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Abstract

Recent research has seen the proposal of
several new inductive principles designed
specifically to avoid the problems associ-
ated with maximum likelihood learning in
models with intractable partition functions.
In this paper, we study learning methods
for binary restricted Boltzmann machines
(RBMs) based on ratio matching and gen-

eralized score matching. We compare these
new RBM learning methods to a range of ex-
isting learning methods including stochastic
maximum likelihood, contrastive divergence,
and pseudo-likelihood. We perform an ex-
tensive empirical evaluation across multiple
tasks and data sets.

1 Introduction

The prevalence of maximum likelihood (ML) as an in-
ductive principle for estimating the parameters of sta-
tistical models is based on two key properties: asymp-
totic consistency and asymptotic efficiency (Fisher,
1922, p. 316). Asymptotic consistency means that
the bias in the estimated parameters goes to zero as
the sample size goes to infinity. Asymptotic efficiency
means that the variance in the estimated parameters
attains the minimum possible value among all con-
sistent estimators as the sample size goes to infin-
ity. Maximum likelihood estimation is simultaneously
known to suffer from a variety of defects including
a potentially large bias in the small sample setting,
the possibility of un-bounded likelihood functions, the
possibility that the maximum of the likelihood is in
a region of low probability mass, to name only a few
(MacKay, 2003, p. 305-306).
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Our primary interest in this paper is the estimation
of models where the partition function involves an
exponential number of terms. This poses a funda-
mental problem for maximum likelihood estimation as
the exact computation of the partition function (and
thus the likelihood function) is intractable. This is an
orthogonal issue to the more commonly encountered
defects with maximum likelihood estimation outlined
above, but is an extremely important problem in mod-
els for high dimensional discrete data including Ising
models (MacKay, 2003, p. 400), restricted Boltzmann
machines (Smolensky, 1986), and discrete exponential
family harmonium models (Welling et al., 2005).

There are essentially two approaches to dealing with
the intractability of the partition function in such mod-
els. The first approach is to approximately maximize
the likelihood. The second approach is to select an al-
ternative inductive principle that explicitly avoids the
problems associated with an intractable partition func-
tion. Examples of the approximation approach include
stochastic approximation-based maximum likelihood
learning methods (Younes, 1989), as well as approx-
imation methods based on belief propagation (Wain-
wright et al., 2003).

Well known examples of alternative inductive princi-
ples include the principle of maximum pseudo likeli-
hood (PL) (Besag, 1975), and the principle of mini-
mum contrastive divergence (CD) (Hinton, 2000). PL
avoids the problems due to the partition function by
defining an alternative criterion function based on
products of conditional distributions. While CD is an
alternative to maximum likelihood, the exact compu-
tation of the CD criterion function is itself intractable
and applications of CD also require stochastic approx-
imation.

Recently, two new alternative principles have been pro-
posed for dealing with the problem of intractable parti-
tion functions that are applicable to models of discrete
data: ratio matching (RM) (Hyvärinen, 2007) and
generalized score matching (GSM) (Lyu, 2009). Like
the principle of maximum pseudo-likelihood, these
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principles avoid the partition function by defining dif-
ferent criteria based on conditional distributions.

This paper makes three main contributions. First
is the development of a ratio matching-based learn-
ing method for binary restricted Boltzmann machines.
The second is a correction to the derivation of gen-
eralized score matching and an analysis of the cor-
rected objective function. Last is a comparison of ratio
matching to existing learning methods for RBMs in-
cluding approximate maximum likelihood, contrastive
divergence, and pseudo-likelihood. We perform an ex-
tensive empirical evaluation across multiple tasks in-
cluding density estimation, classification, novelty de-
tection, and de-noising. We use a range of data sets
including hand written digits, images, and text.

2 The Restricted Boltzmann Machine

A restricted Boltzmann machine is a two-layer undi-
rected graphical model where the first layer consists of
observed data variables (or visible units), and the sec-
ond layer consists of latent variables (or hidden units).
The visible layer is fully connected to the hidden layer
via pair-wise potentials, while both the visible and hid-
den layers are restricted to have no within-layer con-
nections.

