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ABSTRACT
We develop a robust, efficient, and accurate tool, which integrates

inductance extraction and simulation, called INDUCTWISE. This

paper advances the state-of-the-art inductance extraction and sim-

ulation techniques and contains two major parts. In the first part,

INDUCTWISE extractor, we discover the recently proposed in-

ductance matrix sparsification algorithm, the K-method[1], albeit

its great benefits of efficiency, has a major flaw on the stabil-

ity. We provide both a counter example and a remedy for it. A

window section algorithm is also presented to preserve the accu-

racy of the sparsification method. The second part, INDUCT-

WISE simulator, demonstrates great efficiency of integrating the

nodal analysis formulation with the improved K-method. Exper-

imental results show that INDUCTWISE has over 250x speedup

compared to SPICE3. The proposed sparsification algorithm ac-

celerates the simulator another 175x and speeds up the extrac-

tor 23.4x within 0.1% of error. INDUCTWISE can extract and

simulate an 118K-conductor RKC circuit within 18 minutes. It

has been well tested and released on the web for public usage.

(http://vlsi.ece.wisc.edu/Inductwise.htm)

1. INTRODUCTION
Parasitic on-chip inductance is growing as another design

concern as the VLSI technology marches toward ultra-deep
sub-micron and the operation frequency approaches in the
gigahertz range. Inductive coupling effect becomes more
important because of the higher frequency signal contents,
denser geometries, and reductions of both resistance and ca-
pacitance by copper and low-K devices. Inductance effect is
present not only in IC packages but also in on-chip intercon-
nects such as power grids, clock nets and bus structures. It
causes signals overshot, undershot and oscillation, and ag-
gravates crosstalk and power grid noises. All of these seri-
ously impact the on-chip signal integrity. The importance
and difficulty of on-chip inductance extraction and analysis
are addressed in [2][3].

One major problem of inductance modeling is the long
range coupling effects and the uncertainty of return paths.
Since inductance is a function of a closed loop, the return
path is hard to predict in advance before simulation. For
this reason, A. Ruehli developed the famous Partial Element
Equivalent Circuit method (PEEC) [4] model, which defines
the partial self and mutual inductances with the assumption
of infinity return paths. FastHenry [5] utilizes a multi-pole
acceleration technique to speed up the extraction process in
the frequency domain. [6] proposes to directly simulate the
PEEC model in the time domain to determine the return
paths, which has been shown to be accurate in a wide range
of frequencies.

The PEEC model, however, leads to a large-scale dense
inductance matrix since the long-range effect of inductive
coupling and the uncertainty of current return. Traditional
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circuit simulation engines may require hours or even days for
such a large-scale dense matrix simulation. To effectively re-
duce the mutual inductance terms, sparsification is crucial.
It has been shown that direct truncation of the inductance
matrix could result in instability [7]. Thus, a provable stable
shift-and-truncate method was proposed by Krauter, et al
[8]. This method assumes that the return path is no longer
at infinity but within a shell. Other methods such as the
Halo method [9] and the block diagonal method [10] also
reduce the number of mutual inductances by limiting the re-
turn path to the nearest power and ground returns. Later
Beattie, et al [11] develops an exponential shell return paths
for further sparsfication and shows that the reachable spar-
sity is close to that of the K-method mentioned below.

Recently, the K-method has been presented by Hao Ji, et
al [12][1]. K is the inverse of the partial inductance matrix L.
Since K has higher degree of locality similar to capacitance, it
is more satisfactory to sparsify on K than on L. Furthermore,
[12] also shows that the K matrix is diagonally dominant and
hence positive definite. The off diagonal terms are negative
and can be safely deleted with sacrificing stability. Later
Beattie, et al [11] also proposed to do double inversion on
the inductance matrix and perform sparsification on both
inductance and susceptance matrices.

