programming.
Section 4 discusses related work, and Section 5 concludes the paper. This is an
extended version of the paper [17]. Section 3 and a part of Section 4 are entirely
new, and all proofs of technical results, which are not in [17], are attached.

2 Negotiation by Induction

2.1 Induction

A first-order theory is a set of formulas defined over the first-order language.
The definition of the first-order language is the standard one in the literature. A
first-order theory T entails a formula F (written as T |= F) if F is true in every
model of T . A first-order theory T is consistent if it has a model; otherwise, T
is inconsistent .

Induction in first-order logic is defined as follows. Given a background knowl-
edge base K as a consistent first-order theory and a formula G as an observation,
induction produces a set H of formulas as a hypothesis satisfying the condition:

K ∪H |= G (1)

where K ∪H is consistent. When H satisfies the above condition, we say that a
hypothesis H covers (or explains) G with respect to K. This type of induction
is used in the context of inductive logic programming [11].

Example 2.1. Suppose the knowledge base K and the observation G:1

K : swan(a) ∧ swan(b),

G : white(a) ∧ white(b).

Then,
H : ∀x (swan(x)→ white(x))

covers G with respect to K.

2.2 Building Proposal

We consider an agent who has a knowledge base K represented by a consistent
first-order theory.

Definition 2.1. (proposal) A proposal G is a formula. In particular, G is called
a critique if G = accept or G = reject where accept and reject are the reserved
propositions.

A critique is a response as to whether or not a given proposal is accepted. It
is decided by evaluating a proposal in a knowledge base of an agent.

Definition 2.2. (acceptability) Given a knowledge base K and a proposal G,

– G is accepted in K if K |= G.
– G is acceptable in K if K ∪ {G} is consistent.
– G is unacceptable (or rejected) in K if K ∪ {G} is inconsistent.

1 Throughout the paper, we shall omit braces { } in examples to represent the sets K

and H of formulas, but the meaning is clear from the context.

If a proposal G made by an agent Ag1 is accepted/rejected by another agent
Ag2, Ag2 returns the critique accept/reject to Ag1. On the other hand, if a
proposal is acceptable, an agent seeks conditions to accept it.

Definition 2.3. (conditional acceptance) Given a knowledge base K and a pro-
posal G, G is conditionally accepted (with H) in K if

K ∪H |= G (2)

holds for a set H of formulas such that K ∪H is consistent. A set H of formulas
is called an accepting set of conditions (with respect to K and G). In particular,
H is called a minimal accepting set of conditions if H is a minimal set (under
set inclusion) satisfying (2).

By the definition, it is easily seen that G is conditionally accepted in K if
and only if it is acceptable in K. The notion of acceptance in Definition 2.2 is a
special case of conditional acceptance with H = ∅. By Definition 2.3, we can see
that the problem of finding a condition H for accepting a proposal G is identical
to the problem of finding inductive hypothesis in (1). That is, by viewing a
proposal G as an observation, an accepting set H of conditions is considered a
hypothesis which covers G with respect to a background knowledge base K. This
correspondence is not only in the definition of formulas, but also in the ground
of their usage. In induction, when an agent observes a new evidence that cannot
be explained in its current knowledge base, the agent induces a hypothesis which
well accounts for the evidence and updates the knowledge base if necessary. In
negotiation, on the other hand, an agent also observes a new proposal that is not
entailed by its current knowledge base. Then, the agent constructs a hypothesis
which well accounts for the proposal. Among accepting sets of conditions, we
are interested in minimal accepting sets of conditions which represent minimal
requirements for accepting a proposal. For this reason, we hereafter consider
minimal accepting sets of conditions unless stated otherwise.

There are different types of accepting sets of conditions satisfying the rela-
tion (2). We provide some typical types of proposals in negotiation based on this
definition. Suppose that an agent Ag1 makes a proposal G and another agent
Ag2 who has a knowledge base K builds a counter-proposal in response to G.

Consent : When H = {G}, it holds that K ∪H |= G. In this case, Ag2 accepts
a proposal G if it is acceptable. Then, Ag2 returns the critique G′ = accept
to Ag1.

Constraint : When H = {G∧C }, it holds that K ∪H |= G. In this case, Ag2

accepts a proposal G with a constraint C. Then, Ag2 returns the counter-
proposal G ∧ C to Ag1. For example, given G = go(restaurant), C =
on(Saturday) represents a constraint for accepting G.

Generalization : When H = {G′ } such that G′θ = G for some substitution θ,
it holds that K ∪H |= G. In this case, Ag2 returns the counter-proposal G′

which is more general than G. For example, given G = show product(TV, b)
with some specific brand-name b, G′ = show product(TV, x) with a variable
x represents TV of any brand.

