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1.  WHAT IS ABDUCTION?

In the 1890s, the great American  philosopher C. S. Peirce (1931-1958) used the

term “abduction” to refer to a kind of inference that involves the generation and

evaluation of explanatory hypotheses.  This term is much less familiar today than

“deduction”, which applies to inference from premises to a conclusion that has to be true

if the premises are true.   And it is much less familiar than “induction”, which sometimes

refers broadly to any kind of inference that introduces uncertainty, and sometimes refers

narrowly to inference from examples to rules, which I will call “inductive

generalization”. Abduction is clearly a kind of induction  in the broad sense, in that the

generation of explanatory hypotheses is fraught with uncertainty.  For example, if the sky

suddenly turns dark outside my window, I may hypothesize that there is a solar eclipse,

but many other explanations are possible, such as the arrival of an intense storm or even a

huge spaceship.

 Despite its inherent riskiness, abductive inference is an essential part of human

mental life.   When scientists produce theories that explain their data, they are engaging

in abductive inference.  For example, psychological theories about mental representations

and processing are the result of abductions spurred by the need to explain the results of

psychological experiments.   In everyday life, abductive inference is ubiquitous, for

example when people generate hypotheses to explain the behavior of others, as when I
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infer that my son is in a bad mood to explain a curt response to a question.   Detectives

perform abductions routinely in order to make sense of the evidence left by criminal

activity, just as automobile mechanics try to figure out what problems are responsible for

a breakdown.   Physicians practice abduction when they try to figure out what diseases

might explain a patient’s symptoms.   Table 1 summarizes the kinds of abductive

inference that occur in various domains, involving both targets that require explanation

and the hypotheses  that are generated to explain them.   Abduction occurs in many other

domains as well, for example religion where people hypothesize the existence of God in

order to explain the design and existence of the world.

DOMAINS TARGETS TO BE

EXPLAINED

EXPLANATORY

HYPOTHESES

science experimental results theories about structures

and processes

medicine symptoms diseases

crime evidence culprits, motives

machines operation, breakdowns parts, interactions, flaws

social behavior mental states, traits

Table 1.  Abductive inference in five domains, specifying what needs to

be explained and the kinds of hypotheses that provide explanations.

The next section will briefly review the history of the investigation of abduction

by philosophers and artificial intelligence researchers, and discuss its relative neglect by

psychologists.   First, however, I want to examine the nature of abduction and sketch

what would be required for a full psychological theory of it.   I then outline a

neurocomputational theory of abductive inference that provides an account of some of the

neural processes that enable minds to make abductive inference.   Finally, I discuss the
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more general implications of replacing logic-based philosophical analyses of human

inference with theories of neural mechanisms.

Here are the typical stages in the mental process of abduction.   First, we notice

something puzzling that prompts us to generate an explanation.   It would be pointless to

waste mental resources on something ordinary or expected.  For example, when my

friends greet me with the normal “Hi”, I do not react like the proverbial psychoanalyst

who wondered “What can they mean by that?”   In contrast, if a normally convivial friend

responds  to “Good morning” with “What’s so good about it?”,  I will be prompted to

wonder what is currently going on in my friend’s life that might explain this negativity.

Peirce noticed that abduction begins with puzzlement, but subsequent philosophers have

ignored the fact that the initiation of this kind of inference is inherently emotional.

Intense reactions such as surprise and astonishment are particularly strong spurs to

abductive inference.   Hence the emotional initiation of abductive inference needs to be

part of any psychological or neurological theory of how it works.   An event or general

occurrence only becomes a target for explanation when it is sufficiently interesting and

baffling.   I know of no general experimental evidence for this claim, but Kunda, Miller,

and Claire (1990) found that surprise triggered causal reasoning in cases of conceptual

combination.

Second, the mind searches for possible hypotheses that could explain the target.

Sometimes, the search is easily completed when there is a prepackaged hypothesis

waiting to be applied.  For example, if you know that your friend Alice gets stressed out

whenever she has a deadline to meet, you might explain her grumpy behavior by the

conjecture that she has a project due.   In more deeply puzzling cases, the search for an
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explanatory hypothesis may require a much longer search through memory, or even the

use of analogy or other constructive processes to generate a highly novel hypothesis.

This generation is what happens in science when a genuinely new theory needs to be

developed.

Generation of a candidate explanatory hypothesis is the usual third stage of

abductive inference.  If one is epistemically lazy, abductive inference may end with the

generation of a single candidate.   But scientists and careful thinkers in general are aware

of the perils of abductive inference, in particular that one should not accept an

explanatory hypothesis unless it has been assessed with respect to competing hypotheses

and all the available evidence.  Philosophers call this fourth, evaluative stage of abductive

reasoning inference to the best explanation (Harman, 1973; Thagard, 1988; Lipton,

2004).  Ideally, the reasoner  correctly decides that it is legitimate to infer a hypothesis

because it really is the best explanation of all the available evidence.   Thus generation of

an explanatory hypothesis blends into its evaluation.