However, there are several issues for the existing induc-
tance handling flow. First, after inductance extraction, it
is required to perform circuit simulation to verify signal in-
tegrity issues. Unfortunately there is a lack of effort to funda-
mentally speed up circuit simulation engine for inductance.
Second, the traditional circuit simulation engines cannot or
do not handle the K-elements directly or efficiently. Al-
though the double inversion algorithm has been proposed,
the runtime is compromised by the double inversion time.
Third, when dealing with full-chip K-element extraction, the
conductors are not equal-length and well aligned. Thus how
to choose the window size becomes another new topic that
no other previous works discussed about.

All the above issues lead to the urge for an inductance-
oriented circuit extraction and simulation engine and that
is exactly what we intend to provide in this paper. In this
paper, we propose an efficient, accurate, and inductance-wise
interconnect simulator and extractor, INDUCTWISE, which
is based on the K-method. We further extend the original K-
method and provide solutions for general circuit cases, which
is applicable for full-chip K-element extraction, but not only
for special cases such as equal-length parallel conductors. In
addition, the utilization of nodal analysis formulation and
the Cholesky decomposition also allow our INDUCTWISE
to directly take K-element for simulation.

2. INDUCTWISE EXTRACTOR
In this section we first introduce the inductance and reluc-

tance matrices and the K-method. Then we show the proof of
stability for the K-method is unsustainable for general circuit
cases, and provide a remedy algorithm. Finally we introduce
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a novel window selection algorithm enabling INDUCTWISE
to extract the K-elements in any circuit configuration.

2.1 Inductance and Reluctance Matrices
Given an inductance matrix L, the K matrix is defined as

K = L−1 [12]. [11] names it susceptance. However, accord-
ing to [13], susceptance is a general term for the imaginary
part of the admittance matrix that can be caused by capaci-
tance or inductance. Since the definition of reluctance is the
ratio of the total current force to the total magnetic flux in
a magnetic circuit or component and its unit is reciprocal
henry (H−1), we think reluctance matrix is more specific to
the inverse inductance matrix, K.

Each element in the partial inductance matrix is given by

Lij =
µ0

4πaiaj

[∫
ai

∫
aj

∫
li

∫
lj

dli · dlj

rij
daidaj

]
, (1)

where ai and aj are cross-sections of segment i and j respec-
tively, and rij is the geometric distance between two points
in segment i and j. The magnetic vector potential along
segment i caused by current Ij in segment j is defined as
follows.

Aij =
µ0

4πaj

[∫
aj

∫
lj

Ij

rij
dljdaj

]
(2)

Therefore, for an n×n partial inductance matrix, the corre-
sponding linear system equation can be written as follows.


 L11 L12 · · ·

L21 L22 · · ·
· · · · · · Lnn





 i1

:
in


 =




∑n
i=1(

∫
A1i · dl1)
:∑n

i=1(
∫

Ani · dln)


 (3)

Representing the system equation with K, we get


 K11 K12 · · ·

K21 K22 · · ·
· · · · · · Knn







∑n
i=1(

∫
A1i · dl1)
:∑n

i=1(
∫

Ani · dln)


 =


 i1

:
in


 (4)

2.2 Stability Issues of the K-Method
H. Ji, et. al [1] developed an advanced reluctance sparsi-

fication method called K-method. They showed that K has
better locality than L, and thus sparsifying on K actually
benefits more efficiency. They proved the stability of their
algorithm based on the diagonal dominance property, which
is derived from the assumption that all off-diagonal terms of
K are negative. We now show that the property does not
hold for general interconnect configurations.

From Equation (4), the physical meaning of Kij is defined
by the induced current in the ith conductor when the total
flux for the jth conductor is equal to one and those along
all other conductors are set to zero. For example, as shown
in Figure 1, to get the 3rd row of K, we apply flux 1 to
conductor 3 and 0 to all the others. The induced currents
on conductors other than the 3rd are the off diagonal terms
on the 3rd row of K. It is positive if the current direction is
the same as the applied flux direction, or negative otherwise.
[1] argues that all the induced current are negative and use
this property to proof the stability of their algorithm. We
find out that the off-diagonal terms are not necessary to be
negative for general wire cases.