Subsumption : When H is a concept which subsumes G and K contains
subsumption knowledge between H and G, it holds that K ∪ H |= G.
In this case, Ag2 returns a counter-proposal H to Ag1. For example, let
G = go(bookstore) and K contains go(shopping-mall) → go(bookstore),
then go(shopping-mall) becomes a counter-proposal.

Implication : When H = {F → G } and K ∪ H |= G, F represents a condi-
tion to accept G. In this case, Ag2 returns the counter-proposal F to Ag1.
For example, let G = want(chocolate) and K contains want(biscuit), then
H = {want(biscuit)→ want(chocolate) } represents exchange of sweets and
want(biscuit) becomes a counter-proposal.

In the above, Consent characterizes very generous attitude of an agent. Con-
straint and Generalization are considered special cases of Implication as both
G∧C → G and G′ → G′θ hold. Subsumption is also a special case of Implication
such that K contains a dependence relation between F and G. In case of sub-
sumption, abduction [7] is used for the purpose instead of induction. Abduction
is also hypothetical reasoning satisfying the relation (1). In contrast to induction
which constructs a rule F → G from K and G, abduction extracts a fact F from
G and a rule F → G which is derived from K.

2.3 Concession

An agent rejects a proposal if it is unacceptable. On the other hand, an agent can
take an action of concession if he/she wants to reach an agreement in negotiation.
To characterize agents who may concede in negotiation, we suppose agents who
have two different types of knowledge: the one is strong belief and the other
is weak belief. Strong belief is persistent belief or strong desire that cannot be
abandoned. By contrast, weak belief can be given up depending on situation.
Formally, a first-order theory K is divided into two disjoint sets:

K = Σ ∪ Γ

where Σ represents strong belief and Γ represents weak belief . We assume that
an agent gives up weak belief but not strong one when he/she makes a concession.

Definition 2.4. (acceptable by concession) Let K be a knowledge base such
that K = Σ ∪ Γ as above. Then, a proposal G is acceptable by concession in K
if there is a set J of formulas such that J ⊆ Γ and (K \ J) ∪ {G} is consistent.

Definition 2.5. (conditional acceptance by concession) Let K be a knowledge
base such that K = Σ ∪ Γ . Then, a proposal G is conditionally accepted by
concession (with H) in K if

(K \ J) ∪H |= G (3)

holds for some sets H and J of formulas such that J ⊆ Γ and (K \J)∪H is con-
sistent. A set J of formulas is called an accepting set of concessions (with respect
to K and G). In particular, J is called a minimal accepting set of concessions if
J is a minimal set (under set inclusion) satisfying (3).

Proposition 2.1 A proposal G is conditionally accepted by concession in K iff
G is acceptable by concession in K.

Proof. If G is acceptable by concession in K, (K \J)∪{G} is consistent for some
J ⊆ Γ . As (K \ J) ∪ {G} |= G, G is conditionally accepted by concession in K.
Conversely, if G is conditionally accepted by concession in K, (K \ J) ∪H |= G
holds for some J ⊆ Γ and H such that (K \ J) ∪ H is consistent. Then, any
model M of (K \ J) ∪ H satisfies G, so M becomes a model of (K \ J) ∪ G.
Hence, (K \ J) ∪G is consistent and G is acceptable by concession. ut

Comparing Definition 2.5 with Definition 2.3, concession may give up (a part
of) the current belief of an agent for accepting proposals. In particular, the
relation (3) reduces to (2) when J = ∅. We assume that an agent wants to give
up his/her current belief as little as possible, so we hereafter consider minimal
accepting sets of concessions as well as minimal accepting sets of conditions.

Example 2.2. ([12]) Suppose that an agent Ag1 has the knowledge base K:

f1 : have(mirror) ∧ have(nail)→ hang(mirror),

f2 : have(mirror) ∧ have(screw)→ hang(mirror),

f3 : give(nail)→ ¬have(nail),

f4 : have(screw)→ give(nail),

f5 : ∀x get(x)→ have(x),

f6 : have(mirror),

f7 : have(nail),

where the strong belief Σ consists of f1–f6 and the weak belief Γ consists of f7.
The meaning of each formula is: f1 and f2 represent conditions to hang a mirror.
If Ag1 gives a nail, he/she does no longer have the nail (f3). If Ag1 has a screw,
he/she can give a nail (f4). If one gets an object, one has the object (f5). Ag1

has both a mirror (f6) and a nail (f7). Suppose that Ag1 has the intention of
hanging a mirror. Consider that another agent Ag2 makes the request

G : give(nail).

