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Abstract

We de�ne the notion of an inductively de�ned type in the Calculus of Con-

structions and show how inductively de�ned types can be represented by closed

types. We show that all primitive recursive functionals over these inductively

de�ned types are also representable. This generalizes work by B�ohm & Be-

rarducci on synthesis of functions on term algebras in the second-order poly-

morphic �-calculus (F

2

). We give several applications of this generalization,

including a representation of F

2

-programs in F

3

, along with a de�nition of

functions reify, reflect, and eval for F

2

in F

3

. We also show how to de�ne

induction over inductively de�ned types and sketch some results that show that

the extension of the Calculus of Construction by induction principles does not

alter the set of functions in its computational fragment, F

!

. This is because

a proof by induction can be realized by primitive recursion, which is already

de�nable in F

!

.

1 Introduction

The motivation for the this paper comes from two sources: work on the extraction of

programs from proofs in the Calculus of Constructions (CoC) [23, 24] and work on

the implementation of LEAP [25], an explicitly polymorphic ML-like programming

language (here we only consider the pure F

!

fragment of LEAP). The former em-

phasizes the logical aspects of CoC, the latter its computational aspects. The basic

relationship is simple: an extraction process relates proofs in CoC to programs in F

!

.

In other words, in F

!

we can express the computational contents of proofs in CoC.

Said yet another way: programs in F

!

realize propositions in CoC.

1

1

For the purposes of this paper, we are ignoring the distinction between Data , Prop, and Spec

made in [23, 24]. For practical purposes, this distinction is extremely important. Here it is more
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Both on the logical and computational level, inductively de�ned propositions or

types play a central rôle in any applications. Their logical aspect, that is, proving

properties by induction, and their computational aspect, that is, de�ning functions

by primitive recursion, are very closely related: the computational content of a proof

by induction is a function de�nition by primitive recursion. Said another way: prim-

itive recursion realizes induction. One of our results is that, even though induction

principles are not provable in CoC, their computational content is already de�nable

in F

!

. Thus augmenting CoC by induction principles over inductively de�ned types

is in some sense \conservative" over its computational fragment: even though we can

prove more speci�cations, any function which we might be able to extract from such

proofs is already de�nable in pure F

!

|we just would not be able to show in CoC

without induction that it satis�es its speci�cation.

Closely related is work by Girard [13, 14], Fortune, Leivant & O'Donnell [12], and

Leivant [17, 18] who are concerned with the relationship between higher-order logic

and polymorphic �-calculi.

Mendler [19, 20] studied inductive types in the setting of the second-order poly-

morphic �-calculus and the NuPrl type theory. He adds to the system F a new scheme

for de�ning recursive types. The system is extended with new constants for repre-

senting the type, its constructor and the primitive recursion operator. The rules of

conversion of the system are also extended for each new recursive type. In our presen-

tation the inductive types are internally represented using higher-order quanti�cation

and the only reduction rule used is �-reduction. An advantage of our approach is

that types that in some sense \are already there" are not also added arti�cially. On

the other hand, a signi�cant drawback of our approach is the relative weakness of

our notion of equality induced by this representation, even if one adds �-conversion.

For example, let R be the closed term for primitive recursion over the natural num-

bers, de�ned using iteration and pairing as in Section 5. Then the equality between

R� h

0

z

h

0

s

(succn) and h

0

s

(pairn (R� h

0

z

h

0

s

n)) is not an internal equality (as it is in

Mendler's system) but is only provable using induction on n. The types given for

primitive recursion in Mendler's work and in this paper are slightly di�erent but

equivalent. Work along Mendler's lines for the Calculus of Constructions is presented

by Coquand and Paulin-Mohring [9] and for Martin-L�of's type theory by Dybjer [11].

On the purely computational level, we generalize B�ohm & Berarducci's [4] con-

struction of functions on term algebras in the second-order polymorphic �-calculus

(F

2

) to F

!

. One of their results does not generalize in unmodi�ed form beyond alge-

braic types: not every closed term of the representation type will be ��-convertible

to the representation of a term in the inductive type. This does not appear to be

computationally relevant. One can consider alternative de�nitions of inductive types

outside F

!

(but still inside CoC) which have the same computational content as

our de�nitions. Another alternative would be to strengthen the notion of equality.

We conjecture that one can use Reynolds' condition of parametricity [26] to recover

uniqueness of representations at least in the F

!

fragment.

convenient to simply use � to encompass all of them. We thus use the terms \proposition" and

\speci�cation" interchangeably.
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A facility to generate the de�nition of inductively de�ned types, the construc-

tors, and the primitive recursion operator from speci�cations like the ones in Exam-

ples 3 to 9 has been added to the implementation of the Calculus of Constructions

V4.10 developed at INRIA. Work on the e�cient implementation of inductively de-

�ned types and primitive recursion over such types in F

!

is currently under way in

the framework of the Ergo project at Carnegie Mellon University.

2 The Calculus of Constructions

The Calculus of Constructions (CoC) of Coquand & Huet (see [7, 6, 16, 8]) is a

very powerful type theory, yet it can be formulated very concisely. It encompasses

Girard's system F

!

(see [13, 14]) and the type theory of LF, the Edinburgh Logical

Framework (see Harper, Honsell & Plotkin [15]) and may be considered the result of

combining these two type theories (see Barendregt [2]). The formulation we present

here is a very brief summary of the concrete syntax, notation, and inference system

given in [8].