Just as abduction originates with an emotional reaction, it ends with one, because

formation and acceptance of explanatory hypotheses usually produce positive emotions.

Gopnik’s (1998) comparison of explanations with orgasms is exaggerated, but it is

nevertheless important that finding an explanation for something puzzling is often very

satisfying.   Hence we can mark emotional satisfaction as the final stage of abductive

inference, as shown in Figure 1.   This diagram will be flushed out substantially in later

sections in terms of neurological processes.   The result will be an account of abduction

that goes far beyond the philosophical account that takes abduction to be a kind of

inference of the form:  q, if p then q, so maybe p.   (Somebody once called this “modus
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morons”.)  To foreshadow, the main differences include not only the crucial involvement

of emotion, but also the allowance that both targets and hypotheses can be multimodal

rather than purely verbal representations.   Moreover, I will contend that the relation

between a target and an explanatory hypothesis is that the target phenomenon is caused

by the factors invoked by the hypothesis, and that people’s understanding of causality is

inherently non-verbal because it is rooted in visual and kinesthetic perception.  Hence

abduction, instead of looking like a feeble-minded cousin of the deductive principle

modus ponens, is actually a far richer and more powerful form of thinking.

Figure 1.  The process of abductive inference.

2.  ABDUCTION IN PHILOSOPHY, ARTIFICIAL

INTELLIGENCE, AND PSYCHOLOGY

Although the term “abduction” only emerged in the nineteenth century,

philosophers and scientists have been aware of inference to explanatory hypotheses at

least since the Renaissance (Blake, Ducasse, and Madden, 1960).   Some thinkers have

been skeptical that a hypothesis should be accepted merely on the basis of what it

explains, for example Isaac Newton, John Herschel, August Comte, and John Stuart Mill.
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or surprise

generation of
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But others, such as David Hartley, Joseph  Priestley, and William Whewell  have argued

that such inference is a legitimate part of scientific reasoning.  In the twentieth century,

there are still philosophical skeptics about abduction (e.g van Fraassen, 1980), but many

others contend that abduction, construed as inference to the best explanation, is an

essential part of scientific and everyday reasoning (Magnani, 2001; Psillos, 1999;

Thagard, 1992, 1999, 2000).

The generation of explanatory hypotheses has also interested philosophers

concerned with how scientific discoveries are made.  Hanson (1958) tried to develop

Peircean ideas into a “logic” of discovery.   More recently, Darden (1991), Magnani

(2001),  and  Thagard (1988) have examined cognitive processes that are capable of

producing new hypotheses, including scientific theories.   The work of Shelley (1996)

and Magnani (2001) shows how abduction can involve visual as well as verbal

representations, which is important for the multimodal theory developed below.

In the field of artificial intelligence, the term “abduction” is usually applied to the

evaluation of explanatory hypotheses, although it sometimes also includes processes of

generating them (Charniak and McDermott, 1985; Josephson  and Josephson, 1994).   AI

models of abductive inference have primarily been concerned with medical reasoning.

For example, the RED system takes as input descriptions of cells and generates and

evaluates hypotheses about clinically significant antibodies found in the cells (Josephson

and Josephson, 1994).   More recently, discussions of causal reasoning in terms of

abduction have been eclipsed by discussions of Bayesian networks based on probability

theory, but later I will describe limitations of purely probabilistic accounts of causality,

explanation, and abduction.   Abduction has also been a topic of interest for researchers
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in logic programming (Flach  and Kakas, 2000), but there are severe limitations to a

characterization of abduction in terms of formal logic (Thagard and Shelley, 1997).

Some AI researchers have discussed the problem of generating explanatory

hypotheses without using the term “abduction”.  The computational models of scientific

discovery described by Langley, Simon, Bradshaw, and Zytkov (1987) are primarily

concerned with the inductive generalization of laws from data, but they also discuss the

generation of explanatory structure models in chemistry.  Langley et al. (2004) describe

an algorithm for “inducing explanatory process models” , but it is clear that their

computational procedures for constructing models of biological mechanisms operate

abductively rather than via inductive generalization.

Psychologists rarely use the terms “abduction” or “abductive inference”, and very

little experimental research has been done on the generation and acceptance of

explanatory hypotheses.  Much of the psychological literature on induction concerns a

rather esoteric pattern of reasoning, categorical induction,   in which people express a

degree of confidence that a category has a predicate after being told that a related

category has the predicate (Sloman and Lagnado, 2005).   Here is an  example:

Tigers have 38 chromosomes.

Do buffaloes have 38 chromosomes?

