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Since topological algebra is the study of algebraic structures with topologies for
which the operations are continuous, a natural question for the topological
algebraist to ask is whether a given structure admits any such topologies whatever,
other than the discrete and indiscrete ones. The question has been answered for
some classes of structures. For example, Kertész and Szele [7] prove that every
infinite abelian group admits a nondiscrete, Hausdorff group topology. On the
other hand, Hanson [5] gives an example of an infinite groupoid which admits only
the two trivial topologies mentioned above.

Our purpose here is to answer this question for infinite fields, proving that every
infinite field admits a nondiscrete, Hausdorff field topology. This will be done by
affirmatively answering the question for two classes of commutative rings: the
first being all integral domains with a certain cardinality condition (§3), and the
second, all rings which are the union of a chain of subrings with certain properties
(§4). These two classes will be shown to include all infinite fields (§5).

Our method of proof will make use of an inductive procedure first used by
Hinrichs [6] to prove the existence of certain unusual topologies on the integers.
The procedure is described in §1, where we define what we mean by an "inductive
ring topology".

In §§7 and 8, we turn our attention to some further applications of inductive
topologies, showing first how they can be used to construct interesting examples of
topologies on the integers and rational numbers. We use them to get proofs that
there are uncountably many, and non-first countable ring topologies on all the rings
considered in §3 and §4. We also show how characterizations can be obtained for
several classes of topologies on fields using modifications of the inductive method.

A supplement to our discussion of field topologies comes in §6, where we charac-
terize those fields which admit nondiscrete, Hausdorff, locally bounded topologies.
The methods used here, however, are those of valuation theory.

When we say that a topology S~ is a ring topology on a ring A, we mean that the
mappings (a, b)^-a—b and (a, b)-*ab from Ax A into A are continuous. &~ is a
field topology on a field K if it is a ring topology, and in addition, the mapping
a -*■ a'1 is continuous on K~{0}.
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1. Definitions of inductive topologies. Let A be a commutative ring with iden-
tity. Then a unique first countable ring topology on A is determined if we take as
a basic system of neighborhoods of zero a collection {Vn : «^0} of subsets of A
having the following properties for all n = 0, [2, p. 76].

(1.1) 0eVn,

(1.2) Vn=-Vn,

(1.3) Kn+1+Fn+1s Vn,

(1.4) Vn + x-Vn+x^Vn,

(1.5) For any x in A, there is an integer k such that x- Vn+k £ Vn.

Furthermore, the topology is Hausdorff if and only if [2, p. 14]

(1.6) O Vn = {0}.
71=0

Suppose now that {Vn : n^O} satisfies (1.1) to (1.5), and that ak is in Vk for each
k^ 1. Then clearly for each m and n with m>n, by repeated applications of (1.3)
and (1.4), one can show that Vn contains certain algebraic combinations of am,
am-x,..., an+x. From (1.5), we can see that certain multiples xak are in Vn for
n+i¿kSm.

It is from these elementary observations that the idea for an inductive topology
is derived. To get an inductive topology, we begin with a sequence ax, a2,..., and
inductively build up the sets VQ, Vx, V2,... so that they contain only the algebraic
combinations of ax, a2, a3,... necessary so that (1.1)-(1.5) are satisfied. Let us now
describe the procedure in detail.

Since the sets V0, Vx, V2,... will contain only polynomial expressions in
ax, a2, a3,..., it will prove to be advantageous to at first replace this sequence of
elements of A by a sequence of ¡ndeterminates Xx, X2, X3, — Let /í [(A"n)] denote
the ring of polynomials over A in these indeterminates. Let (Bk)kix be a sequence of
subsets of A which satisfies the following conditions.

(1.7) BlSBtSBaS-
00

(1.8) Du —D multiplicatively generates A, D = \J Bn.
n = l

A set S multiplicatively generates the ring A if every element of A is a product of
elements of S.

We begin by defining a double sequence of sets of polynomials in A[(Xn)]:

W%, Wxo, W%, W%,...

W\, W\, W\,...
W\, W\,...

W%,....
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1968] INDUCTIVE RING TOPOLOGIES 151

Let Wo he the set containing only the zero polynomial. That is,

(1.9) W°0 = {0}.

Assume now that the sets W™ have been defined for each n and m such that
O^n^m^k. Let

(1-10) wni = {o,xk + x,-xk + x}.

If W)*1 has been defined for each y such that k+l ~àj^r+ 1, then define Wf*1 by

w?*1 = [(»w + tf jn+i) u (*»*• JCf »?♦»)u (*r+iwt*n]
(1.11) r *       -.

where " ~ " denotes relative complementation.
For each n ̂  0, we define Wn to be the union of the sets in the nth row of the array.

That is,

(1.12) Wn = Ö Wit-
m=n

One may easily verify that we have built into the collection of sets {Wn : n = 0} the
following properties for each n ̂  0.

(1.13) 0eWn,

(1-14)                                                        Wn=-Wn,

(1-15) Wn + X+Wn + X£ Wn,

(1-16) Wn+x-Wn + x^Wn,

(1-17) Bn+x-Wn + x^Wn.

From properties (1.13)—(1.15), we see that the collection {Wn : n^0} is a basic
system of neighborhoods of zero for an additive group topology on A[(Xn)].
Indeed, one can see (Lemma 2.2) that the topology is Hausdorff. From property
(1.16), we observe that multiplication is continuous at zero. From (1.17), we can
derive the following generalization.

For any x in A there is an integer k
(1.17')

such that for all n ^ 0, x-Wn+k £ Wn.

To see this, let x be any element of A. Then by (1.8), there are elements xx, x2,
..., xm in D such that x= ±xxx2- ■ xm. By (1.7), there is an integer k0 such that
Xj e Bko for allj such that 1 újúm. Let k=k0+m. Then clearly by (1.7), x(m+1)_j
eBn+ik.f„ where l^j^m, and n^0, since n+(k-j)^k0. Thus for any n^0,
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152 J. O. KILTINEN [October

by (1.17) and (1.14),

X rVn + k = xxx2 ■ ■ ■ Xm Wn + k £ Xx- • ■ Xm-X Wn + k-\

£•••£*!•• ■xm_jWn + k-j £ • • • £ xxWn + k_(m_X)

£  Wn + k.m =  Wn + k0 £  Wn.