We define D to be the number of data dimensions and
K to be the number of hidden units. The space of
visible vectors for a binary RBM is X = {0, 1}D, while
the space of hidden unit vectors is H = {0, 1}K . We
define x to be a visible vector of size D×1, and h to be
hidden vector of size K × 1. We use the notation x−d

to indicate the sub-vector formed from x by removing
the dth dimension. We use capital letters to denote
random variables and lower case letters to denote their
instantiations. We define N to be the number of data
cases in a data set and xn to be the nth data case.

The RBM model can be defined in terms of the energy
function of a joint configuration of the hidden and vis-
ible vectors E(x,h) as seen in Equation 2.1 where W
are the weight parameters, b are the visible unit bias
parameters and c are the hidden unit bias parameters.
We represent W as a D×K matrix, b as a D×1 vector
and c as a K × 1 vector. We define θ = {W, b, c} to
be the complete set of parameters for the model. Note
that we follow the convention that high probability
configurations have low energy.

Eθ(x,h) = −(xT Wh + x
T b + h

T c) (2.1)

The joint probability Pθ(x,h) can in turn be defined
through the energy Eθ(x,h) as seen in Equation 2.2.
The partition function Z of the RBM model is given
in Equation 2.3. We see that the partition function

involves a sum over all 2D elements of the set X , as
well as the 2K elements of the set H. The probability
of the visible vector Pθ(x) is given in Equation 2.4
and is obtained by marginalizing over the space H of
hidden vectors.

Pθ(x,h) =
1

Z
exp (−Eθ(x,h)) (2.2)

Z =
∑

x′∈X

∑

h
′

∈H

exp
(
−Eθ(x

′,h′)
)

(2.3)

Pθ(x) =
1

Z

∑

h∈H

exp (−Eθ(x,h)) (2.4)

An important property of binary hidden unit restricted
Boltzmann machines is that marginalization over the
hidden vectors can be carried out analytically. This
allows for an equivalent definition of the RBM model in
terms of the free energy F (x) as seen in Equation 2.5.
We Note that the partition function given in Equation
2.6 still involves marginalizing over all 2D elements of
the set X , rendering the computation of the partition
function intractable for even moderate values of D.

Pθ(x) =
1

Z
exp (−Fθ(x)) (2.5)

Z =
∑

x′∈X

exp (−Fθ(x
′)) (2.6)

Fθ(x) = −

(
x

T b +
K∑

k=1

log
(
1 + exp

(
x

T Wk + ck

))
)

(2.7)

As we will see in Section 3, these two different views
of the RBM model are useful for deriving different
learning algorithms. The first view where the hidden
units are explicitly represented (Equations 2.1 to 2.4)
is useful for deriving stochastic approximation meth-
ods based on alternating sampling of the visible and
hidden vectors. The second view where the hidden
units have been analytically marginalized away (Equa-
tions 2.7 to 2.6) is useful for applying inductive prin-
ciples that can not naturally deal with the presence of
latent variables.

3 Inductive Principles

In this section we derive learning algorithms for the
RBM model based on a number of inductive princi-
ples. We begin by deriving the standard stochastic ap-
proximation algorithm for maximum likelihood learn-
ing. Next, we turn to contrastive divergence, maxi-
mum pseudo-likelihood, ratio matching and general-
ized score matching.
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3.1 Approximate Maximum Likelihood

The maximum likelihood principle states that we
should select the parameters θ that assign the high-
est probability to the observed data. The maxi-
mum likelihood criterion function is given in Equation
3.8. The maximum likelihood principle can equiva-
lently be viewed as selecting the parameters to min-
imize the Kullback-Leibler divergence KL(Pe||Pθ) =
∑

x∈X Pe(x)
(

log Pe(x) − log Pθ(x)
)
. This provides

an important connection to other inductive principles
based on minimizing differences between model and
empirical distributions.

fML(θ) =
∑

x∈X

Pe(x) log Pθ(x) =
1

N

N∑

n=1

log Pθ(xn)

(3.8)

The gradient of the maximum likelihood objective
function is given in Equation 3.9. The gradient of the
free energy Fθ(x) with respect to the weights and bi-
ases is given in Equation 3.10.

