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Abstract 

The engineering space for magnetically manipulated biomedical microrobots is rapidly expanding. 
This includes synthetic, bioinspired, and biohybrid designs, some of which may eventually assume 
clinical roles aiding drug delivery or performing other therapeutic functions. Actuating these 
microrobots with rotating magnetic fields (RMFs) and the magnetic torques they exert offers the 
advantages of efficient mechanical energy transfer and scalable instrumentation. Nevertheless, 
closed-loop control still requires a complementary noninvasive imaging modality to reveal position 
and trajectory, such as ultrasound or x-rays, increasing complexity and posing a barrier to use. 
Here, we investigate the possibility of combining actuation and sensing via inductive detection of 
model microrobots under field magnitudes ranging from 100s of µT to 10s of mT rotating at 1 Hz to 
100 Hz. A prototype apparatus accomplishes this using adjustment mechanisms for both phase 
and amplitude to finely balance sense and compensation coils, suppressing the background signal 
of the driving RMF by 90 dB. Rather than relying on frequency decomposition to analyze signals, 
we show that, for rotational actuation, phase decomposition is more appropriate. We demonstrate 
inductive detection of a micromagnet placed in distinct viscous environments using RMFs with fixed 
and time-varying frequencies. Finally, we show how magnetostatic gating fields can spatially isolate 
inductive signals from a micromagnet actuated by an RMF, with the resolution set by the relative 
magnitude of the gating field and the RMF. The concepts developed here lay a foundation for future 
closed-loop control schemes for magnetic microrobots based on simultaneous inductive sensing 
and actuation. 

Significance Statement 

Magnetic microrobots are anticipated to eventually be able to navigate the body and perform 
medical functions. While the use of magnetic fields to control their motion is well studied, getting 
real time feedback on their position and movement usually requires a parallel imaging technique. 
Here, we use magnetic fields to both sense and actuate microrobots at the same time, designing a 
setup that uses symmetry to isolate voltages induced by the stray fields of model microrobots. We 
consider how inductive signal processing must differ from the more familiar approach used in 
magnetic particle imaging. Moreover, we demonstrate how inductive signals can be isolated to 
points in space under rotational actuation when the rotating field is combined with a gating field.  
 
Main Text 
 
Introduction 
 
Magnetic stimuli offer an appealing means to control medical microrobots by providing noninvasive 
access to locations deep within the body (1-4). Limitations in scaling up magnetic field gradients to 
the dimensions of human patients, particularly gradients sufficient to manipulate the smallest 
microrobots, have fueled interest in locomotion schemes that are instead driven by magnetic 
torques (4-6). Microrobots have, for instance, been engineered to swim through fluids in a 
corkscrew motion (7, 8) or tumble (9-11) or roll (12-15) along surfaces in response to comparatively 
scalable magnetic fields with magnitudes of mT rotating at frequencies of Hz to 100s of Hz. When 
applied to individual microrobots or swarms of microrobots (16), these rotating magnetic fields 
(RMFs) perform mechanical work through torque, transferring energy from the circuits driving the 
surrounding electromagnets to the microrobots and their surroundings (7, 8, 12, 16).  
 
One of the longstanding challenges for the deployment of medical microrobots in relevant 
physiological situations like site-specific drug delivery is the implementation of closed loop control, 
which typically requires simultaneous imaging and actuation (17, 18). While efforts have been made 
toward using complementary imaging techniques based on ultrasound or x-rays, a currently 
underexplored advantage of using time-varying magnetic stimuli for actuation is that the dynamic 
response of the microrobots themselves can generate inductively detectable voltage signals (19). 
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This possibility for inductive detection is perhaps best appreciated through analogy to magnetic 
particle imaging (MPI), a technique in which voltage signals generated by the time-changing 
magnetization of magnetic nanomaterials are spatially selected with a gating field (GF) to 
reconstruct images (20, 21). Despite their similar underlying sensing principle, there are substantial 
and challenging technical differences between MPI and inductive detection with RMFs (Fig. 1). MPI 
employs much higher frequencies (kHz) with proportionally higher induced voltages, suggesting 
lower detection sensitivity for RMFs with a frequency below 100 Hz. Indeed the magnetic stimuli 
required for MPI and RMF actuation are so distinct that it is possible to employ them sequentially 
on superparamagnetic swimming robots, albeit with lag during imaging sequences (22). Here, we 
instead emphasize the possibility of inductively detecting the response of microrobots under the 
conditions used to actuate them. One important consequence of using RMFs rather than alternating 
magnetic fields to drive magnetization response is the elimination of the periodic saturation of 
magnetic material that leads to readily separable higher harmonic signal contributions (Fig. 1).  
 
In this manuscript, we develop methodology and demonstrate a prototype for inductively detecting 
the response of individual microscale magnets to RMFs, which serve as model microrobots. The 
crucial task of cancelling background signal from the RMF is accomplished through two separate 
mechanisms: a potentiometer that balances in-phase background signal and a set of orthogonal 
phase-adjusting loops alongside the compensation coil that can be selectively incorporated into the 
circuit to balance the out-of-phase background signal. Rather than relying on frequency 
decomposition to identify harmonic contributions from magnetic material as in MPI (21), we instead 
show that for inductive detection with RMFs, it is more relevant to consider phase decomposition. 
The out-of-phase component arising from the response of the microrobots is especially informative, 
in part because it is insensitive to unwanted diamagnetic or paramagnetic contributions, and 
because its magnitude can be related to irreversible work done on the microrobot(s). The expected 
relationship between design parameters of both the microrobotic component and the inductive 
detection apparatus is considered and elucidated. Finally, we show that inductive detection with 
RMFs is compatible with magnetostatic GFs, with the resolution of the zero-point set by the relative 
field magnitude of the RMF and the selection field gradient. The techniques and concepts 
developed here represent a step toward the seamless integration of actuation and sensing of 
magnetic microrobots with scalable time varying magnetic fields.  
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Results and Discussion 
 
Phase decomposition enables inductive detection with low frequency rotating magnetic 
fields 
 
Like MPI or magnetic particle spectroscopy (MPS), inductive detection of microrobots actuated by 
RMFs involves the isolation of induced voltage signals produced by magnetically responsive 
materials surrounded by media with distinct and substantially weaker magnetic properties (21). In 
MPI and MPS, an alternating magnetic field is applied to drive periodic magnetic saturation, leading 
to readily separable higher order harmonic contributions to the inductively detected signal. By 
contrast, the use of an RMF, which remains constant in magnitude as it sweeps through a plane of 
rotation, precludes the possibility for signal isolation based on periodic saturation (Fig. 1). Instead, 
under the conditions of steady state rotation that are often applicable to the locomotion of 
microrobots, the induced signal is purely sinusoidal, with a magnitude proportional to the moment 
of the microrobot and a phase shift attributable to the torque balance between viscous drag and 
magnetic torque (Fig. 1).  

In the limit of zero drag, a microrobot rotates perfectly in-phase with an RMF, experiencing 
no instantaneous magnetic torque as it is carried along in its constant rotational velocity by its 
angular momentum. Under realistic conditions, the out-of-phase component of the magnetization 
corresponds to the magnetic torque being continuously applied to counteract drag or friction. While 
frictional and drag forces and torques are dissipative in the sense that they do irreversible work, 
magnetic microrobots actuated by RMFs are typically designed in such a way that the resulting 
convective flows or boundary interactions give rise to translational motion or surface walking (7, 9, 
13). The out-of-phase component of the magnetization in these conditions is therefore useful to 
detect in part because its magnitude relates directly to the energy transfer from the field to the 
microrobot, a quantity that is often desirable to maximize. Another motivation for detecting the out-
of-phase component of the magnetization is that this part of the signal has no analogous 
contribution from the paramagnetic or diamagnetic response of surrounding materials, and thus 
might play a role similar to the higher frequency harmonics in MPI and MPS that arise uniquely 
from the behavior of the magnetic material (Fig. 1). 
 Phase decomposition of the detected signal from a microrobot can be expressed 
mathematically in several different ways. One computationally efficient method might be to perform 
a fast Fourier transform (21) and consider the real and imaginary parts at the frequency of the RMF. 
Here, to facilitate comparison with the techniques we describe later for signals with time-varying 
frequency, we choose instead to formulate the phase decomposition in terms of a Fourier integral 
with its basis limited to sines and cosines at the same frequency as the RMF. For a microrobot 
exposed to an RMF, the induced signal from the x projection of the magnetization, 𝑉𝑉𝑚𝑚𝑥𝑥, can be 
expected to vary as a function of time 𝑡𝑡 as follows: 
 

 𝑉𝑉𝑚𝑚𝑥𝑥(𝑡𝑡) = 𝑉𝑉∥ sin𝜔𝜔𝑡𝑡 + 𝑉𝑉⊥ cos𝜔𝜔𝑡𝑡 [1] 
 
Here, 𝜔𝜔 is the angular frequency and 𝑉𝑉∥ and 𝑉𝑉⊥ are constant coefficients that can be determined 
through integration over one or more periods. Specifically, 
 

 𝑉𝑉∥ =
𝜔𝜔
𝜋𝜋
� 𝑉𝑉𝑚𝑚𝑥𝑥(𝑡𝑡) sin(𝜔𝜔𝑡𝑡)𝑑𝑑𝑡𝑡
𝑡𝑡𝑓𝑓

𝑡𝑡𝑖𝑖
 [2] 
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where the limits of integration 𝑡𝑡𝑖𝑖 and 𝑡𝑡𝑓𝑓 are any integer number of periods apart. Analogously,  
 

