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Abstract—This paper presents a design procedure for inductors
based on low-permeability magnetic materials for use in very
high frequency (VHF) power conversion. The proposed procedure
offers an easy and fast way to compare different magnetic
materials based on Steinmetz parameters and quickly select the
best among them, estimate the achievable inductor quality factor
and size, and finally design the inductor. Geometry optimization
of magnetic-core inductors is also investigated. The proposed
design procedure and methods are verified by experiments.

I. BACKGROUND

There is a growing interest in switched-mode power elec-
tronics capable of efficient operation at very high switching
frequencies (e.g., 10-100 MHz) [1]. These designs utilize
magnetic components operating at high frequencies, and often
under large flux swings. These magnetic components should
have a high quality factor to achieve high efficiency power
conversion. Unfortunately, most high-permeability magnetic
materials exhibit unacceptably high losses at frequencies above
a few megahertz. There are some low-permeability materials
(e.g., relative permeabilities in the range of 4-40) that can
be used effectively at moderate flux swings at frequencies up
to many tens of megahertz [2]. However, working with such
low-permeability materials - and the ungapped core structures
they are typically available in - presents somewhat different
constraints and challenges than with typical high-permeability
low-frequency materials [3]. Because of VHF operation and
low-permeability characteristics of such materials, the operat-
ing flux density is limited by core loss rather than saturation,
and a gap is not necessary to prevent the core from saturating
in many applications. Without a gap, the core loss begins to
dominate the total loss and copper loss can be ignored in many
cases. The performance of a VHF magnetic-core inductor thus
depends heavily on the loss characteristics of the magnetic
material. Moreover, there appears to be a lack of good design
procedures for a selecting among low-permeability magnetic
materials and available core sizes.

In this paper, we propose a design procedure for inductors
using low-permeability magnetic materials. This method is
based on knowledge of the material loss characteristics, such
as collected in [2], and is particularly suited for VHF induc-
tor designs. With methods used in this procedure, different
magnetic materials are compared fairly and conveniently, and

both the achievable quality factor and size of a magnetic-core
inductor can be evaluated before the final design.

Section II of the paper introduces the inductor design con-
siderations and questions to be addressed. Section III illustrates
the inductor design procedure and methods employed in it.
Section IV shows some experimental results to verify the
design procedure. Section V concludes the paper. In Appendix,
we check an important assumption behind our methods as well
as investigate geometry optimization problems of magnetic-
core inductors.

II. INDUCTOR DESIGN CONSIDERATIONS AND QUESTIONS

In our paper, we only consider inductor designs under a lim-
ited set of conditions in order to make the problem tractable.
Nevertheless, these conditions are both very reasonable and
practical for inductors at very high frequencies. The limited
conditions we address are as follows:

1) Use of ungapped cores made of low-permeability mate-
rials.

2) Single-layer, foil wound designs in the skin depth limit
on toroidal core shapes. A toroidal inductor design keeps
most of flux inside the core, thus reducing EMI/EMC
problems. A foil winding design can further reduce the
copper loss compared to a wire-wound one [4].

3) Design based on knowledge of Steinmetz parameters
for materials of interest. Such parameters are often not
published or readily available for these materials, but
can be obtained using methods such as that of [2].

4) Design assuming sinusoidal excitation at one frequency.
In VHF resonant inverters or converters, inductors often
have approximately sinusoidal current at a single fre-
quency. Note that consideration of variable frequency
operation, dc currents, and multiple frequency compo-
nents greatly increases complexity.

Fig. 1 shows an inductor design under the above conditions.
Given a selection of available cores in different low-

permeability materials, and a design specification including
inductance L, current amplitude Ipk, frequency fs, we answer
three important questions about design of VHF inductors under
the above conditions:

1) Which magnetic material from an available set will yield
maximum quality factor QL for a given size?
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2) Given the ability to continuously scale core size, what
material will yield the smallest size for a given quality
factor QL?

3) For an achievable quality factor QL and inductor size,
how should we design the inductor with the selected best
magnetic material to meet design specifications?

We answer these questions in the next section.

Fig. 1. An example of an inductor fabricated from copper foil on a
commercial magnetic core M3-998 from National Magnetics Group.