In this example, the partial inductance matrix is calculated
as follows:

L =




1.04 0.34 0.37 0.24 0.51
0.34 0.45 0.09 0.06 0.27
0.37 0.09 1.04 0.34 0.41
0.24 0.06 0.34 0.45 0.11
0.51 0.27 0.41 0.11 1.69


 × 10−10H . (5)
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Figure 1: An example for parallel conductors with
unequal lengths

By inverting L, the K matrix can be obtained:

K =




1.57 −0.94 −0.22 −0.47 −0.25
−0.94 3.02 0.15 0.01 −0.23
−0.22 0.15 1.42 −0.93 −0.24
−0.47 0.01 −0.93 3.12 0.16
−0.25 −0.23 −0.24 0.16 0.75


 × 1010H−1 .

(6)

It is clear that some off-diagonal terms in (6) are positive.
For instance, when calculating the 3rd row, a unit flux is
assigned on conductor 3, which demands a positive current
along conductor 3 to accomplish. This current induces a pos-
itive magnetic flux along all other conductors (let’s consider
only conductors 1 and 2 in this explanation). To compen-
sate this effect and make the net magnetic fluxes along 1
and 2 equal to zero, they have to carry negative currents.
However, the induced current along 1 also induces another
current along 2. Since the coupling effect between 1 and 2 is
much stronger than that between 3 and 2, the overall effect
causes conductor 2 carrying a positive current direction.

Therefore, the physical definition of K in [1] should be
calibrated as follows: The magnetic flux along all conductors
except the jth are set to zero, and that along the jth conductor
is set to one. To satisfy the condition, there exists some
current running along each conductor. The elements Kij is
the current flowing through the ith conductor. Thus their
overall effect satisfies the magnetic flux assumption. Since
the result is due to the overall effect (not a single active line),
negative off-diagonal elements are not guaranteed any more.
This invalids the proof of the diagonal dominance property
and hence the stability for the K-method becomes unsure.
We will propose our remedies next.

2.3 Formal Analysis
In this section, we first present the K-method stability

analysis through the duality of electrical and magnetic fields
at Maxwell’s equations. From the duality analysis, we shed
the insights of the similarity of inductance and capacitance.
Through the theorems provided in this section, we are able to
propose a correction to the K-method to ensure the stability.
From the Maxwell’s equations, we have

∇× �E = −µs �H , (7)

∇× �H = εs �E + �J , (8)

∇ · ε �E = ρ , (9)

∇ · µ �H = 0 . (10)

The definition of the magnetic vector potential gives

µ �H = ∇× �A . (11)

Applying (11) to Equation (7), we get

∇× (�E + s �A) = 0 . (12)

This implies that there exists a scalar potential, V , such that

�E + s �A = −∇V . (13)

To uniquely determine �A, we choose the Lorentz gauge,

∇ · �A = −εµsV . (14)



By Equations (8), (11), (14), and the identity ∇× (∇× �A) =

∇(∇ · �A) −∇2 �A , we can get

∇2 �A − µεs2 �A = −µ�J. (15)

Similarly by Equations (9)(12) and the Coulomb gauge, we
get

∇2V − µεs2V = −ρ/ε. (16)

Equations (15) and (16) are often referred as the nonhomo-
geneous Helmholtz’s equations. The solutions of Equa-
tions (15) and (16) are

�A(r) =
µ

4π

∫
V ′

G(r, r′)�J(r′)es/c|r−r′|dv′ , (17)

V (r) =
1

4πε

∫
V ′

G(r, r′)ρ(r′)es/c|r−r′|dv′ , (18)

in which V ′ is the volume of all conductors, c = 1/
√

µε, and

G(r, r′) = 1
4πRij

, where Rij = |r − r′| is the Green’s func-

tion. The dual property between a magnetic and an electric
problems can be observed from Equations (15)(16)(17) and

(18). The major difference between �A and V is that �A is a
directional vector and V is a scalar. There exists a trans-
formation from a magnetic problem to a electric problem,
which is described in the following lemma.