 𝑉𝑉⊥ =
𝜔𝜔
𝜋𝜋
� 𝑉𝑉𝑚𝑚𝑥𝑥(𝑡𝑡) cos(𝜔𝜔𝑡𝑡)𝑑𝑑𝑡𝑡
𝑡𝑡𝑓𝑓

𝑡𝑡𝑖𝑖
 [3] 

 
Provided that 1) the signal induced by the x projection of the RMF, 𝑉𝑉𝐻𝐻𝑥𝑥, is in-phase with sin(𝜔𝜔𝑡𝑡), 
and that 2) the symmetry of the detection coil geometry ensures the true phase lag of the microrobot 
is undistorted in the detected signal, the coefficients 𝑉𝑉∥ and 𝑉𝑉⊥ describe the magnitude of the in-
phase and out-of-phase contributions to 𝑉𝑉𝑚𝑚𝑥𝑥(𝑡𝑡), respectively (19). Due to the fundamental 
dependence of induced signals on the time derivative of magnetic flux density, the scale of voltage 
signals induced at different fixed frequencies are proportional to 𝜔𝜔. This fact, taken with the 
coincidentally similar relationship between mechanical power transfer and frequency, implies that 
𝑉𝑉⊥ is directly proportional to the rate of irreversible work done on the microrobot. Alternatively, 
dividing 𝑉𝑉∥ and 𝑉𝑉⊥ by ω or frequency can enable comparison between normalized signals that are 
proportional to vector projections of the magnetic moment for measurements performed at different 
frequencies. These signals can be related back to the measured voltage by some factor of 
proportionality that depends on the geometry of the coils and amplification within the detection 
circuit, which could be determined using a sample with known properties similarly to calibration of 
vibrating sample magnetometers (23). With this normalization, 𝑉𝑉⊥ can be interpreted as 
proportional to the torque continuously applied by the field or, equivalently, proportional to the 
irreversible work done per cycle of the RMF.  
 
Background cancellation with rotating fields requires mechanisms for adjusting in-phase 
and out-of-phase contributions 
 
While it would, in principle, be possible to use various alternative types of magnetic field sensors 
to detect stray field contributions from magnetic microrobots in an RMF, inductive detection is a 
favorable approach in practice because it permits designs for which the voltages induced by the 
RMF can be physically cancelled within the coil itself prior to signal amplification. Often the 
measurement capabilities of such a setup are not limited directly by the scale of the detected signal 
voltage, but rather by the extent to which the contribution of the microrobot is sufficiently 
distinguishable from whatever residual uncompensated signal remains from the driving RMF. While 
coil geometries that achieve perfect cancellation can be readily conceived abstractly, a suitable 
design for a real prototype must be combined with effective adjustment mechanisms that allow for 
fine tuning of the background cancellation.  
 In the detection apparatus constructed for this work, the RMF was supplied by a two-phase 
set of armature coils arranged to generate an RMF within a cylindrical working volume in the plane 
perpendicular to the axis of the cylinder. At the center of the cylinder, on a 3D printed form, two 
sets of pickup coils were situated orthogonally to detect induced voltages from 𝐻𝐻𝑥𝑥 (blue) and 𝐻𝐻𝑦𝑦 
(yellow) with a total of 1000 turns each (Fig. 2A). These are required to monitor and record the 
time-varying components of fields applied to the working volume, for instance to ensure circular 
rotation and determine the phase shift between the RMF and the microrobot. Above these field 
pickups, a pair of coils with a total of 5000 turns of 50 µm magnet wire was situated symmetrically 
on either side of the detection zone (orange, Fig. 2A). This set of coils is mirrored across the central 
plane of the cylinder by another set of coils with 5000 turns that acts as the compensation coil (teal, 
Fig. 2A). These coils are connected in series as indicated in the schematic in Fig. 2A.  

Background cancellation requires balancing the voltages between the sense coils and 
compensation coils as closely as possible in the absence of a microrobot. Because the driving field 
is an RMF, this means both the balance of their magnitude and their phase need to be finely 
adjusted (19). For in-phase amplitude adjustment, the signal was taken from the wiper of a 10-turn 
potentiometer before amplification, allowing for fine manual adjustment of the voltage divider (Fig. 
2A, right inset). Multiple strategies can contribute to balancing the phase between these two coils. 
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For rough cancellation, one strategy is to adjust the tension in the screws at top and bottom of the 
3D printed coil holder to minutely adjust its precise angle with respect to the driving coil. For fine 
tuning the phase cancellation in a systematic manner, a set of concentrically arranged orthogonal 
loops of varying area (light blue, Fig. 2A) were formed and selectively incorporated into the sense 
and compensation coil circuit with double-pole-double-throw switches. The effective area of these 
loops varied by approximately a factor of 4 over 4 levels of adjustment, such that each set of 5 
switches at the same level could span the out-of-phase signal contribution of a single switch at the 
next coarsest level. This resulted in an array of 20 switches to provide adequate range and 
precision for the adjustment. The polarity of these loops could be changed with another switch (Fig. 
2A), such that this scheme could introduce phase components either leading or lagging as needed. 
A typical adjustment involved iterative manipulation of the potentiometer and switches, 
incorporating the loops with the largest area first and using the smaller loops to attain progressively 
finer cancellation (Fig. 2A right inset).  
 As a model microrobot, cylindrical neodymium iron boron micromagnets with 300 µm 
diameter and 500 µm length were employed in suspensions of water and pure glycerol (Fig. 2B). 
Despite their lack of immediate biomedical function, these micromagnets were adopted as a 
convenient model system that recapitulates the basic physics of rotating magnetic bodies in viscous 
media outlined in the previous section. To observe signals from rotation of the micromagnets at the 
highest frequencies, the amplification of the two-stage amplifier had to be reduced from an overall 
gain of approximately 120 dB to 70 dB (SI Appendix Fig. S1). A representative example of an 
averaged raw signal is shown in Fig. 2C, along with the residual background remaining when a vial 
without a micromagnet is placed back into the coil. A background subtracted signal is shown in Fig. 
2D, alongside the voltage signals induced in the pickup coils for the field. The scale of this residual 
signal indicates that the cancellation scheme suppresses the induced signal from the driving field 
by 90 dB (SI Appendix text). By applying the mathematical techniques detailed in the previous 
sections, a fit was determined in terms of the coefficients 𝑉𝑉∥ and 𝑉𝑉⊥, and the resulting curve, which 
contains no contributions from 50 Hz noise, is shown as well.  

Similar signals were collected and processed over a range of discrete frequency values for a 
micromagnet in glycerol and a micromagnet in water and normalized by frequency (Fig. 2E). The 
results generally recapitulate the expected physical behavior for these systems. At low frequencies, 
both micromagnets rotate almost entirely in-phase with the field, with the out-of-phase component 
of the signal (and thus magnetic torque) increasing with frequency. The micromagnet in glycerol 
requires larger torques to maintain rotation at all frequencies, and its out-of-phase component 
reaches comparable values to the in-phase component at a lower frequency than the micromagnet 
in water.  

These observed behaviors comport well with analogous experiments performed using the well-
established technique of rotational magnetic spectroscopy (24), which involves observing 
microscopic magnetic objects with brightfield microscopy as they rotate in RMFs of varying 
frequency and magnitude. The equations of motion in viscoelastic media have been described (25), 
including the regime of asynchronous motion above the critical frequency at which the micromagnet 
can no longer synchronously keep pace with the RMF. A somewhat analogous technique based 
on inductive detection called rotational drift spectroscopy also exists, which applies RMFs at 10s 
of kHz to magnetic nanomaterials to observe shifts in hydrodynamic diameter in response to 
agglomeration or binding to analytes (26, 27). One key difference in the present work is the 
frequency range (1 Hz to 100 Hz) set by the locomotion requirements for microrobots. This explains 
the need for coils with as many turns as possible and the emphasis on finding suitable mechanisms 
for finely tuned background cancellation.  

Given the greatly reduced operational frequency required for simultaneous microrobotic 
actuation and detection, it is useful to consider the ultimate detection limits of this prototype and 
similar setups. A theoretical sensitivity analysis was performed by approximating the detection coils 
here as projected partial spherical surfaces (Fig. 2F, SI Appendix, text and Fig. S2). The resulting 
scale of the voltage signals are plotted in terms of a quantity on one axis called the “agent 
parameter” that is determined by characteristics of the microrobot, and a quantity on the other axis 
called the “coil parameter” that depends on aspects of the inductive detection apparatus. In terms 
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of the how agent properties influence sensitivity, the detected voltage is proportional to the product 
of the magnetic moment of the microrobot and its preferred frequency of operation. If the properties 
of the microrobot are fixed and only aspects of the detection apparatus may vary, signals are 
proportional to the product of the number of turns and linear gain of the amplifier, and inversely 
proportional to the linear dimensions of the coil geometry. The conditions explored experimentally 
in this work are mapped onto this space with the orange rectangle (Fig. 2F). Our work with this 
system suggests that it would be readily feasible to increase the gain of the amplifier and the 
number of turns for more sensitive detection (SI Appendix, Fig. S1). We note, however, that this 
analysis does not account for other factors that may limit performance. These include the presence 
of a 50 Hz noise floor, thermal drift of the resistance balance between the sense and compensation 
coils, limits to the sensitivity of background cancellation, and the possibility for dielectric breakdown 
in the limit of coils with extreme numbers of turns that produce excessive internal voltages. These 
issues are all arguably addressable by design choices and therefore the scale of the sensed voltage 
represents a more fundamental constraint. 