III. INDUCTOR DESIGN PROCEDURE AND METHODS

A. Inductor Design Procedure

Fig. 2 illustrates the proposed design procedure. First,
select design specifications from the system requirements.
Second, select the best magnetic material from a set of low-
permeability materials with known Steinmetz parameters. In
the third and fourth steps, we estimate the achievable quality
factor QL and size of the inductor with the best available
material. If the results are satisfactory, we design the inductor.
If not, it means the design requirements can’t be satisfied even
with the best available magnetic material, and one must revise
the inductor design requirements. A key feature of this design
procedure is that magnetic materials are compared first and
the best material is selected before completing any individual
design, greatly reducing design time and effort. Some impor-
tant information such as the maximum quality factor QL, and
the smallest possible size can be acquired before the final
design. By this procedure, we design an inductor only with
one size and one material instead of investigating thousands
of combinations to meet the design specifications.

(1) to (3) are used often in our design procedure. In VHF
power conversion, ac losses (conductor/copper and core losses)
usually dominate and we thus ignore dc losses (conductor loss)
here. In (1) and (2), we use the quality factor QL to evaluate
the ac losses of an inductor at a single frequency. Rac is
the equivalent total ac resistance of a magnetic-core inductor
including copper loss and core loss, Rcu is the equivalent
resistance owing to copper loss, and Rco is an equivalent
resistance owing to core loss. The Steinmetz equation is an
empirical means to estimate loss characteristics of magnetic
materials. It has many extensions, but we only consider the
formulation for sinusoidal drive at a single frequency here. In
(3), Bpk is the peak amplitude of average (sinusoidal) flux
density inside the material and PV is power loss per unit core
volume 1. K and β are called Steinmetz parameters. K and β

1Use of average flux density in the core simplifies the calculations. For
typical core sizes, this approximation can be shown to be well justified [5].

Fig. 2. Inductor design procedure

have been calculated for several commercial low-permeability
rf magnetic materials in [2].

QL =
ωL

Rac
(1)

Rac = Rcu +Rco (2)

PV = KBβpk (3)

B. Method to Select Among Magnetic Materials

In the second step, we begin with a coreless inductor to
make a comparison among different design options (including
magnetic materials) for a given L, Ipk, fs, minimum QL and
maximum size limitation. Ignoring the inductance of single-
turn loop, the number of turns Nair for a coreless inductor
can be calculated from (4) [4]:

Nair ≈
√√√√ 2πL

hµ0 ln
(
do

di

) (4)

do, di and h are the outside diameter, inside diameter and
height of the coreless inductor. Its average flux density
Bpk−air inside the core is calculated by (5):

Bpk−air =
µ0NairIpk

0.5π(di + do)
(5)

Likewise, the number of turns N and average flux density Bpk
of a magnetic-core inductor are calculated by (6) and (7):

N ≈
√√√√ 2πL

hµ0µr ln
(
do

di

) (6)

Bpk =
µ0µrNIpk

0.5π(di + do)
= µ0.5

r Bpk−air (7)
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Fig. 3. Inductor design example (do = 12.7 mm, di = 6.3 mm, h =
6.3 mm, L = 200 nH, Ipk = 2 A, fs = 30 MHz and Bpk−air = 13 G).

For a given L and specified dimensions in (7), average flux
density Bpk inside the core may be different for each magnetic
material, which is one of the reasons we can’t compare their
loss characteristics for different magnetic materials directly
at the same flux density level. However, we propose here a
method by which direct comparisons can be made: Bpk of each
magnetic material can be normalized to the coreless inductor
flux density Bpk−air by its relative permeability µr. For a
given design specification, all magnetic materials will have
the same normalized flux density, which is equal to µ−0.5

r Bpk.
Given a set of Steinmetz parameters, we can draw the curves
of PV vs. µ−0.5

r Bpk for all available magnetic materials. We
compare PV of these materials at µ−0.5

r Bpk = Bpk−air and
decide which material has the smallest core loss for the given
design specification.