Lemma 1. Given an uni-directional magnetic nonhomo-
geneous Helmholtz’s equation problem, there exists a corre-
sponding electric nonhomogeneous Helmholtz’s equation prob-
lem that has the same solution.

Proof. Since all the magnetic sources and mediums are
uni-directional, we can remove the vector natural by proper
assigning the positive charge corresponding to the forward
direction or negative otherwise. Hence, given current sources
vector �J , we can create a corresponding charges ρ = µε �J with
proper signs assigned, and the solution of Equations (15) and
(16) are identical.

(a) Inductance model (b) Capacitance model

Figure 2: Dual property between inductance and ca-
pacitance problems

Figure 2 illustrates the transformation of Lemma 1. From
this lemma, we can get the following theorem.

Theorem 1. The reluctance matrix, K, is diagonally dom-
inant and symmetric positive definite when all the conductors
are sufficiently discretized.

Proof. Lemma 1 shows that every uni-directional mag-
netic problem can be transformed into an electric one. Since
it has been shown that the capacitance matrix is always di-
agonally dominant and symmetric positive definite for suffi-
ciently discretized problem [4], Theorem 1 thus follows.

Theorem 1 reveals why the diagonal dominance property
of the reluctance matrix does not always hold. The answer
is discretization. When we performing capacitance extrac-
tion, the conductors are usually well discretized. In the con-
trary, the conductors are always preserved as long wires while
we perform inductance extraction. The length of inductance
discretization is often hundred times larger than the capaci-
tance discretization. Therefore, we come up with the remedy
in the following subsection.

2.4 RBC Algorithm - Guarantee the Stability
We have already shown that finer discretization guarantees

the stability of the K-method. It can also increase the ac-
curacy. However, if we uniformly discretize conductors into
small pieces, the complexity of solving this problem will be-
come enormous, which losses the original intention of the
sparsification. Therefore, we propose a cutting algorithm to
obtain a stable reluctance matrix without too much preju-
dice to the simulation run time. This algorithm is called
Recursive Bisection Cutting Algorithm (RBCA), which is
based on the idea that the reluctance matrix is diagonally
dominant and symmetric and positive definite (s.p.d.) when
the conductors are sufficiently discretized as in capacitance
problems.

From the previous discussion, the diagonal dominance of
K is strongly related to unequal-length and misalignment
cases. Theorem 1 also tells that smaller discretization is
better than larger one, which implies that longer conductor
actually acts a critical role in this problem. Thus, the basic
idea of the RBCA is to recursively cut the longest conductor
when the positive off-diagonal element occurs during the K-
method procedure. In order to make sure the RBCA result
in all negative off-diagonal elements in K, we perform the K-
method with a small window (will discuss how to choose this
window in the later section) and check if every off-diagonal
element in the small K-matrix is negative. If there exists any
positive off-diagonal value, we cut the longest conductor in
this window. After this cutting, back-trace those conductors
that are reluctance-coupled with this cut one. If this cutting
causes new positive off-diagonal value to any previously pro-
cessed conductor, we recursively cut the troublemaker con-
ductors. Iteratively repeat this until the final K-matrix has
all positive off-diagonal entries. The RBCA is summarized
as in Table 1.

For each conductor j
1. Choose a window W .
2. Calculate Kij , where i ∈ W , as in the K-method.
3. If ∃Kkj > 0, k ∈ W and k �= j, do the following:
a. cut the longest conductor l, l ∈ W , by half.
b. Back-trace and reperform the small matrix inver-

sion for the ith conductor that Kki �= 0, where i ∈ W

and i < j. If this cutting causes any new positive
off-diagonal term, recursively perform the cutting
to the troublemaker conductor.