Another line of research involves inductive generalizations about the behavior of physical

devices (Klahr, 2000).    Dunbar (1997) has discussed the role of analogy and other kinds

of reasoning in scientific thinking in real-world laboratories.  Considerable research has

investigated ways in which people’s inductive inferences deviate from normative

standards of probability theory (Gilovich, Griffin, and Kahneman (2002).
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Experimental research concerning causality has been concerned with topics

different from the generation of causal explanations, such as how people distinguish

genuine causes from spurious ones (Lien and Cheng, 2000) and how knowledge of the

causal structure of categories supports the ability to infer the presence of unobserved

features (Rehder and Burnett, 2005).  Social psychologists have investigated the

important abductive task of attribution, in which people generate explanations for the

behavior of others (Kunda, 1999; Nisbett and Ross, 1980).   Read and Marcus-Newhall

tested the applicability of Thagard’s (1992) computational theory of explanatory

coherence to the evaluation of social explanations.  Generally, however, psychologists

have had little to say about the mental mechanisms by which new hypotheses are formed

and evaluated.  My review of interdisciplinary research on abductive inference has been

very brief, for I want to move on to develop a new neurocomputational theory of

abduction.

3.   NEURAL STRUCTURES

The structure of abduction is roughly this:

There is a puzzling target T that needs explanation.

Hypothesis H potentially explains T.

So, H is plausible.

H is a better explanation of T and other phenomena than competing hypotheses.

So H is acceptable.

It would be psychologically unrealistic, however, to assume, as philosophers and AI

researchers have tended to do, that T and H must be sentences or propositions (the

meanings of sentences).     A broader view of mental representation is required.
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As already mentioned, abductive inference can be visual as well as verbal

(Shelley, 1996; Magnani, 2001).   For example, when I see a scratch along the side of my

car, I can generate the mental image of grocery cart sliding into the car and producing the

scratch.   In this case both the target (the scratch) and the hypothesis (the collision) are

visually represented.   Other sensory modalities can also provide explanation targets.

For example, in medical diagnosis the perception of a patient’s symptoms can involve

vision (rash), touch (swelling), sound (heart murmur), smell (infection), and even taste

(salty, in patients with cystic fibrosis).   An observant cook may similarly be prompted to

generate hypotheses by various kinds of sensory experiments, asking such questions as

“Why does the cheese have blue stuff on it?” (vision),  “Why is the broccoli soggy?”

(touch), “Why is the timer buzzing?” (hearing), “Why is the meat putrid?” (smell), and

“Why is the soup so salty” (taste).    Thus all of the senses  can generate explanation

targets that can initiate abductive inference.

It is an interesting question whether hypotheses can be represented using all

sensory modalities.   For vision the answer is obvious, as images and diagrams can

clearly be used to represent events and structures that have causal effects.   And the

answer appears to be yes when one is explaining one’s own behavior: I may recoil

because something I touch feels slimy, or jump because of a loud noise, or frown because

of a rotten smell, or gag because something tastes too salty.  Hence in explaining my own

behavior my mental image of the full range of examples of sensory experiences may have

causal significance.   Applying such explanations of the behavior of  others requires

projecting onto them the possession of sensory experiences that I think are like the ones

that I have in similar situations.   For example, when  I see people wrinkle up their noses
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in front of a garbage can, I may project onto them an experience similar to what  I

experience when I smell rotting garbage.  In this case, my image of a smell is the

olfactory representation of what I see as the cause of their behavior.   Empathy works the

same way, when I explain people’s behavior in a particular situation by inferring that

they are having the same kind of emotional experience that I have had in similar

situations.   For example,  if a colleague with a recently rejected manuscript is frowning, I

may empathize by remembering how annoyed I felt when a manuscript  of mine was

rejected, and my mental image projected onto the colleague constitutes a non-verbal

representation that explains the frown.  Of course, I may operate with verbal explanations

as well, but these complement the empathetic ones.   Hence there is reason to believe that

abductive inference can be fully multimodal, in that both targets and hypotheses can have

the full range of verbal and sensory representations.   In addition to words, sights, sounds,

smells, touches, and tastes, these can include emotional feelings, kinesthetic experiences

such as feeling the body arranged in a certain way, and other feelings such as pain.

A narrowly verbal account of abduction such as those favored by logicians would

clearly not be able to do justice to the multimodal character of abductive inference.  But

from a neurological perspective, there is no problem in postulating representations that

operate in all relevant modalities.     Let me define a neural structure as a complex

<neurons, connections, spiking behaviors> that  consists of a set of neurons, a set of

synaptic connections among them, and a set of behaviors of individual neurons that

specifies their patterns of spiking determined by the spiking behaviors of all those

neurons to which they are connected.  If the neurons are thought of as a dynamical

system governed by a set of differential equations, then the spiking behaviors can be
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thought of  as the state  space of the system.   In contrast to standard connectionist models

of neural networks, it is important to specify the behavior of neurons as more than just

patterns of activation, because there is evidence that spiking patterns can be both

neurologically and computationally important (Eliasmith and Anderson, 2003;  Maass

and Bishop, 1999;  Rieke et al., 1997 ).

On the plausible assumption that all mental representations are brain structures,

we can conjecture that verbal and sensory representations are neural structures of the sort

just described.  Hence we can reconceptualize abduction neurologically as a process in

which one neural structure representing the explanatory target generates another neural

structure that constitutes a  hypothesis.   Two major problems need to be solved  in order

to construct a neurological model of abduction consistent with the flow chart presented

earlier in figure 1.    The first is how to characterize  the emotional inputs and outputs to

the abductive process, that is how to mark the target as puzzling and the hypothesis as

satisfying.  The second is how to represent the explanatory relation between the neurally

represented target and hypothesis.

