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ABSTRACT The advent of the Industry 4.0 initiative has made it so that manufacturing environments
are becoming more and more dynamic, connected but also inherently more complex, with additional
inter-dependencies, uncertainties and large volumes of data being generated. Recent advances in Indus-
trial Artificial Intelligence have showcased the potential of this technology to assist manufacturers in
tackling the challenges associated with this digital transformation of Cyber-Physical Systems, through its
data-driven predictive analytics and capacity to assist decision-making in highly complex, non-linear and
often multistage environments. However, the industrial adoption of such solutions is still relatively low
beyond the experimental pilot stage, as real environments provide unique and difficult challenges for which
organizations are still unprepared. The aim of this paper is thus two-fold. First, a systematic review of current
Industrial Artificial Intelligence literature is presented, focusing on its application in real manufacturing
environments to identify the main enabling technologies and core design principles. Then, a set of key
challenges and opportunities to be addressed by future research efforts are formulated along with a conceptual
framework to bridge the gap between research in this field and the manufacturing industry, with the goal of
promoting industrial adoption through a successful transition towards a digitized and data-driven company-
wide culture. This paper is among the first to provide a clear definition and holistic view of Industrial
Artificial Intelligence in the Industry 4.0 landscape, identifying and analysing its fundamental building
blocks and ongoing trends. Its findings are expected to assist and empower researchers and manufacturers
alike to better understand the requirements and steps necessary for a successful transition into Industry
4.0 supported by Al as well as the challenges that may arise during this process.

INDEX TERMS Artificial intelligence, Industry 4.0, digital transformation, guidelines, systematic review,
framework, manufacturing.
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I. INTRODUCTION

The recent shift towards customer-driven, highly customized
manufacturing as part of the interconnected environment of
the Industry 4.0 strategy is making it more and more impor-
tant for manufacturers to strive for higher agility, productivity
and sustainability [1]. Smart manufacturing has appeared
as a way to apply advanced intelligent systems to enable a
dynamic response to variable product demand, along with a
real-time optimization along the entire value chain.

With the recent developments in ICT technologies, partic-
ularly regarding IoT, big data and CPPS, it is now feasible
to implement the necessary flexibility, responsiveness and
intelligence to face these challenges. CPPS in particular target
the implementation of autonomous and collaborative man-
ufacturing entities with advanced self-capabilities such as
self-optimization, self-awareness and self-monitoring. In this
context of the Industry 4.0 paradigm, Al is being regarded as
one of the key technologies to achieve these capabilities and
to disruptively redefine the way manufacturing processes and
business models are structured.

Al can be generally defined as sub-discipline of com-
puter science dealing with the development of data pro-
cessing systems that perform functions normally associated
with human intelligence, such as reasoning, learning, and
self-improvement [2]. Still, there is not yet any generally
accepted, unambiguous, and exact definition of the term. Due
to the emphasis on learning, ML is considered one of the
central sub-areas of Al (albeit not the only one), with the
terms being sometimes used interchangeably. From an indus-
trial point of view, Al technologies can be seen as enablers
for systems to perceive their environment, process the data
they acquire and solve complex problems, as well as to learn
from experience in order to improve their capability to solve
specific tasks.

A. INDUSTRIAL ARTIFICIAL INTELLIGENCE

In the context of this work, a less restrictive adaptation of
the definition for Industrial Al provided in [3] is proposed.
In this setting, Industrial Al can be defined as a systematic
discipline focusing on the development, validation, deploy-
ment and maintenance of Al solutions (in their varied forms)
for industrial applications with sustainable performance [4].
Hence, Industrial Al is an interdisciplinary area of research,
encompassing fields such as ML, NLP and robotics. Consid-
erable research efforts have been made over the last few years
on how to combine and embed these concepts into existing
Industry 4.0 manufacturing value chains [5]—[8].
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The combination of these fields imbues the system with the
ability to adapt and solve problems within pre-defined system
boundaries through a certain degree of autonomous action.

Industrial Al distinguishes itself within the field of Al in
five particular dimensions:

o Infrastructures: Concerning hardware and software,
there is a large emphasis on real-time processing capa-
bilities, ensuring industrial-grade reliability with high
security requirements and interconnectivity;

o Data: Industrial Al requires data characterized by its
large volume, high velocity variety, originating from
various units, products, regimes, etc.

o Algorithms: It requires the integration of physical, dig-
ital and heuristic knowledge. High complexity derived
from model management, deployment and governance.

o Decision-making: Given the industrial setting, tol-
erance for error is generally very low, with uncer-
tainty handling being extremely important. Efficiency
is of special importance for large-scale optimization
problems.

o Objectives: Industrial Al addresses mostly concrete
value creation through a combination of factors such as
scrap reduction, improved quality, augmented operator
performance or accelerated ramp-up times.

Taking into account the heterogeneous nature of indus-
trial systems and their applications, it is useful to describe
autonomous actions through a graduated model of autonomy,
given that different LOA can be considered depending on the
requirements of the application area and particular use case.
To this extent, the taxonomy of system autonomy based on
Al adopted by the Plattform Industrie 4.0 [9] can be used,
defining a six-level model of automated decision-making
(akin to the classification used applicable to autonomous
driving [10]) on the basis of industrial processes. A represen-
tation of this model contextualized with industrial scenarios
for each level is provided in Table 1.

These LOA can be used to describe not only the cur-
rent state of a system or one of its parts, but also desired
states to be achieved in the future. To attain a particular
LOA, industrial systems need to be imbued with additional
intelligence, which in turn is based on knowledge acquired
through experience. Thus, Industrial Al can be seen as a core
technology driving the pursuit of higher degrees of autonomy
in industrial systems. Nevertheless, it is important to note
that currently Industrial Al is mainly leveraged to augment
human performance rather than fully replace them, which will
likely still hold true even in more autonomous scenarios in the
future.