We use M;N; . . . for terms in general and x; y; z for variables (abstractly, though,

they are de Bruijn indices [10], where the occurrences of x in (�x:M)N and [x:M ]N

are binding occurrences). We have

M ::= x j (�x:M)N j (M N) j [x:M ]N j �

Following [8] we call [x:M ]N a product. � is the universe of all types, but is itself

not a type. Contexts (denoted by �;�) are products over � and thus have the form

[x

1

:M

1

] . . . [x

n

:M

n

] �, all other terms will be referred to as objects. Contexts serve as

types, but do not have types themselves. When it is clear that a term is a context,

we sometimes omit the trailing �.

The inference system de�nes two judgments: � ` � means that � is a valid

context in the valid context �, and � ` M : P means that M is a well-typed term

of type P in the valid context �. We use P;Q; . . . for types, that is, terms which can

appear in the place of P in the judgments below. The inference system below entails

that a type P will either be a context, or have the property that � ` P : �. [N=x]Q

is the notation for substituting N for x in Q (abstractly de�ned using the de Bruijn

notation, and therefore avoiding the issues of name clashes).

Valid Contexts.

` �

� ` �

�[x:�] ` �

� ` P : �

�[x:P ] ` �

Product Formation.

�[x:P ] ` �

� ` [x:P ]�

�[x:P ] ` N : �

� ` [x:P ]N : �

Variables, Abstraction, and Application.

� ` �

[x:P ] in �

� ` x : P

�[x:P ] ` N : Q

� ` (�x:P )N : [x:P ]Q

� `M : [x:P ]Q � ` N : P

� ` (M N) : [N=x]Q
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We will consider �-conversion (

�

=

) in the \full" form (see [8, Page 102]) and have

the following rule of type conversion:

� `M : P � ` P

�

=

Q

� `M : Q

�-conversion does not play a very important role, but we will have occasion to use

it when considering the representation of inductively de�ned types.

The calculus shares the basic properties of the LF type theory and F

!

, such as

strong normalization, decidability of type-checking, and the Church-Rosser property

for well-typed terms. We will make use of the properties in the development below.

We formulate the basic induction principle over normal forms of types in CoC sepa-

rately as a lemma, since we will need it frequently. Its proof is immediate from the

Lemmas in [8].

Lemma 1 (Normal forms of types) Given a type R, that is, a term R such that for

some � and N we have � ` N : R. Then the �-normal form of R has the shape

N

0

N

1

. . .N

p

, �, or [x:R

0

]R

1

. In particular, the �-normal form of R cannot be an

abstraction.

We say that a type R is atomic if it is in normal form and does not begin with a

product, that is, is not of the form [x:P ]Q.

We will use P ! Q as an abbreviation for any [x:P ]Q, if x does not occur free in

Q. We will sometimes omit the parentheses surrounding applications in which case

application is written simply as juxtaposition and associates to the left. Juxtaposition

binds tighter than \!", which associates to the right. Abstraction and product

also associate to the right and bind less tightly than \!". The equality in the

metalanguage is \=". De�nitional equality is written as \�" and may be thought of

as introducing an abbreviation at the level of the Calculus of Construction as available

in its implementation at INRIA. We will use this notion of notational de�nition in

examples without formalizing it.

3 Inductively De�ned Types

Intuitively, an inductively de�ned type is given by a complete list of constructors for

terms of the type. We reason about the type with an appropriate induction principle,

and we write functions over the type using iteration, which is powerful enough to

de�ne primitive recursive functionals over elements of the type. This notion encom-

passes the usual notions of free term algebras with associated induction principles,

but it is more general and allows the de�nition of types such as natural numbers,

pairs, lists, ordinal notations, logical quanti�ers and connectives, or programs in F

2

,

a signi�cant fragment of CoC of independent interest.

Below is our concrete syntax for the de�nition of an inductive type. We refer to

� as the inductively de�ned type, and c

1

; . . . ; c

n

as the constructors for �.
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indtype � : [z

1

:Q

1

] . . . [z

m

:Q

m

] � with

c

1

: [x

1

:P

11

] . . . [x

k

1

:P

1k

1

]�M

11

. . .M

1m

.

.

.

c

n

: [x

1

:P

n1

] . . . [x

k

n

:P

nk

n

]�M

n1

. . .M

nm

end

In such an inductive de�nition, � may not occur in Q

j

, nor in any M

ij

. However,

� may occur in P

il

, but only positively (see De�nition 2). Throughout the paper, we

will use the names �, c

i

, Q

j

, P

il

, M

ij

when we need to refer to the components of a

given inductive type de�nition. Annotating a P

�

il

serves only as a reminder that �

may be free in P

il

, and P

�

il

is the result of substituting � for � in P

il

. We will also

use throughout this paper:

Q = [z

1

:Q

1

] . . . [z

m

:Q

m

] �

P

�

i

= [x

1

:P

�

i1

] . . . [x

k

i

:P

�

ik

i

]�M

i1

. . .M

im

for 1 � i � n

Besides positivity, we make an additional assumption that greatly simpli�es the

presentation and holds in all examples we are aware of, but is not essential. We

require that for any quanti�er [y:R

�

0

]R

�

1

appearing in the de�nition of �, either y

does not occur in R

�

1

or � does not occur in R

�

0

. For a development without this

restriction see Paulin-Mohring [24]. The additional complexity arises primarily in the

de�nition of � below (De�nition 11)|all theorems remain valid when appropriately

modi�ed.

We de�ne by simultaneous induction when a variable occurs only positively and

only negatively in a type R, where R is in �-normal form. Since R is a type and

assumed to be in normal form the (omitted) case R = (�z:R

0

)R

1

cannot arise (see

Lemma 1).