This proposal is unacceptable in K because K ∪ {G} is inconsistent. The agent
Ag1 may reject G with this reason, but he/she could look for conditions for
concession. Ag1 finds the solution

J : have(nail)

and

H : get(screw)

where (K \J)∪H is consistent and satisfies the relation (K \J)∪H |= G. Then,
Ag1 offers a counter-proposal H to Ag2.

Our next question is how to distinguish different types of belief in both
syntactic and semantic ways. For this purpose, we use default logic [13] for rep-
resenting a knowledge base. Default logic distinguishes two types of knowledge
as first-order formulas and default rules. Formally, a default theory is defined as
a pair ∆ = (D,W) where D is a set of default rules and W is a set of first-order
formulas. A default rule (or simply default) is of the form:

α : β1, . . . , βn

γ

where α, β1, . . . , βn and γ are quantifier-free formulas and respectively called
the prerequisite, the justifications and the consequent. A default is ground if it
contains no variable. Any default with variables represents the set of its ground
instances over the language of ∆. As defaults and first-order formulas are syntac-
tically distinguishable, we often put a default theory ∆ = W ∪D for convenience.
A set S of formulas is deductively closed if S = Th(S) where Th is the deductive
closure operator as usual. A set E of formulas is an extension of (D,W) if it
coincides with a minimal deductively closed set E ′ of formulas satisfying the
conditions: (i) W ⊆ E′, and (ii) for any ground default α : β1, . . . , βn/γ from D,
α ∈ E′ and ¬βi 6∈ E (i = 1, . . . , n) imply γ ∈ E′. An extension E is consistent
if E is a consistent set of formulas. A default theory may have none, one or
multiple extensions in general.

To represent weak belief of an agent, we use default rules of the form:

: γ

γ
. (4)

This type of rule is called super-normal and a super-normal default theory is a
default theory in which every default has the form (4). The rule (4) is read as
“if it is consistent to assume γ, then believe γ”. We represent weak belief of an
agent by super-normal defaults in D, and distinguish them from strong belief
represented by first-order formulas in W .

Definition 2.6. (default representation) Let K be a first-order theory such that
K = Σ ∪ Γ . Then, a default representation of K is defined as a super-normal
default theory ∆K = (D,W) such that D = { :γ

γ
| γ ∈ Γ } and W = Σ.

Concession is characterized in a default theory as follows.

Theorem 2.2. Let K be a first-order theory such that K = Σ ∪ Γ .

(i) A proposal G is acceptable by concession in K iff ∆K ∪{G} has a consistent
extension.

(ii) A proposal G is conditionally accepted by concession with H in K iff ∆K∪H
has a consistent extension E such that G ∈ E.

Proof. (i) Let ∆K = (D,W) be a default representation of K. When G is ac-
ceptable by concession in K, (K \J)∪{G} is consistent for a minimal set J ⊆ Γ .
As (K \ J) ∪ {G} = W ∪ (Γ \ J) ∪ {G}, put E = Th(W ∪ (Γ \ J) ∪ {G}). If E

is not a consistent extension of ∆K ∪{G}, there is a minimal deductively closed
consistent set E′ = Th(W ∪ Γ ′ ∪ {G}) such that Γ ′ ⊆ Γ . In case of E′ ⊂ E,
Γ ′ ⊂ (Γ \ J). Put Ξ = (Γ \ J) \ Γ ′. Then, E = Th(W ∪ Γ ′ ∪Ξ ∪ {G}) becomes
inconsistent. This contradicts the assumption that E is consistent. In case of
E ⊂ E′, (Γ \ J) ⊂ Γ ′. Put Γ ′ = Γ \ J ′ for some J ′ ⊂ J . Then, (K \ J ′) ∪ {G}
becomes consistent. This contradicts the assumption that J is a minimal set
which makes (K \J)∪{G} consistent. Hence, E becomes a consistent extension
of ∆K∪{G}. Conversely, if E is an extension of ∆K∪{G}, E is a minimal deduc-
tively closed set E = Th(W ∪Γ ′′∪{G}) where Γ ′′ = { γ | :γ

γ
∈ D and ¬ γ 6∈ E }.

Then, there is a (minimal) set J ⊆ Γ such that Γ ′′ = Γ \ J . For this J , it holds
that (K \ J) ∪ {G} is consistent. Hence, G is acceptable by concession.

(ii) If ∆K∪{G} has a consistent extension, by putting H = {G}, ∆K∪H has
a consistent extension E such that G ∈ E. Conversely, if for a set H of formulas
∆K ∪ H has a consistent extension E such that G ∈ E, E is also a consistent
extension of ∆K ∪H ∪ {G} ([13, Theorem 2.6]). In this case, ∆K ∪ {G} has a
consistent extension. (If ∆K ∪{G} is inconsistent, ∆K ∪H ∪{G} is inconsistent
[13].) Thus, ∆K ∪ {G} has a consistent extension iff for a set H of formulas,
∆K ∪H has a consistent extension E such that G ∈ E. Then, the result holds
by Proposition 2.1. ut

Theorem 2.2 represents that conditional acceptance by concession is charac-
terized in terms of default inference of G from ∆K ∪H.