∇fML =
−1

N

N∑

n=1


∇Fθ(xn) −

∑

x
′
∈X

Pθ(x
′)∇Fθ(x

′)




(3.9)

∇Fθ(x) = {−xE[h|x]T , −x, −E[h|x]} (3.10)

Equation 3.11 gives the standard stochastic approxi-
mation to the maximum likelihood gradient where we
replace the expectation under Pθ(x) by a sum over
samples x̃s drawn according to Pθ(x).

∇fML ≈ −

(
1

N

N∑

n=1

∇Fθ(xn) −
1

S

S∑

s=1

∇Fθ(x̃s)

)

(3.11)

Sampling from Pθ(x) can be accomplished using a
block Gibbs sampler applied to the joint distribution
of visible and hidden vectors Pθ(x,h). We alternate
between sampling x according to Pθ(x|h) and sam-
pling h according to Pθ(h|x). Importantly, the hid-
den units are all conditionally independent given the
visible units and the visible units are all conditionally
independent given the hidden units.

A naive implementation of the stochastic approxi-
mation algorithm would require running this Markov
chain to equilibrium after every parameter update to
draw a new set of samples. Younes (1989) showed
that one can instead alternate between simulating the
Markov chain for a single step and performing a pa-
rameter update using a small learning rate. This
method has also been suggested by Tieleman (2008).

3.2 Contrastive Divergence

The inductive principle underlying contrastive diver-
gence (CD) is to select the parameters θ that minimize
the difference between the KL divergences KL(Pe||Pθ)
and KL(Qt

θ||Pθ) (Hinton, 2000). Qt
θ is defined to be

the distribution obtained by applying t steps of the
standard Gibbs kernel to the empirical distribution Pe.
The criterion function for CD is given below.

fCD(θ) =
∑

x∈X

Pe(x) log

(
Pe(x)

Pθ(x)

)
− Qt

θ(x) log

(
Qt

θ(x)

Pθ(x)

)

(3.12)

After an initial approximation of the CD gradient, we
arrive at the form given in Equation 3.13, which in-
volves an intractable expectation with respect to the
t-step distribution Qt

θ. We obtain a stochastic approx-
imation algorithm by replacing the expectation with a
sum over samples x̃n drawn from Qt

θ.

∇fCD ≈
−1

N

N∑

n=1


∇Fθ(xn) −

∑

x
′
∈X

Qt
θ(x

′)∇Fθ(x
′)




(3.13)

≈
−1

N

N∑

n=1

(∇Fθ(xn) −∇Fθ(x̃n)) (3.14)

CD as proposed by Hinton (2000) uses a particular al-
ternating Gibbs sampler where one Gibbs chain is run
for t steps starting from each data case xn, resulting
in N samples x̃n. Note that unlike the algorithm of
Younes (1989), the chain is restarted at the data af-
ter every parameter update. Typically t is chosen to
be quite small. We use t = 1 in the experiments that
follow.

3.3 Maximum Pseudo-Likelihood

The inductive principle underlying maximum pseudo-
likelihood states that we should select the parameters
that maximize the product of all one-dimensional con-
ditional distributions Pθ(xd|x−d) given the observed
data as seen in Equation 3.15.

fPL(θ) =
∑

x∈X

D∑

d=1

Pe(x) log Pθ(xd|x−d) (3.15)

=
1

N

N∑

n=1

D∑

d=1

log Pθ(xdn|x−dn) (3.16)

We can equivalently view pseudo-likelihood as mini-
mizing a sum of differences between the model and
empirical distributions via the pseudo KL divergence

PKL(Pe||Pθ) =
∑

x∈X

∑D

d=1
Pe(x)

(
log Pe(xd|x−d)−
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log Pθ(xd|x−d)
)
. The gradient of the pseudo like-

lihood objective function is given in Equation 3.17
where x

¬i
n is the data vector xn with the value on the

ith dimension “flipped” as seen in Equation 3.18.