We now derive a topology on A from this one on ^[(A",)]. Let (ak)kèx be a
sequence of elements of A. Let o-{aie) be the substitution homomorphism from
A[(Xn)] into A defined by

o-(ttk):P(A-i, X2,...)-+P(ax, a2,. ..)

for all polynomials F in y4[(A„)]. Then o-(ak) is indeed a homomorphism from
y4[(A„)] into A, where the domain and range are regarded as algebras over A.

To get the desired neighborhoods of zero in A, for 0an = m, let

m-l

(1-18) K- - «WÍWJ) ~  U «wTO,i = n

(1.19) ^n =  *(.„(»'»).

It is clear, then, that Vn = \J%=n Wg. Also, from (1.13)-(1.17'), and the fact that
o-(0fc) is an algebra homomorphism, it follows that for all n = 0, properties (1.1) to
(1.5) hold. In addition, for all n^O,

(1.5') Bn+x-Vn + i= Vn-

Thus, i/~ = {Vn : « SO}, is a basic system of neighborhoods of zero for a ring
topology on /4 in which the sequence (ak) converges to zero. Note that this is just
the quotient topology on A determined by the mapping <jlaic) and the topology
given to A[(Xn)].

Definition. Call the topology just defined the inductive ring topology on A
determined by the sequences (ak) and (Bk). Denote it by 3~((ak), (Bk)). Call the
topology on A [(Xn)] the inductive polynomial topology determined by the sequence
(Bk), and denote it by ^~((Bk)). For brevity, we will sometimes call an inductive ring
topology simply an inductive topology.

We note here that even though an inductive polynomial topology &~((Bk)) is
always Hausdorff, an inductive ring topology S~((ak), (Bk)) derived from it need
not be. In fact, ^((ak), (Bk)) may be the indiscrete topology. We will be interested,
then, in finding ways to suitably restrict A and choose the sequences (ak) and (Bk)
so that 3~((ak), (Bk)) can be proven to be Hausdorff.

2. Some basic lemmas. The first two lemmas in this section identify the
properties of the polynomials in the sets Wn which make possible the construction
of Hausdorff topologies under suitable conditions. The third gives a useful sufficient
condition for Hausdorff separation for inductive topologies.
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For a polynomial P in A[(Xn)], by the monomials of P, we will mean those
monomials in P which have nonzero coefficients. A monomial of course is a product
cX7k\X7k\- ■ ■ Xki of powers of finitely many indeterminates, with a coefficient c in A.
For a polynomial P in A[(Xn)}, let degm (P) denote the degree of P in the in-
determinate Xm.

For each P in A[(Xn)], let P£ denote the polynomial which is the sum of the
monomials of P not divisible by Xm. Let *Fm be the sum of the monomials of P
which are divisible by Xm. It is clear then, that P= *Pm+P* for all mj 1.

Lemma 2.1. Let P be in W„. If n<m, then P* is in W¿ for some j such that
n^j<m.

Proof. We use a double induction argument. The proposition holds vacuously
for the set W%. Suppose then it holds for all sets W¡¡ where n = m¿k. It holds
vacuously for WkX\, and is obvious for

(2.1) Wl*1 = [{±Xk + x, ±2Xk + x, ±X2k + 1}v(±Bk+x-Xk + x)]~{0}.

Let us suppose now that it holds for all Wf*1 where k^j}tr+ 1, and show that
it holds for W<f+1.

Let P be an element of Wf*1. Then by (1.11), F is either: (a) a sum R + S, (b) a
product RS, or (c) a product b-R, where R e Wrtí, Se Wsr+i for some s such
that r+l£s£k+l, and where beBr + X.

Let us first consider case (a). By the induction hypothesis, there are integers jx and
j2 with r +1 Sji < k + 1 such that R%+ x e W'r\ x and S%+ x e W{\ x. Now clearly the
monomials of 7? + S which are not divisible by Xk + x are the sums of the monomials
of R and Snot divisible by Xk + X. That is, (R + S)ï+X = R*+X + Sk*+X. But by (1.11),
Rk+X + Sk+1 e W'r for some j such that rgy'ámax {jx,j2}<k+l.

For case (b), we note that

(2.2) P « RS - (*R + R*)(*S+S*) = *R*S+*RS* + R**S+R*S*,
where we have dropped the subscripts from 7?*+1, etc., for compactness. Since
every monomial of *R and *S is divisible by Xk+X, so are all those of *7?*S,
*R ■ S*, and 7?* ■ *S. Thus, P*+ X = R*+1- S*+ x, and by (1.11), R*+ x ■ S*+ x e W\ for
some /' such that r^/'£ max {jx, j2} < k +1.

To prove case (c), we note that (b ■ R)k+ x = b ■ Rk+ x, and b■ R*+ x is in W',1 by our
induction hypothesis and (1.11).

Lemma 2.2. Let P be a nonzero element of the set W™. Then P is a polynomial in
Xm with coefficients in A[XX,..., A'm_1] such that 1 ̂ degm (F)^2m_n.

Proof. Again we use a double induction argument. The proposition holds
vacuously for Wq. Suppose now that it holds for all sets W% where n=m = k. As the
nonzero elements of Wk*.\ are Xk + X and -Xk + X, it clearly holds for this case. By
(2.1), we see that it holds for W%+1.
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Suppose now that the proposition is true for all Wk+1, where k^j=r+ 1. We
shall show that it also holds for Wk+1.

Let F be an element of Wk+1. As in Lemma 2.1, we may express F as either:
(a) P=R + S, (b) P=RS, or (c) P=bR, where Re W**t Se Wsr + i with
r+l^s^k+i, and beBT+X. By the induction hypothesis, 1 ¿degk+x(R)^2k~T,
and i = degk + x(S)=2k-T if s=k+i and degk + x(S)=0 if s<k+l.

Now clearly F is a polynomial in Xk + X over A[XX,..., Xk] in all these cases,
since by the induction hypothesis, F and S are.

The upper bound that we must show for the degree of F in Xk + X is 2<fc + 1)_r. This
is immediate for all three cases because of the induction hypothesis, and the prop-
erties of the degree of sums and products of polynomials.

To see that in case (a) the degree of F in Xk + x is at least one, note that if the degree
of P=R+S in Xk + X is zero, then

F = (*R + R*) + (*S+S*) = (*R + *S) + (R* + S*) = 0 + (F* + S*).

But by Lemma 2.1, there are integers jx and y2 with r+ l^ji<k+ 1 such that
F*+1e W&i and St+Xe W>%x. Then by (1.11), P=RUi + St+x is in W'r for
some y such that r ¿jSmax {jx, j2} < k + i. This is a contradiction, for F 6 Wk+X,
and by (1.11), Wk + X n W> = 0 ifj^k+l. Thus, degk + 1 (F)=l.