Example 2.3. (cont. Example 2.2) The knowledge base is represented by the
default theory ∆K = (D,W) where

W : have(mirror) ∧ have(nail)→ hang(mirror),

have(mirror) ∧ have(screw)→ hang(mirror),

give(nail)→ ¬have(nail),

have(screw)→ give(nail),

∀x get(x)→ have(x),

have(mirror),

D :
: have(nail)

have(nail)
.

Given the request G = give(nail), G is included in a default extension of ∆K ∪
{ get(screw) }.

3 Computing Proposals in Answer Set Programming

3.1 Answer Set Programming

Answer set programming (ASP) [8] represents incomplete knowledge in a logic
program and realizes nonmonotonic default reasoning. In ASP a logic program is

given by an extended disjunctive program (EDP). An EDP (or simply a program)
is a set of rules of the form:

L1 ; · · · ; Ll ← Ll+1 , . . . , Lm, not Lm+1 , . . . , not Ln (5)

(n ≥ m ≥ l ≥ 0) where each Li is a positive/negative literal, i.e., A or ¬A
for an atom A, and not is negation as failure (NAF). notL is called an NAF-
literal. The above rule is read “some of L1, . . . , Ll is believed if all Ll+1, . . . , Lm

are believed and all Lm+1, . . . , Ln are disbelieved”. The left-hand side of the
arrow is the head , and the right-hand side is the body. For each rule r of the
form (5), head(r), body+(r) and body−(r) denote the sets of literals {L1, . . . , Ll},
{Ll+1, . . . , Lm}, and {Lm+1, . . . , Ln}, respectively. Also, not body−(r) denotes
the set of NAF-literals {notLm+1, . . . , not Ln}. A rule r is often written as
head(r)← body+(r), not body−(r) or head(r)← body(r) where body(r) =
body+(r) ∪ not body−(r). A rule r is disjunctive if head(r) contains more than
one literal. A rule r is a constraint if head(r) = ∅; and r is a fact if body(r) = ∅. A
program is NAF-free if no rule contains NAF-literals. A program, rule, or literal
is ground if it contains no variable. A program P with variables is a shorthand
of its ground instantiation Ground(P), the set of ground rules obtained from
P by substituting variables in P by elements of its Herbrand universe in every
possible way.

The semantics of an EDP is defined by the answer set semantics [5]. Let
Lit be the set of all ground literals in the language of a program. Suppose a
program P and a set S of ground literals. Then, the reduct P S is the program
which contains the ground rule head(r) ← body+(r) iff there is a rule r in
Ground(P) such that body−(r) ∩ S = ∅. Given an NAF-free EDP P , let S be a
set of ground literals which is (i) closed under P , i.e., for every ground rule r in
Ground(P), body(r) ⊆ S implies head(r) ∩ S 6= ∅; and (ii) logically closed, i.e.,
it is either consistent or equal to Lit. An answer set of an NAF-free program P
is a minimal set S satisfying both (i) and (ii). Given an EDP P and a set S of
ground literals, S is an answer set of P if S is an answer set of P S . A program
has none, one, or multiple answer sets in general. The set of all answer sets of P
is written as AS(P). An answer set is consistent if it is not Lit. A program P is
consistent if it has a consistent answer set; otherwise, P is inconsistent.

A literal L is a consequence of cautious inference in a program P if L is
included in every answer set of P . On the other hand, a literal L is a consequence
of brave inference in a program P if L is included in some answer set of P .2 We
write P |=b L if a literal L is a consequence of brave inference in P .

Example 3.1. The program:

tea ; coffee ←,

milk ← tea, not lemon,

lemon← tea, not milk,

milk ← coffee,
2 Cautious/brave inference is also called skeptical/credulous inference.

has the three answer sets: { tea, milk }, { tea, lemon }, and { coffee, milk }, which
represent possible options for drink.

3.2 Computing Proposals

As presented in Definition 2.6, weak beliefs are represented by super-normal
default rules. In an EDP, a super-normal default rule

: L

L

with a literal L is represented as a rule

L← not ¬L .

An EDP can represent other forms of default knowledge in terms of rules with
NAF. By contrast, persistent belief is represented by rules without NAF. Thus,
both weak and strong beliefs are uniformly represented in an EDP.

Based on Theorem 2.2, we rephrase the notion of conditional acceptance by
concession in the context of ASP as follows.