∇fPL =
−1

N

∑

n,d

Pθ(x
¬d

dn|x−dn)
(
∇Fθ(xn) −∇Fθ(x

¬d
n)
)

(3.17)

x¬i
dn =

{
1 − xdn if i = d
xdn if i 6= d

(3.18)

3.4 Ratio Matching

The inductive principle underlying ratio matching can
be interpreted as selecting the parameters θ to min-
imize a weighted sum of ℓ2 distances between pairs
of one-dimensional conditional distributions under the
model and the empirical distribution. The ratio
matching criterion function is given in Equation 3.19
(Hyvärinen, 2007).

fRM (θ) =
∑

x∈X

D∑

d=1

∑

ξ∈{0,1}

Pe(x)
(
Pθ(Xd = ξ|x−d)

− Pe(Xd = ξ|x−d)
)2

(3.19)

As shown by Hyvärinen (2007), the ratio matching
criterion function can be reduced to the form given in
Equation 3.20 where we replace the sum over the em-
pirical distribution by a sum over individual training
vectors, and C is a constant that does not depend on
the model parameters.

fRM (θ) =
1

N

N∑

n=1

D∑

d=1

g2(udn) + C (3.20)

g(u) =
1

1 + u
, udn = Pθ(xn)/Pθ(x

¬d
n) (3.21)

This form of the criterion function depends on a ratio
of probabilities where x

¬d
n is defined in Equation 3.18.

Importantly, both Pθ(xn) and Pθ(x
¬d

n) have the same
partition function, so the partition functions cancel
out in the ratio. The gradient of the ratio matching
objective function is given in Equation 3.22.

∇fRM =
2

N

N∑

n=1

D∑

d=1

g(udn)3udn

(
∇Fθ(xn) −∇Fθ(x

¬d
n)
)

(3.22)

3.5 Generalized Score Matching

The inductive principle underlying generalized score
matching also involves an ℓ2 distance applied to the

difference of the inverses of the conditional probabili-
ties as seen in Equation 3.23 (Lyu, 2009).

fGSM (θ) =
∑

x∈X

D∑

d=1

Pe(x)
( 1

Pθ(xd|x−d)
−

1

Pe(xd|x−d)

)2

(3.23)

The generalized score matching criterion can be re-
duced to a form that only depends on ratios of prob-
abilities under the RBM model as shown in Equation
3.24 (we use the definition of x

¬d
n introduced in Equa-

tion 3.18). Note that the original formula in Lyu’s pa-
per contains an error corresponding to g(u) = u−2+u2,
which we correct here (Lyu, 2009).

fGSM (θ) =
1

N

N∑

n=1

D∑

d=1

g(udn) + C (3.24)

g(u) = u−2 − 2u, udn = Pθ(xn)/Pθ(x
¬d

n) (3.25)

The gradient of the GSM objective function is given
in Equation 3.26.

∇fGSM =
2

N

N∑

n=1

D∑

d=1

(u−2

dn − udn)
(
∇Fθ(xn) −∇Fθ(x

¬d
n)
)

(3.26)

Interestingly, the corrected reduced form can be un-
bounded below in the limit as u goes to positive
infinity since it is dominated by the negative lin-
ear term −2u. The derivation of the reduced form
given by Lyu begins by dropping the constant terms
Pe(x)/Pe(xd|x−d)

2. Consider two configurations x

and x
′ that are equal on every dimension except d

where x′
d = 1 − xd. In the limit as Pe(x) = ǫ goes

to zero while Pe(x
′) = α goes to a non-zero limit,

the constant contribution will be (ǫ + α)2/ǫ, which
goes to infinity. As the corresponding model condi-
tional Pθ(xd|x−d) goes to zero (or equivalently the ra-
tio of model probabilities for x