The first  problem can be dealt with by supposing that emotions are also neural

structures in the sense just defined.   I do not mean  to  suggest that for each emotion

there is a constrained set of neurons that encodes it.  Emotions involve complex

interaction among sensory processes involving bodily states, and cognitive processes

involving appraisal of a person’s situation (see Thagard, 2005, ch. 10).    Hence the

neural structure corresponding to an emotional experience  is not a neuronal group

situated in a particular brain area, but a complex of neurons distributed across multiple

brain areas.
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Now the question becomes:  what is the relation between the neural structure for

the explanation target and the neural structure for an emotion such as puzzlement?

There are two possibly compatible answers involving different aspects of neural

structure:  connections and spiking behavior.   The target neural structure may be

interrelated  with an emotional neural structure because some of the neurons in the first

structure have direct or indirect synaptic connections with the second structure.   Hence

the two neural structures are part of a larger neural structure.  Moreover, these

interconnections may establish temporal coordination between the two neural structures,

so that the spiking behavior of the target neural structure is synchronized or

approximately coordinated with the spiking behavior of emotional neural structure.

Through one or both of these means – physical connectivity and temporal behavior – the

brain manages to mark the target as puzzling and in need  of explanation.  Similarly, the

hypothesis can be represented by a neural structure which operates in any verbal or

sensory modality, and which can be associated with a neural structure corresponding to

the emotional experience of satisfaction or pleasure.   Thus part  of  the flow chart in

figure 1 translates into the following neurological diagram, figure 2.   What remains to be

investigated is the relation of explanation and inference marked by the thin arrow.   We

need an account of explanation as a neurological process.
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Figure 2.  Abduction as a neural process.  The plain lines indicate

associations based on synaptic connectivity and temporal coordination,

and the thin arrow indicates an explanatory relation to be clarified in the

next section.  The thick arrow indicates an inferential relation to be

clarified in section 5.

4.  EXPLANATION AND CAUSALITY

Abductive inference is from a target to a hypothesis that explains it, but what is

explanation?  In philosophy and cognitive science, there have been at least six approaches

to the topic of explanation (Thagard, 1992, pp. 118ff.).  Explanations have been viewed

as deductive arguments, statistical relations, schema applications, analogical

comparisons, causal relations, and linguistic acts.   All of these approaches have

illuminated some aspects of the practice of explanation in science and everyday life, but

the core  of explanation, I would argue, is causality:  a hypothesis explains a target if it

provides a causal account of what needs to be explained.   In medicine, a disease explains

symptoms because the abnormal biological state that constitutes the disease produces the

symptoms through biological mechanisms (Thagard, 1999).   In ordinary social life,

attributing a mental state such as an emotion explains a person’s behavior because the

neural

structure
(target)

neural

structure
(hypothesis)

neural

structure
(puzzled)

neural

structure
(satisfied)
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mental state is the assumed cause of the behavior.   In science, a theory explains

phenomena such as the motions of  the planets by providing the causes of such

phenomena.   Deductive, statistical, schematic, analogical, and linguistic aspects of

explanation can all be shown to be subordinate to the fundamental causal aspect of

explanation.

Hence the problem of describing the explanatory relation between hypotheses and

targets is largely the problem of describing the causal relation between what neural

structures for hypotheses represent and what neural structures for targets represent.   To

put it most simply, abduction becomes:  T, H causes T, so maybe H, where H and T are

not propositions but what  is represented by neural structures.   Hence it is crucial to give

a philosophically and psychologically plausible account of causality.

The philosophical literature on causality is huge, but here is a quick summary of

extant positions on the nature of causality:

 1.  Eliminativist:   Causality is an outmoded notion no longer needed for scientific

discourse.

2.  Universalist:  Causation is a relation of constant conjunction: the effect always occur

when the cause occurs.

3.  Probabilistic:  Causation is a matter of probability:  the effect is more probable given

the cause than otherwise.

4.  Causal powers:  the cause has a power to produce the effect.

Each of these positions is  problematic.  The eliminativist position runs afoul of the fact

that talk of causal mechanisms still abounds in science.  The universalist position is

untenable because most causal relations are statistical rather than constant:  infection by a
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mycobacterium causes tuberculosis, but many people infected by it never develop the

disease.    Similarly, the probabilistic position cannot easily distinguish between cases

where a cause actually makes an effect more likely, as in infection by the mycobacterium,

and cases where the effect is made more likely by some other cause.   For example,  the

probability that people have tuberculosis given that they take the drug Isoniazid is much

greater than the probability that they have tuberculosis, but this is because Isoniazid is a

commonly prescribed treatment for the disease, not because it causes the disease. (See

Pearl, 2000, for a broad and deep discussion of causality and probability.)   People have

an intuitive sense of the difference between causal and purely statistical relations.  In part,

this arises from an understanding of how mechanisms connect causes with their effects:

see section 7 below.   But it also arises from a natural perceptual inclination to see certain

kinds of occurrences  as causally related to each other.   This inclination does not depend

on the postulation of occult causal powers that causes must have in relation to their

effects, but on fundamental features of our perceptual systems.