Definition 3.1. (conditional acceptance by concession) Let P be a program
representing a knowledge base, and G a ground literal representing a proposal.
Then, G is acceptable by concession in P iff P ∪ {G} is consistent. And G is
conditionally accepted by concession in P iff P ∪H |=b G holds for some set H
of rules such that P ∪H is consistent.

Suppose a program P and a proposal G. When P 6|=b G, consider the set R

of rules such that

r ∈ R iff head(r) = {G} , body(r) 6= ∅,

∅ ⊆ body+(r) ⊆ S , and

body−(r) ⊆ Lit \ S

where S ∈ AS(P) and there is no S ′ ∈ AS(P) such that (S′ \ T) ∪ (T \ S′) ⊂
(S \ T) ∪ (T \ S) for an answer set T of P ∪ {G}.

By Definition 3.1, P ∪ {G} has a consistent answer set if G is acceptable by
concession. The condition (S ′\T)∪(T \S′) ⊂ (S \T)∪(T \S) for no S′ ∈ AS(P)
presents that an answer set S of P which is closest to an answer set of P ∪ {G}
is selected. The set R provides a hypothesis space for solutions.

Theorem 3.1. Let P be a program and G a proposal such that P 6|=b G. For
any non-empty subset H ⊆ R such that P ∪H is consistent, P ∪ H |=b G holds.

Proof. First, (P ∪ H)S = PS ∪ HS holds for any answer set S of P . For any
non-empty subset H ⊆ R, body−(r)∩S = ∅ for any r ∈ H. Then, there is a rule
G← body+(r) in HS such that ∅ ⊆ body+(r) ⊆ S. Since P ∪H is consistent, a
consistent set S ∪{G} becomes a minimal closed set of P S ∪HS . Then, S ∪{G}
becomes a consistent answer set of P ∪H. Hence, the result holds. ut

Theorem 3.1 shows a method for computing a hypothesis H which is used
for conditional acceptance by concession. Generally speaking, however, there are
many candidates of hypotheses satisfying the condition. We remark some meth-
ods of eliminating hypotheses which are useless in the process of negotiation.
First, we eliminate hypotheses by syntactic restriction. Suppose that two rules
r1 and r2 satisfy the relation P ∪ {r1} |=b G and P ∪ {r2} |=b G. In this case,
if body(r1) ⊂ body(r2) holds, r2 is eliminated. This is because r1 provides a con-
dition simpler than r2 for accepting G. A rule r in R is said minimal if there
is no rule r′ in R such that ∅ ⊂ body(r′) ⊂ body(r). We can eliminate every
non-minimal rule from R. Moreover, for any H1 ⊆ R and H2 ⊆ R, if both H1

and H2 satisfy the condition of Theorem 3.1 and the relation H1 ⊆ H2 holds,
the minimal set H1 of hypotheses is preferred to non-minimal H2. Note that we
are interested in any rule r ∈ R such that body(r) 6= ∅. If body(r) = ∅, r be-
comes a fact G← and P ∪{G←} |=b G immediately holds. This corresponds to
“Consent” in Section 2.2 and is a trivial solution. So in what follows we consider
rules in R having non-empty bodies.

Second, we eliminate hypotheses by semantic restriction. Agents in negoti-
ation are involved in matters of mutual interests. For example, in negotiation
between a buyer and a seller, they are interested in buying or selling some des-
ignated product. In this case, hypotheses are related to conditions for buying-
selling the objective product. They include price, service, quality of products,
and so on. Some belief with respect to one’s taste for foods is irrelevant to the
buying-selling activities (except for the case of buying-selling foods). Let C be a
set of literals and NAF-literals specifying specific context of negotiation. Then,
any rule r in R is eliminated if body(r) 6⊆ C. In other words, we are interested in
getting any rule having conditions in the specific context. We assume that nego-
tiating agents have their contexts in advance. This assumption appears natural
because no agent negotiates without any interest. Different agents could have
different contexts depending on their interests. These syntactic and semantic
restrictions help to reduce candidate hypotheses in R. Such restrictions on a
hypothesis space are called induction bias [11]. After applying these restrictions
to R, there could still exist multiple choices of proposals. In this case, we assume
that an agent nondeterministically selects a proposal from R.