′ and x goes to infinity),
the objective function (Equation 3.23) with the con-
stant terms dropped goes to negative infinity. Unfor-
tunately, this means that the reduced GSM objective
function can not be applied to high-dimensional real
data where many Pe(x) will be zero. The basic objec-
tive function is also problematic since this same analy-
sis shows that the we can not simply ignore the contri-
butions from data cases where Pe(x) = 0. Indeed, the
GSM objective function puts maximum weight on get-
ting the corresponding model conditional distributions
to exactly equal zero. In the subsequent experiments,
we apply GSM with synthetic data only to illustrate
its behavior as some Pe(x) go to zero.

3.6 Discussion

The common presentation of the learning methods de-
rived from each inductive principle makes the relation-
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Figure 1: (a)-(c) Test set classification error. Lower classification error indicates better performance. (d) shows
a sample of the CalTech101 Silhouettes data.

ships between them much easier to discern. First, we
observe that all the methods deal with the intractable
partition function by only computing conditional prob-
abilities or ratios. In SML and CD, this is used within
the Gibbs sampler while in PL, RM, and GSM it is
used directly in the definition of the inductive princi-
ple. Next, we can easily see that the gradient for each
method is based on the difference between the gradient
of the free energy evaluated at a data case and the gra-
dient of the free energy evaluated at a “fantasy” case.
In SML the fantasy cases are sampled from the equi-
librium distribution of the model, while in CD they
are sampled using t steps of the Gibbs kernel applied
to each data case. By contrast, PL, RM and GSM all
use the same fixed set of fantasy cases consisting of the
one-neighbours of each data case. PL, RM, and GSM
differ from each other only in terms of the weighting
of the gradient contributions. Finally, our analysis of
GSM shows that not all objective functions and result-
ing gradient weighting terms will be well behaved. It is
particularly important from an optimization perspec-
tive that the objective functions be bounded below.

4 Data and Training Protocols

We use three data sets in the experimental compar-
isons: MNIST1, the small 20-Newsgroups2 data set,
and a new binary image data set derived from Cal-
Tech101.3 MNIST consists of 28 × 28-size images of
hand-written digits from 0 through 9. We binarize the
images and divide the database into a training set of
50, 000 examples and a validation set of 10, 000 ex-
amples, and use the standard 10, 000 example test-
set. The small 20-Newsgroups data set contains news-
group postings divided into four classes of groups.
Each posting is represented by binary vectors over a
vocabulary of 100 words. We split this data set into
8500 training, 1245 validation, and 6497 test examples

1http://yann.lecun.com/exdb/mnist
2http://www.cs.toronto.edu/~roweis/data.html
3http://www.vision.caltech.edu/Image\_Datasets

respectively. The final data set we use is derived from
the object outlines contained in the CalTech101 an-
notations data set. The object outlines were centered
and scaled on a 28 × 28 image plane and rendered as
filled black regions on a white background creating a
silhouette of each object. We call this data set Cal-

tech101 Silhouettes 4. We show examples from several
of the 101 classes in Figure 1(d). The training set con-
tains 4100 examples with at least 20, and at most 100
examples from each class. The remaining images were
split among a test set and validation set of size 2307
and 2264 respectively.

Our training protocol begins with 100 iterations of
Stochastic Gradient Descent (SGD) on mini-batches of
100 data cases using momentum and iterate averaging
as acceleration techniques (Robbins and Monro, 1951).
To reduce computation time, we select the SGD learn-
ing rate, momentum parameter and whether or not to
use iterate averaging separately for each method by
minimizing a performance measure on a smaller sub-
set of each data set. For CD and SML, we chose one-
step reconstruction error as the performance measure,
while for RM and PL we used their objective function
values. We found that CD benefited most from the
use of momentum without averaging, while the rest
of the methods did well without momentum, but with
averaging.