De�nition 2 (Positive and negative occurrences of variables) We de�ne by simulta-

neous induction: a variable x occurs only positively in the �-normal type R if

Case R = xN

1

. . .N

m

and x does not occur in N

1

; . . .N

m

,

Case R is atomic and x does not occur in R,

Case R = [z:R

0

]R

1

and x occurs only negatively in R

0

and only positively in R

1

.

and a variable x occurs only negatively in the �-normal type R if

Case R is atomic and x does not occur in R,

Case R = [z:R

0

]R

1

and x occurs only positively in R

0

and only negatively in R

1

.

We begin with some examples for inductively de�ned types. The �rst one is

algebraic (as in [4]).

Example 3 (Natural Numbers) This is the canonical example for an inductively

de�ned type.
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indtype nat : � with

zero : nat

succ : nat ! nat

end

Pairs and lists, the next two examples, are parameterized types which are hered-

itarily algebraic: once instantiated with algebraic types, the result will be algebraic.

The representation of the parameterized type itself, however, is beyond the framework

of [4].

Example 4 (Pairs) Pairs are de�nable in this calculus. They will be used in Section 5

in order to de�ne primitive recursion from iteration.

indtype prod : � ! � ! � with

pair : [A:�] [B:�]A! B ! prodAB

end

We will have occasion to use a generalized notion of pair in the metalanguage that

applies to parameterized types. Given R and S of type [z

1

:Q

1

] . . . [z

m

:Q

m

] �. We de�ne

R � S = [z

1

:Q

1

] . . . [z

m

:Q

m

] prod (Rz

1

. . . z

m

) (S z

1

. . . z

m

).

Example 5 (Lists) This is a simple example for a parameterized type that involves

a non-trivial induction. As we will see later in Example 21 the representation of this

parameterized type in our framework is somewhat di�erent from the representation,

for example, given by Reynolds [27].

indtype list : � ! � with

nil : [A:�] listA

cons : [A:�]A! listA! listA

end

Ordinal notations, the next example, are not algebraic for a di�erent reason:

the argument to one of the constructors ranges over sequences (which are naturally

represented as functions).

Example 6 (Ordinal Notations) This example is due to Coquand [6] and generalized

by Huet [16, Section 10.3.5]. The limit constructor olim is applied to a sequence of

ordinals which is represented as a function from natural numbers to ordinals.

indtype ord : � with

ozero : ord

osucc : ord! ord

olim : [A:�](A! ord)! ord

end

The next example is a representation of programs in the polymorphic �-calculus

(F

2

). This type is clearly not hereditarily algebraic.
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Example 7 (Programs in F

2

) This inductive type is noteworthy for several reasons.

Its representation will lie in F

3

, the third-order polymorphic �-calculus. Moreover,

one can program an evaluation function for F

2

in F

3

over this representation. For a

more detailed account, see [25].

indtype prog : � ! � with

rep : [A:�]A! progA

lam : [A:�] [B:�] (A! progB)! prog (A! B)

app : [A:�] [B:�] prog (A! B)! progA! progB

typlam : [A:� ! �] ([B:�] prog (AB))! prog ([B:�] (AB))

typapp : [A:� ! �] prog ([B:�](AB))! [B:�] prog (AB)

end

All the examples so far lie within the F

!

fragment of CoC. The following examples

deal with aspects of dependent types in CoC which can be used to de�ne logical

notions.

Example 8 (Leibniz' Equality) Leibniz' equality and other logical connectives can be

de�ned as inductive types. We express here that equality is the least relation which

relates every element to itself.

indtype eq : [A:�]A! A! � with

refl : [A:�] [x:A] eqAxx

end

Example 9 (Existential Quanti�cation) We express the usual inference rule for

existential quanti�cation and (since the type is inductive) that this is the only way we

can establish an existentially quanti�ed proposition.

indtype exists : [A:�] (A! �)! � with

exists-intro : [A:�] [P :A! �] [x:A]P x! existsAP

end

Similar to the way we generalized prod to � we can generalize dependent pairs. This

will be used in the de�nition of induction in Section 6. Given R : [z

1

:Q

1

] . . . [z

m

:Q

m

] �

and P : [z

1

:Q

1

] . . . [z

m

:Q

m

]Rz

1

. . . z

m

! �. We de�ne the type

R
 P = [z

1

:Q

1

] . . . [z

m

:Q

m

] exists (Rz

1

. . . z

m

) (P z

1

. . . z

m

)

Counterexample 10 (LF encoding of logical systems) LF, the Logical Framework,

is a very weak subsystem of CoC in which one can encode inference systems as sig-

natures. Judgments of the inference system become types or type families, logical

connectives and quanti�ers and inference rules become typed constants. See Harper,

Honsell & Plotkin [15] for a description of LF and Avron, Honsell & Mason [1] for

LF representations of a variety of logics. These signatures resemble inductive type

de�nitions, but upon closer inspection the analogy fails. Consider the following two

problematic declarations which would be part of an inductive type de�nition derived

from an encoding of �rst-order arithmetic.
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indtype ` : o! � with

. . .