An example is shown in Fig. 3, in which we consider a
design of a magnetic-core inductor at Ipk = 2 A and fs =
30 MHz with L = 200 nH and maximum size do = 12.7 mm,
di = 6.3 mm and h = 6.3 mm. Beginning with a coreless
inductor, we calculate Bpk−air = 13 G from (4) and (5). Using
data from [2], loss curves of PV vs. µ0.5

r Bpk are plotted for
the materials N40, P, M3 and 67 2. We compare their PV at
Bpk−air and find that N40 material has the smallest core loss
(614 mw/cm3). If we ignore the copper loss, the magnetic-
core inductor with N40 material will achieve the highest QL
for given design specifications. We can also observe in Fig. 3
that N40 is better than the other magnetic materials and 67 is
worse than the others over a wide range of flux density. This
will help us to design a magnetic-core inductor if its current
operating level is unknown or very wide.

We still don’t know if the magnetic-core inductor with the
best material is better than a coreless inductor of the same
size. There is no core loss and Steinmetz parameter for a
coreless inductor. But we can still compare its copper loss

2-17 material in [2] has a very low relative permeability and low core loss
characteristics. Compared to its core loss, the copper loss of -17 material
can’t be ignored. As a special case, -17 is not considered here. However, the
methods introduced in this paper can still be applied for -17 material with
special considerations of its copper loss.

to core losses of other magnetic materials on the same graph.
To accommodate the coreless design, we define PV−air at
Bpk−air as the power loss per unit volume for a coreless
inductor and calculate it by (8):

PV−air =
Rcu−air

2V
I2
pk (8)

Rcu−air is the copper resistance of a coreless inductor.
Rcu−air (or the copper resistance of a magnetic-core inductor
Rcu) depends heavily on a coreless or magnetic-core inductor
winding design pattern. One could find the ac resistance
of a coreless inductor by constructing and measuring it or
simulating it using computational techniques. Alternatively,
the resistance can be estimated for different design variants:

1) In [2], the windings are made of an equal-width foil-
like conductor, and Rcu−single−turn is the ac copper
resistance of a single turn inductor:

Rcu = N2Rcu−single−turn

≈ N2 ρcu
πδcu

(
2h
di

+
do
di
− 1
)

(9)

2) In [2], Rcu can alternatively be estimated from the foil
width, length and skin depth:

Rcu ≈
ρculcu
δcuwcu

(10)

3) In [4], the windings are made of foil-like conductor
tapered to conform to the shape of the toroid:

Rcu = N2Rcu−single−turn

≈ N2 ρcu
πδcu

(
h

di
+

h

do
+ 2 ln

do
di

)
(11)

For example, the loss characteristics of a coreless inductor
estimated by (9) is included in Fig. 4 . We can see N40 is the
only magnetic material which has lower loss than the coreless
inductor. Thus the magnetic-core inductor built with N40 may
have a higher quality factor QL than the coreless inductor.
The magnetic-core inductor built by other materials (e.g. M3,
P and 67) will not be better than the coreless inductor and not
be considered in the following steps. Here, we can see that
this comparison lets us exclude most of available magnetic
materials in the pool from the design, saving time and effort.

From previous measurements in [2], the core loss (Rco) usu-
ally dominates the total loss of an ungapped VHF magnetic-
core inductor. However, this statement should be checked to
make sure that it is still correct for an individual design. By a
similar method, we can define the copper loss per unit volume
PV−cu of a magnetic-core inductor and mark it on the graph
of PV vs. µ0.5

r Bpk. From (4) and (6),

N = µ−0.5
r Nair (12)

Rcu = N2Rcu−single−turn = µ−1
r Rcu−air (13)

PV−cu =
Rcu
2V

I2
pk =

µ−1
r Rcu−air

2V
I2
pk = µ−1

r PV−air (14)

PV−air can be calculated from (8). The copper loss character-
istic of a magnetic-core inductor for the example specifications
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Fig. 4. Inductor design example including the power loss characteristic of a
coreless inductor (do = 12.7 mm, di = 6.3 mm, h = 6.3 mm, L = 200 nH,
Ipk = 2 A, fs = 30 MHz and Bpk−air = 13 G).
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Fig. 5. Inductor design example including the copper loss characteristic of
a magnetic-core inductor (do = 12.7 mm, di = 6.3 mm, h = 6.3 mm,
L = 200 nH, Ipk = 2 A, fs = 30 MHz and Bpk−air = 13 G).

built in N40 magnetic material is marked in Fig. 5. In this
example, the copper loss of the magnetic-core inductor is much
smaller than its core loss (an order of magnitude or more 3).