We fine-tune methods with computable objective
functions, using an LBFGS optimizer (Nocedal and
Wright, 2000, p. 224). We select a weight decay set-
ting specific to each data set, experiment, and method
by training on the full training set with a validation
set held-out. Lastly, we do five full training runs for
each data set, experiment, and method using the se-
lected learning rate, momentum, iterate averaging and
weight decay settings and average the results. The
learning rate range was {10−4, 10−3, 10−2, 10−1, 1}.
The momentum range was {0, 0.3, 0.5, 0.8}. The
weight decay range was {10−5, 10−4, 10−3}. We use

4http://www.cs.ubc.ca/~bmarlin/data/
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Figure 2: (a) to (c) show test set negative log likelihood (NLL) estimated using AIS. (d) shows a synthetic data
experiment comparing GSM and exact ML.

500 hidden units for all experiments.

5 Experiments and Results

• Classification Error: We test the feature extrac-
tion performance of each learning algorithm by esti-
mating a support vector machine classifier based on
the class labels yn and mean-field hidden unit activa-
tion vectors ĥn = E[h|xn]. We use a smooth, multi-
class, linear SVM with an L2-penalty selected to mini-
mize validation set error (Lee and Mangasarian, 2001).
We report the corresponding test-set error in Figure 1.
The results show that stochastic maximum likelihood
(SML) has the most consistent performance across the
data sets.

• Test Set Log Likelihood: There have been sig-
nificant recent advances in Monte Carlo methods for
estimating the log partition function of an RBM that
are computationally feasible for post-training analysis.
We compute test set log likelihoods by estimating the
log partition function once for each trained model us-
ing the annealed importance sampling (AIS) method
proposed by Murray and Salakhutdinov (2009). We
show the results of this evaluation in Figure 2. We see
a win for the stochastic approximate maximum likeli-
hood (SML) method, which achieves the best average
test set log likelihood on MNIST and CalTech and the
second best on 20 Newsgroups. This is not surprising
since SML is the only method specifically trained to
optimize the likelihood.

Figure 2(d) shows an experiment comparing general-
ized score matching and exact maximum likelihood in
terms of log likelihood as the probability of some data
cases goes to zero. We use 9 data dimensions and
10 hidden units. We randomly select 6 data config-
urations from the 29 configurations and assign each
a weight of 1. We assign all other configurations a
weight of ǫ. We normalize the weights over all 29 data
configurations to form the empirical probability dis-

tribution. The graph shows the log likelihood under
models trained by exact ML and by GSM. As pre-
dicted by our analysis, GSM diverges as ǫ approaches
zero while ML is unaffected.

• De-Noising: Reconstruction and de-noising are
commonly used to asses the performance of RBM mod-
els and auto-encoders. We consider a de-noising task
where we select a certain fraction of bits in each test
data case xn and set them to 0 or 1 with even prob-
ability, creating a noisy version of the data case x̃n.
We then compute the 1-step mean field reconstruc-
tion of xn using ĥn = E[h|x̃n] and x̂n = E[xn|ĥn].
We measure the average per-dimension reconstruction
error using mean squared error between xn and x̂n:
(1/ND)

∑N

n=1
||xn − x̂n||

2

2
. The results of this anal-

ysis are presented in Figure 3 (note that in the error
bars are inside the line markers and were not plot-
ted). These results show a consistent advantage for
ratio matching (RM) across the three data sets.

• Novelty Detection: We consider a novelty detec-
tion task that looks at how the free energy of test
cases varies as we add random noise. We select bits
at random and set them to 0 or 1 with even proba-
bility. We report the relative free energy defined as
the difference between the free energy at a given noise
level and the free energy at the zero-noise baseline.
The results for this task are presented in Figure 4 (a)
to (c) (note that in the error bars are inside the line
markers and were not plotted). Pseudo-likelihood is
consistently the most sensitive to noise with a rate of
free energy increase that is similar to or higher than
the other methods on all of the data sets.