One verifies the lower bound for cases (b) and (c) in a similar manner. In case (b),
if degfc + j (F)=0, we see from (2.2) that P=R*+X-S*+i, which, by Lemma 2.1,
leads again to the contradiction that P eW\ for some y < k +1.

Lemma 2.3. Let 3~((ak), (Bk)) be an inductive ring topology with basic neighbor-
hoods given by (1.18) and (1.19). If(Ck)kèX is a sequence of subsets of A such that
CX<^C2<=; • • • £yl and \Jk=x Ck = A, and if VZ n Cm£{0} for all n and m, where
n^m, then &~((ak), (Bk)) is Hausdorff.

Proof. Let x be a nonzero element of A. Then there is some n such that x e Cm
for all m^n. Then x $ VI for all m^n, so x i Vn = \J%=n V™. Thus (1.6) holds,
so the topology is Hausdorff.

3. Integral domains of confinality character K0. Our main goal in this section is to
prove (Corollary 3.2) that every countable integral domain A admits a nondiscrete,
Hausdorff inductive ring topology. The countability assumption is needed only so
that we may express A as a union of countably many subsets of smaller cardinality.
Since domains of certain other cardinalities will also have this property, we will
formulate our results in a slightly more general form.

Definition. Let S be a set. Then S, or its cardinal number, has confinality
character X0 if S is the union of countably many subsets of smaller cardinality(2).

(2) The term "cofinal with <u" is also sometimes used to define this property for cardinal
numbers. We take the definition used here from [K. Gödel, What is Cantor's continuum problem,
Amer. Math. Monthly 54 (1947), 515-525].
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In what follows, the cardinality of a set S will be denoted by | S |. A countable set
will always be an infinite one. We will require only the most familiar results of
cardinal arithmetic, which may be found in a reference such as [1, §6, pp. 90-108].

In the next theorem, the sequence (Bk) of subsets of A can be any one satisfying
conditions (1.7) and (1.8), and such that \Bn\ < \A\ for each n.

Theorem 3.1. Let A be an integral domain which has confinality character X0. Let
D be any subset of A such that \D\ = \A\. Then there exists a sequence (ak) of elements
of D such that 3~((ak), (Bk)) is Hausdorff.

Proof. Let (Ck) be any sequence of subsets of A which has the properties that
CX^C2QC3^--, \Jk^xCk = A, and |Q|<|,4| for each k=l. Our cardinality
assumption on A assures the existence of such a sequence.

We will prove that we can inductively define a sequence (ak) in D in such a way
that the sets K™ given by (1.18) satisfy the following condition.

(3.1) K-nCm£{0}.

Note that by Lemma 2.2 and (1.18), the set K£ depends only on the elements
ax, a2,..., am of the sequence (ak). Thus, we can prove (3.1) for all m and n such that
n^m=k once we have defined ax, a2,..., ak.

Since Ko = {0}> (3.1) holds trivially for n = m=0. For convenience in the proof,
let a0 be any element of D.

Assume now that a0,ax,...,ak have been chosen from D in such a way that (3.1)
holds for all m and n such that 0SmSn=k. We will show that there is an element
ak + ! in D such that by taking ak + 1to be the next element in our defining sequence,
we get that

(3.2) V^*1nCk + x c{0}

for all n such that Q<n=k+l.
To prove this, we first let Sk + x = {P(ax,..., ak, Xk+X) :Pe W**1 for some

n S k + 1}. Then the set S'k+1 = Sk + x — Ck + x is a set of polynomials with coefficients
in A in the one indeterminate Xk + X. Finally, let Rk + X be the set of all roots in A of
nonzero polynomials in S'k + X.

Now because |i?k+1|<|v4| and |Cfc + i| < |,4|, one can prove, using standard
results of cardinal arithmetic, that \S'k + x\ < \A\. Since A is an integral domain, every
nonzero polynomial over A has only finitely many roots. Thus, it follows that the
cardinality of Rk+X is also less than that of A and D.

Since |7?fc+1| < \D\, D~Rk+x¥= 0, so let ak+x be any element of D not in Rk+X.
We are now able to show that with ak+x chosen in this way, property (3.2) holds
for all n such that 0=n=k+l.

Let x be a nonzero element of V**1. By (1.18) and Lemma 2.2, x=P(ax,.. .,ak+x)
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for some F in Wk + 1. Let us re-expressP(ax,.. -,ak+x) as a polynomial in ak + x. We
then have

x = Rr(ax,...,ak)(ak + Xy + Rr-X(ax,...,ak)(ak + Xy-1

+ ■ ■+R0(ax,...,ak).

By Lemma 2.2, i¿r=2k+1-n.
We next observe that for some y ä 1,

(3.4) Rj(ax,...,ak)¿0.

Suppose to the contrary that R,(ax,..., ak) = 0 for ally" such that l^y'^r. Then
x=R0(ax,..., ak). But R0(XX,..., Xk) is the polynomial F*+ x of Lemma 2.1, and
by that lemma, F*+1 is in Wn for some y < k + 1. Then

x = P*+ x(ax, ...,ak) = o<a0(P*+ X(XX, ...,Xk))e o{a0( W¿).

This is a contradiction, since x is in Vk + 1, and by (1.18), Vk + X n a(aO(Wn)=0
forj<k+i.

Since (3.4) holds for somey'ä 1, we may as well suppose that in (3.3),

Rr(ax, ...,ak) # 0.

We finally see that x is not an element of Ck + X, for it follows from (3.3) that

(3.5) RT(ax,.. .,ak)-(ak + xy+ ■ ■ ■ +Rx(ax,..., ak)ak + x + (R0(a1,.. .,ak)-x) = 0.

Now

Fr(ûi,.. -, ak)(Xk + xy+ ■ ■ ■ +Rx(ax,.. ., ak)-Xk+1 + R0(ax,..., ak)

is in Sk + X, so if x is in Ck+1, then (3.4) and (3.5) show that ak + x is the root of a
nonzero polynomial in S'k + 1. This is a contradiction, since ak + 1 is not in Rk + X.
Thus, x $ Ck+X, and we have verified that (3.2) holds.

This completes the inductive step. We have shown, then, that we can define a
sequence (ak) such that (3.1) holds. It follows from Lemma 2.3 that ^~((ak), (Bk)) is
Hausdorff.

Since any countable integral domain clearly has confinality character X0, the
following corollary is an immediate consequence of the theorem.