Table 1: The Recursive Bisection Cutting Algorithm
(RBCA)

Theorem 2. The RBCA guarantees all non-positive off-
diagonal elements in K, and hence the s.p.d. property vali-
dates the proof of stability in [1].

The proof of Theorem 2 follows by the recursion and Theo-
rem 1. We’ve already known that positive off-diagonal values
happen when conductors have seriously mismatched lengths
or mis-aligned organizations. Since all of the previous works
[1][11][14] considered only equal-length parallel conductors,
the exception case we show doesn’t exist. However, to build
a full-chip inductance (reluctance) extractor, this possibility
does exist. We propose this cutting algorithm serving as the
stability guard of our INDUCTWISE extractor to insure the
s.p.d. of the sparse reluctance matrix. We will show how
to select the window in general circuit configurations in the
following section.



2.5 WS Algorithm - Capture Significant Effect
All previous works used equal-length parallel conductors

as their examples to show the benefits of sparsifying on re-
luctance matrices. It is not clear if the K-method can work
on general irregular geometries. The lack of generality limits
the application of the K-method only to analysis some spe-
cial configurations such as buses. However, general routing
cases are more irregular, which might contain uneven-length
or misaligned conductors. For these cases, it’s very diffi-
cult to determine what a “window” is when performing the
window-based K-method. In this section, we propose a novel
algorithm to determine what should be included in the win-
dow when we extract sparse reluctance matrices. Let’s first
define the terminology using in the following discussion by
the example circuit in Figure 3.

Aggressors and Victims: When performing the K-method
and calculating one of the columns in K, we set the
magnetic flux along the corresponding conductor to one
named the aggressor, and others to zero called vic-
tims. In Figure 3, we assume that conductor 1 is now
the aggressor and others are victims.

ESF, ESR and ESA: Supposed the aggressor has length
L, we now define the extended search factor (ESF),
x, such that the effective search range (ESR) ex-
tends both ends of the aggressor out xL (i.e. segment
ah). The ESR is a strip with length (1 + 2x)L. Then
the effective search area (ESA) is defined by sweep-
ing from left infinity to right infinity with the ESR. The
ESA is marked by slash lines in Figure 3.

Shields and Shielding Level: If a victim is partially or
fully in the ESA, it is called a shield for the aggressor.
For example, in Figure 3 conductors 2, 4, 5, and 6 are
shields of 1, but 3 is not. The shielding level indicates
how close the victim shields the aggressor. If there exist
k shields between a shield and the aggressor, the shield
is with the (k + 1)th level. For example, conductor 2 is
the 1st level of shield for segment ad, and conductor 4
is the 2nd level of shield for bd. Conductor 5 contains
two part. The upper part is the 3nd level of shield for
bd and the lower part 1st level of shield for dg.

xL xL

L

a b c d e f g
1

2

4

5

6

3

h

Figure 3: A example for the terminology definition

We now discuss how the K-method works. From the phys-
ical point of view, the experiment results in [1] demonstrates
that the shielding effect for the mutual reluctance does exist
but not for partial mutual inductance. From the numerical
point of view, the K-method tries to select the most signifi-
cant values on a column (row) and inverts it. The inversion
causes the off-diagonal values of the K decreasing in a rapi-
der way than L. This fact makes the reluctance element has
better locality than the partial inductance. Therefore, prop-
erly selecting relatively significant couplings within the small
window actually dominates the accuracy of the algorithm.

However, the K-method exists some difficulties for irregular
geometries. First, the strength of coupling does not strictly
decrease as the distant between conductors increase, so the
closer one may not be the more significant one. This means
that the further conductor may have stronger coupling but
is not included in the window. Second, an intuitional so-
lution is to select the largest inductive coupling values in
the small window. To find the most significant value in the
L-matrix, we have to extract all the partial mutual induc-
tance values, which makes the extraction complexity O(n2)
and losses the efficiency. Moreover, this solution leads to a
topologically asymmetric K-matrix and makes the later-on
symmetrization process introducing more errors to the final
sparse K-matrix.