�I : [A:o] [B:o] (`A! `B)! `A � B

8I : [A:nat ! o] ([x:nat]`Ax)! `8A

end

In the case of �I, the �rst occurrence of `A is negative, and therefore falls outside

of our framework of inductive de�nitions. This is a simple example of a type that is

non-empty, even though it may not have a \base case" when one tries to consider it as

an inductively de�ned type, ignoring the negative occurrence of `. In the case of 8I,

the rule may become too powerful and actually formalize a version of the !-rule (and

not universal introduction) when we make induction over natural numbers available

at the level of LF. This failure of induction is not a defect of LF, since induction is

done once and for all when the LF type theory itself is de�ned inductively. However,

it does make it considerably more di�cult to extend LF while preserving adequacy of

representations of logical systems in LF.

4 Representing Inductively De�ned Types

There are two aspects of inductively de�ned types that we are interested in. The �rst

one might be called the computational aspect, the second the logical aspect.

When investigating the computational aspect of an inductive type, we consider F

!

only and assume that we have a new (possibly parameterized) type constant � and

new term constructors c

i

. Functions over � may be de�ned using primitive recursion

at higher type (see De�nition 31). We ask if there is already a type in pure F

!

itself that can be used to represent terms built from the constructors such that the

functions that are de�nable by primitive recursion are also de�nable. The answer

here is \yes", though there will be a delicate point about the exact formulation of the

theorem to that e�ect.

The logical aspect is based on the simple premise that one would like to reason

inductively about inductive types. Since the various induction principles themselves

are not provable in CoC, they have to be added as primitive constants. What are the

properties of such an extension? We do not have a complete answer here, but at least

we ascertain one pleasant property: when considering the computational content of

proofs of speci�cations under this extension, it is conservative: we have new theorems

(and proofs), but no new functions in F

!

.

We begin by giving a method for representing inductively de�ned types. An

important property we would like to preserve is that an inductive type in F

!

will also

be represented in F

!

. This fact is used vitally in the implementation of LEAP [25].

Now assume we are given an inductively de�ned type � in the notation at the

beginning of Section 3. In this section we show that there is actually a closed type �

in CoC such that any well-typed term that can be built with the constructors of � and

terms in CoC has a representation of type �. The converse, namely that every closed

termM of type � can be expressed in terms of the constructors of � is not true if one

takes ��-conversion as the notion of term equality. We conjecture that the converse is
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true in models that satisfy Reynolds' condition of parametricity [26]. This conjecture

is based on the intuition that completeness fails because ��-equality is too weak

to identify indistinguishable terms, under some reasonable assumptions about when

terms should be indistinguishable (see Mitchell and Meyer [21]). Computationally

this failure of completeness is not a problem, and the logical characterization of an

inductive type in terms of an induction axiom is satisfactory from the logical point

of view (though, of course, also incomplete in another sense).

Of course, there may be many ways an inductively de�ned type could be repre-

sented in CoC. We give here a canonical construction in which the representation of

an element of the inductive type is its own iteration function. This representation has

some drawbacks which we will return to in Section 5, where we show how to de�ne

primitive recursion at all types over an inductively de�ned type.

Before launching into the description of the representation of inductive types, we

need an important technical tool. In its simplest form, we de�ne a map � on terms

that lifts a function F : P ! Q to a function �

R

: RP ! RQ where R : � ! � and

R is positive in its argument (that is, R = (�x:�)R

0

and x is only positive in R

0

).

De�nition 11 (Maps � and 	) Given S and T of type [z

1

:Q

1

] . . . [z

m

:Q

m

] � and a

function F : [z

1

:Q

1

] . . . [z

m

:Q

m

]S z

1

. . . z

m

! T z

1

. . . z

m

. Furthermore, we are given a

type R = R

x

with some free occurrences of x:[z

1

:Q

1

] . . . [z

m

:Q

m

] �. We de�ne �

R

for

R

x

with only positive occurrences of x such that for any term N : R

S

, �

R

(N) : R

T

,

and simultaneously we de�ne 	

R

for R

x

with only negative occurrences of x such that

for any term N : R

T

, 	

R

(N) : R

S

.

Case R

x

= xN

1

. . .N

m

. Then let �

R

(N) = F N

1

. . .N

m

N : R

T

, since x does not

occur in N

1

; . . . ; N

m

by positivity.

Case R

x

is atomic and x does not occur in R

x

. Then R

S

= R

T

and we let �

R

(N) =

N .

Case R

x

= [z:R

x

0

]R

x

1

. Then �

R

(N) = (�z:R

T

0

)�

R

1

(N 	

R

0

(z)). Note that x will

occur only negatively in R

x

0

since it occurs only positively in R

x

.

Remember that the case R

x

= (�z:R

x

0

)R

x

1

cannot arise, since R

x

is a type in normal

form (see Lemma 1). Now for R

x

with x only occurring only negatively, we de�ne:

Case R

x

= xN

1

. . .N

m

. This case cannot arise, since x is positive in R

x

, but we

assumed that x occurs only negatively in R

x

.

Case R

x

is atomic and x does not occur in R

x

. Then R

S

= R

T

and we let 	

R

(N) =

N .

Case R

x

= [z:R

x

0

]R

x

1

. Then 	

R

(N) = (�z:R

S

0

)	

R

1

(N �

R

0

(z)).

The construction of � depends on F and its type. If we want to make the dependency

explicit, we write �

F

for the map � that is constructed from F .
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The term constructed according to this de�nition will not always be correctly

typed. We need an additional restriction that is satis�ed in all of our examples and

in particular is always satis�ed for inductive type in the F

!

fragment of CoC.