C. QL Estimation with Given Maximum Inductor Size

In the third step, if we ignore the copper loss comparing to
the core loss of the magnetic-core inductor, the quality factor
QL can be estimated by (15) and (16):

Rco ≈
Total Core Loss

0.5I2
pk

=
PV V

0.5I2
pk

(15)

QL ≈
ωL

Rco
= ωL

0.5I2
pk

PV V
(16)

E.g., for the magnetic-core inductor built in N40, PV =
700 mW/cm3 at Bpk−air = 13 G, and QL ≈ 198 by (16). In
this example Rco ≈ 0.19 and Rcu ≈ 0.03, where Rco � Rcu.

3We note that the simple copper loss calculations of (9) in a cored inductor
design may have up to 30% error [2], but this degree of accuracy is sufficient
for our present purposes.

QL can also be estimated by (2), in which copper loss is
included, and QL ≈ 171 by (2).

D. Size Estimation with Given Minimum QL

In this subsection, we illustrate the third step in our in-
ductor design procedure. Because the method introduced in
this subsection is not as simple and direct as the method
in Section III-B, we begin this subsection with a general
description of the method. Then we derive equations needed
in our method for inductor size estimation. As we have done
in Section III-B, step by step design examples are given to aid
understanding of the method.

We again begin with a coreless inductor design, calculate its
size and compare the size of a magnetic-core inductor with it.
In our method, we define the scaling factor λ as the dimension
ratio of a magnetic-core inductor and the coreless inductor for
given L, QL, fs and Ipk, and we assume that the relative
ratio of the 3 dimensions is kept constant during the scaling.
Thus, we scale each dimension (x, y, z) describing the shape
of the coreless inductor by a factor λ to get the corresponding
dimension of a magnetic-core inductor: the coreless inductor
thus has λ = 1, and the magnetic-core inductor with the
minimum λ has the smallest size.

Our method has four main steps:
1) Given L, Ipk, fs and minimum required QL, design a

coreless inductor and get its dimension parameters do,
di, h.

2) Calculate Bpk−air of the coreless inductor, compare its
PV−air to PV of other magnetic materials at Bpk−air on
the graph of PV vs. µ−0.5

r Bpk and decide the possible
best materials for the inductor design.

3) Calculate the scaling factor λ for the possible best
materials.

4) Check the flux density B′pk, core loss PV ′ , and copper
loss PV ′−cu of the magnetic-core inductor after scaling
on the graph of PV vs. µ−0.5

r Bpk.
1) Step I, Calculate Coreless Design: From (4), the quality

factor QL of a coreless inductor can be calculated by (17):

QL =
ωL

Rcu−air
=

µ0fs
Rcu−single−turn

h ln
(
do
di

)
(17)

Rcu−single−turn can be estimated by (9) or (11).
If we assume di = 0.5do, we can solve the dimension

parameters do, di, h of a coreless inductor from (9)/(11), and
(17) for given fs and QL. In Appendix A, we show that this
assumption is very reasonable because letting di = 0.5do
yields an inductor with nearly optimum QL and thus the
smallest size.

2) Step II, Evaluate Magnetic Materials: After calculating
the dimensions of the coreless inductor, its Bpk−air and
PV−air can be calculated by (5) and (8). PV at Bpk−air of
all the magnetic materials can be found from the graph of
PV vs. µ−0.5

r Bpk. For example, we consider the design of a
coreless inductor with L = 200 nH, Ipk = 2 A, fs = 30 MHz,
and QL = 116. We define this coreless inductor as having
λ = 1. Its dimensions are do = 12.7 mm, di = 6.3 mm and
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Fig. 6. Loss plots of inductor design scaling example (do = 12.7 mm,
di = 6.3 mm, h = 6.3 mm, L = 200 nH, Ipk = 2 A, fs = 30 MHz and
Bpk−air = 13 G).

h = 6.3 mm. The question we seek to answer is: if we build
a magnetic-core inductor with magnetic materials, how small
it could be while achieving specified QL. We firstly calculate
Bpk−air = 13 G and PV−air = 1073 mW/cm3 and then find
PV for each magnetic material in Fig. 7. N40 is the only
magnetic material which has PV smaller than PV−air, thus
the magnetic-core inductor made in N40 is the only possible
design with the size smaller than the coreless inductor (λ < 1).
Magnetic-core inductors made by other materials will have
larger sizes than the coreless inductor and are not considered
here. This conclusion is further proved in (26). Just as in
Section III-B, we can see here our method in this subsection
again helps us to exclude many available magnetic materials
in the pool from the complicated problem of inductor size
scaling.