 
Phase decomposition can be extended to rotating fields with time-varying frequencies 

While using inductive detection to observe the response of a model microrobot to RMFs with 
discrete fixed frequencies is useful for capturing steady state response, a more general and broadly 
applicable case is that of dynamic response to driving fields with time-varying frequency. In a 
manner somewhat similar to variable frequency drives for industrial motors (28), an analogous 
technique can readily be envisioned for closed loop control of microrobots with RMF frequency 
varied to optimize their inductively detected phase lag response. To build toward this use case, the 
phase decomposition technique shown in Eq. 1-3 must be extended to the case of 𝜔𝜔 = 𝜔𝜔(𝑡𝑡). In 
such a case, 𝑉𝑉∥ and 𝑉𝑉⊥ can be treated as time varying functions rather than constant coefficients, 
giving the following assumed functional form for 𝑉𝑉𝑚𝑚𝑥𝑥(𝑡𝑡): 

 𝑉𝑉𝑚𝑚𝑥𝑥(𝑡𝑡) = 𝑉𝑉∥(𝑡𝑡) sin[𝜔𝜔(𝑡𝑡)𝑡𝑡] + 𝑉𝑉⊥(𝑡𝑡) cos[𝜔𝜔(𝑡𝑡)𝑡𝑡] [4] 

If 𝑉𝑉∥(𝑡𝑡) and 𝑉𝑉⊥(𝑡𝑡) vary slowly compared to the oscillation of the field and can be treated as 
approximately constant over one period, then it is possible to find approximate expressions for 
them at a time 𝑡𝑡0. 

 𝑉𝑉∥(𝑡𝑡0) ≈
2∫ 𝑊𝑊(𝑡𝑡)𝑉𝑉𝑚𝑚𝑥𝑥

(𝑡𝑡) sin[𝜔𝜔(𝑡𝑡)𝑡𝑡] 𝑑𝑑𝑡𝑡𝑡𝑡𝑓𝑓
𝑡𝑡𝑖𝑖

𝜔𝜔(𝑡𝑡𝑓𝑓)𝑡𝑡𝑓𝑓 − 𝜔𝜔(𝑡𝑡𝑖𝑖)𝑡𝑡𝑖𝑖
 [5] 

And 

 𝑉𝑉⊥(𝑡𝑡0) ≈
2∫ 𝑊𝑊(𝑡𝑡)𝑉𝑉𝑚𝑚𝑥𝑥

(𝑡𝑡) cos[𝜔𝜔(𝑡𝑡)𝑡𝑡] 𝑑𝑑𝑡𝑡𝑡𝑡𝑓𝑓
𝑡𝑡𝑖𝑖

𝜔𝜔(𝑡𝑡𝑓𝑓)𝑡𝑡𝑓𝑓 − 𝜔𝜔(𝑡𝑡𝑖𝑖)𝑡𝑡𝑖𝑖
 [6] 

 

Here, 𝑊𝑊(𝑡𝑡) is a weighting function, defined in terms of 𝜔𝜔(𝑡𝑡). 

 𝑊𝑊(𝑡𝑡) ≡
𝑑𝑑
𝑑𝑑𝑡𝑡

[𝜔𝜔(𝑡𝑡)𝑡𝑡] [7] 
 

The limits of integration must account for the shifting frequency to describe a single period, such 
that 𝑡𝑡𝑖𝑖 and 𝑡𝑡𝑓𝑓 are functionally related in terms of 𝜔𝜔(𝑡𝑡). 
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 𝜔𝜔(𝑡𝑡𝑓𝑓)𝑡𝑡𝑓𝑓 = 𝜔𝜔(𝑡𝑡𝑖𝑖)𝑡𝑡𝑖𝑖 + 2𝜋𝜋 [8] 
 
The midpoint of 𝑡𝑡𝑖𝑖 and 𝑡𝑡𝑓𝑓 can be taken as the time 𝑡𝑡0 corresponding to the approximate 
instantaneous value of the coefficient functions. 

 To investigate the possibility of processing signals in this manner, we exposed the same 
micromagnets from the previous section to RMFs of constant magnitude with time-varying 
frequencies. Specifically, we made use of a rapid linear frequency sweep from 10 Hz to 110 Hz 
(Fig. 3A) and a slower quadratic frequency sweep from approximately 0.6 Hz to 26 Hz (Fig. 3B). 
For the linear sweep, the driving field advanced through the full frequency range in less than a 
second while its amplitude was kept constant (Fig. 3C). The relatively wide frequency range of the 
linear sweep allowed the effect of the same driving conditions to be tested on nominally identical 
micromagnets in two different viscous environments, glycerol and water. The quadratic sweep was 
chosen to show that the methods developed here are also applicable to nonlinear frequency-vs-
time functions. In theory, any frequency function could be chosen, provided the assumption of 
slowly-varying 𝑉𝑉∥ and 𝑉𝑉⊥ is reasonable. For the quadratic sweep, the frequency increased 
quadratically over five seconds, and the sweep was performed at two distinct amplitudes for the 
same microrobot in glycerol (Fig. 3D). Frequency normalized, background subtracted curves from 
inductive detection of the microrobot are shown in Fig. 3E and Fig. 3F. The magnitude of the signal 
can be observed to drop off rapidly with increasing frequency in the case of the micromagnet in 
glycerol under a linear sweep, and the signal persists after the magnitude of the field has fallen in 
the case of the micromagnet in water. Otherwise, by inspection, many of these frequency 
normalized curves appear similar and phase decomposition analysis is needed to extract additional 
information.  

 Phase decompositions of the inductively detected signals from the linear sweep are shown 
in Fig. 3G, and for the quadratic sweep in Fig. 3H, with instantaneous values for 𝑉𝑉∥(𝑡𝑡) and 𝑉𝑉⊥(𝑡𝑡) 
shown instead as a function of frequency, 𝑉𝑉∥(𝑓𝑓) and 𝑉𝑉⊥(𝑓𝑓), based on the known time dependence 
of the frequency. Further details about the signal processing procedure can be found in the text of 
the SI Appendix. In the case of microrobots under conditions of different viscosity, phase 
decomposition reveals response curves that appear to be functionally similar but shifted to lower 
frequencies for the microrobot in glycerol due to the substantially greater viscous drag. If the goal 
were to maximize 𝑉𝑉⊥ to optimize mechanical energy transfer based on the environment of the 
microrobot, a much higher frequency would obviously be needed in water than in glycerol. Curves 
like these could offer a basis for selecting or testing the optimality of drive frequency in real time as 
a microrobot encounters differing local conditions. Similarly, Fig. 3H shows how phase 
decomposition reveals changes in frequency dependent response as a function of the magnitude 
of the RMF, which determines the corresponding scale of available magnetic torque. Notably, the 
crossover frequency between the in-phase and out-of-phase component of the signal can be seen 
to increase approximately proportionally to the RMF magnitude, as expected. At 11.1 mT, the 
crossover frequency was 12.2 Hz and at 20.7 mT the crossover frequency was 20.7 Hz. Wide or 
rapid frequency sweeps like the ones shown are most useful in the context of characterization, and 
for the purpose of closed loop control, the frequency would likely be varied less rapidly and over a 
smaller range of values.  

 
Magnetostatic gating fields allow for spatially restricted rotational actuation and inductive 
detection 

Previous work has indicated the possibility of using a magnetostatic GF to spatially isolate the 
delivery of magnetic torque to individual microrobots or magnetic torque density to diffuse 
assemblies of microrobots or magnetic material (19, 29-33). Mechanistically, by combining RMFs 
and magnetostatic GFs, the rotational character of the field is preserved only in the field free region 
and suppressed at points away from it where the magnitude of the superimposed GF becomes 
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comparable to or higher than the RMF (29, 30). As discussed in a previous section, the out-of-
phase component of the inductive signal detected from microrobots in an RMF reflects the 
mechanical work being done by magnetic torque. Together, these facts led us to hypothesize that 
inductive signals produced by microrobots in response to RMFs should also be spatially isolated 
by a magnetostatic GF, in a manner analogous to MPI. This would imply that, in addition to the 
possibilities for spatially selective rotational actuation that GFs offer, the inductive signals produced 
in them might also reveal positional information about the actuated microrobots.  

To test this hypothesis, we constructed an array of permanent magnets capable of fully 
enclosing the inductive detection setup described in previous sections (Fig. 4A, SI Appendix, Fig. 
S4). This array was based on a “magic sphere” geometry—a modified azimuthal revolution of a 
second order Halbach cylinder with a central field free region (34, 35). In this case, as with a similar 
array that we built previously for torque density focusing (29), a 3D printed support structure held 
ferrite ceramic permanent magnets (grade Y35) that were stacked to form uniformly magnetized 
cubes with an approximately 2 cm side length. On the inside of the partial sphere, around its 
equator, neodymium iron boron magnets were interleaved with the ferrite magnets to improve the 
resolution of the GF along the x and y axes. The results of a finite element model predicting the 
magnetic field generated by an axisymmetric approximation of this configuration of permanent 
magnets is shown in Fig. 4B. This is best interpreted as an upper bound of the expected field under 
the assumption of a perfect circumferential packing factor. This geometry is expected to produce 
its strongest gradient in the z direction, and indeed the largest gradient observed (1.1 T/m) was 
measured along the z axis using a Hall probe controlled by a micro positioner (Fig. 4C, SI Appendix, 
Fig. S4). The gradients observed along the x axis (0.8 T/m) and along the y axis (0.4 T/m) were 
unequal due to a column of omitted magnets along each side of the seam where the two halves of 
the sphere met. Although an isotropic zero point would likely be desirable for imaging or inferring 
position, in this case, the ellipsoidal field free region was useful because it permitted measurements 
of inductive signal at known positions along different magnetostatic gradients without reconfiguring 
the setup.  