Example 3.2. Suppose a buying-selling situation in Section 1. A seller agent has
the knowledge base Ps which consists of the following rules:

product(hdd, 200G, 120$)← not ¬ product(hdd, 200G, 120$), (6)

product(hdd, 180G, 100$)← not ¬ product(hdd, 180G, 100$), (7)

← product(x, y, z), product(x, y, w), z 6= w, (8)

¬ product(hdd, 200G, 120$)← product(hdd, 200G, x), x < 120$, pay cash, (9)

pay cash ; pay card ← . (10)

Here, the rules (6) and (7) represent products and their normal prices. They
are represented by super-normal defaults because prices are subject to change.
The rule (8) represents a constraint that the same product cannot have different

prices at the same time. The rule (9) represents if discount is made by payment
with cash, the normal price is withdrawn. The rule (10) represents two options
for payment. Ps has two answer sets:

S1 : { product(hdd, 200G, 120$), product(hdd, 180G, 100$), pay cash },

S2 : { product(hdd, 200G, 120$), product(hdd, 180G, 100$), pay card },

which represent the seller’s initial belief.
A buyer agent has the knowledge base Pb which consists of rules:

product(hdd, 200G, 100$)← not ¬ product(hdd, 200G, 100$), (11)

← product(hdd, x, y), y > 100$, (12)

← pay cash, (13)

product(hdd, 180G, 100$)← not product(hdd, 200G, 100$), (14)

¬ product(hdd, 200G, 100$)← product(hdd, 180G, 100$). (15)

The rule (11) represents the intention of getting a HDD of 200GB with 100USD.
It is represented by a super-normal default because the intention could be
changed. The rule (12) represents a constraint that the budget is less than
100USD. The rule (13) represents a constraint that she does not pay by cash. The
rule (14) represents that if a HDD with 200G is unavailable under the budget,
the buyer would have an option of downgrading the specification. The rule (15)
represents that the original request is withdrawn if the specification changes. Pb

has two answer sets:

{ product(hdd, 200G, 100$) },

{¬ product(hdd, 200G, 100$), product(hdd, 180G, 100$) },

which represent the buyer’s initial belief. With this setting, negotiation starts.
(1st round) First, the buyer asks the price of a HDD with 200GB. As Ps |=b

product(hdd, 200G, 120$), the seller replies the price:

G1
s : product(hdd, 200G, 120$).

(2nd round) The buyer does not accept G1
s because it violates the con-

straint (12) and Pb ∪ {G
1
s} is inconsistent. As Pb |=b product(hdd, 200G, 100$),

the buyer returns the proposal

G2
b : product(hdd, 200G, 100$)

to the seller. The seller evaluates G2
b in its knowledge base Ps and knows that Ps∪

{ product(hdd, 200G, 100$) } is consistent. Hence, G2
b is acceptable by concession

in Ps. The seller then seeks a hypothesis H to accept G2
b and constructs the set

R satisfying the condition:

r ∈ R iff head(r) = {G2
b} , body(r) 6= ∅,

∅ ⊆ body+(r) ⊆ S1 , and

body−(r) ⊆ Lit \ S1

where S1 is selected because S1 is closer to the answer set { product(hdd, 200G, 100$),
¬ product(hdd, 200G, 120$), product(hdd, 180G, 100$), pay cash } of Ps ∪ {G

2
b }

than S2 is. The set R includes rules such that

r1 : product(hdd, 200G, 100$)← product(hdd, 200G, 120$),

r2 : product(hdd, 200G, 100$)← product(hdd, 180G, 100$),

r3 : product(hdd, 200G, 100$)← pay cash,

r4 : product(hdd, 200G, 100$)← not pay card,

r5 : product(hdd, 200G, 100$)← product(hdd, 200G, 120$),

product(hdd, 180G, 100$),

r6 : product(hdd, 200G, 100$)← product(hdd, 200G, 120$), pay cash,

· · · · · · · · ·

Among them, non-minimal rules, for instance, r5 and r6, are eliminated. The
seller also considers the context C as

C : { product(hdd, 200G, 120$), pay cash, pay card },

because the present deal between the buyer and the seller is on the product
product(hdd, 200G, 120$) and its payment. Then, rules containing any literal L 6∈
C, for instance r2, are eliminated. After the elimination, the seller selects rules
such that Ps ∪ {ri} is consistent. Since r1 violates the constraint (8), two rules
r3 and r4 remain as candidates. Then, the seller constructs possible hypotheses
as H1 = {r3} and H2 = {r4}. Both Ps ∪H1 and Ps ∪H2 have two answer sets:

{ product(hdd, 200G, 100$), ¬ product(hdd, 200G, 120$),

product(hdd, 180G, 100$), pay cash },

{ product(hdd, 200G, 120$), product(hdd, 180G, 100$), pay card },

so that Ps ∪Hi |=b product(hdd, 200G, 100$) for i = 1, 2. For the seller H1 and
H2 have the same meaning, so he takes H1 as a hypothesis and returns the
condition

G2
s : pay cash

as a counter-proposal.
(3rd round) The buyer does not accept G2

s because it violates the con-
straint (13). The buyer then returns the critique

G3
b : reject

to the seller. As there is no way to meet the request of the buyer, the seller
makes a new proposal

G3
s : product(hdd, 180G, 100$)

which satisfies Ps |=b G3
s.