3) Step III, Scaling: Here we introduce how to perform the
scaling. Before beginning derivation, we define the following
parameters:

1) V , do, di, h, N , Bpk, PV , PV−cu, Rco and Rcu are
the volume, outside diameter, inside diameter, height,
number of turns, average peak ac flux density, core loss
density, copper loss density, equivalent core resistance,
and copper resistance of a magnetic-core inductor before
scaling - i.e., having the same size as the coreless
inductor (λ = 1).

2) V ′, d′o, d
′
i, h
′, N ′, B′pk, P ′V , PV ′−cu, R′co and R′cu are

the same definitions of the magnetic-core inductor after
scaling.

3) V , do, di, h, Nair, Bpk−air, PV−air and Rcu−air are
the similiar definitions of the coreless inductor before
scaling (λ = 1)

From the definition above,

λ =
d′o
do

=
d′i
di

=
h′

h
(18)

V ′ = λ3V (19)

Thus: similar to (6),

N ′ =

√√√√ 2πL

λhµ0µr ln
(
λdo

λdi

) = λ−0.5N (20)

Similar to (7) and from (20),

B′pk =
µ0µrN

′Ipk
0.5π(d′i + d′o)

= λ−1.5Bpk (21)

PV ′ = KB′βpk = λ−1.5βPV (22)

From (9) and (11), we observe that Rcu−single−turn is con-
stant during scaling. This is because the effective conductor
thickness is the skin depth (invariant to scaling). This results
in constant “ohms per square”, making the total single-turn
resistance invariant to scaling. From (12) and (20),

R′cu = N ′2Rcu−single−turn = λ−1µ−1
r Rcu−air (23)

Similar to (14), and from (19) and (23):

PV ′−cu =
R′cu
2V ′

I2
pk = λ−4µ−1

r PV−air (24)

For constant QL, the total loss is the same for both the coreless
inductor and the magnetic-core inductor, thus from (19), (22)
and (24):

PV ′V ′ + PV ′−cuV
′ = PV−airV (25)

λ3−1.5β PV
PV−air

+ λ−1µ−1
r = 1 (26)

The scaling factor λ can be calculated by (26), if we know
PV , relative permeability µr, and Steinmetz parameter β of
the magnetic material, and PV−air of the coreless inductor.
Because of the usual case for Steinmetz parameters, PV should
be smaller than PV−air to get λ < 1 from (26). This explains
why we don’t have to consider magnetic materials which have
PV larger than PV−air. (26) is the key equation for calculating
achievable design scaling at constant QL through the use of
an ungapped magnetic core.

Let’s continue our example shown in Fig. 7. For N40
material, PV = 614 mw/cm3 at Bpk−air = 13 G, β = 2.02 at
30 MHz and µr = 15, the scaling factor λ = 0.17 by (26).

4) Step IV, Check Design Assumptions: As a last step, we
check the flux density B′pk, core loss P ′V , and copper loss
PV ′−cu of the inductor after scaling on the graph of PV vs.
µ−0.5
r Bpk. From (7) and (21):

B′pk√
µr

= λ−1.5Bpk−air (27)

In the example, P ′V = 1.3 × 105 mW/cm3 by (22) and
P ′V−cu = 8.6 × 104 mW/cm3 by (24) are shown in Fig. 7.
We can still see that the core loss dominates the total loss.
With completion of this last step, we now have an inductor
geometry and scaling that achieves the smallest size at the
required QL.
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Fig. 7. The magnetic-core inductor after scaling design

5) Inductor Scaling with Multi-choice of Magnetic Materi-
als: Here we gives an example of solution if there are more
than one possible best material which can be used to build a
cored inductor having smaller size than the coreless inductor
and thus λ < 1.