Evidence that causal relations can be perceived comes from three kinds of

psychological evidence:  cognitive, developmental, and neurological.   Michotte (1963)

performed a large array of experiments with visual stimuli that suggest that adults have a

direct impression of cause-effect relations: when people see an image of one ball moving

into another that begins to move, the first ball is perceived to cause the second one to

move.   Such reactions are even found in young infants:  Leslie and Keeble (1987)

provided experimental evidence that even 27-week old infants perceive a causal

relationship.   Baillargeon, Kotovsky, and Needham (1995) report that infants as young as

2.5 months expect a stationery object to be displaced when it is hit by a moving object;
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by around 6 months, infants believe that the distance traveled by the stationery object is

proportional to the size of the moving object.   Thus at a very primitive stage of verbal

development children seem to have some understanding of causality based on their visual

and tactile experiences.    According to Mandler (2004), infants’ very early ability to

perceive causal relations need not be innate, but could arise from a more general ability to

extract meaning from perceptual relationships.  Whether or not it is innate, infants clearly

have an ability to extract causal information that develops long before  any verbal ability.

 Recent work using functional magnetic resonance imaging has investigated brain

mechanisms underlying perceptual causality (Fugelsang et al., 2005).   Participants

imaged while viewing causal events had higher levels of relative activation in the right

middle frontal gyrus and the right inferior parietal lobule compared to those viewing non-

causal events.   The evidence that specific brain structures are involved in extracting

causal structure from the world fits well with cognitive  and developmental evidence that

adults  and children are able to perceive causal relations, without making inferences

based on universality, probability, or causal powers.     It is therefore plausible that

people’s intuitive grasp of causality, which enables them to understand the distinction

between causal relations and mere co-occurrence, arises very early from perceptual

experience.     Of course, as people acquire more knowledge, they are able to expand this

understanding of causality far beyond perception, enabling them to infer that invisible

germs cause disease symptoms.   But this extended understanding of causality is still

based on the perceptual experience of one event making another happen, and does not

depend on a mysterious, metaphysical conception of objects possessing causal powers.
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For discussion of the role of causality in induction, see Bob Rehder’s chapter  in this

volume.

Now we can start to flesh out in neurological terms what constitutes the relation

between a target and an explanatory hypothesis.   Mandler (2004) argues that CAUSED-

MOTION is an image schema, an abstract, non-propositional,  spatial representation that

expresses primitive meanings.  Lakoff (1987) and others have proposed that such non-

verbal representations are the basis for language and other forms of cognition.   Feldman

and Narayan (2004) have described how  image schemas  can be implemented in artificial

neural systems.   I will assume that there is a neurally encoded image schema that

establishes the required causal relation that ties together the neural structure of a

hypothesis and the neural structure  of the target that it explains.   We would then have a

neural representation of the explanatory, causal relation between hypotheses and targets.

This relation  provides the abductive basis for the inferential process described in the next

section.

The model of abductive inference sketched in figures 1 and 2 has been

implemented in a computer simulation that shows in detail how neural processes can

generate emotional initiation and causal reasoning (Thagard and Litt, forthcoming).  The

details are too technical to present here, but the simulation is important because it shows

how causal and emotional information distributed over thousands of artificial neurons can

produce a simple form of abductive inference.

5.  INFERENCE

On the standard philosophical view, inference is the movement from one or more

propositions taken to be true to another proposition that follows from them deductively or
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inductively.    Here a proposition is assumed  to be an abstract entity, the meaning content

of a sentence.   Belief and other mental states such as doubt, desire, and fear are all

propositional attitudes, that is, relations between persons and propositions.   An inference

is much like an argument, which is the verbal description of a set of sentential premises

that provide the basis for accepting a conclusion.   Most philosophical and computational

accounts of abductive inference have assumed this kind of linguistic picture of belief and

inference.

There are many problems with this view.  It postulates the existence  of an infinite

number of propositions, including an infinite number that will never be expressed by any

uttered sentence.    These are abstract entities whose existence is utterly mysterious.  Just

as mysterious is the relation between persons and propositions, for what is the connection

between a person’s body or brain and such abstract entities?   The notion of a proposition

dates back at least to Renaissance times when almost everyone assumed that persons

were essentially non-corporeal souls,  which could have some non-material relation to

abstract propositions.     But the current ascendancy of  investigation of mental states and

operations in terms of brain structures and processes makes talk of abstract propositions

as antiquated as theories about souls or disease-causing humors.   Moreover,

philosophical theories  of propositional belief have generated large  numbers of insoluble

puzzles, such as how it can be that a person can believe that Lewis Carroll wrote Alice in

Wonderland, but not that Charles Dodgson did, when the beliefs seem to have the same

content because Carroll and Dodgson are the same person.