B. DIGITAL TRANSFORMATION ROADBLOCK

Despite the high expectations held by the industry regarding
Al, its actual prevalence in industrial enterprises is still quite
low. A detailed survey of Al in manufacturing has suggested
that the majority of research in the field is performed at
most in laboratory environments [11]. The reason for this

VOLUME 8, 2020



R. S. Peres et al.: Industrial Artificial Intelligence in Industry 4.0

IEEE Access

TABLE 1. Taxonomy of system autonomy based on Al, defining a six-level model of automated decision-making for industrial processes. Each level of
autonomy is defined, along with an illustrative industrial scenario representative of the corresponding level. Adapted from [9].

Level Industrial Scenario

Level 0 - No autonomy: Human op-
erators have full control without any
assistance from the Al system

Level 1 - Assistance with respect to
select functions: Human operators have
full responsibility and make all deci-
sions

Level 2 - Partial autonomy: in clearly
defined areas, human operators have
full responsibility and define (some)
goals

Level 3 - Delimited autonomy: In larger
sub-areas, the Al system warns if prob-
lems occur, human beings validate the
solutions recommended by the system

Level 4 - System is adaptable and
functions autonomously: Within de-
fined system boundaries, human opera-
tors can supervise or intervene in emer-
gency situations

Level 5 - Full autonomy: The Al sys-
tem operates autonomously in all areas,
including in cooperation and in fluctu-
ating system boundaries. Human oper-
ators do not need to be present

SNEEN

A robot performing pick and place operations in pre-defined, fixed positions within
fixed system boundaries. The robot is programmed with a pre-set behaviour by humans,
who select and prioritise its rules

The robot functions similarly to Level 0. However, at autonomy level 1, a robot
assistance system programmed using Al can suggest goal-oriented improvements, such
as process optimizations concerning cost, energy or time. These suggestion require the
approval of a human supervisor to take effect.

At level 2 the robot is still predominantly programmed in pre-set manner by humans.
However, the self-improvements go beyond level 1, with the Al programming allowing
the robot to improve its behaviour within specified system boundaries and goals. An
example of this behaviour would be the robot being capable of recognising and picking
parts which are not in the exact pre-set position. Humans retain decision-making power
and intervene when/if necessary.

The robot is only partially programmed in a pre-set manner by humans. On top of being
capable of adjusting its own behavior, the robot can make and implement plans within
the specified system boundaries, including for instance autonomous path control. This
can be done in collaboratively with other entities in its environment. For this purpose the
robotic system should is equipped with sensors necessary to perceive the environment,
its context and to learn skills. Humans oversee the system’s decisions, assist in resolving
unforeseen disturbances and intervene in case of emergency.

At this level the system behaves as an adaptive, autonomous system in larger sub-areas
within known system boundaries. Self-optimization within these boundaries is enabled
through continuous learning phases and defined (partial) goals, leading to improved
predictions and problem-solving capability. Humans relinquish control of a specific part
of the system, shifting to a monitoring role and intervening only in emergency cases. If
the human fails to intervene, the robotic system is capable of handling some situations
according to its own perception of adequate corrective action.

At level 5 the robotic system acts with full autonomy and in collaboration with
other autonomous systems within system boundaries specified by humans. In case of
disturbances or fluctuating working parameters, the system is capable of dynamically
adapting the plan and communicate it to other autonomous entities. In emergency cases,
the system independently puts itself in secure mode.

lies in the enormous changes and expenditures needed to
integrate Al applications into corporate structures and along
entire value chains. To ensure the realization of a successful
and complete digital transformation in the manufacturing
industry, companies need to understand not only the poten-
tial impact of these disruptive technologies (which in most
cases they do to some extent), but also their main require-
ments and consequently the organizational changes required
to realize their full potential. Yet, most manufacturers do
not have a comprehensive roadmap and framework to guide
the integration of Al into their existing business models and
processes [3].
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This lack of understanding, guidance and common prac-
tices represents a critical roadblock for the data-driven
digital transformation commonly associated with the
Industry 4.0 vision. While several research efforts have
pushed towards the deployment of Al solutions in the indus-
try, companies often fail to follow through after their conclu-
sion, missing the opportunity to reap their full benefits. Due to
the lack of sufficient evidence of successful industrial appli-
cations of Al, the industrial adoption of the technology is thus
hindered. On the research side, this exacerbates the issues
with data availability and quality, as manufacturers continue
to report and log their data in a variety of non-standard
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formats with varying degrees of quality, making it difficult
to break this cycle without systematic approaches for the
implementation, deployment and management of Industrial
Al solutions.

In an attempt to fill this gap, this study will present a sys-
tematic literature review of Industrial Al to derive common
design principles, core technologies and the main challenges
to overcome in order to achieve successful and sustainable
deployments of Industrial Al at a high TRL. Furthermore,
based on this assessment, the goal is to propose a strategic
roadmap to guide both researchers and manufacturers alike in
the transition towards digital data-driven industrial processes
in the manufacturing industry. To this end, the following
research questions were formulated:

RQ1 What is the current status of Industrial Al in manu-
facturing?

RQ2 What are the main design principles of Industrial AI?

RQ3 What are the main challenges and future research
directions?

The remainder of this paper is organized as follows:
Section II describes the methods employed to carry out the
systematic literature review and subsequent assessment of the
selected body of literature to identify key design principles
in Industrial Al applications. Afterwards, Section III aims
to characterize the current Industrial Al landscape through
the systematic literature review, identifying its main trends,
design principles and application areas. Following this,
Section IV proposes a conceptual framework to guide indus-
trial implementations of Industrial Al systems based on the
results of the literature review. Section V explores the chal-
lenges and main opportunities for future research. Finally,
Section VI discusses the limitations of this study, with
Section VII providing its conclusions and closing remarks.