(4th round) As Pb |=b G3
s, the buyer accepts the proposal and an agreement

is reached.

4 Related Work

Several studies use logic-based abduction or abductive logic programming [7] as
a representation language of negotiating agents [9, 14, 16]. Kakas and Moraitis
[9] propose a negotiation protocol which integrates abduction within an argu-
mentation framework. In their negotiation protocol, an agent considers another
agent’s goal and searches for conditions under which the goal is acceptable.
They use abduction to seek conditions to support arguments. In their protocol,
counter-proposals are chosen among candidates based on preference knowledge
of an agent. In [14] an abductive logic program is used for specifying dialogue
primitives and negotiation protocol. Once a dialogue is uttered by an agent,
another agent that observed the utterance thinks and acts according to a given
observe-think-act cycle. There are two important differences between [9, 14] and
our present work. First, those studies have no mechanism of constructing new
counter-proposals in response to a proposal made by an agent. The behavior of
an agent is completely pre-specified in either a knowledge base of an agent or
a negotiation protocol, and possible responses are prepared in advance. In our
framework, proposals are newly constructed using induction. It enables us to
build proposals that are independent of particular negotiation protocols. Most
theories of automated negotiation specify possible responses in advance, while
[16] is an exception. Sakama and Inoue [16] propose methods for building new
proposals by extended abduction and relaxation. Extended abduction is an exten-
sion of abduction proposed by Inoue and Sakama [6], which can not only intro-
duce hypotheses to a knowledge base but remove hypotheses from it to explain
an observation. Relaxation is a technique of weakening constraints in database
queries. They use extended abduction to compute conditional proposals and use
relaxation to compute neighborhood proposals. An essential difference from our
present work is that they use (extended) abduction for computing conditions of
accepting a proposal, while we use induction for that purpose.

Formally, extended abduction is defined as follows. An abductive framework
is a pair 〈K,Γ 〉 in which both K and Γ are first-order theories.3 Given an ob-
servation G as a formula, a pair (E,F) is an explanation of G (with respect to
〈K,Γ 〉) if (1) (K \ F) ∪ E |= G, (2) (K \ F) ∪ E is consistent, and (3) both E
and F consist of instances of elements from Γ . They also introduce the notion
of anti-explanations to unexplain negative observations. The above definition
appears similar to the notion of “conditional acceptance by concession” which is
defined as the relation (K \J)∪H |= G in Definition 2.5 of this paper. However,
there is an important difference between two definitions. In extended abduction,
a hypothesis space Γ is given in advance. An explanation (E,F) is selected from
the direct product Γ × Γ . In our Definition 2.5, a set J is selected as a subset
of weak belief Γ in a knowledge base K, while a hypothesis H is newly built
by a knowledge base K and an observation G. This difference comes from the
inherent characteristics of abduction and induction [3]. In (extended) abduc-

3 The paper [6] introduces the framework in the context of autoepistemic logic, and
another paper [15] uses it in the context of abductive logic programming.

tion, the goal is to compute causes of some observed events using a background
knowledge base. In this case, possible causes are extracted from information in
the knowledge base. In induction, on the other hand, the goal is to discover
unknown general rules that would lie between observed events and the current
belief in a knowledge base. We make use of this style of inference in the context
of negotiation. A proposal given by another agent is not always explained us-
ing information included in a knowledge base only. In this case, an agent tries
to bridge the gap between the proposal and its current belief. The method in
[16] extracts conditions to satisfy a given proposal, which is useful for making
the “Subsumption” style of proposals in Section 2.2. By contrast, our method
proposed in this paper is useful for making the “Implication” style of proposals,
which is more general than the subsumption style. To the best of our knowledge,
no study characterizes the process of making proposals in terms of induction.
On the other hand, [16] proposes another method for building proposals based
on relaxation, which is different from both abduction and induction.

Meyer et al. [10] introduce a logical framework for negotiating agents. They
introduce two different modes of negotiation: concession and adaptation. Con-
cession weakens an initial demand of an agent, while adaptation expands an ini-
tial demand to accommodate a demand of another agent. They provide rational
postulates to characterize negotiated outcomes between two agents, and describe
methods for constructing outcomes. Compared with our present work, they con-
sider classical propositional theories and provide logical conditions for negotiated
outcomes to satisfy, but they do not provide a method of constructing proposals
in negotiation. Amgoud et al. [1] develop a formal theory of argumentation-based
negotiation. It provides a protocol that allows agents to exchange offers and ar-
guments, and to make concessions when necessary. In their framework, offers
that can be exchanged during a negotiation dialogue are given in advance, and
concessions are made by proposing/accepting less preferred offers. Preference be-
tween offers is defined by the existence of arguments supporting them. So it does
not construct new offers nor modify the current belief in a knowledge base. In
the context of answer set programming, Foo et al. [2, 4] formalize one-to-one ne-
gotiation between two extended logic programs. In their framework, two agents
exchange answer sets to produce a common belief set. Their goal is coordinating
belief sets of two agents, and it has no mechanism of constructing new proposals.