As a model microrobot confined to a geometrically isotropic environment, a micromagnet 
nominally identical to the ones employed in the previous sections was placed in a 3D printed 3 mm 
spherical cavity filled with glycerol and sealed with a polycarbonate sheet (Fig. 4D). The sample 
chamber was affixed to an arm mounted on the micro positioner (SI Appendix, Fig. S4), which could 
also be used separately to position a three axis Hall probe in the same working space. Prior to 
inductive measurements of the microrobot, the time dependent net field arising from the 
superposition of the RMF and the GF was measured at positions along the principal axes of the 
GF, with several representative examples shown in Fig. 4D. For points along the z axis displaced 
from the center, the net field is observed to undergo precession about the z axis (Fig. 4D i). At the 
zero point, the field rotates in the xy plane with a magnetostatic contribution less than 0.1 mT (Fig. 
4D ii). At points along the x or y axis, the magnetostatic contribution occurs entirely within the xy 
plane, similarly suppressing the rotational character of the field (Fig. 4D iii). Away from the principal 
axes, behavior intermediate between these special cases can be expected.  

For the frequencies selected for this experiment, RMF magnitudes were determined empirically 
that maximized the out-of-phase component of the inductively detected signal when the sample 
chamber was placed at the zero point (SI Appendix, Fig. S5). Because the RMF magnitude was 
varied (1.8 mT at 11 Hz, 0.89 mT at 5.5 Hz, and 0.49 mT at 2.75 Hz), the effective resolution of the 
zero point could also be anticipated to change, with increasing spatial selectivity provided by the 
same GF as the RMF magnitude decreases (29). As expected, the high gradient of the GF along 
the z axis resulted in the highest observed spatial selectivity, with the out-of-phase inductive signal 
from the microrobot dropping to half its peak value within millimeters of the zero point (Fig. 4E). 
Along the weakest gradient of the zero-point, corresponding to the y axis, spatial selection was also 
observed, though it was weaker (Fig. 4F). For the highest RMF magnitudes tested, a plateau is 
observed in the immediate vicinity of the zero point along the y axis, behavior that vanishes as the 
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RMF magnitude is decreased. To rule out the role of position-dependent inductive coupling to the 
sense coil as the origin of the spatial variation of these signals, the response of a magnet in glycerol 
was tested as a function of position in the absence of the GF (SI Appendix, Fig. S6). Although the 
inductive signal was found to vary with position, as expected, the spatial dependence is weaker 
than to the signal dropoffs observed with the selection field. 

If the normalized out-of-phase signal datapoints from the positive displacements of Fig. 4E and 
Fig. 4F are replotted as a function of the relative magnitude of the GF to the RMF, the general 
behavior appears to converge toward a single curve (Fig. 4G). This is consistent with our previous 
finding that the spatial resolution achieved when combining a rotating magnetic field and a 
magnetostatic GF is set primarily by the parameters of these two fields (29), a result that is intuitive 
in the context of vector superposition (Fig. 4D). The fact that resolution is set primarily by field 
parameters is an important difference from MPI, where material properties play a key role in setting 
spatial resolution (21).  
 
Conclusion and Outlook 
 

Actuating microrobots with time-varying magnetic fields strongly suggests an opportunity to 
detect their response via induced voltage signals. While the stray fields of microrobots could, in 
principle, be observed directly by a magnetic field sensor with an exceptionally high sensitivity and 
a correspondingly high dynamic range, the inherent advantage of inductive detection is the 
possibility it creates for effective isolation of the signal of the microrobot. This isolation is 
accomplished primarily through geometric symmetry, requiring only simple components and a 
robust strategy for fine tuning cancellation of the signal from the driving field. In this work, we have 
designed prototype instrumentation and demonstrated signal processing for simultaneous inductive 
detection and actuation of a model microrobot with low frequency rotating magnetic fields. 
Moreover, we showed that this form of inductive detection can be combined with a magnetostatic 
GF for restricting actuation and the inductive signal it generates to a single point. Our findings 
suggest that inductive detection of microrobots could serve as a basis for closed-loop control, 
whether directed toward optimizing mechanical energy transfer or controlling microrobot motion.  
 For the technical potential of inductive detection of microrobots to be more fully realized, 
further development is required. For one, similar techniques should be adapted for application to 
smaller microrobots such as bacteria-inspired helical swimmers (6), magnetically responsive 
bacteria (19), or surface microrollers (14). The micromagnet picked here as a model microrobot 
does adequately reflect the basic physics of these systems, but even smaller microrobots are more 
likely to be deployed in a medical context. Our sensitivity analysis indicated that induced voltage 
signals are inversely proportional to linear dimensions of pickup coils, so detecting smaller 
microrobots in realistic working volumes will require increasing the number of turns, boosting 
amplification, and shielding setups from ambient 50 Hz noise. The cancellation techniques that 
were demonstrated in this work can also be further refined, especially through automation, since 
here they were implemented manually. Ultimately, the form factors of greatest interest for real 
applications could be single-sided (36, 37), i.e. based on detection coils that do not enclose the 
working volume, and executing this in practice would require studying how pickup coil geometry 
influences phase and magnitude of the induced signal. In this respect, the spatial isolation provided 
by the GF may also offer a practical path, since an integrated array of permanent magnets in a 
single sided design could isolate inductive signal generation to a point or line with known inductive 
coupling behavior.  

Several different forms of noninvasive energy transfer and actuation are available to control 
medical microrobots, including ultrasound, light, and magnetic fields. Each of these has its own 
unique features and drawbacks. Up to this point, one of the major limitations of magnetic microrobot 
control has been the need for complementary imaging, which remains an outstanding challenge. 
The realization of simultaneous magnetic actuation and inductive detection of microrobots with time 
varying magnetic fields could represent a step toward feasible real-time closed-loop control.  
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Materials and Methods 
 
Construction of the inductive sensing setup. Custom designed coil holders were 3D printed 
with a resin-based digital light processing printer and assembled with epoxy and plastic hardware. 
STL files can be made available upon request. Sense and compensation coils were wound by hand 
using enameled magnet wire with 50 µm diameter, 100 µm diameter magnet wire was used for the 
x and y field sensing coils, and 200 µm diameter magnet wire was used to wind the phase 
adjustment loops. The RMF coils were also wound by hand with 300 turns of magnet wire of 0.9 mm 
diameter, symmetrically alternating between the phases in groups of ten turns to maintain overall 
symmetry. Signals were generated with a 2-channel arbitrary function generator (Keysight 
EDU33212A) and fed to a two-channel class AB power amplifier with a rated maximum output 
power of 80 W per channel (Crown D-150A). The power amplifier was situated across the room 
from the setup to reduce 50 Hz noise. Pickup coils for sensing 𝐻𝐻𝑥𝑥 and 𝐻𝐻𝑦𝑦 were measured directly 
with an oscilloscope (Keysight DSOX2004A). The output from the sense and compensation coil 
pair was wired in series with the phase loop switchbox, which had one switch to determining sign 
of the out-of-phase contribution and could selectively incorporate up to 20 separate loops with 4 
different magnitudes. Finally, the signal was taken from the wiper of a potentiometer and underwent 
two-stage signal amplification. Additional information on the amplifier design is provided in SI 
Appendix, Fig. S1. 

 

Phase decomposition at fixed frequencies. Input signals were tuned manually to provide a 
constant target RMF magnitude and an appropriate quarter period phase shift between the 𝑉𝑉𝐻𝐻𝑥𝑥 and 
𝑉𝑉𝐻𝐻𝑦𝑦 signals. The factor relating the induced voltage from the field probes to the RMF magnitude 
was found through empirical calibration at a single frequency via simultaneous measurements with 
a 3 axis Hall probe (MetroLab THM1176). The micromagnet (SM Magnetics, Cyl0003-50) was 
placed in pure water or pure glycerol in a standard 5 mm NMR tube, and blank samples containing 
only glycerol or water were similarly prepared. At each frequency, 5 separate measurements of the 
voltage signal were performed, with blank measurements performed before and after each trial and 
internal averaging on the oscilloscope set to 64. Background cancellation was fine-tuned prior to 
each sequence of measurements but left untouched between measurements of blanks and trials. 
Mathematica was used to analyze the resulting data. In brief, for fixed frequency measurements, a 
sinusoidal function was fitted to 𝑉𝑉𝐻𝐻𝑥𝑥 to determine the phase shift needed for the basis functions in 
Eq. 2 and 3, and the coefficients 𝑉𝑉∥ and 𝑉𝑉⊥ were found through numerical integration with 𝑉𝑉𝑚𝑚𝑥𝑥. For 
each trial, the background subtracted coefficients were determined by subtracting the mean of the 
blank measurements immediately before and after the trial.  