Lemma 12 In the context of De�nition 11 and under the assumption that for any

quanti�er [z:R

x

0

]R

x

1

in R

x

, either z does not occur in R

x

1

or x does not occur in R

x

0

,

� and 	 are well-de�ned and � satis�es

�

R

(N) : R

T

for any N : R

S

The proof is by a simple induction on the structure of R

x

. The de�nition of �

and 	 with the same property can be made in full generality, but is quite complex.

Details can be found in Paulin-Mohring [24, page 107].

Now we are prepared to state and prove the representation of inductive types.

De�nition 13 (Representation � of an inductively de�ned type �) Given �, de�ned

inductively as in Section 3. We will use the notation P

�

il

for P

il

and P

�

il

for the result

of substituting � for � in P

il

and P

�

i

for the result of substituting � for � in P

i

. We

let

� = (�z

1

:Q

1

) . . . (�z

m

:Q

m

) [�:Q]P

�

1

! � � � ! P

�

n

! � z

1

. . . z

m

It is easy to see that � : Q. The de�nition of the representations of the constructors

c

i

will make use of the function ()

+

de�ned below with the property that if N : R

�

then N

+

: R

�

.

De�nition 14 (Representation c

i

of constructor c

i

)

c

i

= (�x

1

:P

�

i1

) . . . (�x

k

i

:P

�

ik

i

) (��:Q) (�y

1

:P

�

1

) . . . (�y

n

:P

�

n

) y

i

x

+

1

. . .x

+

k

i

Given the property of ()

+

stated above, it is easy to verify that c

i

: P

�

i

. We now

de�ne the map ()

+

using � and its properties.

De�nition 15 (Map ()

+

) Given a context [�:Q] [y

1

:P

�

1

] . . . [y

n

:P

�

n

] where all occur-

rences of � in the P

i

are positive. In order to be able to apply � such that it coerces

N : R

�

to N

+

: R

�

, we have to de�ne a function F : [z

1

:Q

1

] . . . [z

m

:Q

m

]�z

1

. . . z

m

!

� z

1

. . . z

m

. But � z

1

. . . z

m

= [�:Q]P

�

1

! � � � ! P

�

n

! � z

1

. . . z

m

and so we let

F = (�z

1

:Q

1

) . . . (�z

m

:Q

m

) (�g:[�:Q]P

�

1

! � � � ! P

�

n

! � z

1

. . . z

m

) g � y

1

. . .y

n

and de�ne N

+

as �

F

R

�

(N).

De�nition 16 (�

�

) Given a type � de�ned inductively as above. Then

�

�

= [�:[z

1

:Q

1

] . . . [z

m

:Q

m

]�] [c

1

:P

�

1

] . . . [c

n

:P

�

n

] �

We also extend () homomorphically from � and constructors c

i

to any term N that

is well-formed in a context �;�

�

. We sometimes refer to a term in the context �

�

as

a constructor term.



Inductively De�ned Types in CoC 11

For the adequacy theorem it is convenient to consider �-conversion in addition to

�-conversion.

Theorem 17 (Adequacy) For any inductively de�ned type � and closed terms N

1

; . . . ;

N

m

such that �

�

` �N

1

. . . N

m

: �, () is a bijection between ��-equivalence classes

of terms N such that �

�

` N : �N

1

. . .N

m

and equivalence classes of terms M such

that `M : �N

1

. . .N

m

.

Proof sketch: It is easy to verify by calculation as in [4] using Lemma 12 that

() has the injection properties. The inverse map F(M) = M �c

1

. . . c

n

applies the

representation M of a term in an inductive type to the constructors of that type to

yield the term that it represents.

It is important to note that the inverse map F does not need to examine the

structure of its argumentM to determine what constructor term M represents. This

means that even in an implementation where the intensional structure of functions

is inaccessible (for example, when functions are compiled into machine code) we can

still extract the constructor term that is represented by a function by applying it to

the constructor constants.

The adequacy theorem is somewhat weaker than B�ohm and Berarducci's rep-

resentation theorem. This is because the mappings () and F do not go between

��-equivalence classes: as the following counterexample shows, non-convertible terms

may represent the same constructor term.

Counterexample 18 (Non-uniqueness of representation under ��) Consider the fol-

lowing inductively de�ned type with one constructor, where nat is de�ned as in Ex-

ample 19:

indtype cex : � with

c : (nat ! nat)! cex

end

This type would be represented as

cex � [p:�] ((nat ! nat)! p)! p

c � (�f :nat ! nat) (�p:�) (�y:(nat ! nat)! p) y f

The following term is not ��-equivalent to a term c f for any f , even though it has

type cex:

M = (�p:�) (�y:(nat ! nat)! p)

y ((�n:nat)n (p ! nat) ((�x:p) zero) ((�x:p! nat)x) (y ((�n:nat)n)))

Using the inverse mapping F one can calculate what constructor term is represented

by M :

F(M) = c ((�n:nat)n (cex ! nat) ((�x:cex) zero) ((�x:cex ! nat)x) (c ((�n:nat)n)))

One can easily see that F(M) and M are not ��-convertible, though they both repre-

sent F(M).
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One can recover uniqueness by using dependency: in essence, a term of a construc-

tor type is represented as the proof that it is well-formed. Such a more complex proof

term has the same computational contents as our representation (see [24] or [18]).

One can also formulate a simple criterion on the types P

i

of the constructors that

ensures uniqueness of the representation under ��-conversion (see [24, page 125]).

Finally, one could claim that the failure of uniqueness is due to incompleteness of

��-conversion in the polymorphic �-calculus and that they really should be equiv-

alent. We conjecture that Reynolds' condition of parametricity [26] can be used to

justify this claim, but under parametricity even more terms might be identi�ed than

under our notion of equivalence that is induced by the function F . For example,

under parametricity, the term M in the counterexample would also be equivalent to

c ((�n:nat) zero).