Implicit in my account of abductive inference is a radically different account of

belief that abandons the mysterious notion of a proposition in favor of biologically
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realistic ideas about neural structures.   In short, beliefs are neural structures consisting of

neurons, connections, and spiking behavior; and so are all the other mental states that

philosophers have characterized as propositional attitudes, including doubt, desire, and

fear.   This view does away with the metaphysical notion of a proposition, but does not

eliminate standard mental concepts such as belief and desire, which are, however,

radically reconstrued in terms of structures and  processes in the brain (cf. Churchland,

1989).

This view of mental operations makes possible an account of the nature of

inference that is dramatically different from the standard account that takes inference to

operate on propositions the same way that argument operates on sentences.   First, it

allows for non-verbal representations from all sensory modalities to be involved in

inference.   Second, it allows inferences to be holistic in ways that arguments are not, in

that they can simultaneously take into account a large amount of  information before

producing a conclusion.   How this works computationally is shown by connectionist

computational models such as my ECHO model of explanatory coherence (Thagard

1992).  ECHO is not nearly as neurologically realistic as the current context requires,

since it uses  localist artificial neurons very different from the groups of spiking neurons

that I have been discussing, but it at least shows how parallel activity can lead to holistic

conclusions.

What then is inference?   Most generally, inference is a kind of transformation of

neural structures, but obviously not all such transformations count as inference.   We

need to isolate a subclass of neural structures that are representations, that is ones that

stand for something real or imagined in the world.    Roughly, a neural structure is a
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representation if its connections and spiking behavior enable it to relate to perceptual

input and/or the behavior of  other neural structures in such a way that it can be construed

as standing for something else such as a thing or concept.   This is a bit vague, but is

broad enough to cover both cases where neural structures stand for concrete  things in the

world, e.g. George W. Bush, and for general categories that may or may not have any

members, e.g. unicorns.   Note that one neural structure may constitute many

representations, because different spiking behaviors may correspond to different things.

This capability is a feature of all distributed representations.

Accordingly, we can characterize inference as the transformation of

representational neural structures.   Inference involving sentences is a special case of

such transformation where the relevant neural structures  correspond to sentences.    My

broader account has the great advantage of allowing thinking that uses visual and other

sensory representations to count as inference as well.   From this perspective, abduction is

the transformation of representational neural structures that produces neural structures

that provide causal explanations.

This neural view of inference is open to many philosophical objections.    It

remains to be shown that neural structures have sufficient syntactic and semantic

complexity to qualify as sentential representations.   The syntactic problem is potentially

solved by theories of neural combinatorics such as the tensor product theory of

Smolensky (1990) which show how vectors representing neural activity can be combined

in ways that capture syntactic structure.   The semantic problem is potentially solved by

providing more detail about how neural structures can relate to the world and to  each



21

other (Eliasmith, 2005).    But much more needs to be said about what enables a neural

structure to constitute a meaningful representation.

Another objection to my account of neural structures and inference is that it

requires some way of specifying groups of neurons that are part of identifiable neural

structures.   In the worse case, one might be forced to conclude that there is only one

neural structure in the brain, consisting of all the neurons with all their connections and

spiking behaviors.   This problem becomes especially acute in cases of inference that

involve multiple kinds of verbal, perceptual, and emotional representation, which require

that multiple brain areas be involved.   In practice, however, the problem of isolating

neural structures does not seem to be insurmountable.   Neuroscientists often talk of

groups, populations, or assemblies of neurons that are identifiable subsets of the 100

billion or so neurons that constitute an entire brain.  Groups are identifiable because they

have far more connections with each other than they do with neurons in other parts of the

brain.   Hence even though there is a great deal of interconnectivity in the brain, we  can

still identify groups of neurons with high  degrees of connection to each other and spiking

behaviors that enable them to constitute representations.   So the view that inference is

transformation of neural structures does not devolve into the much less precise claim that

inference is just brain transformation.

Another philosophical  objection to the neural theory of inference is that it is

unduly narrow in that does not apply to inferences by robots or by extraterrestrial beings

with brains radically different from ours.   My response is that I am only concerned here

to provide a special theory of human inference, and will leave the problem of developing

a general theory of inference for the occasion when we actually encounter robots or aliens
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that are intelligent enough that we want to count  what they do as inference.      The

general theory would consist of a broader account of a representational structure,  <parts,

relations, behaviors>, analogous to the <neurons, connections, spiking behaviors> of

humans and other terrestrial animals.    It is an open question what the degree of

similarity will be between the mental mechanisms of human and non-human thinkers,  if

there are any of the latter.

6.  EMOTIONAL INITIATION

I described earlier how abductive inference is initiated by emotional reactions

such as surprise and puzzlement, but other forms of inference also have affective origins.

The influence of emotions on decision making has often been noted (Damasio, 1994;

Mellers et al., 1999; Thagard, 2001, 2006).  But less attention has been paid to the fact

that inferences about what to do are usually initiated by either positive or negative

emotions.  Decisions are sometimes prompted by negative emotions such as fear:  if I am

afraid that something bad will happen, I may be spurred to decide what to do about it.