In Equation (1), the inner product of dli · dlj implies that
the mutual inductance has a large value when two conduc-
tors are parallel and next to each other, and has a small value
when they are misaligned. If two conductors are perpendic-
ular, their partial mutual inductance is zero. From these
observations and utilizing the shielding effect of reluctance
elements, given the ESF x and the desired shielding level
k, what conductors should be included in the small window
are determined by our window selection algorithm (WSA)
summarized in Table 2.

1. Divide all conductors into vertical and horizontal sets.
2. For the vertical set, sort by their x coordinates.
3. For every conductor from left to right, do the following:
a. Search from the first victims next to the aggressor, and

select those shields (by definition) until every segment
on the ESR (i.e. ah in Figure 3) are shielded no less
than k levels. This forms the right part of the window.

b. The left part of the window is obtained from the
window-selection results of previous conductors.

c. Set the flux along the aggressor to one and others to
zero, and solve the reluctance elements by inverting
the small matrix corresponding to the window. The
resulting elements form the column of Kasym that cor-
responds to the aggressor.

4. Analogically repeat steps 2 and 3 for the horizontal set.
5. Symmetrize by K = 1

2
(Kasym + KT

asym).

Table 2: The Window Selection Algorithm (WSA)

Notice that we select the shields until every arbitrarily seg-
ment on the ESR are shielded no less than k levels to ensure
we capture the significant effect. For example, if we set the
level of shielding to 1 in Figure 3, the victims selected should
be conductors 2, 5, and 6. Thus all points on ah are shielded
at least once. In this algorithm, we only have to search the
right-hand-side shields for each aggressor. The left-hand-side
shields can be obtained from the previous results. It is ob-
vious that A is B’s nth level of shield, then B must be A’s
nth level of shield. This observation allows us to use the pre-
vious evaluated mutual inductance values and the window
information, which can save half of the extraction time. The
obtained K-matrix is topologically symmetric.

3. INDUCTWISE SIMULATOR
In this session, we present our efficient time domain RLKC

INDUCTWISE simulator. We will first focus on two circuit
matrix formulations MNA (Modified Nodal Analysis) and
NA (Nodal Analysis). Later, the way to deal with indepen-
dent source in the NA formulation and the pros and cons of
these two formulations will be discussed.



3.1 MNA Approach
First, we briefly review the MNA equations. Given a linear

circuit, the MNA formulation can be expressed as follows,

G̃x + C̃ẋ = b , (19)

in which
G̃ =

[
G AT

l−Al 0

]
, x =

[
vn

il

]
,

C̃ =

[
C 0
0 L

]
, b =

[ −AT
i Is

0

]
.

(20)

G = AT
g GAg and C = AT

c CAc. G, C and L are conductance,
capacitance and inductance matrices respectively. A’s are
the adjacency matrices of the circuit, whose subscriptions g,
c, l and i associate with G, C, L and Is respectively. Is, il, vn

are vectors of current sources, inductance current variables
and nodal voltage variables respectively. For transient anal-
ysis, the trapezoidal integration approximation of Equation
(19) over time interval [kh, (k + 1)h] is given by

G̃

(
xk+1 + xk

2

)
+ C̃

(
xk+1 − xk

h

)
=

bk+1 + bk

2

It can be rewritten as follows,(
G̃ + 2

h
C̃

)
xk+1 =

(
−G̃ + 2

h
C̃

)
xk + bk+1 + bk (21)

The MNA approach works for ordinary inductance sparse
approximations, but not for the reluctance matrix. In this
paper, we use this method to solve the exact solution.