Corollary 3.2. If A is a countable integral domain and (bk) is any sequence of
distinct elements of A, then for some subsequence (ak) of(bk), 3~((ak), (Bk)) is Haus-
dorff.

Remark 3.3. Notice in the proof of Theorem 3.1 that we did not make use of the
set Ck + X in inductively defining the sequence (an) until we came to defining ak + 1.
Thus, we do not have to assume that the sequence (Cn) is given to us from the
beginning, but may at the (k+ l)th stage, take Ck+X to be in some way dependent
on the particular choices of ax, a2,..., ak. It will be necessary to do this in several
of our applications.
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4. Algebraically unbounded rings. We turn our attention in this section to
proving the existence of Hausdorff inductive topologies on rings which are described
by the following definition.

Definition. A commutative ring A with an identity element, 1, is algebraically
unbounded if there is a sequence (Bk)kix of subrings of A such that 1 e Bx^B2
£ B3 £ • • ■, A = [J™„ j Bk, and such that for all pairs of positive integers (n, m),
there is an element a of A of degree at least m over the subring 77n. The sequence
(Bk) will be called an algebraically unbounded sequence of subrings of A.

By the degree over Bn of an element a of A, we mean the least integer r such that a
is a root of a polynomial over Bn of degree r. If a is a root of no nonzero poly-
nomial over Bn, i.e., a is transcendental over 77n, then we will say that it has infinite
degree over Bn. Its degree is then greater than m for every positive integer m.

Suppose now that (Bk) is an algebraically unbounded sequence of subrings of A,
and suppose that we use the subrings Bk to define an inductive polynomial topology.
Since the sets W¡¡ are formed by operations of addition and multiplication, from
(1.10) and (1.11), we can prove inductively that W™ is contained in Bm[Xx,..., Xm]
for n = m, m — 1,..., 0. It will follow, then, that no matter how a sequence (ak) is
chosen, the sets V¡¡ determined by it will be contained in the subrings Bk. Indeed, if
r is an integer at least m such that all the elements ax, a2,...,am are contained in 77r,
then

VI £ aw(Wl) £ aw(Bm[Xx,..., Xm]) = Bm[ax,..., am] £ 77r,

for all n such that O^nám. This condition on the sets V7? will be instrumental in
the proof of our next theorem.

Theorem 4.1. Let A be an algebraically unbounded commutative ring with
identity. Then there are Hausdorff Inductive ring topologies on A.

Proof. Let (Bk)k ê j be an algebraically unbounded sequence of subrings of A.
We will inductively choose a sequence (ak) such that the sets V™ for $~((ak), (Bk))
satisfy the following condition.

(4.1) F?n7?m£{0}.

To begin the sequence conveniently, we will augment it by letting a0 be any
element of A. Assume now that a0,..., ak have been defined. Let p(k) be the least
integer r such that {a0,..., ak}zBr. Then take ak+1 to be any element of A whose
degree over BDik) is greater than 2fc+1. By our hypothesis on A, such an ak+x exists.

We first note that the sequence (p(k))k¿0 which was just defined is strictly
increasing. Thus, since p(0) is at least one, by induction, p(k)^k+l for all k^O.
We have then that for all k=0, Bk + x^Bolk).

To see that (4.1) holds for the sets K™ determined by the sequence (ak) which
we have chosen, let x be any nonzero element of K™. Then by Lemma 2.2 and (1.18),
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we may express x as x=P(ax, a2,..., am), where F £ W^. As was observed above,
F £ Bm[Xx,..., Xm]. If we re-express F as a polynomial in Xm, we have

(4.2)    x = Rk(ax,..., am-x)-(am)k+ ■ ■ ■ +Rx(ax,..., am.x)am + R0(ax,.. .,am.x),

where we assume that Rk(ax,..., am.1)^0. If k = 0, then, as in the proof of Theorem
3.1, we have by Lemma 2.1 that x is in aiaj)(Wn) for some i such that ngz'gm— 1,
which is a contradiction. Thus, we have that k ̂  1, and by Lemma 2.2, k=2m~n¿2m.

Now Bm^BB{m_X) and F is in Bm[Xx, ..., Xm]^Bpim-xy[Xx,..., Xm]. Thus, as
the set {ax,..., am.x} is contained in Bp(m.X), the coefficients R,(ax, ...,am-x) of
(4.2)arealsoinFi(m_1).

Now suppose that x is in Bm. Then x is in Bpim _ X), so by (4.2), am is the root of a
nonzero polynomial, of degree at most 2m, with coefficients in BMm.X). This contra-
dicts the fact that we chose am to be of degree greater than 2m over Fi(m_ X). Thus, we
must conclude that x is not in Bm, and so (4.1) is proven.

Again, it follows from (4.1) and Lemma 2.3 that the topology $~((ak), (Bk)) is
Hausdorff.

5. Inductive topologies on fields. We will show in this section how the results
from §§3 and 4 can be used to prove the existence of nondiscrete, Hausdorff field
topologies on every infinite field.

Let F be a subfield of K. It is well known [9, §12, pp. 95-102] that there is a
subset D of K algebraically independent over F such that K is an algebraic ex-
tension of F(D). Such a set D is called a transcendence basis, and F(D) can be
regarded as a field of rational functions, with the elements of D regarded as
indeterminates.

Lemma 5.1. Let F be a subfield of afield K, and let D be a transcendence basis for
K over F. If D is infinite, then K is algebraically unbounded.

Proof. Let (Dk) be a sequence of subsets of D such that Dx £ D2 £ • • •,
Ufc^i Dk = D, and D~Dk^0 for all k^ 1. For each k, let Fk be the algebraic
closure of F(Dk) in K. We will show that (Fk)kix is an algebraically unbounded
sequence of subrings of K.

First, it is clear that Fx £ F2 £ • • •. Second, if a e K, then there is a polynomial
F=2r=o «i ■ X1 with coefficients in F(D) such that a is a root of F. Since the a¡'s are
rational expressions in the elements of D, each involves only finitely many elements
of D. Thus, each at is in F(Dmm) for some m(i). ifm^m(i) for 1 = z'^/z, then all the
coefficients of F are in F(Dm). Hence, a is in Fm, and it follows that U^i Fk = K.

To see that K contains elements of arbitrarily high degree over any one of the
subfields Fn, consider an element x of D~Dn. If x were algebraic over F„, then it
would also be algebraic over F(Dn), [9, Theorem C, p. 61], which would violate
the algebraic independence of D over F Thus, x is transcendental over Fn.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1968] INDUCTIVE RING TOPOLOGIES 159

Theorem 5.2. Every infinite field K admits a nondiscrete, Hausdorff inductive
ring topology.