Il. METHODS

A. STUDY IDENTIFICATION, SCREENING AND ELIGIBILITY
The systematic literature review was conducted through a
mixed-methods approach [12] (including both qualitative and
quantitative research methods), following the guidelines out-
lined in the PRISMA statement [13]. The PRISMA flow chart
reporting the different phases of the systematic review is
shown in Figure 1.

To assist in the process of constructing a search string to
collect records from different digital databases, a network
graph for the concept of Al was built using the Google
search engine. By using as an input the string ‘“‘Artificial
Intelligence vs” to prompt typical direct comparisons with
the term, we extracted the autocomplete suggestions of the
search engine and used the ranking (ordering) of the list as
the weight of the edge. By repeating this step for each of
the results with a depth of three, the network graph presented
in Figure 2 was generated.

From the analysis of the network graph presented
in Figure 2, a search string was constructed based on
the core concepts associated with Al, constrained to the
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FIGURE 1. PRISMA (preferred reporting items for systematic reviews and
meta-analyses) flowchart of study inclusions and exclusions for the
systematic literature review.
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FIGURE 2. Ego graph for Al based on Google’s Autocomplete queries.

manufacturing domain. This was achieved by ensuring that
at least one element of each of the groups listed in Table 2 is
present, using a combination of OR and AND operators.
This search string was then adapted to each of the three
electronic databases included in this study, namely Web of
Science, Scopus and ScienceDirect. The search was con-
ducted on 12 July 2020, including academic research that
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TABLE 2. General search string to be adapted for each of the selected
digital repositories (Web of Science, ScienceDirect and Scopus).

Group 1 [ Group 2

artificial intelligence
deep learning
machine learning
data science
predictive analytics

manufacturing
industr* 4.0

was: (1) published between 2016 and July 2020; contained
at least one term from each group (2) in either the abstract,
title or keywords; (3) published in peer-reviewed journals or
conference proceedings; (4) written in the English language.
After this the resulting records were aggregated and the dupli-
cates removed.

Following the identification phase, a first screening process
was carried out by two independent reviewers following the
criteria listed in Table 3. Any discrepancies were resolved
through discussion.

TABLE 3. Exclusion criteria for the screening phase of the systematic
literature review.

ID [ Screening Criteria

SC1| Record must include at least the Title, Year, Source, Abstract and
DOI

SC2| Must be in English

SC3| Must have been published in a Q1 journal (according to SCImago
[14])

SC4| Abstract must address the application of I-Al in a real environment
SC5| Must not be solely a survey, review or roadmap

Regarding SC4, a second screening was performed for
records that passed the first round by first automatically
searching the abstracts for mentions of ‘“‘real data”, “real
environment” or similar variants and then briefly review-
ing the corresponding record by reading the title, abstract
and keywords. A similar process was performed for SCS.
This second screening was employed in an effort to exclude
publications which did not focus on the technical aspects and
challenges of Industrial Al in real industrial environments.

Finally, all remaining articles had their full text analyzed
in further detail based on the eligibility criteria described
in Table 4. No further restrictions were imposed on the set-
ting, application, methods or outcomes reported.

TABLE 4. Exclusion criteria for the eligibility phase of the systematic
literature review.

ID | Eligibility Criteria

EC1| Does not address the deployment of I-Al in a real environment

EC2| Insufficient report quality (missing or ill-reported information on one
or more sections of the article, making it impossible to assess the
real-world application)

EC3| Full-text not available

B. DATA COLLECTION
For each of the articles eligible to be included in the study, two
types of data were extracted. Firstly, the basic information

VOLUME 8, 2020

about the publication was collected, including (1) publication
title, (2) authors, (3) abstract, (4) year, (5) journal title and
(6) journal classification according to SCImago [14].

Building on these, the second part deals specifically
with attempting to answer the research questions listed
in Section I-B:

o For RQ1 "What is the current status of Industrial Al
in manufacturing?’, the data extracted from the eligible
publications are: (1) the application domain, references
to (2) software or hardware employed by the authors,
along with an assessment of the (3) TRL and (4) level of
autonomy of the proposed application.

« For RQ2 *What are the main design principles of Indus-
trial AI’: (1) text descriptions (sentences in the full
text of the publication) highlighting design decisions
taken by the authors (e.g. service orientation, continuous
engineering).

o For RQ3 *What are the main challenges and future
research directions?’: (1) research objects (e.g. produc-
tion data, logistics or workers), as well as (2) research
purposes (e.g. predictive maintenance, energy optimiza-
tion or ergonomics) addressed by each publication.

C. DATA ANALYSIS

As previously mentioned, the data analysis was
performed using a mixed-approach combining both
qualitative and quantitative methods. To complement the
quantitative analysis, which addresses both statistical and
graphical data descriptions, it is possible to take advantage of
semi-automated techniques [15] using NLP to qualitatively
pre-process and analyse selected literature in a much shorter
amount of time and at a larger depth when compared to more
traditional manual methods [16].

To this effect, the each abstract was pre-processed and
cleaned following a sequence of steps through using a Python
script. Initially, stop-words (e.g. “a”, “the” and “in”") and
punctuation were removed given their low significance in
this context. Following this, token n-grams were constructed
consisting of one to three words stemmed using Porter’s
stemming algorithm [17]. In this instance, stemming refers
to the process of breaking a word down to its roots, meaning
as an example ‘“‘challenged”, ‘““challenges” and ‘“‘challeng-
ing”” would correspond to the root ‘““challenge’ [18]. Finally,
the frequency is counted to find the most frequent n-grams in
the corpus.