Example 19 (Natural Numbers) Here we obtain the well-known representation of

the natural numbers in the second-order polymorphic �-calculus.

nat � [C:�]C ! (C ! C)! C

Example 20 (Pairs) Using () we obtain:

prod � (�A:�) (�B:�) [C:� ! � ! �] ([A:�] [B:�]A! B ! C AB)! C AB

pair � (�A:�) (�B:�) (�C:� ! � ! �) (�f :[A:�] [B:�]A! B ! C AB) f AB xy

This is not the encoding given, for example, by Reynolds [27] and is slightly more awk-

ward. The standard de�nition can be recovered by parameterizing the whole inductive

de�nition by A and B and then abstracting over A and B to obtain global de�nitions

(we refer to this method as uniform parameterization). Uniform parameterization

often leads to simpler equivalent representation of inductively de�ned parameterized

types. Here, we de�ne in the context A:�; B:� (the superscripts serve only as a re-

minder of the dependency):

indtype prod

A;B

: � with

pair

A;B

: A! B ! prod

A;B

end

This yields the representation

prod

A;B

� [C:�] (A! B ! C)! C

pair

A;B

� (�x:A) (�y:B) (�C:�) (�f :A! B ! C) f x y

One can then abstract over A and B (discharge them from the context) to obtain the

usual, now global de�nitions of prod and pair:

prod � (�A:�) (�B:�) [C:�] (A! B ! C)! C

pair � (�A:�) (�B:�) (�x:A) (�y:B) (�C:�) (�f :A! B ! C) f x y
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Example 21 (Lists) The representation of lists obtained this way is also di�erent

from, though equivalent to the encoding in F

2

given in [27].

list � (�B:�) [C:� ! �] ([A:�]C A)! ([A:�]A! C A! C A)! C B

As in Example 20, one can obtain the usual de�nition by uniform parameterization.

Example 22 (Ordinal Notations)

ord � [C:�]C ! (C ! C)! ((nat ! C)! C)! C

Example 23 (Programs in F

2

) This is an example where uniform parameterization

is not possible, since prog is applied to di�erent arguments at di�erent occurrences

in the types of the constructors in Example 7. Thus a representation of this F

2

-

type will lie in F

3

. We conjecture that no F

2

representation is possible such that the

normalization function over the representation is de�nable.

prog � (�D:�) [C:� ! �]

([A:�]A! C A) from rep

! ([A:�][B:�] (A! C B)! C (A! B)) from lam

! ([A:�][B:�]C (A! B)! C A! C B) from app

! ([A:� ! �] ([B:�]C (AB))! C ([B:�](AB))) from typlam

! ([A:� ! �]C ([B:�](AB))! [B:�]C (AB)) from typapp

! CD

Example 24 (Leibniz' Equality) In order to show that Example 8 actually de�nes

Leibniz' equality, we use uniform parameterization (see Example 20) to modify the

previous de�nition. Assume we are in the context A:�; x:A. We would like to de�ne

the type of elements equal to x inductively. We de�ne

indtype eq

A;x

: A! � with

refl

A;x

: eq

A;x

x

end

Our representation function yields

eq

A;x

� (�y:A) [C:A! �] (C x! C y)

refl

A;x

� (�C:A! �) (�z:C x) z

After abstracting over A and x we obtain the usual de�nition of Leibniz' equality in

the setting of CoC or higher-order logic.

Example 25 (Existential Quanti�cation) Here, too, we apply uniform parameteriza-

tion in order to expose the similarity to the usual de�nition of existential quanti�cation

in CoC or higher-order logic. In the context A:�; P :A! � we de�ne

indtype exists

A;P

: � with

exists-intro

A;P

: [x:A] (P x! exists

A;P

)

end

Our representation function yields

exists

A;P

� [C:�] ([x:A] (P x! C))! C

exists-intro

A;P

� (�x:A) (�v:P x) (�C:�) (�w:[x:A] (P x! C))wxv

After discharging A and P from the context, we obtain the usual de�nitions.
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5 Computing with Inductively De�ned Types

Enriching CoC by inductively de�ned types must go along with some method for

de�ning recursive functions over these types. We choose iteration rather than prim-

itive recursion since it is a simpler notion and primitive recursion is de�nable from

iteration. For an implementation of a programming language based on an enriched

F

!

one would probably need to choose primitive recursion, since its implementation

through iteration is provably ine�cient in some cases (see Colson [5] or Parigot [22]).

De�nition 26 (De�nition by iteration) Let an � be an inductively de�ned data type

as in Section 3. Given a � : Q and functions h

1

:P

�

1

; . . . ; h

n

:P

�

n

. Then the function

f : [z

1

:Q

1

] . . . [z

m

:Q

m

]� z

1

. . . z

m

! � z

1

. . . z

m

is de�ned by iteration over � at type � from h

1

; . . . ; h

n

if it satis�es the following

equations:

f M

11

. . .M

1m

(c

1

x

1

. . .x

k

1

) = h

1

x

1

. . .x

k

1

.

.

.

f M

n1

. . .M

nm

(c

n

x

1

. . .x

k

n

) = h

n

x

1

. . .x

k

n

where N is de�ned below.

The idea in the de�nition of N is to replace occurrences of variables whose type

has the form �N

1

. . .N

m

by recursive calls to f . The map � is already of the right

form to de�ne ().