5 Conclusion

This paper introduced a logical framework of negotiating agents. An agent eval-
uates a proposal and constructs a counter-proposal by building hypotheses using
induction, and concedes by abandoning a part of weak belief of its knowledge
base. Such behavior of an agent is formalized using default logic and realized in
answer set programming. The result of this paper shows that default reasoning
and induction as well as abduction, which are all developed as commonsense rea-
soning for a single agent in AI, are also useful for social reasoning in multi-agent
systems. They provide formal methodologies for reasoning about agents, and

are used as general inference mechanisms which are independent of particular
negotiation protocols.

Several issues remain for further work. We used default logic to distinguish
strong and weak beliefs. In realistic negotiation, however, there would be dif-
ferent degrees of preferences over beliefs, and simple distinction between strong
and weak beliefs might be insufficient. For further refinement, a logic for priori-
tized reasoning is needed, together with the capability of revising the preferences
attached to beliefs. We developed a method for computing proposals in answer
set programming, which enables us to realize automated negotiation on top of
the existing answer set solvers. Prototyping an implementation and evaluating
the proposed framework on practical negotiating tasks are in the next step.

References

1. L. Amgoud, Y. Dimopoulos, and P. Moraitis. A unified and general framework for
argumentation-based negotiation. In: Proc. AAMAS’07, pp. 1018–1025, ACM Press.

2. W. Chen, M. Zhang, and N. Foo. Repeated negotiation of logic programs. In: Proc.

7th Workshop on Nonmonotonic Reasoning, Action and Change, 2006.
3. P. A. Flach and A. C. Kakas (eds.). Abduction and Induction — Essays on their

Relation and Integration. Kluwer Academic, 2000.
4. N. Foo, T. Meyer, Y. Zhang, and D. Zhang. Negotiating logic programs. In: Proc.

6th Workshop on Nonmonotonic Reasoning, Action and Change, 2005.
5. M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive

databases. New Generation Computing 9:365–385, 1991.
6. K. Inoue and C. Sakama. Abductive framework for nonmonotonic theory change.

In: Proc. IJCAI-95, pp. 204–210, Morgan Kaufmann.
7. A. C. Kakas, R. A. Kowalski, and F. Toni. The role of abduction in logic program-

ming. In: Handbook of Logic in AI and Logic Programming, D. M. Gabbay, et al.
(eds), vol. 5, pp. 235–324, Oxford University Press, 1998.

8. V. Lifschitz. Answer set programming and plan generation. Artificial Intelligence

138:39–54, 2002.
9. A. C. Kakas and P. Moraitis. Adaptive agent negotiation via argumentation. In:

Proc. AAMAS’06, pp. 384–391, ACM Press.
10. T. Meyer, N. Foo, R. Kwok, and D. Zhang. Logical foundation of negotiation:

outcome, concession and adaptation. In: Proc. AAAI-04, pp. 293–298, MIT Press.
11. S.-H. Nienhuys-Cheng and R. De Wolf. Foundations of inductive logic program-

ming. Lecture Notes in Artificial Intelligence 1228, Springer, 1997.
12. S. Parsons, C. Sierra and N. Jennings. Agents that reason and negotiate by arguing.

Journal of Logic and Computation, 8(3):261–292, 1988.
13. R. Reiter. A logic for default reasoning. Artificial Intelligence 13:81–132, 1980.
14. F. Sadri, F. Toni, and P. Torroni. An abductive logic programming architecture

for negotiating agents. In: Proc. 8th European Conference on Logics in AI, Lecture
Notes in Artificial Intelligence 2424, pp. 419–431, Springer, 2002.

15. C. Sakama and K. Inoue. An abductive framework for computing knowledge base
updates. Theory and Practice of Logic Programming 3(6):671–715, 2003.

16. C. Sakama and K. Inoue. Negotiation by abduction and relaxation. In: Proc.

AAMAS’07, pp. 1018–1025, ACM Press.
17. C. Sakama. Negotiation by induction (short paper). In: Proc. 7th International

Joint Conference on Autonomous Agents and Multiagent Systems, forthcoming, 2008.