Ill. CHARACTERIZATION OF CURRENT INDUSTRIAL
Al RESEARCH
Following the PRISMA guidelines and the steps described in
Section II, a total of 5863 unique records were found in the
chosen electronic databases matching the search string from
Table 2, out of which 90 were selected for further assessment
based on the screening criteria listed in Table 3.

In an effort to ensure the quality and reliability of the
publications included in the analysis, as well as to better
comprehend how recent research as addressed the challenges
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inherent to deploying Industrial Al solutions in real envi-
ronments, only journal articles classified as Q1 (according
to SCImago [14] were considered for the analysis. The top
25 journals in terms of publication count resulting from the
database search are listed in Figure 3. Along with the appli-
cation of the remaining criteria mentioned in Table 4, this
resulted in 27 articles being eligible for further data collection
and analysis in the study.
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FIGURE 3. Top 25 Q1 journals encompassed in the database search of
Industrial Al research, ordered by publication count.

This section presents the results from this process, with
the aim of providing an overall characterization of Industrial
Al research. Hence, it covers the maturity level of the solu-
tions found in current literature, the main trends and their
common design principles, serving as the basis to answer the
research questions devised in Section I-B.

A. RESEARCH TRENDS
Due to the large volume of research data readily avail-
able in online repositories which provide access to digital
publications, it is possible to take advantage of automated
techniques [15] to search a wider range of the existing liter-
ature in a much shorter amount of time and at a much larger
depth when compared to more traditional manual methods.
To establish a baseline for the thorough assessment carried
out later in this study, NLP techniques were used to find the
30 most frequent bigrams and trigrams occurring in the cor-
pus. First, these were applied to the corpus of 5863 abstracts
resulting from the initial stage of the database search
(see Figures 4 and 5). This was done in order to obtain
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FIGURE 5. Top 30 most frequent bigrams resulting from the analysis of
the corpus of 27 full-text articles.

a general sense of the publications and their main topics.
Then, the same approach was applied to the full-text of the
27 articles included in the study (see Figures 6 and 7) in order
to enable the comparison between the overall landscape of
Industrial AI and the research efforts which are specifically
discussing the deployment in real industrial environments.
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FIGURE 6. Top 30 most frequent trigrams resulting from the analysis of
the corpus of 5863 abstracts.

Aligned the constraints imposed during the initial search,
it is possible to verify that before narrowing down the
study, the abstracts appear to frequently mention key con-
cepts related with Industrial AL, namely Machine Learning,
Industry 4.0, Big Data, Industrial IoT and CPPS. Addi-
tionally some broad areas of interest are identified as well,
including supply chain, additive manufacturing and decision-
support in general.
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FIGURE 7. Top 30 most frequent trigrams resulting from the analysis of
the corpus of 27 full-text articles.

In contrast, it is interesting to observe that the systematic
approach was successful in narrowing down the focus of
the selected publications, from the more general topics to
real data-driven industrial applications still aligned with the
general scope. This is useful to assist and guide the more
thorough manual assessment of the full-texts, later presented
in Section III-B.

From this, the main application areas of interest appear
to energy optimization, predictive maintenance and quality
control, largely dominated by deep learning in terms of the
methods employed. Furthermore, it is also useful to identify
some of the design principles that one can hypothesize to be
inherent to the most frequent terms. More specifically, inter-
operability (e.g. “‘multi source data’), real-time capability
(e.g. “real time data’), cybersecurity (e.g. “physical layer
authentication™), scalability and decentralization (e.g. “‘big

9 ¢

data analytics™, “parallel training””).

B. STUDY OF THE INDUSTRIAL Al LANDSCAPE

Going beyond the semi-automated analysis, a more thorough
manual assessment of the 27 publications included in the
study in their full-text form was carried out. Table 5 summa-
rizes the findings from this assessment, extracting from each
article the key information required to address the research
questions of the study. This includes the application setting,
data and methods reported by the respective authors, as well
as a qualitative assessment of the perceived TRL and LOA
levels of the research work in question, providing further
insight into the current status of the Industrial AI landscape.
The design principles are identified as explicitly stated by the
respective authors as core concepts of the reported research,
among those identified as the common fundamental princi-
ples among current Industrial Al literature.

From the analysis of Table 5 one can derive several
observations in regards to the current state of Industrial Al
research. A summary of the findings concerning the TRL,
LOA, and publication years of the articles included in the
study can be found in Figure 8. Concerning the assessment
of the TRL for the research work reported in each of the
publications, it is clear that there is a major roadblock around
TRL 5-6 (pilot stage), with the vast majority of publications
(70.3%) standing at or below this level. This is in line with the
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discussion from Section I-B, as the nonexistence of common
practices and guidelines for the long-term deployment of
Industrial Al, along with the lack of substantial evidence of
industrial success makes it difficult to increase the market
uptake of such solutions beyond this stage.

It is also interesting to look further into the coverage of the
different design properties highlighted in this study. Figure 9
summarizes the results extracted from Table 5 in this regard.

Given the emphasis on decision-making support and
human involvement associated with the reported applications,
it is natural to see real-time capability and human in the loop
as the most common design properties among the publica-
tions included in the study. It is however concerning to see
that there is still such a gap in terms of the employment of
explainability and cybersecurity practices. Such a gap might
explain the resistance towards a higher industrial uptake of
these solutions, as their low interpretability by non-expert
personnel and lack of coverage in terms of privacy and secu-
rity issues can easily result in a perceived lack of trust and
reliability by industrial stakeholders. Additionally, there is no
common, formalized way to report results, with considerable
variance between different reports.

It is also worth noting that authors rarely discuss limita-
tions of their approaches. However, data availability, quality
and related issues (e.g. scarcity, contamination, drift) could
be considered limitations for nearly all publications included
in the study. In this regard, the formulation and adoption
of common Industrial Al reporting guidelines, akin to the
TRIPOD statement [48] in healthcare could contribute to mit-
igate this issue, improving publication quality and reducing
the risk of bias.