Proof. Let F be the prime subfield of K, and let D be a transcendence basis for K
over F.

Case 1. D is finite. Then A" is a countable field, so the result follows from
Corollary 3.2.

Case 2. D is infinite. Then by Lemma 5.1, K is algebraically unbounded, so the
result follows from Theorem 4.1.

Corollary 5.3. Every infinite field admits a nondiscrete, Hausdorff field topology

Proof. It is known [4, pp. 809-811] that if .T is a nondiscrete, Hausdorff ring
topology on a field K, then there is a nondiscrete, Hausdorff field topology 9"' on K
coarser than &~. The desired result follows from this fact, and the theorem.

6. Locally bounded topologies on fields. The topologies given to fields in the
preceding section do not necessarily have the desirable property of local bounded-
ness. We investigate here the question of which fields admit topologies with this
additional property. Although local boundedness can be built into inductive
topologies (see §8), the methods of valuation theory will be more efficacious here
than our inductive technique.

Definition. If 9~ is a ring topology on a commutative ring A and % is a basic
system of neighborhoods of zero, then a subset B of A is bounded if for all U in °ll,
there is a V in $¿ such that B-VÇ.U. If there is a bounded neighborhood of zero,
then 9~ is locally bounded.

Definition. If K is a field, a real valuation on K is a function <j> from K* = K~ {0}
into the positive real numbers such that for all x and yin K*, the following prop-
erties hold.

4>(xy) = <f>ix)-<f>iy),   <f>ix+y) S max {¿(x), fty)}.
We will call <f> proper if its range contains more than one element.

One gets a locally bounded field topology from a valuation <j> by taking the sets
of the form

Ue = {xeK* : ¿(x) g e} u {0}

for every e > 0 as a basic system of neighborhoods of zero. The topology is Haus-
dorff, and is nondiscrete if and only if <f> is proper.

Definition. We will say that a field is algebraic if it is of prime characteristic,
and is algebraic over its prime subfield.

Theorem 6.1. The following are equivalent for a field K.
1 ° K is not algebraic.
2e K admits a proper, real valuation.
3° K admits a nondiscrete, Hausdorff, locally bounded ring topology.
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Proof. The fact that 2° implies 3° was noted above.
3° implies Io. Suppose that K is algebraic and that 3~ is a locally bounded,

nondiscrete ring topology on K. We will show that every neighborhood U of zero
contains all of K, and hence, that 9~ is the indiscrete topology and therefore not
Hausdorff.

Since &~ is locally bounded, a neighborhood U of zero contains a neighborhood
V of zero such that V- V<=, V. (Let V={x e U0 : x£/0£ U0}, where U0 is a bounded
neighborhood of zero contained in U.) Then for every positive n, F"ç V.

Now since Fis algebraic, for any nonzero x, x~x=xn for some positive integer n.
Thus, if are V, thea*-1»*1^ VnçV, so V^sV.

Now let x be any element of F. Then there is a neighborhood W of zero such that
xWz V. As 3~ is nondiscrete, there is a nonzero element yinW C\V. Then xy 6 F,
so x e Vy-1çVV-1ç K£ U. Thus, F£ K£ [/, so F is the indiscrete topology.

Io implies 2°. If Fis not algebraic, then either F has characteristic zero, or con-
tains an element t transcendental over its finite prime subfield Z„. In these re-
spective cases, let F be the subfield of rational numbers, or Zp(t). Then in either
case, F clearly admits a proper, real valuation tj>. Our goal is to extend tf> to K.

Let F be a transcendence basis for K over F. Then the elements of F'=F(B) are
quotients PjQ of polynomial expressions in the elements of F with coefficients in F.
For such a polynomial P=2f=i <V A""¡.i- • • Xâk'-", where Xtt{ e Band Oi e F, we
define <¿(P) by

<¿(P) = 0 if a, = 0 for all i,
= max {tf>(ai) : 1 ¿i ¡£n)   if a¿ ^ 0 for some z.

We then define 4>(PIQ) = tf>(P)l4>(Q). One can show that these definitions extend <f>
to a valuation on F'. Since Fis an algebraic extension of F', it is known [8, Theorem
12, p. 57] that tf> can be extended to a valuation on K.

1. Other applications of inductive topologies. In this section we will present
generalizations of some of the results proven by Hinrichs for the integers, and will
show how his results can be derived within our more general context. Theorem 7.2
is a heretofore unpublished result of Hinrichs'.

Theorem 7.1 [6, p. 993]. There exist Hausdorff ring topologies on the ring of
integers, Z, which have neighborhoods of zero which do not contain ideals.

Proof. Let Bn = {meZ : O^m^n} for every «^ 1. By Corollary 3.2, there is a
sequence (ak) of positive integers such that -T((ak), (Bk)) is Hausdorff. We will
show that the sequence (ak) can be chosen so that the neighborhood VQ of zero for
this topology, given by (1.19), has the property that for all positive integers m,

there is an interval Im = [km, km+m] in Z

such that V0 n Im = 0.

This will assure that for all m-1, V0 does not contain the ideal mZ.
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To get (7.1) to hold, we make use of Remark 3.3 in defining the sequence (ak).
We may let ax be any element of Z. Assume now that ax,...,am have been defined.
By Remark 3.3, and the fact that the sets V\ are in this case finite, we may take the
set Cm + X of (3.1) to contain Im = [km, km + m], where km = sup (\J¡\. o V0) + 1 •
But then for all k=Q, V\ n 7m= 0. This follows from the definition of 7m for k=m,
and from (3.1) for k^m+l, since Im^Ck for all such k. Thus, (7.1) and the
theorem follow.

Definition. A ring topology is said to be additively generated if the additive
subgroup generated by any neighborhood of zero is the entire ring.

One can readily see that if the elements in a sequence (ak) of integers are chosen
so that for all m there is an n > m such that am and an are relatively prime, then
8~((ak), (Bk)) is additively generated. We thus have that there are Hausdorff,
additively generated ring topologies on the integers.

Correl proved [3, Theorem 2.10, p. 38] that a ring topology on the rational
numbers, Q, which is not additively generated is finer than the /?-adic topology for
some prime /?. This might lead one to wonder if additively generated topologies are
necessarily finer than the usual one. The following theorem shows that this is not
the case.

Theorem 7.2 [Hinrichs]. There are additively generated, Hausdorff ring top-
ologies on Q not finer than the usual one.