We consider the design of a coreless inductor with L =
200 nH, Ipk = 0.5 A, fs = 30 MHz, and QL = 116. We
design a coreless inductor which has λ = 1 and dimensions
of do = 12.7 mm, di = 6.3 mm and h = 6.3 mm. We firstly
calculate Bpk−air = 3.2 G and PV−air = 67 mW/cm3 and
then find PV for each magnetic material in Fig. 8. P, M3
and N40 are magnetic materials which have PV smaller than
PV−air, thus magnetic-core inductors made with these three
materials may possibly be smaller than the coreless inductor
(λ < 1). P material has a larger core loss PV at Bpk−air
as well as a larger slope (= β) of the loss curve than N40
material, so we can conclude that the magnetic-core inductor
built with P material should have a higher loss and lower
QL than the same size magnetic-core inductor built with N40
material. However, we can’t immediately determine which of
M3 and N40 materials is better: M3 has a lower PV but a
higher slope of the loss curve than N40. We thus consider
both M3 and N40 as possible best materials and calculate
their scaling factor λ by (26). We list the calculation results
in Table I which also includes P material to confirm our
conclusion. From Table I, we can see that the magnetic-core
inductor built with N40 still has the smallest scaling factor,
and represents the best design choice.

TABLE I
COMPARISON OF SCALING FACTOR λ AMONG MAGNETIC-CORE

INDUCTORS BUILT WITH P, M3 AND N40 MATERIALS.

Material P M3 N40

PV (mW/cm3) 57.1 16.9 37.3
µr 40 12 15
β 2.33 3.24 2.02

λ by (26) 0.77 0.52 0.16

We check the flux density B′pk, core loss P ′V , and copper
loss PV ′−cu of the magnetic-core inductor built with N40

3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5
10

1

10
2

10
3

µ
r
−0.5Bpk − AC Flux Density Amplitude (gauss)

P
V
 (

m
W

/c
m

3 )

M3
P
67
N40

Pv-air=67.0 mW/cm3

P: Pv=57.1 mW/cm3

N40: Pv=37.3 mW/cm3

M3: Pv=16.9 mW/cm3

Fig. 8. Loss plots of inductor design scaling example (do = 12.7 mm,
di = 6.3 mm, h = 6.3 mm, L = 200 nH, Ipk = 0.5 A, fs = 30 MHz and
Bpk−air = 3.2 G).
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Fig. 9. The magnetic-core inductor after scaling design

material after scaling on the graph of PV vs. µ−0.5
r Bpk by

(22), (24) and (27). In the example, P ′V = 9621 mW/cm3 and
P ′V−cu = 6819 mW/cm3 are shown in Fig. 9. We can see
that the core loss of N40 is the lowest among the materials. If
we build a magnetic-core inductor with other materials with
the same size after scaling, the inductor will have a lower
quality factor and must have a bigger size to satisfy the design
requirement for minimum quality factor; this confirms our
conclusion that the magnetic-core inductor built with N40 has
the smallest size.

E. Inductor Design with the Best Magnetic Material

Having satisfied quality factor QL and inductor size re-
quirements, the inductor can be designed with the selected
best magnetic material (N40). To provide a complete answer
for the previous design example, we summarize the results of
each step in Fig. 2:

1) We give the design requirements: L = 200 nH, Ipk =
2 A, fs = 30 MHz, minimum QL = 116 and maximum
size of do = 12.7 mm, di = 6.3 mm and h = 6.3 mm.

2) Given available magnetic materials (67, P, M3 and N40)
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and their Steinmetz parameters, we decide N40 is the
best material for design.

3) Given the maximum size, estimate the highest QL of a
magnetic-core inductor with N40 material (about QL =
171).

4) Given the minimum QL, estimate the scaling factor λ =
0.17 and the minimum size do = 2.2 mm, di = 1.1 mm
and h = 1.1 mm calculated by (18).

5) We check the results in the third and fourth steps and
see if they satisfy the design requirements.

6) If we prefer a core inductor with the highest QL as
well as the maximum size, the inductor will have a a
turns number N = 4 calculated by (6), an inductance
L = 199 nH, the core size of do = 12.7 mm, di =
6.3 mm and h = 6.3 mm. Its quality factor QL has been
estimated in Section III-C. If we prefer a cored inductor
with the minimum size at the minimum allowed QL, the
inductor will have a turns number N ′ = 10 calculated
by (20) and the core size is do = 2.2 mm, di = 1.1 mm
and h = 1.1 mm.