The perceived level of autonomy of the applications is
still generally quite low. Applications are typically limited to
very specific and tight boundaries providing decision-making
support to human supervisors, hence the emphasis on the
human in the loop.

In addition, it can be observed that solutions showcas-
ing higher maturity and TRL tend to share a substantial
number of the design principles, while lower TRLs tend to
focus on more specific, narrow aspects. Interoperability for
instance is considered in most solutions above TRL 6 due
to the heterogeneous and multi-source nature of data in
Industry 4.0 manufacturing systems, but it typically comes
at the cost of considerable additional pre-processing and
cleaning effort.

The following subsections provide an in-depth analy-
sis of the topics covered in Table 5, going into further
detail regarding the core enabling technologies and the
main design principles that guide industrial implementations
of AL

C. CORE ENABLING TECHNOLOGIES

While the theory and concepts behind Industrial Al are
paramount for its understanding and scientific advancement,
it is through the tooling that its potential can be fully realized
to solve real world problems. In this regard this field presents
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TABLE 5. Overview of eligible applications of Industrial Al reported between 2016-2020. Public datasets used in the studies are included when available.
Limitations are listed as reported by the authors. Legend: RT - Real-time; HL - Human in the Loop; RB - Robustness; 10 - Interoperability;
DC - Decentralization; SO - Service-orientation; M - Modularity; CA - Context-Awareness; S - Scalability; CE - Continuous Engineering;

IP - Interoperability; C - Cybersecurity.

Author Application Domain Data Methods RT HL RB I0 DC SO M CA S CE IP C Limitations TRL LOA
Tannous et al. Collaborative Robots, Real Haptic Touch, v v - - - - - - - - - - Data Quality 5-6 2
[19] Welding Statistical
Lai et al. [20] Workforce Training, Synthetic, AR, DL Object v v - - - - v - - - - - - 5-6 1
Manual Assembly Real Detection
Bergamini et al. Collaborative Robots, Cornell Deep Learning, v v - - - - - - - - - - 5 2
[21] CV, Manual Assembly dataset [22] ROS
Ojer et al. [23]  Quality Control, CV, Synthetic, Segmentation, v Vv - - - - - v - - - - 5-6 1
Manual Assembly, Real Supervised
Electronics Learning
Chien et al. [24] Demand Forecasting, Real Deep - v v - - - - - - - - - - 6-7 1
Supply Chain Reinforcement
Management Learning
Zanetal. [25]  Pattern Recognition, Synthetic,  Deep Learning - v - - - - - - - - - - - 4-5 1
Quality Control Real
Li et al. [26] Quality Control, CV, UB-Moog  Semi-Supervised v~ - - - - - - - - - - - Interpretability, 3-4 1
Additive Manufacturing ~ dataset [27] Deep Learning Data Availability
Romeo et al. Design Engineering Real Supervised - - - - v - - - v v - DataAvailability, 5-6 1
[28] Learning Data Quality
Yu et al. [29] Fault Detection, Real Unsupervised v v v - - - v - v Data Quality 8-9 1
Predictive Maintenance Learning
Ruiz-Sarmiento Predictive Maintenance, Real Supervised v v oo- - - v - - - - - - - 5-6 1
et al. [30] Steel Industry Learning
Huang et al. Production Progress Real Deep Learning v - - v v - - - - - - - Data Availability  6-7 1
[31] Prediction, IoT
Panetal. [32]  Physical Layer Real Supervised v - - - - - - - - - - v Data Availability, 5-6 2
Authentication Learning Robustness
Maggipinto et Virtual Metrology, Real Deep Learning v - - - - - - - - v - - - 4-5 2
al. [33] Semiconductor Industry
Abobakr et al.  Posture Analysis, CV, Synthetic,  Deep Learning - v v - - - - - S - - Complexity, 5-6 1
[34] Ergonomics Real Comp. Cost
Juez-Gil et al. Lifetime Prediction, Real ( Supervised - v - - - - - - - - v - DataAvailability 5-6 1
[35] Steel Plates Public [35]) Learning
Ansari et al. Prescriptive Real Supervised v v - v v - v v v v - - Data Availability, 6-7 1
[36] Maintenance, Learning, NLP Data Quality,
Automotive Industry Cybersecurity
Shi et al. [37] Condition Monitoring, Real Deep Learning - - v - - - - - - - - - Variability in 4-5 1
Ultra-Precision Process setup parameters
Stoyanov et al.  Qualification Testing, Real Supervised v o - v - - - - - - - - - - 4-5 1
[38] Electronics Industry Learning
Zhu et al. [39] Fault Detection, CV, Real Deep Learning, v - - - - - - - - - - - 4-5 1
Chemical Industry Statistical
Peres et al. [40]  Quality Control, Real Supervised v v - - v v v - - v - - Concept Drift 6 1
Automotive Learning, MAS
Qinetal. [41]  Energy Optimization, Real Deep Learning - - - v v - v - - - - - 4-5 1
Additive Manufacturing
Lee et al. [42] Quality Control, Metal ~ Real Supervised v v - v v v - - - - Data Availability, 7-8 2-3
Casting Learning Cybersecurity
Schmitt et al. Quality Control, Real Supervised v v - v v v - v - - - Automated data 7-8 2-3
[43] Electronics Industry Learning pipelines, CE
Hwangbo et al.  Robotics, Legged Synthetic,  Reinforcement - v - - - v - - - - - Human expertise ~ 5-6 2-3
[44] Locomotion Real Learning per task, Task
generalization
De Vita et al. Fault Prediction, Data Real Deep Learning v - v v - v v v - - - - 6 1
[45] Fusion, IoT
Woo et al. [46]  Predictive Analytics, Real Supervised v < - - v v - - Disturbance 5-6 2-3
Energy Efficiency Learning, handling
Statistical, MAS (Robustness)
Lee et al. [47] Predictive Analytics, - - v - v Y - v - v - - - - Data Quality, 2-3 2-3
Condition Monitoring Cybersecurity
a rich ecosystem of technologies, tools, frameworks and This step was carried out following the same process

libraries that are fueled by a large community riding on the
hype of recent Al advancements (in addition to pre-existing
technology in operations research).