 

Signal processing for swept frequencies. Waveforms with the desired 𝜔𝜔(𝑡𝑡) characteristics were 
defined mathematically and loaded to the function generator, with an initial guess for the amplitude 
envelope versus time based on the known impedance of the RMF coils. The amplitude envelope 
versus time was then rescaled iteratively based on empirically observed 𝑉𝑉𝐻𝐻𝑥𝑥 and 𝑉𝑉𝐻𝐻𝑦𝑦 signals to 
produce a more constant magnitude. The same samples that were used for fixed frequency 
measurements were also used for swept frequency measurements, with 5 repeated trials 
interspersed with blanks. Internal oscilloscope averaging was set to 8 for the slow sweeps. 
Analysis, in brief, consisted of fitting the 𝑉𝑉𝐻𝐻𝑥𝑥 curve with the known defined function to verify time 
delay and correct for minute time scaling artifacts introduced by the oscilloscope (approximately 
±2%). With appropriate time coordinate transformation, and with the signal normalized by the 
known instantaneous frequency, 𝑉𝑉𝑚𝑚𝑥𝑥 was used to determine 𝑉𝑉∥(𝑡𝑡) and 𝑉𝑉⊥(𝑡𝑡) through numerical 
integration as described in Eq. 5 and 6. 𝑉𝑉∥(𝑓𝑓) and 𝑉𝑉⊥(𝑓𝑓) were found through the known 
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dependence of 𝑓𝑓(𝑡𝑡). Additional validation of this fitting technique can be found in the SI Appendix 
text and Fig. S3. 

 

Construction of the magic sphere The structure designed to hold the magnet array depicted in 
Fig 4a was 3D printed in 4 parts, with two of these quarters epoxied together to form two halves. 
Individual elements of permanent ferrite magnets consisted of stacked 20 mm × 20 mm× 3 mm 
blocks (grade Y35, Supermagnete.ch, FE-Q-20-20-03), forming approximate cubes of 20 mm side 
length, which were wrapped in electrical tape. The inner equatorial ring of magnets alternated 
between ferrite and neodymium iron boron with identical geometry (N45, Supermagnete.ch, Q-20-
20-03-N). Magnets were loaded into their designated spaces, held by hot glue and epoxy. The two 
halves were brought together around the inductive detection coil using zip ties, with the zero-point 
coinciding with the zone for inductive detection. See SI Appendix, Fig. S4. 

 

Selection field experiment. A three-axis linear micropositioner (SmarAct, controller: HCU-3CX-
USB-TAB, piezo positioner: SLC2445 series) was mounted atop the array of permanent magnets 
and a 3D printed arm was used to hold either the three-axis Hall probe (Metrolab THM1176) or the 
spherical sample chamber (Fig. 4D, SI Appendix Fig. S4). Characterization of the GF and the 
superposition of the GF and RMF was performed with the Hall probe. Subsequently, the sample 
chamber was attached to the arm, and the zero point was located where the inductive signal from 
the micromagnet was maximized. Magnitude was varied at each frequency to empirically maximize 
out-of-phase signal. Inductive measurements were conducted along the z and y axes at known 
displacements relative to the zero point, as set by the micro positioner, with blank measurements 
taken before and after each sweep with the arm removed. In-phase and out-of-phase components 
were found through direct numerical integration of 𝑉𝑉𝑚𝑚𝑥𝑥  with normalized versions of 𝑉𝑉𝐻𝐻𝑥𝑥 and 𝑉𝑉𝐻𝐻𝑦𝑦 (with 
any constant offset subtracted and max amplitude set to 1). Blank values subtracted. Resulting out-
of-phase signal versus position curves were normalized to their maximum value or to the maximum 
value projected by a second order spline interpolation in the case of rapidly varying curves.  
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Main Text Figures 

 
Figure 1. Graphical chart comparing salient conceptual aspects of signal acquisition and 
processing in the familiar case of magnetic particle imaging/spectroscopy with inductive detection 
of microrobots in rotating magnetic fields (RMFs). The driving field in the case of RMFs has a lower 
frequency and constant magnitude, leading to magnetic responses without periodic saturation. 
Consequently, the inductive signals expected from microrobots in RMFs generally do not contain 
higher order harmonics. Rather than decomposing their signals into different frequency 
contributions, it is more informative to decompose them in terms of different phase contributions at 
the same frequency. 𝐻𝐻𝑥𝑥 is the x component of the magnetic field 𝐻𝐻, 𝑚𝑚𝑥𝑥 is the x projection of the 
magnetic moment 𝑚𝑚, 𝑓𝑓 is frequency, 𝑓𝑓0 is the principal harmonic in the fast Fourier transform (FFT), 
𝑉𝑉𝐻𝐻𝑥𝑥 is the voltage induced by 𝐻𝐻𝑥𝑥, and 𝑉𝑉𝑚𝑚𝑥𝑥  is the voltage induced by 𝑚𝑚𝑥𝑥. Where applied as subscripts, 
║ and ┴ denote in-phase or out-of-phase components, respectively.  
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Figure 2. Inductive detection of a model microrobot actuated by a rotating magnetic field. (A) 
Sketch of prototype instrument for inductive detection, emphasizing the geometry of the pickup 
coils. (The coils supplying the RMF are omitted for clarity, but half of the support structure for the 
2-phase armature windings is depicted on the left.) Pickup coil pairs for sensing 𝐻𝐻𝑥𝑥 (blue) and 𝐻𝐻𝑦𝑦 
(yellow) reside at the center with 1000 turns each, with the sense (orange) and compensation (teal) 
coil pairs with 5000 turns each appearing above and below. Variably sized phase adjustment loops 
(light blue) are included near the compensation coils. A simplified electrical schematic of the 
detection instrument is shown in the center right. For in-phase cancellation adjustment, the signal 
is taken from the wiper of a potentiometer. A plot of example signals generated by adjusting the 
potentiometer is provided at right. For out-of-phase cancellation adjustment, phase adjustment 
loops are selectively incorporated into the circuit with adjustable polarity using the partially 
represented array of double-pole-double-throw switches, with examples of their contributed out-of-
phase signal shown on the bottom right. (B) A cross sectional detail of the sample holder situated 
within the detection apparatus. The model microrobot is a cylindrical micromagnet with a length of 
500 µm and a diameter of 300 µm, suspended in water or pure glycerol. Brightfield micrograph of 
the micromagnet inset. (C) Representative example of inductive signal collected for the microrobot 
in glycerol actuated by a magnetic field of 7.2 mT rotating at 3.98 Hz, with residual signal observed 
for an identical measurement on a vial containing only glycerol. (D) The same signal is shown with 
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the background subtracted, alongside the inductive signals measured by the field pickups. The fit 
is based on phase decomposition, as described in the text. (E) Similar signal collection and phase 
decomposition was performed over a logarithmic sweep of fixed frequencies for a micromagnet in 
water and a micromagnet in glycerol. (F) A generalized parameter space predicting the scale of the 
measured induced voltage assuming a geometrically similar detection apparatus, with the range of 
predicted and observed values for this work highlighted by the orange box. The abscissa is a 
parameter determined by the radius of the coil 𝑅𝑅, linear gain of the amplifier 𝐾𝐾𝑔𝑔, and number of 
turns 𝑁𝑁. The ordinate is a parameter set by characteristics of the microrobot, specifically its moment 
𝑚𝑚 and frequency of actuation 𝑓𝑓, as well as the permeability of free space 𝜇𝜇0. 
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Figure 3. Phase decomposition for signals with time-varying frequency. The raw inductive signals 
generated by the RMF, as detected by the 𝐻𝐻𝑥𝑥 and 𝐻𝐻𝑦𝑦 pickup coils for a rapid linear frequency sweep 
with constant field magnitude from approximately 10 Hz to 110 Hz (A) and a slow quadratic 
frequency sweep with constant field magnitude from approximately 0.6 Hz to 26 Hz (B). Frequency 
versus time as defined for the input waveforms (i) and field magnitude as inferred from the 
measured inductive signals as a function of time (ii) are shown for the linear sweep (C) and the 
quadratic sweep (D). The timeframe selected for phase decomposition analysis is indicated by the 
shaded light blue region. Frequency normalized, background subtracted signals are plotted for the 
same model microrobot as the previous figure under the annotated conditions for the linear sweep 
(E) and quadratic sweep (F). The dark blue curve is the mean of 5 replicates, with the shaded 
bounds representing the 95% confidence interval. The light blue box represents the timeframe 
selected for decomposition analysis. The signal is decomposed into its instantaneous in-phase 
component 𝑉𝑉∥ and out-of-phase component 𝑉𝑉⊥ and plotted as a function of frequency for the linear 
sweep in (G) and quadratic sweep in (H). The linear sweep is used to probe the response of 
nominally identical micromagnets in the distinct viscous environments of water and glycerol. The 
quadratic sweep is used to probe the variation in the response of a single micromagnet to different 
driving field amplitudes. Curves represent the mean of 5 replicates, with shaded regions 
representing the 95% confidence interval.  
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Figure 4. Magnetostatic gating fields can spatially isolate inductive signal generation by 
micromagnets to field free regions when combined with rotating magnetic fields. (A) Schematic 
illustration of the array of permanent magnets used to surround the inductive detection apparatus, 
a modified “magic sphere.” (B) Cross sectional representation of a finite element simulation of the 
GF produced by an azimuthally symmetric approximation of the permanent magnet array. Made 
with FEMM. (C) Measured magnetostatic field magnitude as a function of displacement from the 
zero point along each of the indicated axes. Slopes extracted from separate linear regressions are 
shown with 95% confidence interval bounds. (D) Sketch of the sample chamber used to test 
inductive signal generation within a magnetostatic GF as a function of position, consisting of a 
3 mm spherical cavity filled with glycerol and containing a model cylindrical micromagnet (500 µm 
length, 300 µm diameter). Results of characterization of the net field produced by the combined GF 
and RMF are shown at several representative points: i) displaced along the positive z direction, ii) 
at the zero point, and iii) displaced along the positive x direction. Curves are sinusoidal fits of data 
taken with a Hall probe. (E) and (F) show the variation of the out-of-phase component of the 
inductive signal produced by the model micromagnet with position along the z axis and y axis, 
respectively. Each curve represents measurements under distinct RMF conditions (1.84 mT at 
11 Hz, 0.89 mT at 5.5 Hz, and 0.49 mT at 2.75 Hz) and is normalized to the maximum mean out-
of-phase signal observed or interpolated by a second order spline curve. Error bars represent 95% 
confidence interval, with N = 3 replicates. (G) Relative magnitude of the GF, defined as the quotient 
of the GF magnitude experienced at a point to the magnitude of the superimposed RMF, is used to 
replot the normalized out-of-phase signal data from positive displacements in (E) and (F). 
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Supporting Information Text 
Theoretical sensitivity analysis. Here, details are provided to substantiate the sensitivity analysis 
conducted for Fig. 2F of the main text. For simplicity, the geometry of the sense coils, which are 
partial cylindrical surfaces (Fig. 2A), are treated here approximately as partial spherical surfaces. 
Specifically, they are treated as latitude-longitude squares on the surface of a sphere of radius 𝑅𝑅 
with polar angle limits 𝜃𝜃1 ≤ 𝜃𝜃 ≤ 𝜃𝜃2 and azimuth angle limits 𝜑𝜑1 ≤ 𝜑𝜑 ≤ 𝜑𝜑2 (Fig. S2). 
 