• Visualization: As a final qualitative assessment
of the trained RBM models, we display the learned
weights W and visible biases b for each training
method on the MNIST data set. We select the regular-
ization setting that results in the lowest reconstruction
error on the MNIST data set. The weights are shown
in Figure 5 where the top left cell in each figure is the
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Figure 3: Test set de-noising mean squared error as a function of percent noisy bits
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Figure 4: Relative test set free energy as a function of percent noisy bits.

visible bias vector. We sort the hidden units from high-
est to lowest average activation on test data, and show
the weights for every 20th unit in the sorted list. The
weight matrix for each hidden unit can be thought of
as a linear filter or feature detector where a larger filter
response will result a larger value of Pθ(hk = 1|x).

Figure 5(a) shows that contrastive divergence (CD)
learns a mixture of localized spot filters and noisy
non-localized filters. This result is in excellent agree-
ment with previous results by both Hinton (2007, Fig-
ure 3) and Ranzato et al. (2007, Figure 1(e)), which
show an almost identical mixture of spot filters and
non-localized filters. The filters learned by stochas-
tic maximum likelihood (SML) are very similar to
those learned by CD as seen in Figure 5(b). Pseudo-
likelihood learns a mixture of very narrow spot filters,
short/narrow stroke filters, and noisy non-localized
filters as seen in Figure 5(c). Finally, Figure 5(d)
shows that ratio matching (RM) learns highly local-
ized stroke filters. Interestingly, the RM filters are
very similar to previous results on MNIST obtained
using sparse RBMs (Lee et al., 2008, Figure 2) and
other sparse coding models (Ranzato et al., 2007, Fig-
ure 1(d)), even though the ratio matching objective
does not include an explicit sparsity term.

• Computation Time: Basic implementations of
pseudo-likelihood (PL) and ratio matching (RM) have
a computational complexity that is approximately

D times higher than stochastic maximum likelihood
(SML) and contrastive divergence (CD) due to the fact
that CD and SML consider one fantasy data case per
training case, while PL and RM consider D fantasy
cases corresponding to the D possible single bit flips.
A more careful implementation of PL and RM can re-
duce this gap by re-using intermediate computations.
On the 100 dimensional 20 Newsgroups data we ob-
serve that PL and RM are approximately 10 times
slower than SML and CD. On the 784 dimensional
MNIST and CalTech101 data sets, they are approxi-
mately 16 times slower.

6 Conclusions

Our analysis in Section 3 shows that all of the meth-
ods we consider differ only in the distribution of fan-
tasy data they use and how they weight the gradient
contributions from different training cases. However,
these differences are meaningful as the methods ex-
hibit very different theoretical and empirical charac-
teristics. Our analysis of the generalized score match-
ing criterion has revealed that it is ill suited for use on
real data since it is not well behaved when some data
cases have zero probability. Empirically, we find that
the stochastic maximum likelihood (SML) method has
consistently better performance in terms of density
estimation, which is explained by the fact that it is
the only method based on the maximum likelihood
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(a) CD (b) SML (c) PL (d) RM

Figure 5: Learned weights and visible biases on the MNIST data set. The top left cell in each figure is the visible
bias vector. Black corresponds to a weight of −1 while white corresponds to a weight of +1.

principle. The classification results show that all the
methods give fairly comparable performance, although
SML contrastive divergence (CD) are definitely bet-
ter on MNIST. RM has a consistent advantage over
the other methods in terms of de-noising, which cor-
roborates well with the observation that the filters it
produces are localized strokes instead of spots. On
the novelty detection task pseudo-likelihood exhibits
the most sensitivity. Finally, our most efficient imple-
mentations for ratio matching and pseudo likelihood
are still an order of magnitude slower than SML and
CD. Taking computation time into account, SML is
certainly the most attractive method.

Future work on alternative inductive principles for
RBMs will need to seriously consider the issue of com-
putational complexity. We are currently investigating
whether the complexity of RM and PL can be effec-
tively reduced by considering fewer bit flips for each
training case. We are also investigating the use of score
matching in Gaussian/Binary RBMs where it has es-
sentially the same computational complexity as SML.
Finally, we plan to investigate the application of ac-
celerated RM and PL methods for greedy layer-wise
training of deep architectures.
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