Given the prevalence of ML in current Industrial Al liter-
ature, one efficient way to kickstart the overview of its core
enabling technologies is to build an Ego graph based on the
term “‘scikit-learn” [49], currently one of the most popular
and open-source ML libraries available in Python.
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described in Section II-A, the result of which can be seen
in Figure 10.

A widely adopted basic tooling for traditional ML appli-
cations consists in a set of three main open source libraries.
Beyond the aforementioned scikit-learn, which provides var-
ious tools for model fitting, data preprocessing, model selec-
tion and evaluation, Pandas [50] facilitates data manipulation
and Numpy for scientific computing. To complement these,

VOLUME 8, 2020



R. S. Peres et al.: Industrial Artificial Intelligence in Industry 4.0

IEEE Access

175

15.0

125

10.0

Count

1.5

5.0

1 2.5

o+ 0.0
1 12 2 223 3 34 4 455 56 6 67 7 78 8 89 % 1-2

TRL Level of Autonomy

]
2 23 3 2016 2017 2018 2019 2020
Publication Year

FIGURE 8. Distribution of technology readiness level, level of autonomy and publication year for the articles included in the study.
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articles included in the study. Further explored in Table 6.

FIGURE 10. Ego graph for Al/ML technology landscape based on Google’s
autocomplete queries originating from “scikit-learn”, a popular ML
framework. Search Depth = 3.

matplotlib and seaborn are commonly used for visualization
purposes.

For Deep Learning, Tensorflow [51] (alternatives include
Pytorch and CNTK) is a core open source, end-to-end
ML platform for Deep Learning provided by Google.
Tensorflow provides a large ecosystem of tools, from graph
modules to visualization with TensorBoard. It is also avail-
able through Google Colab, a cloud service providing free
access to GPU and TPU computing with minimal effort and
resources required on local machines, making it also interest-
ing for training and teaching environments. Higher-level APIs
such as Keras and fastai provide user-friendly interfaces for
rapid-experimentation and flexibility, which in conjunction
with CUDA [52] can facilitate distributed training in clusters
of GPUs or TPUs.
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Moving towards big data, scalability and decentralization,
open-source processing engines such as Apache Spark, Flink
and Storm enable distributed computation with low latency
and high throughput [53]. These engines are easily inte-
grated with multiple data sources, which in this context can
include distributed storage like HDFS, data warehouses such
as Apache Hive and NoSQL databases such as Cassandra and
MongoDB. Clusters using this engines can be easily set up in
cloud-based services such as Microsoft Azure and Amazon
AWS which enable the deployment of such solutions at scale.

Another concept which has been gaining popularity
recently is the automation of ML (AutoML) processes
through libraries such as H20 and the low-code Pycaret,
making the barrier of entry of these technologies lower
and lower. Also it enables more customized experiences at
scale, with automatic feature engineering, modeling and even
deployment. On the one hand, AutoML is a step towards
the democratization of Al, making it more widely accessible
instead of being available only to a select few. On the other,
one downside of this is the false sense of expertise it can
often convey, with practitioners lacking fundamental skills to
go beyond prototyping and to address real-world challenges
in data quality, scalability and integration, which in turn can
further contribute to a lack of trust and interest from industrial
stakeholders.

Finally, going beyond ML, it is also worth it to look into
technologies that assist in addressing the challenge of inter-
operability and modularity in heterogeneous and complex
real world industrial environments. In this direction, IEC
Fieldbus (Profibus) [54] and the OPC-UA [55], [56] machine-
to-machine communication protocol are seen as industry
standards for interoperability in data exchange contemplated
in the communication layer of the Reference Architectural
Model Industrie 4.0 [57]. In the case of modularity and
robustness, Industrial MAS [58] have played a pivotal role
in the development of CPPS, allowing them to be designed
in a decentralized manner through the distribution of func-
tionality among autonomous and cooperative agents [59].
Through the combination with other AI methods such as
ML, industrial agents have provided CPPS with the capacity
to learn and self-adapt with additional flexibility [60] and
reconfigurability [61].
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D. DESIGN PRINCIPLES

Naturally, several of the common design principles found
in Industrial Al literature are shared with those of the
Industry 4.0 vision [62]. These include decentralization,
modularity and real-time capability. However, others are
more specific to the context of applied Al as it is the case for
the aspects of interpretability, robustness and cybersecurity
for instance from the standpoint of privacy-preserving Al
Table 6 indicates the relevance of each design principle for
Industrial Al systems, framing it in the context of application
examples to facilitate their comprehension. Figure 11 high-
lights the design principles identified through the systematic
literature review, along with the respective application areas
which will be further explored in Section III-E.
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FIGURE 11. The main design principles acting as pillars of Industrial Al in
the context of its application areas.
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Generally, human operators and engineers currently play
a central role in most Industrial AI applications found in
real manufacturing environments. While the adoption level
for this involvement of the human in the loop is quite
high, we are still far from a fully symbiotic relationship
between the human and Al, with the former mostly taking
full responsibility of the action and the latter acting only
as a decision-support system with limited autonomy within
clearly defined boundaries. To progress further in this direc-
tion, a better understanding of the reasoning and mechanisms
behind Al-based decisions is necessary on the stakeholders’
side, demystifying the AI ““black box™.