Given a single loop of conducting wire that encloses a surface 𝑆𝑆, the voltage 𝑉𝑉 induced in the loop 
by a magnetic field 𝑩𝑩 is given by Faraday’s law of electromagnetic induction: 
 

 𝑉𝑉(𝑡𝑡) =
𝑑𝑑
𝑑𝑑𝑡𝑡
�� 𝑩𝑩 ∙ 𝒏𝒏� 𝑑𝑑𝑑𝑑

𝑆𝑆
� [1] 

 
where 𝑡𝑡 is time, 𝑑𝑑𝑑𝑑 is a differential area element of the surface 𝑆𝑆, and 𝒏𝒏� is the normal vector to that 
differential area element. A coil composed of 𝑁𝑁 perfectly overlapping loops results in 𝑁𝑁 times higher 
induced voltage. 
 
Given a magnetic point dipole at a position 𝑷𝑷𝑚𝑚, the magnetic field from the magnetic dipole can be 
determined analytically for any position of interest 𝑷𝑷. The equation that describes the magnetic field 
from a magnetic point dipole in 3D space as a function of the relative position 𝒓𝒓 = 𝑷𝑷 − 𝑷𝑷𝑚𝑚 is: 
 

 𝑩𝑩𝑚𝑚 =
𝜇𝜇0𝑚𝑚

4𝜋𝜋‖𝒓𝒓‖3
(3𝒓𝒓�𝒓𝒓�T − 𝐼𝐼3)𝒎𝒎�  [2] 

 
where 𝜇𝜇0 is the permeability of free space, ‖𝒓𝒓‖ is the 2-norm of 𝒓𝒓, 𝒓𝒓� = 𝒓𝒓 ‖𝒓𝒓‖⁄  is a unit vector in the 
direction of 𝑟𝑟, and 𝐼𝐼3 is a 3 × 3 identity matrix (1). 
 
For a dipole rotating within the xy plane at a constant angular velocity 𝜔𝜔, the resulting magnetic 
field expressed in spherical coordinates becomes 
 

 𝑩𝑩𝑚𝑚(𝑡𝑡) =
𝜇𝜇0𝑚𝑚
4𝜋𝜋𝑟𝑟3

�
2 sin𝜃𝜃 cos(𝜔𝜔𝑡𝑡 − 𝜑𝜑)
− cos 𝜃𝜃 cos(𝜔𝜔𝑡𝑡 − 𝜑𝜑)
− sin(𝜔𝜔𝑡𝑡 − 𝜑𝜑)

� [3] 

 
Substituting Eq. 3 into Eq. 1 in order find an estimate for the induced voltage contribution of the 
dipole 𝑉𝑉𝑚𝑚, 
 

 𝑉𝑉𝑚𝑚(𝑡𝑡) =
𝜇𝜇0𝑚𝑚
2𝜋𝜋𝑅𝑅

𝑑𝑑
𝑑𝑑𝑡𝑡
��  � cos(𝜔𝜔𝑡𝑡 − 𝜑𝜑) sin2 𝜃𝜃 𝑑𝑑𝜃𝜃𝑑𝑑𝜑𝜑

𝜃𝜃2

𝜃𝜃1

𝜑𝜑2

𝜑𝜑1
� [4] 

 
For this simplified case, the solution is analytically tractable, and can be expressed in terms of the 
following parameters: 

 

 

𝜃𝜃∆ =
𝜃𝜃2 − 𝜃𝜃1

2
 

 

[5] 

 

 

�̅�𝜃 =
𝜃𝜃1 + 𝜃𝜃2

2
 

 

[6] 

  
𝑑𝑑𝜃𝜃 = 2𝜃𝜃∆ − sin(2𝜃𝜃∆) cos(2�̅�𝜃) [7] 
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𝜑𝜑∆ =
𝜑𝜑2 − 𝜑𝜑1

2
 

 
[8] 

 
 

𝜑𝜑� =
𝜑𝜑1 + 𝜑𝜑2

2
 

 
[9] 

 
 

𝑑𝑑𝜑𝜑 = sin(𝜑𝜑∆) 
 

[10] 

The full expression for 𝑉𝑉𝑚𝑚(𝑡𝑡) can then be given as 
 

 𝑉𝑉𝑚𝑚(𝑡𝑡) = −
𝜇𝜇0𝑚𝑚𝜔𝜔
2𝜋𝜋𝑅𝑅

𝑑𝑑𝜃𝜃𝑑𝑑𝜑𝜑 sin(𝜔𝜔𝑡𝑡 − 𝜑𝜑�) [11] 
 
The parameters 𝑑𝑑𝜃𝜃 and 𝑑𝑑𝜑𝜑 are unitless geometric factors; therefore we can see that the voltage 
induced by a rotating dipole scales with 1/𝐿𝐿, where 𝐿𝐿 is the characteristic length of the coils. As 
expected, the induced voltage scales linearly with respect to the dipole magnitude 𝑚𝑚 and the 
rotation frequency ω. The average azimuth angle 𝜑𝜑� of the coil only results in a phase shift of the 
induced voltage signal and has no effect on the magnitude of the signal. The effect of 𝜑𝜑∆ is also 
relatively simple: 𝑑𝑑𝜑𝜑 is maximized at 𝜑𝜑∆ = 𝜋𝜋/2, 𝑑𝑑𝜑𝜑 = 1 (when the width of the coil spans a full 180°) 
and decreases symmetrically about that maximum.  
 
The method of physical background subtraction shown in Fig. 2A, in which the voltage induced by 
the rotating magnetic moment is ultimately taken from the wiper of the potentiometer at the center 
of a voltage divider, results in the magnitude of the sensed voltage dropping by a factor of two. The 
voltage that is sensed by the oscilloscope is also amplified, increasing the scale of the measured 
voltage by a factor of 𝐾𝐾𝑔𝑔, where 𝐾𝐾𝑔𝑔 is the linear gain of the amplifier. By grouping the relevant 
parameters determined by the coil setup (coil parameter) and constrained by the microrobot (agent 
parameter) the expected scale of measured voltages can be mapped over many orders of 
magnitude (main text, Fig. 2F). 
 
It is enlightening to further consider the scale of the voltages induced in the sense coils by the RMF 
itself. This enables both a comparison between the magnitude of the voltage induced by the RMF 
and the microrobot (“signal to background ratio” 𝑆𝑆𝑆𝑆𝑅𝑅) as well as the extent of background 
suppression that was ultimately achieved with our setup (“background rejection ratio” 𝑆𝑆𝑅𝑅𝑅𝑅). In 
spherical coordinates, a field with the same plane of rotation as the one assumed for m and also 
rotating at constant angular velocity 𝜔𝜔 can be expressed as follows: 
 

 𝑩𝑩𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡) = 𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅 �
sin𝜃𝜃 cos(𝜔𝜔𝑡𝑡 − 𝜑𝜑)
cos 𝜃𝜃 cos(𝜔𝜔𝑡𝑡 − 𝜑𝜑)

sin(𝜔𝜔𝑡𝑡 − 𝜑𝜑)
� [12] 

 
Substituting this expression into Eq. 1 yields 
 

 𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡) = −𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2𝜔𝜔𝑑𝑑𝜃𝜃𝑑𝑑𝜑𝜑 sin(𝜔𝜔𝑡𝑡 − 𝜑𝜑�) [13] 
 
Comparing Eq. 11 and 13, the time dependent part of this function and the geometric factor are 
identical and will drop out of a ratio, although it should be noted that a real microrobot would 
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experience a phase lag between field and the moment for reasons discussed in the main text. 
Dividing Eq. 11 by Eq. 13 gives the 𝑆𝑆𝑆𝑆𝑅𝑅, 
 

 𝑆𝑆𝑆𝑆𝑅𝑅 =
𝜇𝜇0𝑚𝑚

2𝜋𝜋𝑆𝑆𝑅𝑅3
 [14] 

 
For the microrobots used in this study, 𝑚𝑚 is approximately 4.12×10-5 Am-2, 𝑅𝑅 was approximately 
19.5 mm, and the 𝑆𝑆𝑆𝑆𝑅𝑅 evaluates to values on the order of 10-4 to 10-3 for field magnitudes in the 
range of 1 to 10 mT. 
 