De�nition 27 (Map ()) For f : [z

1

:Q

1

] . . . [z

m

:Q

m

]� z

1

. . . z

m

! � z

1

. . . z

m

and N :

R

�

we de�ne N such that N : R

�

by N = �

f

R

(N).

Given the basic representation (), how can we de�ne iteration on the representa-

tion? A basic insight is that a constructor is implemented as an iterator, thus applying

the representation of a constructor term as a function will perform iteration.

Theorem 28 Given the type � and h

1

; . . . ; h

n

, then

f � (�z

1

:Q

1

) . . . (�z

m

:Q

m

) (�x:� z

1

. . . z

m

)x� h

1

. . .h

n

is de�ned from h

1

; . . . ; h

n

by iteration over type � at type �. Thus we have

fM

i1

. . .M

im

(c

i

x

1

. . .x

k

i

)

�

=

h

i

x

1

. . .x

k

i

where x

l

is like x

l

except that it inserts recursive calls to f rather than to f , that is,

x

l

= �

f

P

il

(x

l

).

Proof sketch: By simple inductions as in [4].
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Note that we claim convertibility only for terms in the image of the () translation

function, not for any term that represents c

i

x

1

. . .x

k

i

. We conjecture that under the

assumption of parametricity (for the F

!

fragment) a stronger theorem also holds:

the equivalence classes of representations from Theorem 17 satisfy the equations for

iteration, given the de�nition of f above.

Example 29 (Existential Quanti�cation) For pairs or dependent pairs, the schema

of iteration simply allows access to the components of the pair. We show only the

dependent case.

f AP (exists-introAP xw) = h

1

AP xw

with types f : [A:�] [P :A ! �] existsAP ! � AP and h

1

: [A:�] [P :A ! �] [x:A]

[w:P x]� AP . The �rst projection function fst for the usual pairs is easily de�nable,

as is the function dfst for extracting the �rst component of a dependent pair shown

here. In terms of the notation above we have

dfstAP (exists-introAP xw) = x

� = (�A:�) (�P :A! �)A

h

1

= (�A:�) (�P :A! �) (�x:A) (�w:P x)x

Example 30 (Programs in F

2

) We now give de�nition of reify, reflect and eval

in the form of an iteration. These de�nitions are in the F

3

fragment of CoC. The

crucial function is reflect : [A:�] progA ! A. In terms of the above de�nition,

� = (�A:�)A

reflectA (repAx) = x

reflect (A! B) (lamAB x) = (�y:A) reflectB (x y)

reflectB (appAB xy) = (reflect (A! B)x) (reflectAy)

reflect ([B:�](AB)) (typlamAx) = (�B:�) reflect (AB) (xB)

reflect (AB) (typappAxB) = reflect ([B:�]AB)xB

From this the other de�nitions follow easily:

reify : [A:�]A! progA

reify � rep

eval : [A:�] progA! progA

eval � (�A:�) (�x:progA) reifyA (reflectAx)

In [25] we give the expanded de�nition of reflect in F

3

using Theorem 28.

Primitive recursion at all types is somewhat more di�cult, but as shown in various

places for the second-order polymorphic �-calculus (see, for example, Reynolds [27])

it can be reduced to iteration. We briey state only the form of primitive recursion

and the type of the primitive recursive operator pr

�

over an inductively de�ned type

�. � is the generalized product from De�nition 4.
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De�nition 31 (De�nition by primitive recursion at arbitrary type) Let an � be an

inductively de�ned data type as in Section 3. Given a � : Q and functions h

0

1

; . . . ; h

0

n

where h

0

i

: [x

0

1

:P

���

i1

] . . . [x

0

k

i

:P

���

ik

i

]�M

i1

. . .M

im

. A function f : [z

1

:Q

1

] . . . [z

m

:Q

m

]

� z

1

. . . z

m

! � z

1

. . . z

m

is de�ned by primitive recursion over � at type � from

h

0

1

; . . . ; h

0

n

if it satis�es the following equations:

f M

11

. . .M

1m

(c

1

x

1

. . .x

k

1

) = h

0

1

x̂

1

. . . x̂

k

1

.

.

.

f M

n1

. . .M

nm

(c

n

x

1

. . .x

k

n

) = h

0

n

x̂

1

. . . x̂

k

n

where x̂

l

= �

F

P

il

(x

l

) for F = (�z

1

:Q

1

) . . . (�z

m

:Q

m

) (�x:� z

1

. . . z

m

) pairx (f z

1

. . . z

m

x)

and thus

^

() : R

�

! R

���

.

Note that the occurrences ofM

ij

are not binding occurrences: they are determined

by the type of the constructor c

i

. In the simplest case, x̂ is merely x (if the type of

x does not involve �), or the pair of x and fx (if the type of x is �). In general, the

variable pr

�

which generates the de�nition of f given � and functions h

0

1

; . . . ; h

0

n

has

type

pr

�

: [�:[z

1

:Q

1

] . . . [z

m

:Q

m

] �] for �

([x

0

1

:P

���

11

] . . . [x

0

k

1

:P

���

1k

1

]�M

11

. . .M

1m

) for h

0

1

.

.

.

.

.

.