Compared to a coreless design, the magnetic-core inductor
with N40 material will have 47% higher quality factor QL for
the same maximum size or 83% size reduction for the same
minimum quality factor.

IV. EXPERIMENTAL VERIFICATION

We carried several experiments to verify the design pro-
cedure illustrated in this paper. Firstly, we want to verify the
design steps 2 and 3 in Fig. 2. That is, given available magnetic
materials and design requirements (inductance L, current am-
plitude Ipk, and frequency fs), we want to determine the best
material to yield maximum quality factor QL for a given size,
and estimate the highest QL that can be achieved at that size.
Design parameters for the example application are repeated
here: do = 12.7 mm, di = 6.3 mm, h = 6.3 mm, L = 200 nH,
Ipk = 2 A, and fs = 30 MHz. As predicted in our design
procedure, N40 is the best material and the magnetic-core
inductor with N40 has quality factor QL = 171. We designed
and fabricated a magnetic-core inductor with copper foil and
N40 core to satisfy the design specifications, and measured
its inductance and quality factor by experimental methods in
[2]. To make comparison with other designs, we fabricated
a coreless inductor and magnetic-core inductors with 67, M3
and P materials and similar core sizes. The results are listed
and compared in Table II. We can see the measurement results
fit very well with the predicted values and the magnetic-core
inductor with N40 material is the best design compared to
others as we have predicted in our design procedure.

Secondly, we verified the design step 4 illustrated in
Section III-D. That is, given L, Ipk, fs and the minimum
QL, determine the best material for design and estimate
the minimum size achievable for that QL requirement. This
experiment is much more difficult than the first one because
limited availability of core sizes. If we design a magnetic-
core inductor with N40 material which has the scaling fac-
tor λ = 0.17 as calculated in Section III-D, the inductor

TABLE II
COMPARISON AMONG CORELESS INDUCTORS AND MAGNETIC-CORE

INDUCTORS DESIGNED AT Ipk = 2 A AND fs = 30 MHZ IN DIFFERENT
MAGNETIC MATERIALS.

Material N40 M3 P 67 Coreless
Suppliers Ceramic

Mag-
netics

National
Magnetics
Group

Ferro-
nics

Fair-
rite

N/A

Permeability 15 12 40 40 1
Designations T50252-

5T
998 11-

250-P
59670-
00301

N/A

do (mm) 12.7 12.7 12.7 12.7 12.7
di (mm) 6.3 7.9 7.9 7.2 6.3
h (mm) 6.3 6.4 6.4 5.0 6.3
Turns Number N 4 5 3 3 14
Predicted L (nH) 199 180 219 203 173
Measured L (nH) 230 181 262 235 245
Predicted QL 171 74 81 39 116
Measured QL 167 65 87 45 96

after scaling has 10 turns and dimensions d′o = 2.16 mm,
d′i = 1.07 mm and h′ = 1.07 mm. The winding of copper
foil has a width of less than 0.34 mm. It is very hard to
wind such a narrow copper foil on this tiny core by hand.
The magnetic-core inductor with P material in Section III-D5
has a higher scaling factor λ and thus a larger core size after
scaling. So we verified the design of P material instead of
N40. The design parameters are repeated here: L = 200 nH,
Ipk = 0.5 A, fs = 30 MHz and QL = 116. The scaling factor
λ = 0.77 calculated by (26) and shown in Table I. The core
dimensions after scaling are d′o = 9.78 mm, d′i = 4.85 mm
and h′ = 4.85 mm. The available core with the closest size has
dimensions OD= 9.63 mm, ID= 4.66 mm and Ht= 3.21 mm.
We designed and fabricated a 3-turn magnetic-core inductor
with P material and measured its inductance L and quality
factor inductor QL. The results are shown in Table III. We can
see the measurement results fit very well with the predicted
value (for the actual size) and (26) is thus verified.

TABLE III
MAGNETIC-CORE INDUCTOR DESIGNED AT L = 200 NH, Ipk = 0.5 A

AND fs = 30 MHZ WITH THE SCALING FACTOR λ = 0.77.