The BRR for the representative traces in Fig. 2C can also be estimated. The residual background 
at 3.98 Hz and 7.2 mT observed for the blank sample can be estimated through fitting to have an 
amplitude of 9.725 mV. At this frequency, the characterized gain of the amplifier 𝐾𝐾𝑔𝑔 was about 
3255, implying the actual residual voltage was about 2.988 µV. For the geometry and turn number 
of turns present in the sense coil, 𝜃𝜃∆ ≈ 𝜑𝜑∆ ≈ 𝜋𝜋 4⁄ , 𝑁𝑁 = 5000, and 𝑅𝑅 ≈ 19.5 mm, giving an estimated 
voltage within the sense coil from the stated RMF of 138.2 mV. This suggests a 𝑆𝑆𝑅𝑅𝑅𝑅 value of 
4.62 × 104, or 93.3 dB. Since the residual signal and the uncompensated voltages occurring in the 
sense coils should scale similarly with 𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅 and 𝜔𝜔, the 𝑆𝑆𝑅𝑅𝑅𝑅 should remain about the same for all 
conditions investigated, while the apparent magnitude of the residual voltage increases. This 
analysis suggests that, after background had been properly adjusted, a background suppression 
of about 90 dB could be achieved with this setup. 
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Validation of frequency sweep phase decomposition analysis. Some additional details can be 
provided regarding phase decomposition with the frequency sweeps in the main text. For the case 
of a linear sweep with a constant rate 𝛼𝛼,  
 

 𝜔𝜔(𝑡𝑡) = 𝛼𝛼𝑡𝑡 [15] 
 

Here, the weighting function 𝑊𝑊(𝑡𝑡) is as follows 

 

 𝑊𝑊(𝑡𝑡) =
𝑑𝑑
𝑑𝑑𝑡𝑡

[𝜔𝜔(𝑡𝑡)𝑡𝑡] =
𝑑𝑑
𝑑𝑑𝑡𝑡

(𝛼𝛼𝑡𝑡2) = 2𝛼𝛼𝑡𝑡 [16] 

 

Advancing a single period after an initial time 𝑡𝑡𝑖𝑖 to a final time 𝑡𝑡𝑓𝑓, it is possible to find an expression 
for 𝑡𝑡𝑓𝑓 in terms of 𝑡𝑡𝑖𝑖 and 𝛼𝛼 

 

 𝛼𝛼𝑡𝑡𝑓𝑓2 = 𝛼𝛼𝑡𝑡𝑖𝑖2 + 2𝜋𝜋 [17] 

 𝑡𝑡𝑓𝑓 = �𝑡𝑡𝑖𝑖2 +
2𝜋𝜋
𝛼𝛼

 [18] 

 

The angular frequency corresponding to these limits can be taken as the time average 〈𝜔𝜔(𝑡𝑡)〉 over 
a single period. Here, 

 

 〈𝜔𝜔(𝑡𝑡)〉 =
1

𝑡𝑡𝑓𝑓 − 𝑡𝑡𝑖𝑖
� 𝜔𝜔(𝑡𝑡)
𝑡𝑡𝑓𝑓

𝑡𝑡𝑖𝑖
=

1
2
𝛼𝛼�𝑡𝑡𝑓𝑓2 − 𝑡𝑡𝑖𝑖2�
2𝜋𝜋�𝑡𝑡𝑓𝑓 − 𝑡𝑡𝑖𝑖�

=
𝛼𝛼(𝑡𝑡𝑓𝑓 − 𝑡𝑡𝑖𝑖)(𝑡𝑡𝑓𝑓 + 𝑡𝑡𝑖𝑖)

4𝜋𝜋(𝑡𝑡𝑓𝑓 − 𝑡𝑡𝑖𝑖)
=
𝛼𝛼(𝑡𝑡𝑓𝑓 + 𝑡𝑡𝑖𝑖)

4𝜋𝜋
 [19] 

 

In the case of the linear sweep results shown in the main text, 𝛼𝛼 = 400𝜋𝜋. To ensure a smooth rise 
and fall of the field, sigmoidal step functions are introduced such that the full expression for the 
desired field as a function of time is as follows: 

 

 

𝐻𝐻𝑥𝑥(𝑡𝑡) = 𝐻𝐻0 cos(400𝜋𝜋𝑡𝑡2) �
1

1 + exp[−150(𝑡𝑡 − 0.025)] −
1

1 + exp[−150(𝑡𝑡 − 0.575)]� 

 

[20] 

 

 

𝐻𝐻𝑦𝑦(𝑡𝑡) = 𝐻𝐻0 sin(400𝜋𝜋𝑡𝑡2) �
1

1 + exp[−150(𝑡𝑡 − 0.025)] −
1

1 + exp[−150(𝑡𝑡 − 0.575)]� 

 

[21] 

 

These functions, as well as their modulus, are plotted in Fig. S3A. The time of constant field 
magnitude is approximately [0.05,0.55]. A more important constraint for performing phase 
decomposition with the approximate forms in Eq. 5 and 6 from the main text is to verify orthogonality 
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of the basis functions. In other words, for Eq. 5 and 6 to describe a valid approximation, the following 
should be true for each set of suitable limits: 

 

 
2∫ 𝑊𝑊(𝑡𝑡) cos2[𝜔𝜔(𝑡𝑡)𝑡𝑡]𝑑𝑑𝑡𝑡𝑡𝑡𝑓𝑓

𝑡𝑡𝑖𝑖
𝜔𝜔(𝑡𝑡𝑓𝑓)𝑡𝑡𝑓𝑓 − 𝜔𝜔(𝑡𝑡𝑖𝑖)𝑡𝑡𝑖𝑖

≈
2∫ 𝑊𝑊(𝑡𝑡)[Hx(t) 𝐻𝐻0⁄ ]2𝑑𝑑𝑡𝑡𝑡𝑡𝑓𝑓

𝑡𝑡𝑖𝑖
𝜔𝜔(𝑡𝑡𝑓𝑓)𝑡𝑡𝑓𝑓 − 𝜔𝜔(𝑡𝑡𝑖𝑖)𝑡𝑡𝑖𝑖

≈ 1 

 

[22] 

 

 
2∫ 𝑊𝑊(𝑡𝑡) sin2[𝜔𝜔(𝑡𝑡)𝑡𝑡]𝑑𝑑𝑡𝑡𝑡𝑡𝑓𝑓

𝑡𝑡𝑖𝑖
𝜔𝜔(𝑡𝑡𝑓𝑓)𝑡𝑡𝑓𝑓 − 𝜔𝜔(𝑡𝑡𝑖𝑖)𝑡𝑡𝑖𝑖

≈
2∫ 𝑊𝑊(𝑡𝑡)�Hy(t) 𝐻𝐻0⁄ �2𝑑𝑑𝑡𝑡𝑡𝑡𝑓𝑓

𝑡𝑡𝑖𝑖
𝜔𝜔(𝑡𝑡𝑓𝑓)𝑡𝑡𝑓𝑓 − 𝜔𝜔(𝑡𝑡𝑖𝑖)𝑡𝑡𝑖𝑖

≈ 1 

 

[23] 

 
   

   

 

 
2∫ 𝑊𝑊(𝑡𝑡) sin[𝜔𝜔(𝑡𝑡)𝑡𝑡] cos[𝜔𝜔(𝑡𝑡)𝑡𝑡]𝑑𝑑𝑡𝑡𝑡𝑡𝑓𝑓

𝑡𝑡𝑖𝑖
𝜔𝜔(𝑡𝑡𝑓𝑓)𝑡𝑡𝑓𝑓 − 𝜔𝜔(𝑡𝑡𝑖𝑖)𝑡𝑡𝑖𝑖

≈
2∫ 𝑊𝑊(𝑡𝑡)�Hx(t)H𝑦𝑦(t) 𝐻𝐻02⁄ �𝑑𝑑𝑡𝑡𝑡𝑡𝑓𝑓

𝑡𝑡𝑖𝑖
𝜔𝜔(𝑡𝑡𝑓𝑓)𝑡𝑡𝑓𝑓 − 𝜔𝜔(𝑡𝑡𝑖𝑖)𝑡𝑡𝑖𝑖

≈ 0 

 

[24] 

 

For the case of the linear sweep, good convergence to these expected values is observed (Fig 
S3B). The absolute value of the error function is also plotted to quantify deviation from orthogonality 
(Fig. S3C). All points where the error falls below 0.01 were taken to be valid and included later in 
the analysis of actual signals. At this stage the deviation is purely numerical—this does not include 
the influence of noise or instrumental error in actual signals. The symmetry of the error function 
suggests that, in this case, the main source of error may be the residual influence of the sigmoidal 
step functions.  