Such an understanding can be achieved through the con-
sideration of Al interpretability. While it is difficult to find a
clear-cut definition of the term, in the context of this work we
have adopted the formalization used in [68], describing it as
the degree to which an observer can understand the cause of a
decision. The terms interpretability and explainability will be
used interchangeably. Thus, an explanation can be seen as the
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mode through which an observer can obtain understanding,
or simply put, the answer to a “why” question. Another
important aspect is that explanations are social, as in part of
an interaction between the explainer and the receiver of said
explanation. Hence, context plays a large role in determining
the content and nature of the explanations.

In order to enable the interpretation of information, not
only the context but also the semantics and grammatical
structure of the information are crucial. The more explicit
these definitions become, the easier it is for the different
actors to communicate and collaborate in an interoperable
way. In the context of Industrial Al, functions and conse-
quences must be unambiguously defined, with created and
explicit knowledge being constantly validated by domain
knowledge experts. In line with this, robust integration with
legacy IT systems (such as ERP, PLM and MES applications)
should be addressed proactively as these typically encom-
pass various data sources which can provide valuable inputs
to successfully deploy Industrial Al applications at scale.
Standardization and the adoption good common practices
in a company-wide data-driven culture can play a major
role in this direction, easing the replication and scaling of
these applications as part of complex CPPS beyond the first
implementation.

Effective design of complex CPPS is also dependent on
modularity [69], which in this case implies that AT modules
should have clear interfaces and easily allow their composi-
tion within the CPPS, providing it with additional capabilities
and functionalities as needed in a flexible way.

Interestingly, the added flexibility of the plug &
produce paradigm in modular systems makes the already
difficult aspect of security even worse, as cybersecurity is
typically seen as a characteristic rather than a design prin-
ciple. As stated in [70], this misconception has led to the
development of several insecure systems since this principle
is not something that can be easily bought or added onto
an existing system. It is a continuous and iterative process
starting from the design stage, encompassing most if not all
aspects of the respective system.

E. MAJOR APPLICATION AREAS

1) PROCESS OPTIMIZATION

The employment of Industrial AI towards process optimiza-
tion in manufacturing is gaining rapid traction, enabling
smarter, more efficient data-driven decision-making by lever-
aging both historical and real-time data. In this regard,
the main emphasis has been put into energy consump-
tion prediction and optimization problems [41], production
efficiency [71] and demand forecasting [24]. Thus, the appli-
cation of Industrial Al for process optimization can contribute
to make manufacturing processes more profitable, while also
being more sustainable and efficient.

2) QUALITY CONTROL
The inherent complexity of multistage manufacturing pro-
cesses such as assembly and machining, along with their
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TABLE 6. Key design principles and their relevance to Industrial Al

Design Principle  Relevance to Industrial AT Adoption  Application Example

Real-time For data-driven applications, real-time capability is crucial to turn Very High Industrial AI can be used for inline monitoring or control due to low

Capability new Al predictions and insights into actionable knowledge at both inference times, thus managing to cope with the constraints imposed by
the level of the processes and of the overall smart factory operations the takt time. Examples include inline sorting, quality control [43] and
in a timely manner, adequate for the increasingly real-time economy. assisting workers in manual assembly tasks [20].

Human in the Humans can take on either a collaborative or supervisory role ensur- Very High Provide labelling for supervised learning based on domain knowledge,

Loop ing the safety and possibly continuous improvement of Al operations monitor/validate suggestions/decisions from the Al system depending on
within specific boundaries. the desired LOA.

Robustness As shop-floor conditions can change considerably over time, appli- Good CV applications should be robust to geometric or photometric changes
cations should be robust to cope with unexpected disturbances and in shop-floor conditions. Supervised learning models using structured
changes in either the data, the system or the environment itself. data from production should be robust to changes or drifts caused by

disturbances, maintenance, material changes or other events.

(Semantic) Interoperability is the means through each machines, people and data ~ Good  IoT devices at the edge can publish data through MQTT, PLC I/O data can

Interoperability can be connected in a meaningful way. It enables heterogeneous be aggregated in an OPC-UA server, while a CPPS can consume both, then
assets to effectively exchange information, harmonizing different transform the data, annotate it with context in a common representation
communication standards, protocols and data representations. format and send it to historical cloud storage to be later used for analysis

or model training by a different module or micro-service.

Decentralization ~ Autonomous and semi-autonomous operation and decision-making Good Big data can be collected from multiple sensors and stored in a distributed
distributed between the edge, fog and cloud layers through IoT, CPPS file system. Time consuming ML model training based on the collected
and Cloud Computing. data can be performed in the cloud, with low-latency inference carried out

by models deployed at the edge.

Service As part of the adoption of *-as-a-service revenue models, Industrial Fair Al-as-a-service has been gaining traction with commercial solutions being

Orientation Al can be structured as a collection of loosely coupled and self- made available by major players such as Microsoft!, Googlezand Ama-
contained micro-services. This increases flexibility and facilitates zon’. Through simple APIs Al services can be integrated into existing
integration and continuous engineering. CPPS without requiring considerable development effort or resources [63].

Modularity Industrial Al solutions can be designed as modular building blocks Fair Modular Industrial AI components should be able to be dynamically
that can flexibly be added or removed to the overall CPPS providing deployed as the CPPS deems necessary, not only adapting to changes in
specific capabilities as necessary. system topology but also to accommodate new data sources.

Context Context is information used to characterize the situation of an entity Fair IoT systems use multiple sensors to capture low-level contextual data of

Awareness [64]. Contextualization is crucial to realize the full potential of industrial entities. The heterogeneous, multi-source nature of the data pro-
raw data, making sense of it and transforming it into actionable vides crucial information to understand and reason about the its situation
knowledge. within the environment.