Material Designation N Predicted L (nH) Predicted QL

P 11-220-P 3 168 110

d′o (mm) d′i (mm) h′ (mm) Measured L (nH) Measured QL

9.63 4.66 3.21 181 105

V. CONCLUSION

In this paper, we propose an inductor design procedure using
low permeability magnetic materials. The design procedure is
based on the use of Steinmetz parameters. With this procedure,
different magnetic materials are compared fairly and fast, and
both the quality factor QL and the size of a magnetic-core
inductor can be predicted before the final design. We also
compare a magnetic-core inductor design to a coreless inductor
design in our design procedure. Some problems, such as
optimization of magnetic-core inductors, are also investigated
in this paper. The procedure and methods proposed in this

4382



paper can help to design a magnetic-core inductor with low-
permeability rf core materials.

APPENDIX A
OPTIMIZATION OF MAGNETIC-CORE INDUCTORS

In Section III, different magnetic materials are compared
and evaluated with the assumption that optimum magnetic-
core inductors made in all these materials will have the same
relative dimensions as the coreless design on which they are
based. However, magnetic-core inductors may have their own
relative optimum dimensions for the maximum quality factor
QL or the minimum size for different materials, thus the
methods proposed in Section III may not be a fair comparison.
That is, we need to establish whether or not the best shape
for an inductor changes significantly with scale or material
characteristics.

As will be seen, the results are quite reasonable and the
approaches of Section III lead to near optimum designs under
a wide range of conditions. We consider one optimization case
in this paper. We assume a magnetic-core toroidal inductor’s
do and h are restricted to be constant (e.g., as stipulated by the
specification of a power electronics circuit), and we optimize
di to get the maximum quality factor QL. In the optimization,
make the assumption that core losses dominate and neglect
copper loss. We do take into account the fact that the flux
density inside the core is not uniform when calculating core
loss.

The total core loss P0 is calculated without the approxima-
tion of uniform flux. From (6),

Bpk(r) =
µ0µrNIpk

2πr
=
Ipk
r

√√√√ µ0µrL

2πh ln
(
do

di

) (28)

Where r specifies a radius from the center of the core (di

2 <
r < do

2 ).

P0(di) =
∫ do

2
di
2

PV dV =
∫ do

2
di
2

KBpk(r)β2πrhdr

= 2πhK

[
Ipk

√
µ0µrL

2πh ln
(

do
di

)]β ∫ do
2

di
2

r1−βdr (29)

If β 6= 2,

P0(di) =
2πhK
2− β

Ipk√√√√ µ0µrL

2πh ln
(
do

di

)

β [(

do
2

)2−β

−
(
di
2

)2−β
]

(30)

If β = 2,
P0(di) = µ0µrKLI

2
pk (31)

From (30) and (31), let di = 0.5do and we normalize the total
core loss P0(di) by the total loss P0 at di = 0.5do. If β 6= 2,

P0(di)
P0(0.5do)

=

 ln 2

ln
(
do

di

)
0.5β

1−
(
di

do

)2−β

1− 0.52−β

 (32)
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Fig. 10. Plot of core power loss dissipation in a rectangular cross-section
toroidal core as a function of di

do
, normalized to that with di

do
= 0.5. Results

are parameterized in Steinmetz parameter β. It can be seen that over a wide
range of β, di

do
= 0.5 is very close to the optimum, and that results are not

highly sensitive to do
di

.

If β = 2,
P0(di)

P0(0.5do)
= 1 (33)

In (32), P0(di)
P0(0.5do) only depends on the ratio of do

di
and

Steinmetz parameter β. We plot P0 as a function of do

di
for

different β in Fig. 10. From Fig. 10, we can see that the
optimum di is around 0.4do, with an exact value that depends
β. When di varies between 0.22do and 0.64do, the total core
loss P is very flat and the deviation from the minimum core
loss is less than 10%. We choose di = 0.5do instead of
di = 0.4do for the following considerations: firstly, di = 0.5do
is a more typical dimension ratio for commercial magnetic
cores (e.g., see Table II); secondly, as shown in [5], the error
due to the assumption of average flux density is less than
10% if di ≤ 0.5do. The error in assuming that the optimum
inside diameter is di = 0.5do is lower than 2% for a wide
range of β values. So we can think di = 0.5do as the nearly-
optimum dimension for a wide range of magnetic materials.
We can thus compare and evaluate different magnetic materials
under the same dimensions and our assumption in Section III
is correct. In Section III-D, we also use the same assumption
to investigate (9), (11) and (17).
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