 

This process can also be repeated explicitly for a quadratic sweep with prefactor 𝛽𝛽: 

 

 𝜔𝜔(𝑡𝑡) = 𝛽𝛽𝑡𝑡2 [25] 
 

In this case, 

 

 𝑊𝑊(𝑡𝑡) =
𝑑𝑑
𝑑𝑑𝑡𝑡

[𝜔𝜔(𝑡𝑡)𝑡𝑡] =
𝑑𝑑
𝑑𝑑𝑡𝑡

(𝛽𝛽𝑡𝑡3) = 3𝛽𝛽𝑡𝑡2 [26] 

 

The expression relating the limits 𝑡𝑡𝑖𝑖 and 𝑡𝑡𝑓𝑓 reduces to: 

 
 

𝛽𝛽𝑡𝑡𝑓𝑓3 = 𝛽𝛽𝑡𝑡𝑖𝑖3 + 2𝜋𝜋 
 

[27] 

 𝑡𝑡𝑓𝑓 = �𝑡𝑡𝑖𝑖3 +
2𝜋𝜋
𝛽𝛽
�
1
3�

 [28] 
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Once again, the angular frequency these limits correspond to can be found using the time averaged 
value of 𝜔𝜔(𝑡𝑡): 

 

 
〈𝜔𝜔(𝑡𝑡)〉 =

1
𝑡𝑡𝑓𝑓 − 𝑡𝑡𝑖𝑖

�
𝜔𝜔(𝑡𝑡)
2𝜋𝜋

𝑡𝑡𝑓𝑓

𝑡𝑡𝑖𝑖
=

1
6𝜋𝜋

𝛽𝛽�𝑡𝑡𝑓𝑓3 − 𝑡𝑡𝑖𝑖3�
𝑡𝑡𝑓𝑓 − 𝑡𝑡𝑖𝑖

=
𝛽𝛽(𝑡𝑡𝑓𝑓 − 𝑡𝑡𝑖𝑖)�𝑡𝑡𝑓𝑓2 + 𝑡𝑡𝑓𝑓𝑡𝑡𝑖𝑖 + 𝑡𝑡𝑖𝑖2�

6𝜋𝜋(𝑡𝑡𝑓𝑓 − 𝑡𝑡𝑖𝑖)

=
𝛽𝛽

6𝜋𝜋
�𝑡𝑡𝑓𝑓2 + 𝑡𝑡𝑓𝑓𝑡𝑡𝑖𝑖 + 𝑡𝑡𝑖𝑖2� 

[29] 

 

In the case of the quadratic sweep in the main text, 𝛽𝛽 = 2𝜋𝜋 and the time of constant field is from 
approximately [0.5,5.5]. The explicit forms of 𝐻𝐻𝑥𝑥(𝑡𝑡) and 𝐻𝐻𝑦𝑦(𝑡𝑡) are as follows: 

 

 

𝐻𝐻𝑥𝑥(𝑡𝑡) = 𝐻𝐻0 cos(2𝜋𝜋𝑡𝑡3) �
1

1 + exp[−15(𝑡𝑡 − 0.5)] −
1

1 + exp[−15(𝑡𝑡 − 5.5)]� 

 

[30] 

 𝐻𝐻𝑦𝑦(𝑡𝑡) = 𝐻𝐻0 sin(2𝜋𝜋𝑡𝑡3) �
1

1 + exp[−15(𝑡𝑡 − 0.5)] −
1

1 + exp[−15(𝑡𝑡 − 5.5)]� [31] 

 

These are shown in Fig. S3D. The same check on orthogonality described in Eq. 22-24 can be 
performed (Fig. S3E and Fig S3F). Here, the errors are larger than in the linear case, but 
convergence falls below an error of 0.01 for points that were considered in the analysis.  
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Fig. S1. Additional information about signal amplification in the experiments described in the main 
text. (A) A more detailed schematic of the amplifier circuit is shown. For PCB layout, two of the 
evaluation boards EVAL-ADA4625-1ARDZ were used with the component values indicated. C1 
was found to be necessary to suppress self-resonance of the detection coils. Gain was set by 
changing RF1 and R2, or RF1’ and R2’. The signal amplifier was powered by standard 9 V batteries 
to fully avoid the possibility for noise from a rectified DC supply. (B) Measured gain versus 
frequency is shown for an initial configuration of the amplifier, which achieved a gain of more than 
120 dB, as well as the gain setting used for experiments (70 dB). The gain was reduced so that the 
micromagnet could be observed at the highest frequencies. It was also beneficial to reduce the 
gain because additional suppression of the ambient 50 Hz noise is needed to avoid clipping output 
waveforms.  
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Fig. S2. Explanatory sketch of geometry for theoretical sensitivity analysis. (A) The magnetic field 
vector 𝑩𝑩 at a position 𝒓𝒓 relative to a point dipole with dipole moment vector 𝒎𝒎. Both Cartesian 𝒙𝒙�𝒚𝒚�𝒛𝒛� 
and spherical 𝒓𝒓�𝜽𝜽�𝝋𝝋�  coordinate frames are shown. The Cartesian frame and the spherical frame 
have the same origin, but the spherical frame vectors are drawn at the tip of 𝒓𝒓 to allow for clearer 
visualization. (B) A loop of wire that forms a latitude-longitude rectangle 𝜽𝜽𝟏𝟏 ≤ 𝜽𝜽 ≤ 𝜽𝜽𝟐𝟐, 𝝋𝝋𝟏𝟏 ≤ 𝝋𝝋 ≤  𝝋𝝋𝟐𝟐 
on the surface of a sphere with radius 𝑹𝑹 centered at the origin. Note that the coils actually used in 
the apparatus described in the main text were partial cylindrical surfaces, which here have been 
approximated in terms of latitude longitude squares to simplify the analytical problem.  
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Fig. S3. Numerical validation of phase decomposition with swept frequencies for the cases shown 
in the main text. Panels (A)-(C) pertain to the linear sweep from approximately 10 to 100 Hz 
described in Fig. 3A of the main text. (A) The desired field as a function of time, normalized to the 
RMF magnitude 𝑯𝑯𝟎𝟎 is shown in terms of its components 𝑯𝑯𝒙𝒙 and 𝑯𝑯𝒚𝒚. (B) The orthogonality of these 
functions when integrated with a weighting function and appropriately defined limits is tested by 
assessing convergence to 1 or 0. As simplified notation, 𝑯𝑯𝒙𝒙(𝒕𝒕) ∙ 𝑯𝑯𝒙𝒙(𝒕𝒕) is used to denote results 
from Eq. 22, 𝑯𝑯𝒚𝒚(𝒕𝒕) ∙ 𝑯𝑯𝒚𝒚(𝒕𝒕) for Eq. 23, and 𝑯𝑯𝒙𝒙(𝒕𝒕) ∙ 𝑯𝑯𝒚𝒚(𝒕𝒕) for Eq. 24. (C) To quantify the level of 
convergence, the absolute value of the difference between calculated and expected values is 
shown. Panels (D)-(F) pertain to the quadratic sweep from approximately 0.6 Hz to 26 Hz described 
in Fig. 3B of the main text and are directly analogous to (A)-(C). It should be noted in (F) that the 
error is higher in the case of the quadratic sweep, but still acceptably low for the timeframe of 
interest.  
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Fig. S4. Images of the selection field setup. (A) The full setup is depicted as actually used to collect 
the data appearing in Fig. 4 of the main text, with the components labelled. The power amplifier is 
not included because it was relocated across the room to reduce 50 Hz noise, but its inputs and 
outputs are labelled. (B) A detailed view of the permanent magnet array used to generate the zero 
point, along with the micro positioner mounted atop it. A topview is provided with the arm holding 
the sample removed (inset). (C) The arm that holds the sample chamber and attaches to the 
micropositioner stage is shown. The sample chamber is affixed to the arm using a piece of heat 
shrink. 
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Fig. S5. Empirical determination of RMF conditions suitable for the selection field experiments. (A) 
Out-of-phase signal amplitudes are shown as a function of RMF magnitude for the sample chamber 
placed as close to the zero point as possible. As expected, the out-of-phase signal increases with 
RMF magnitude, but then drops again as the signal from the magnet is dominated by the in-phase 
component. As discussed in the main text, these signals are proportional to the rate of irreversible 
work done on the micromagnet, so the peak corresponds roughly to the step out frequency. (B) By 
normalizing the same data to frequency, it can be replotted in terms of quantities that reflect the 
magnitude of the irreversible torque or the irreversible work per cycle of the field.  
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Fig. S6. Assessment of spatial variation of inductive coupling in absence of selection field. To 
ensure a large signal at low frequency, a cylindrical magnet of diameter 750 µm and length of 
1000 µm (N50, SM Magnetics Cyl0010-25) was placed in glycerol in a 5 mm NMR tube and its 
position was varied by the microcontroller under constant RMF. Variation in magnitude of the 
induced signal under these conditions was assumed to arise from spatial variation of inductive 
coupling to the sense coils. (A) Variation in signal magnitude along the x and y axes is shown, 
normalized to the center. Notably, the observed inductive coupling is more constant for variation in 
the y direction than the x direction for this setup. (B) Variation of the inductive signal magnitude is 
shown in the z direction. To facilitate comparison, the ordinate axes of these plots have been kept 
to scale with each other. Variation of inductive coupling in the z direction is clearly much weaker 
than the influence of the selection field.  
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