For example, a person who is worried about being fired may decide to look for other jobs.

It would be easy to generate examples of cases where other negative emotions such as

anger, sadness, envy, and guilt lead people to begin a process of deliberation that leads to

a practical inference.  More positively, emotions such as happiness can lead to decisions,

as when someone thinks about how much fun it would be to have a winter vacation and

begins to collect travel information that will produce a decision about where to go.    Just

as people do not make abductive inferences unless there is some emotional reason for

them to look for explanations, people do not make inference about what to do unless

negative or positive emotional reactions to their current situation indicate that action is
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required.   In some cases, the emotions may be tied to specific perceptual states, for

example when hunger initiates a decision about what to eat.

Deductive inference might be thought to be impervious to emotional influences,

but there is neurological evidence that even deduction can be influenced by brain areas

such as the ventromedial prefrontal cortex that are known to be involved in emotion

(Houdé et al., 2001; Goel and Dolan, 2003).  It is hard to say whether  deduction is

initiated by emotion, because I think  it is rarely initiated at all outside the context of

mathematical reasoning:   Readers should ask themselves when was the last time they

made a deductive inference.  But  perhaps deduction is sometimes initiated by

puzzlement, as when one wonders whether an object has a property and then retrieves

from memory a rule that says that all objects  of this type have the property in question.

This kind of inference may be so automatic, however, that we never become aware of the

making of the inference or any emotional content of it.

Analogical inference often involves emotional content, especially when it is used

in persuasion to transfer negative affect from a source to a target (Blanchette and Dunbar,

2001; Thagard and Shelley, 2001).    For example, comparing a political leader to Hitler

is a common way of motivating people to dislike the leader.   Such persuasive analogies

are often motivated by emotional reactions such as dislike of a person or policy.

Because I dislike the leader, I compare him or her to Hitler in order to lead you to dislike

the leader also.   Practical analogical inferences are prompted by emotions in the same

way that  other decisions are:  I want to go on vacation, and remember I had a good time

at a resort before, and decide to go to a similar resort.   Analogical abductions in which an
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explanatory hypothesis is formed by analogy to a previous explanation are prompted by

the same emotional reactions (surprise, puzzlement) as other abductive inferences.

Are inductive generalizations initiated by emotional reactions?   At the least,

emotion serves to focus on what is worth the mental effort to think about enough to form

a generalization.   As a social example, if I have no interest in Albanians I will probably

not bother  to form a stereotype that generalizes about  them, whereas if I strongly like or

dislike them I will be much more inclined to generalize about their positive or negative

features.   I conjecture that most inductive generalizations occur when there is some

emotion-related interest in the category about which a rule is formed.

It is unfortunate that no one has collected a corpus that records the kinds of

inferences that ordinary people make every day.   I conjecture that such a corpus would

reveal that most people make a large number of practical inferences when decisions are

required, but a relatively small number of inductive and deductive inferences.    I predict

that deduction is very rare unless people are engaged in mathematical work, and that

inductive inferences are not very frequent either.   A carefully collected corpus would

display, I think, only the occasional inductive generalization or analogical inference, and

almost none of the categorical inductions studied by many experimental psychologists.

Abductive inferences generating causal  explanations of puzzling occurrences would be

more common, I conjecture, but not nearly as common as practical inferences generating

decisions.   If the inference corpus also recorded the situations that prompt the making of

inferences, it would also provide the basis for testing my claim that most inference,

including practical, abductive, inductive, analogical, and deductive, is initiated by
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emotions.   For further discussion of the relation between deduction and induction, see

the chapters in this volume by Oaksford and by Rips and Asmuth.

7.  MECHANISMS

Some psychological research on inductive inference has pointed to the tendency

of people to assume the presence of underlying mechanisms associated with categories of

things in the world (Rehder and Burnett, 2005; Ahn, Kalish, Medin, and Gelman, 1995).

Psychologists have had little to say about what mechanisms are, or how people use

representations of mechanisms in their inferences.   In contrast, philosophers of science

have been productively addressing this issue, and the point of this section is to show the

relevance of this understanding  of mechanisms to the problem of abductive inference.

The relevance is double, in that the neural structures  I have been describing are clearly

mechanisms, and abductive inferences often involve the generation or application of new

hypotheses about mechanisms.