Proof. By Corollary 3.2, there is a Hausdorff inductive ring topology S~0
=8~((ak), (Bk)) on Q, where (ak) is a subsequence of the sequence of prime integers.
(The sequence (Bk) can be any increasing sequence of finite subsets of Q whose
union is Q.)

To show that 8~0 is additively generated, let G be any additive subgroup neighbor-
hood of zero, and let ajb be any element of Q. Then ¿?#0, so bG is again an additive
subgroup neighborhood of zero. Hence, bG contains all but finitely many of the
primes ak. Thus, bG n Z is a subgroup, and hence an ideal in Z which contains
infinitely many primes. It follows that bG n Z=Z, so ae bG, and hence, ajb e G.

We see, then, that G= Q, so $~0 is additively generated. Clearly -T0 is not finer
than the usual topology, for the sequence (ak) which converges to zero in -T0 is
bounded away from zero in the usual topology.

Using Correl's theorem and taking (ak) to be a subsequence of the sequence
(l/pk) of inverses of primes, it can be shown that there also are additively generated
ring topologies on Q strictly finer than the usual one.

In our next two theorems, we show that not only does the inductive approach
give us access to Hausdorff topologies on the rings in the classes considered in §3
and §4, but it gives a way of proving that there are uncountably many of them.
These generalize Hinrichs' result [6, p. 94] for the integers.

Lemma 7.3. Let A be a ring, and let 8" be a ring topology on A in which a sequence
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(ak) of distinct, cancellable elements converges to zero. If U is any 3~-open set, then
\U\ = \A\.

Proof. It is clearly sufficient to take U to be a neighborhood of zero.
For all x in A, xaneU for some n. Thus, /l = U*=i An, where An =

{x £ A : xan e U}. Since the an's are cancellable, the mappings x -> xa„ are in-
jections on ,4. Thus |i4„|s¡|i/| for each«. Since Uis infinite, M| = |U"=i ^nl^lc7!-
Since U^A, \U\ = \A\.

Theorem 7.4. Let Abe an integral domain of confinality character X0. Then there
are uncountably many first countable, Hausdorff ring topologies on A.

Proof. Suppose to the contrary that all the nondiscrete, first countable, Haus-
dorff ring topologies on A can be enumerated, 9~x, T2, 9~3,.... For each n= 1, let
^n = {Uk(n) : k^ 1} be a countable basis for the neighborhoods of zero for 9~n such
that Uk + X(n)z Uk(n) for each k=l. Using the usual diagonal process, Theorem 3.1,
and Remark 3.3, we will obtain a Hausdorff inductive topology 9~0, and for each
n ̂  1, a sequence (bk(n))k è x convergent to zero in 9~n but bounded away from zero
in 9~o. This will imply that 9~0 is not in the list, 9~x, 9~2, ¡fz,...t which is a con-
tradiction.

The sequence of sets Bk which determines &~0 can be any one satisfying (1.7) and
(1.8) and such that \Bk\ < \A\ for all k^ 1. The sequences (bk(n))kSX will be kept
away from zero by including elements from them in the sets Ck of (3.1). To get the
Cks large enough, however, we begin with a sequence (C'k) such that C'x £ C2 £ • • •,
\J^xC'k = A,and\C'k\<\A\.

We now describe how the sequence (ak) determining 9~0, and the sequences
(bk(n)) for tz> 1 and (Ck) are to be defined.

Let CX = C'X, and let ax be chosen according to the procedure in Theorem 3.1 so
that (3.1) holds, i.e., V\ n ^£{0} for z'=0, 1. Now, as was observed in proving
Theorem 3.1, | Kg u V\\ < \A\. Since | Ux(i)\ = \A\ by Lemma 7.3, we can find an
element ¿>i(l) in Ux(l)~[V°0 u V1].

Assume now that ax,.. .,ak;Cx,..., Ck have been defined so that (3.1) holds for
n^m=k. Also assume that partial sequences

bx(i),b2(l),...,bk.x(l),bk(\)

bx(2),b2(2),...,bk.x(2)

bx(k-i),b2(k-l)
bx(k)

have been defined so that

(7.2) bJU)eUJU)^l*(]1yô   for 2 Zi+j S k + l.
m =; 0
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We then let

(7.3) Ck + X = C; + 1 u {biU) : 2 á i+j â k+ 1},

which we may do by Remark 3.3. Clearly we still have |Cfc + 1| < \A\. Next choose
ak + x so that (3.1) holds for n^m^k+l. Finally, since |Umto Vô\ < \A\, we may by
Lemma 7.3 pick k+l elements bx(k+l), b2(k),..., bk(2), bk + x(l) such that for
KftSJt+1,

k+l
bi(k + 2-i)eUi(k + 2-i) ~ (J VS.

m = 0

Now the topology 8~0 = 8'((ak), (Bk)) just defined is Hausdorff by Theorem 3.1.
One can see from (7.2) that the sequence (bk(n))kèX converges to zero in &*%, It
follows from (7.2), (7.3), and (3.1) that ¿¡0') $ K for all i and/ so that each of the
sequences (bk(n))k È x is bounded away from zero in 8~0.

This contradiction leads us to conclude that there are uncountably many first
countable, Hausdorff ring topologies on A.

Our next theorem gives the result analogous to Theorem 7.4 for algebraically
unbounded rings. We will only sketch the proof.

Theorem 7.5. Let (Bk)kèX be an algebraically unbounded sequence of subrings of a
commutative ring A with identity. Then there are uncountably many Hausdorff
inductive ring topologies on A determined by the sequence (Bk).

Proof. Assume that 3~x, 5~2, 9~3,... is a list of all of the Hausdorff inductive
topologies determined by the sequence (Bk). Let (bk(n))k g x be a sequence convergent
to zero in 8~n for each «2:1.

One can use a diagonal process just as in the proof of Theorem 7.4 to get sub-
sequences of each of the sequences (bk(n)) which are bounded away from zero in a
Hausdorff inductive topology 3~0. The facts making this possible are that there are
elements from each of the sequences (bk(n)) in Bm~Bm_x for arbitrarily large
integers m, and that each of the sets Kg1 for the topology &~0 is, by Theorem 4.1,
contained in one of the subrings 77r.

In our final theorem of this section, we prove that on all of the rings we have
considered, there are ring topologies which are not first countable, thereby general-
izing another result of Hinrichs' [6, p. 995].

Theorem 7.6. If A is an integral domain of confinality character X0 or an alge-
braically unbounded commutative ring with identity, then there are Hausdorff ring
topologies on A which are not first countable.