3.2 NA Approach
In this subsection, we will show that Nodal Analysis is

feasible for sparse reluctance matrix, and even has more ad-
vantages than MNA methods. Substituting (20) into (21)
and performing block matrix operations, we can obtain two
equations as follows,(

G +
2

h
C

)
vk+1

n + AT
l ik+1

l

=

(
−G +

2

h
C

)
vk

n + AT
l ikl − AT

i

(
Ik+1
s + Ik

s

)
(22)

−Alv
k+1
n +

2

h
Lik+1

l = Alv
k
n +

2

h
Likl (23)

Rearranging Equations (22) and (23), we can get(
G +

2

h
C +

h

2
K

)
vk+1

n =

(
−G +

2

h
C − h

2
K

)
vk

n

−2AT
l ikl − AT

i

(
Ik+1
s + Ik

s

)
(24)

2AT
l ik+1

l = hK
(
vk+1

n + vk
n

)
+ 2AT

l ikl (25)

where K = AT
l KAl, where K is the reluctance matrix that

equals to L−1. Let Y =
(
G + 2

h
C + h

2
K

)
be the admittance

matrix. Since G, C and K are all s.p.d., Y can be easily
proven to be s.p.d. Hence the Cholesky Decomposition or
the Preconditioned Conjugate Gradient iterative method is
applicable for the NA formulation. Using the reluctance ex-
traction algorithms shown in the previous section, matrix K
is sparse, which keeps Y still a sparse matrix. This result is
extended from our previous work [15]; please refer to it for
detail derivation. [14] has similar discovery independently.

3.3 A Comparison Study
Since the MNA matrix

(
G̃ + 2

h
C̃

)
in (21) is asymmetric,

LU factorization is unavoidable. On the contrary, matrix Y
in the NA is s.p.d., which validates the Cholesky decomposi-
tion. There are several well-known benefits of the Cholesky

decomposition over the LU decomposition. First, the run-
time and memory requirements of the Cholesky decompo-
sition are half as those of the LU decomposition since the
former can take the advantage of the symmetricity. Sec-
ond, the LU decomposition requires pivoting algorithms to
enhance numerical conditions and avoid breaking down. It
has been shown that the accuracy of the Cholesky decom-
position is always the best regardless of the matrix ordering.
Matrix reordering for the Cholesky is usually performed only
for fill-in reduction and only topologically. The sparsity of
the NA formulation is often slightly worse than MNA since
K = AT

l KAl introduces more matrix entries than L. How-
ever, we believe that the additional entries are offset by the
saving of symmetricity.

It is well known that the computation time of the factor-
ization is dominated by the number of fill-ins and the matrix
ordering plays a crucial role to the fill-ins. The reduction
of fill-ins not only saves the runtime of the decomposition
but also has tremendous benefit for later transient simula-
tion since we have a smaller amount of matrix entries in the
triangle matrices. It is also known that it is easier and more
efficient to perform matrix reordering to symmetric matri-
ces.About matrix reordering algorithms, there are just so
many of them such as RCM (Reverse Cuthill-McKee), MD
(Minimum Degree), ND (Nested Dissection) methods and
their variants. To the authors’ knowledge and experimental
results, we discover that MD is one of the most efficient ways
to reduce fill-ins for time-domain circuit simulators.

3.4 Handling Independent Voltage Sources
In case there are independent voltage sources in the cir-

cuit, we have to add extra current variables in the MNA
equations. In fact, if we transform voltage sources into Nor-
ton equivalent currents, there is no need to add any current
variables. Thus the symmetricity of the NA formulation can
be preserved since the Norton equivalent currents only affect
the right-hand side in Equation (24). If the voltage source
connects to R or C elements, this method can be easily im-
plemented. Norton equivalent circuits for R and C elements
are available. However, coupling of inductances makes this
transformation ineligible for L elements. Consider the circuit
shown in Figure 4(a), which shows a voltage source connects
to one terminal of two coupled inductances. Using frequency
domain analysis, the current-voltage equations on its two
ports are as follows,