Machamer, Darden, and Craver  (2000, p. 3) characterize mechanisms as “entities

and activities organized such that they are productive of regular changes from start or set-

up to finish or termination conditions.”      A mechanism can also be described as a

system whose behavior produces a phenomenon in virtue of organized component parts

performing coordinated component operations (Bechtel and Abrahamson, 2005).   I think

these ways of describing mechanisms are mostly equivalent, and offer my own

terminological variant of a mechanism as consisting of a complex <objects, relations,

changes>, consisting of a set of objects (entities, parts) that have properties and physical

relations to each other that cause changes to the properties of the objects and changes to

the relations the objects have to each other and to the world.   For example, a bicycle  is a
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mechanism consisting of wheels, pedals, and other parts that are connected to each other,

with regular changes to these parts and their relation to the world arising from external

inputs such as a person pedaling and the internal organization of the machine.  Similarly,

a neural structure <neurons, connections, spiking behaviors> is clearly a mechanism

where the objects are neurons, their relations are synaptic connections, and their changes

are spiking behaviors.    I conjecture that whenever  people think of categories in terms of

underlying mechanisms they have something like the pattern of <objects, relations,

changes> in mind.    In human minds, mechanisms can be represented verbally, as in “the

pedal is bolted to the frame”, but visual and kinesthetic representations are also used in

science and everyday thinking (Thagard, 2003).  Neural structures as well as the

inferences that transform them are clearly mechanisms, and mechanisms can be mentally

represented by combinations of different sorts of neural structures.

I doubt that all abductive inference is based on representation of mechanisms,

because abduction only requires a single causal relation, not  full knowledge of a

mechanism.   If all I know about electric lights is that when you push the switch, the light

comes on, then I can abduce from the fact that the light is on that someone pushed the

switch.   But such knowledge hardly constitutes awareness of a mechanisms because I

know nothing about any interacting system of parts.    However, when I do know a lot

about an underlying mechanism, my abductive inferences can be much richer and more

plausible.   For example, an electrician who knows much about the objects that constitute

a house’s electrical systems (wires, switches, fuses, etc.) is in a much better position to

explain the normal occurrences and breakdowns of the system.   Similarly, a physician

who is familiar with the biological mechanisms that operate in a patient’s body can
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generate diagnoses about what might have gone wrong to produce various symptoms.

The general structure of mechanism-based abductive inference is therefore:

Mechanism <objects,  relations, changes> is behaving in unexpected

ways.

So maybe there are  unusual properties or relations of objects that are

responsible for this behavior.

Mechanism-based abduction differs from the simple sort in that people making inferences

can rely on a whole collection of causal relations among the relevant objects, not just a

particular causal  relation.

So far, I have been discussing abduction from mechanisms, in which

representations  of a mechanism is used to suggest an explanatory hypothesis about what

is happening to the objects in it.   But abductive inference is even more important for

generating knowledge about how the mechanism works, especially in cases where its

operation is not fully observable.  With a bicycle, I can look at the pedals and figure out

how they move the chains and wheels, but much of scientific theorizing consists of

generating new ideas about unobservable mechanisms.   For example, medical

researchers develop mechanistic models of how the metabolic system works in order to

explain the origins of diseases such as diabetes.   Often, such theorizing requires

postulation of objects, relations, and changes that are not directly observed.   In such

cases, knowledge about mechanisms cannot be obtained by inductive generalization of

the sort that works with bicycles, but depends on abductive inference in which causal

patterns are hypothesized rather than  observed.    This kind of abduction to mechanisms

is obviously much more difficult and creative than abduction from already understood
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mechanisms.   Often it involves analogical inference in which a mechanism is constructed

by comparing the target to be explained to another similar target for which a mechanism

is already understood.   In this case, a mechanism <objects, relations, changes> is

constructed by mapping from a similar one.   For more on analogical discovery, see

Holyoak and Thagard (1995, ch. 8).

In order to show in more  detail how abductive inference can be both true and

from mechanisms, it would be desirable to apply the neurocomputational model of

abductive inference  developed by Thagard  and Litt  (forthcoming).   That model has the

representational resources to encode complex objects  and relations, but has not yet been

applied to temporal phenomena involving change.   Hence neural modeling of inferences

about mechanisms is a problem for future research.

8.  CONCLUSION

In sum, abduction is multimodal in that can operate on a full range of perceptual

as well as verbal representations.   It also involves emotional reactions, both as input to

mark a target as worthy of explanation and as output to signal satisfaction with an

inferred hypothesis.   Representations are neural structures consisting of neurons,

neuronal connections, and spiking behaviors.  In abduction, the relation between

hypotheses and targets is causal explanation, where causality is rooted in perceptual

experience.   Inference is transformation of representational neural structures.   Such

structures are  mechanisms, and abductive inference sometimes applies knowledge of

mechanisms and more rarely and valuably generates new hypotheses about mechanisms.

Much remains to be done to flesh out this account.   Particularly needed is a

concrete model of how abduction could be performed in a system of spiking neurons of
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the sort investigated by Eliasmith and Anderson (2003) and Wagar and Thagard (2004).

The former reference contains valuable ideas about neural representation and

transformation, while the latter is useful for ideas about how cognition and emotion  can

interact.    Thagard and Litt (forthcoming) combines these ideas to provide a fuller

account of the neural mechanisms that enable people to perform abductive inference.

Moving the study of abduction from the domain of philosophical analysis to the realm of

neurological mechanisms has made it possible to combine logical aspects of abductive

inference with multimodal aspects of representation and emotional  aspects of cognitive

processing.  We can look forward to further abductions about abduction.
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