Proof. Let (Bk) be an increasing sequence of subsets of A such that |Bk\ < \A\ for
all k and {Jk=xBk = A, or an algebraically unbounded sequence of subrings for
these respective cases. Let Jt be a maximal chain in the nonempty collection,
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ordered by set inclusion, of all nondiscrete, Hausdorff inductive topologies on A
determined by the sequence (Bk). Let -T be the supremum of JÍ.

Then F is a nondiscrete, Hausdorff ring topology on A in which the sets Bk are
bounded. If 3~ were first countable, then one could get a basis V'={Vn : näl}
for the neighborhoods of zero satisfying (1.1)-(1.4) and (1.5'). One can see, then,
that if ake Vk~{0} for each k- 1, then 3~((ak), (Bk)) is a nondiscrete topology finer
than 8". Furthermore, using the technique of the proof of Theorem 7.4, one can
keep a sequence convergent to zero in 3~ bounded away from zero in 3~((ak), (Bk)),
and thus assure that the latter topology is strictly finer than -T.

This clearly violates the maximally of the chain JÍ, so we must conclude that 3~
is not first countable.

8. Characterization results. Two properties shared by all inductive ring top-
ologies are the properties of first countability and countable boundedness. We say
that a ring topology on a ring A is countably bounded if A is the union of countably
many sets bounded with respect to the topology.

To see that a topology &~((ak), (Bk)) on a ring A has this latter property, note that
by (1.5') the sets Bk are bounded. The property follows, then, from the fact that

A = U iBxB2- ■ Bk u -BXB2- ■ -Bk),
Jc = l

and that products and finite unions of bounded sets are bounded.
It is natural to wonder if these two properties characterize all ring topologies

which can be defined inductively. We shall see that they at least characterize for
fields, the "weak" inductive topologies in the following sense.

Definition. A weak inductive ring topology is a topology .T((ak), (Bk)) derived in
exactly the same manner as an inductive ring topology, except that instead of (1.7)
and (1.8), the sets Bk satisfy the following conditions.

(8.1) Bk = B'kuBk   for all * 2: 1.

(1.7') B'x £^£77¿£---.
CO

(1.8') D' u -D' multiplicatively generates A, D' = IJ B'k.
Jc = l

Theorem 8.1. Let F be a ring topology on a commutative ring A with identity
such that zero is a limit point of the set S — {ae A : The map x -*■ ax is open}. Then
3~ is a weak inductive ring topology if and only if 3~ is first countable and countably
bounded.

Proof. The necessity of these two conditions holding for an inductive topology
was just noted. The observation is equally valid for weak inductive topologies.

Sufficiency. Let (Ck) be a sequence of bounded subsets such that A = [Jk=x Ck.
For each n, let B'n = [Jk=x Ck. Then the sets B'n are bounded, and satisfy (1.7') and

(1.8').
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Since 5" is first countable, we clearly can get a basic system {Un : n^O} of
neighborhoods of zero which satisfies the following conditions for all n=0.

(8.2) Un =   - Un,

(8.3) t/n + 1 + t/n+1£ Un,

(8.4) Un + X-Un + 1=Un,

(8.5) F; + 1C/n+1£ C/n.

Now let Bn = B'nU Un, and let an be any element of Un n 5 for each « ̂  1. We will
show that ^~ is the weak inductive topology 9~o=3~((ak), (Bk)).

Since an e Un for each «, it is an easy inductive proof to show that each of the sets
K™ given by (1.18) for 9~0 is contained in Un. Thus, the .^-neighborhood of zero Vn
is contained in Un for each n, so ^"£-^.

Since t/n + 1£Fn+1, clearly C/n + ian + 1£ KJ + 1s ^u, by (1.11) and (1.18). Since
an+x e S, an + 1- t/n + 1 is a ^"-neighborhood of zero, so 9~o = 3~-

Corollary 8.2. A ring topology 3~ on afield is a weak inductive ring topology if
and only if it is first countable and countably bounded.

We have not been able to prove that every first countable, countably bounded
ring topology on an arbitrary commutative ring with identity is inductive. However,
the following theorem asserts that all such topologies can be in a sense approxi-
mated by inductive topologies.

Theorem 8.3. If &~ is a first countable, countably bounded ring topology on a
commutative ring A with identity, then 9~ is the infimum (in the lattice of all top-
ologies on A) of the set of all inductive ring topologies which are finer than 9~.

Proof. Let Fi £ F2 £ F3 £ • ■ • be a chain of bounded subsets of A such that
A = {Jñ=x Bn. As in Theorem 8.1, one can inductively define a basic system
{Un : n^0} of neighborhoods of zero for 9~ satisfying conditions (8.2)-(8.4) for
all «SO, and the further condition that Fn + x■ Un + x£ t/n.

As was observed, for any sequence (ak) such that ak e Uk for all k, the inductive
ring topology 3"((ak), (Bk)) is finer than 9~. Thus, we see that the set sa of inductive
ring topologies finer than 9~ is nonempty.

Let &~o = inf s/. Then clearly ^ is a finer topology than P, i.e., 5"£^. Suppose
that 9~0 is strictly finer than J~. This is equivalent to saying that the identity map /
from (A, 9~) onto (A, J~0) is not continuous. That is, / does not preserve ^limit
points.

Thus, there is a subset S of A, and a point x in A such that x is a ^limit point
of S but not a ^,-limit point of S. As &~ is first countable, we may extract a se-
quence (xn) from S such that (xn) converges to x in 9".

As (xn) converges to x in 9", (xn-x) converges to zero in ¡F. Let us choose a
subsequence (x„k) of (xn) so that for each k, xnic-xe Uk.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



166 J. O. KILTINEN [October

Then, as was noted above, y~((xnic - x), (Bk)) is an inductive ring topology finer
than &~, and hence, ^£^"((xnfc—x), (Bk)). But in J~((xnk-x), (Bk)), the sequence
(xnie — x) converges to zero, and hence, (x„k) converges to x. Now as ¿7~0 is coarser
than 8~((xnic-x), (Bk)), it follows that (xnJ also converges to x in ¿F0- This is a
contradiction, since {xnic : k= 1}£S, and x is not a <^0-limit point of S. Hence, we
conclude that ST=To.