I1 =
K11

s
(V1 − VK) +

K12

s
V2

I2 =
K12

s
(V1 − VK) +

K22

s
V2

These two equations can be rewritten in the following format,

I1 =
K11

s
V1 +

K12

s
V2 − K11

s
VS

I2 =
K12

s
V1 +

K22

s
V2 − K12

s
VS

which can be represented as the circuit shown in Figure 4(b).
The voltage source is replaced by current sources. The NA
approach is still feasible if reluctance elements are present.
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Figure 4: Norton equivalent transformation for K



Attacker Faraway victim
Shielding Level ESF Density 1st peak error 2nd peak error 1st peak error 1st droop error

1 0.0 4.0% 3.21% -2.26% -33.52% -51.72%
1 0.5 4.6% 0.55% 0.62% -26.46% -37.70%
1 1.0 5.0% 0.52% 0.82% -27.19% -35.63%
2 0.5 8.1% -0.33% 0.72% -11.59% -22.99%
3 0.5 11.4% 0.12% 1.23% -11.30% -22.07%
5 0.5 17.5% 0.20% 1.91% -3.85% -4.85%

Table 3: Accuracy comparison for different shielding levels and ESFs (154 conductor segments)

4. EXPERIMENTAL RESULT
We develops our INDUCTWISE reluctance extractor and

simulator in C/C++ programming language. The extrac-
tor implements our WSA-based K-method with the RBCA
stability guarantee. The simulator implements both MNA
and NA solutions, which is able to simulate both inductance
and reluctance cases. The simulations are run on an Intel
Pentium IV 1.4GHz system.

Table 3 shows the accuracy information for a circuit with
154 conductors. Each driving end has a voltage source con-
nected to the nearest ground wire, and each loading end
has load capacitors connected to both the power and ground
lines. We activate one of the driving sources, which is called
attacker, with an 1-volt step function, and observe the re-
sponses of the loading ends of both the attacker and a far-
away victim that is 10 conductors away from the attacker.
From Table 3, we find the shielding level and the ESF affect
the accuracy in the following trend. Enlarging the ESF im-
proves the accuracy on the attacker, but not the victim. On
the contrary, enlarging the shielding level helps improve the
accuracy on the faraway victim, but has less effectiveness
to the attacker. Figures 5(a) and (b) show the waveforms
for different parameters and illustrate this trend. In this
case, shielding level 1 with 0.5 ESF can already approach
the exact solution very well for the active conductor, and
a higher shielding level even improves the faraway accuracy
more. The WSA with shielding level 5 and ESF 0.5 almost
matches the exact solution.
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Figure 5: Waveforms of (a)Attacker @different ESFs
(b) Faraway victim @different shielding levels

Table 4 shows the runtime information of INDUCTWISE.
The RC setup is the same as described in the previous para-
graph. We perform each simulation for 200 time steps. For

Full Inductance Sparse Reluctance
# of Extract SPICE3 I.W. Sim. Extract I.W. Sim.
cond. time(s) time(s) time(s) time(s) time(s)

154 1.6 22.7 0.4(61x) 0.6(2.6x) 0.2(2.1x)
550 21.2 1799.1 7.2(250x) 2.6(8.1x) 0.7(9.9x)

1,862 243.2 >2days 559.3 10.4(23.4x) 3.2(175x)
20,944 - - - 115.1 49.8
118,275 - - - 648.1 425.4

Table 4: Run time comparison between INDUCT-
WISE (RLC and RKC) and SPICE3 (RLC)

the 550-conductor case, SPICE3 [16] takes 1799.1 seconds
to solve the exact solution while INDUCTWISE only takes
7.2 seconds (250x speedup). Due to the superlinear depen-
dence of solve time on matrix size, the speed up will be more
dramatic for larger systems. For the sparse reluctance so-
lution, we set the shielding level to 3 and the ESF to 0.5,
and have 23.4x and 175x extraction and simulation speedup
respectively for the 1862-conductor case. It can extract and
simulate an 118K-conductor RKC circuit within 18 minutes.
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