! ([x

0

1

:P

���

n1

] . . . [x

0

k

n

:P

���

nk

n

]�M

n1

. . .M

nm

) for h

0

n

! [z

1

:Q

1

] . . . [z

m

:Q

m

]�z

1

. . . z

m

! � z

1

. . . z

m

Example 32 (Primitive Recursion over Lists) To illustrate the schema of primitive

recursion we use lists as de�ned in Example 5. Given � : � ! �, primitive recursion

can de�ne a function f : [A:�] listA! � A. The schema looks like

fA (nilA) = h

0

1

A

fA (consAx l) = h

0

2

Ax (pair l (fA l))

where h

0

1

: [A:�]� A and h

0

2

: [A:�] [x:A] (prod (listA) (� A))! � A.

As a concrete example consider the function tl which takes a list and a default

value and returns the tail of the list or the default value (if the list is empty). We

could program this as a primitive recursion with

tl : [A:�] listA! listA! listA

tlA (nilA) = (�d:listA) d

tlA (consAx l) = (�d:listA) l

In the notation above we would have

� = (�A:�) list A! listA

h

0

1

= (�A:�) (�d:A) d

h

0

2

= (�A:�) (�x:A) (�p:prod (listA) (� A)) (�d:listA) fst (listA) (� A)p
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6 Reasoning with Induction

One of the motivations behind inductively de�ned types is that we would like to

reason about elements of these types using induction. In particular, we would like to

extract provably correct functions from proofs. In this section we state the natural

notion of induction over an inductively de�ned type, and show how induction relates

to the notion of primitive recursive functionals.

Induction principles are not de�nable (that is, provable) in CoC itself, but one

could assume such induction principles and associated reduction rules (see [8, Section

8] or [24, Section 4.4]). Such an extension of the calculus is in some sense \benign."

This can be formalized as saying the computational content of a proof that used

induction is already present in pure F

!

. The proof of this fact is surprisingly simple

(see Theorem 35). Thus, if one is interested only in the computational content of

proofs, the extension of CoC by induction over inductively de�ned types does not

change the set of de�nable functions. However, with the addition of induction one will

in general be able to prove many more speci�cations. Other conservative extension

results for polymorphic �-calculi have been obtained by Breazu-Tannen & Gallier [3].

De�nition 33 (Induction principle ind

�

for inductively de�ned �) Let � be an in-

ductively de�ned type as before. We de�ne ind

�

, the induction principle over � by

ind

�

: [A:[z

1

:Q

1

] . . . [z

m

:Q

m

]� z

1

. . . z

m

! �]

([x

0

1

:P

�
A

11

] . . . [x

0

k

1

:P

�
A

1k

1

]AM

11

. . .M

1m

(c

1

�x

0

1

. . . �x

0

k

1

))

.

.

.

! ([x

0

1

:P

�
A

n1

] . . . [x

0

k

n

:P

�
A

nk

n

]AM

n1

. . .M

nm

(c

n

�x

0

1

. . . �x

0

k

n

))

! [z

1

:Q

1

] . . . [z

m

:Q

m

] [x:� z

1

. . . z

m

]Az

1

. . . z

m

x

where �x

0

is de�ned below and � 
 A is the type of generalized dependent pairs (see

De�nition 9).

In the simplest case �x

0

will simply turn out to be x

0

(if the type of x

0

does not

involve �) or dfst�Ax

0

, extracting the element x from the pair consisting of an x

and the proof that x satis�es property A (if x

0

has type �).

De�nition 34 (Map �x) Let F be the generalized �rst projection function (derived

easily from dfst, see Example 29) on elements of dependent pair type � 
A. Then

F : [z

1

:Q

1

] . . . [z

m

:Q

m

] exists (� z

1

. . . z

m

) (Az

1

. . . z

m

)! � z

1

. . . z

m

and for R

x

and N : R

�
A

we de�ne

�

N = �

F

R

(N) : R

�

.

Coquand & Huet de�ne �, the stripping map, which extracts an untyped �-term

as the computational content of a proof in CoC. We use a less drastic erasure in the

proof of our conservative extension result below, which maps terms in CoC into terms

in F

!

. The partial erasure map E is de�ned in detail in [23, 24].

Theorem 35 (Primitive recursion realizes induction) We use pind

�

and ppr

�

as

abbreviation for the types of ind

�

and pr

�

, respectively. Then E(pind

�

)

�

=

E(ppr

�

).
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Proof sketch: The map E will erase � z

1

. . . z

m

from the type of A, and all corre-

sponding arguments to A at all occurrences of A (notation as in de�nition 33). The

resulting term is a valid type and ��-equivalent to the type of pr

�

(see De�nition 31).

The crucial observation is that E(P

�
A

il

) = E(P

��E(A)

il

).

This theorem means that the set of functions that can be extracted from induction

proofs over � can already be de�ned explicitly by primitive recursion at arbitrary

types. This corollary generalizes one direction of results obtained by Girard [14], and

Fortune, Leivant & O'Donnell [12], and Leivant [17, 18] which may be summarized

as \The number-theoretic functions representable in F

n

are exactly the functions

provably recursive in n

th

-order arithmetic."

Example 36 (Induction over Lists) Here we obtain a principle of induction over the

construction of lists. Since induction is a logical statement, it best to think of [] as

universal quanti�cation.

ind

list

: [P :[A:�] listA! �]

([A:�]PA (nilA))

! ([A:�] [x:A] [l

0

:exists (listA) (PA)]PA (consAx (dfstAPl

0

))

! [A:�] [l:listA]PA l

The induction principle will look more familiar after we curry at the argument l

0

to eliminate the dependent pair and also apply uniform parameterization over the

argument A. We then get:

[P :listA! �]

(P (nilA))

! [x:A] [l:listA]PA l! PA (consAx l)

! [l:listA]P l
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