As has been observed, inductive topologies do not in general have the property
of local boundedness. (An example of one which does not is gotten by taking a
nondiscrete, Hausdorff inductive topology on an algebraic field. By Theorem 6.1,
this topology is not locally bounded.) However, local boundedness is a sufficient
condition for a first countable ring topology on a field to be inductive, as we shall
see shortly. As a corollary of this result, we will get an interesting characterization
of all first countable, locally bounded ring topologies on a countable field. To do
this, however, we will need a way of building local boundedness into an inductive
topology, which the following definition gives us.

Definition. An inductive locally bounded ring topology on A, denoted by
3~Mflk), iBk)) is derived in exactly the same manner as an inductive ring topology,
except that the definition of the set W**1 for r^k is changed from (1.11) to the
following.

w**1 = \(w^i+ ü w;+i)u («?♦£• u   wr+x)
L\ s = r+l / \ s = r+l /

(8.6) «j ct*i - wsrf> «j (CO **) ' C^Tx """'))]
~[£H-

This change clearly builds into the set W0 the property that W0-Wn + xzWn for
all n2:0. Then also by (1.19), V0-Vn+x^Vn for all n, so V0 is a bounded neighbor-
hood of zero.

With local boundedness built into an inductive topology in this way, the problem
of finding sufficient conditions for Hausdorffness becomes very difficult, since
Lemmas 2.1 and 2.2 are no longer true.

Theorem 8.4. Let K be afield, and let 3~ be a first countable, locally bounded ring
topology on K. Then 3~ is both an inductive ring topology and an inductive locally
bounded ring topology.

Proof. Since the discrete topology is 3~iiak), iBk)) or ^l((ak), (Bk)), where ak=Q
for all k, and therefore is both inductive and inductive locally bounded, let us assume
in what follows that 3~ is nondiscrete.

Let U be a bounded, symmetric neighborhood of zero such that 1 g U and
£/•£/£ Í/. Let (¿>„)ngi be any sequence of nonzero elements which converges to
zero. Then {bnU : n2:1} is a basic system of neighborhoods of zero for &~.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1968] INDUCTIVE RING TOPOLOGIES 167

We will inductively extract from (¿?„) a subsequence (ak) = (b„k) such that the
basic system {akU : fc= 1} has certain special properties.

To begin the inductive definition, let a0=l. Assume now that a0,ax=bni,
a2=bn2, ■ ■ -, ak = bnic have been defined. As akU is a neighborhood of zero, we can
find neighborhoods Nx-Ni of zero such that

Nx + Nx £ akU,

N2-N2^ akU,

Tk-NaS akU,

NfU ^akU.

Here, and in what follows, Tk is the finite set {(aT-x¡aT) : i^r^k} for aii k=i.
Now fix some integer r>nk such that brUz(~\f=x N,. Let afc+1 = ¿>nk+1 = ¿?r.
Letting Un=anU for each n=0, we then have that {Un ■ w^O} is a basic system

of ^neighborhoods of zero which satisfies the following conditions for all n ̂  0.

(8.7) t/n+1 + C/n+1£ Un,

(8.8) Un+X-Un+XQ Un,

(8.9) Fn+1C/n+1£ C/n,

(8.10) t/n + 1-<70£ i/n.

We next note that D' = Uu {(an/a„+i) : ra^O} multiplicatively generates /I.
To see this, let x be any element of A. As (ak) converges to zero, anx is in U for
some n. Since

* = (xan)(an-xlan)(an-2lan-x)- ■ -(axla2)(ao¡ax),

we see that x is a product of elements of D'.
Let (Sk) be a sequence of subsets of U such that Sx Ç S2 Ç • • • £ U, and (J*°=i Sk

= U. For each k^i, let

(8.11) Ffc = SkvTk-SkuTk.

Then BXZB2S: ■ ■ -, and since Z)'£/)=lJJf=1 Ffc, D multiplicatively generates A.
Also, one may easily see that Fn + x ■ Un+x £ t/„ for all n ä 0. As ak is in i/fc for k S 1,
it follows, as in Theorem 8.1, that the inductive ring topology 9"0=9'((ak), (Bk)) is
finer than 9~. That is, 9~^9q. Similarly, the inductive locally bounded topology
J[=9l((ak), (Bk)) is also finer than ^

We shall now show that &~o=9~ and ^£«^! Considering both cases together,
since one argument suffices for both, let {Vn : n ä 0} be the basic system of neighbor-
hoods of zero for 9~0 or 9[ given by (1.19). It is clearly sufficient to show that for all
«=1,

(8.12) £/» £ Vn.
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To see that (8.12) holds, let x be any element of U„. Then as Un = a„U, x = anxQ
for some x0 in U. Then x0 is in Sk for some k. Clearly we may take k so that k > n.

Now by (8.11), (ak-xlak)x0eBk, so by (1.5'),

x0ak.x = x0(ak-xlak)akeBk-Vk £ Vk.x.

As (ak.2jak.x)eBk.x by (8.11),

x0ak-2 = (ak-2lak-x)x0ak-x eBk.x- Vk_x £ Vk_2.

Repeating this procedure, we see by induction that x0ak_¡ e Vk.¡, for 1 újek, and
so in particular,

X = X0an = X0fl)c - (jc - n> G Vk_ik_n) =  Vn.

This shows that (8.12) holds for all n2:1, and so it follows that ^"o = ̂  and 9~x
£ ¡F. Thus, y is the inductive ring topology (inductive locally bounded ring top-
ology) determined by the sequences (ak) and (Bk).

Corollary 8.5. An inductive locally bounded ring topology on a field is an
inductive ring topology.

We note that one could give a simpler proof of Theorem 8.4 by defining the
sequence (ak) as was done and observing that 8~=.9~((ak), (Ck)), where Ck=U for
each k. However, when K is a countable field, it would be of some interest to know
if a ring topology T is an inductive ring topology 8~Hak), (Bk)), where the sets Bk
are finite. We see from (8.11) that if U is countable, (i.e., K is countable), then
we may take the sets Bk to all be finite. This leads us to make the following def-
inition.

Definition. Any of the inductive topologies -3~((ak), (Bk)) or -Tb((ak), (Bk)) will
be called finitely generated if each of the sets Bk is finite.

We are able to get, then, from Theorem 8.4, the following characterization of all
first countable, locally bounded ring topologies on a countable field K.

Corollary 8.6. FAe class of all first countable, locally bounded ring topologies
on a countable field K is precisely the class of all finitely generated, inductive locally
bounded ring topologies.

It is easily seen that if the sets 77„ are all finite, then the sets V™ given by (1.18) are
also finite. Thus, Corollary 8.6 gives an effective method for approximating a
basic system of neighborhoods of zero for any first countable, locally bounded ring
topology on any countable field.
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