Scalability Beyond the proof of concept stage, manufacturers should be able to Low Scalability should be considered early in the design stage. For instance,
scale Industrial Al solutions once data governance strategies are in- models can simply grow large enough that they are unable to fit in the
place to enable easier, repeatable and faster rollouts. As more data working memory of a single training device. It should be considered across
becomes available, solutions can be expanded to cover fleets of assets different stages, from data warehousing to model training and deployment,
or across multiple sites. being closely related with decentralization and modularity.

Continuous Continuous monitoring and improvement of deployed solutions to Low Monitor the model’s online performance after deployment, re-training in

Engineering cope with the dynamic and ever-changing nature of real industrial the cloud when it degrades beyond a given threshold and then re-deploying
environments. to the edge.

Interpretability The higher the interpretability of an Industrial AI application, the Very Low Knowing why a given output is produced can provide further insight into
easier it is for industrial stakeholders to comprehend the reasoning the model, the problem and the data itself. As an example, it can assist
behind certain predictions or decisions. This builds trust, improves domain experts in identifying if the milling machine is more likely to fail
transparency and assists in promoting market uptake. due to the feed rate, the spindle RPM or the current tool supplier.

Cybersecurity As sensitive data-driven systems in highly decentralized, flexible Very Low Applying encrypted computation, allowing Industrial Al systems to be

and connected environments, Industrial Al systems are vulnerable
to cyber-attacks like eavesdropping (compromising privacy), data
poisoning (adversarial contamination of training data) and denial-of-
service [65].

trained and run on encrypted data without allowing them to see, leak or
abuse data in its unencrypted form [66]. Examples include homomorphic
encryption, secure multi-party computation and functional encryption
[67].

unforeseen disturbances and uncertainties, make it chal-
lenging to guarantee the desired quality of the product in
industries like automotive and aerospace [72]. Thus, effec-
tive methods to enable the automated and early detection
of potential defects during production using real-time data
are highly desirable to manufacturers. Emerging applica-
tions include automated visual inspection using deep learning
methods [23], [27], defect prediction to mitigate multistage
propagation (aligned with the zero-defect manufacturing
paradigm) [40] and online quality prediction [43].

3) PREDICTIVE MAINTENANCE
Given the steep costs associated with unplanned downtime
in the manufacturing industry, a large portion of existing

1 https://azure.microsoft.com/en-us/services/
2https://cloud. google.com/ai-platform
3 https://aws.amazon.com/machine-learning/ai-services/
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applications of Industrial AI are focused on increasing
machine operability and uptime by detecting possible prob-
lems before they occur. On the one hand, this mitigates the
risk of breakdown events occurring with catastrophic con-
sequences, on the other it can be seen as a way to reduce
unnecessary inspection and maintenance operations resulting
from time-based policies, thus resulting in cost and resource
optimization.

Generally, such approaches can be modelled based
on the degradation severity of machine performance and
the processing of multiple heterogeneous data sources.
This can be done for a particular type of machine
or based on the information of a fleet of machines
based on similarity. Afterwards, through the assessment of
maintenance effectiveness of different maintenance poli-
cies, relevant costs, resources and the particular con-
text at hand, the optimal maintenance strategy can be
determined [73].
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FIGURE 12. Conceptual framework for Industrial Al Systems. Adapted from [4].

4) HUMAN-ROBOT COLLABORATION AND ERGONOMICS
Industrial Al presents a tremendous opportunity to empower
human-robot collaboration and provide support to current
human-centric tasks on the shop-floor, be it by improving
the welfare and safety of operators or by making their tasks
easier and more efficient. Therefore, current opportunities
for the application of Industrial Al in this domain include
workforce training and task support [20], [23], collaborative
robotics [19], [21] and ergonomics [34], [74].

IV. CONCEPTUAL FRAMEWORK FOR INDUSTRIAL Al
The aim of this section is to provide the guidelines for manu-
facturers to overcome the roadblock discussed in Section I-B.
For this purpose, these guidelines are clearly defined within a
framework for industrial implementation (Figure 12) adapted
from [4], bringing together the findings originating from
the systematic literature review in terms of the applications,
challenges, principles and technologies driving Industrial Al
The proposed conceptual framework highlights the capa-
bilities and attributes these systems should encompass, based
on the design principles defined previously, to meet the
common requirements of manufacturing environments in the
Industry 4.0 setting. These include not only self-awareness
and self-optimization for continuous improvement, but also
the resilience and reliability expected for industrial applica-
tions. Such characteristics ensure that the system is capable of
handling equipment failures or other unexpected disturbances
by quickly restoring its normal operation state. As discussed
in Table 1, it is expected that with additional autonomy,
the system’s intelligent entities should be able to collabora-
tively resume normal operation by dynamically rescheduling
and implementing new plans in a coordinated manner.
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The enabling technologies behind Industrial Al can be
broadly categorized into five dimensions, namely data, ana-
lytics, platform, operations and human-machine technology.

These five dimensions are described below:
« Data Technology (DT): The digitalization of manufac-

turing is making it so that larger and larger volumes
of data are generated at each step. These data can be
structured, unstructured or mixed, originating from mul-
tiple sources at different levels of abstraction (e.g. com-
ponent, machine or shop-floor level). Thus, to extract
value from the data it is imperative to enrich it with
context and improve standardization in data acquisition
and exchange processes.

o Analytics Technology (AT): In order to transform
the raw data acquired through DT into knowledge
and, consequently, added value for enterprises, ade-
quate AT is required. This includes data processing at
different levels, from the edge to the cloud, leverag-
ing real-time data streams and ML to enable contin-
uous improvement through self-learning mechanisms
and self-optimization. New challenges in this area push
towards the exploration of novel methods such as feder-
ated learning and semi-supervised learning approaches.

« Platform Technology (PT): Platform technologies act
as enablers for the remaining technologies, facilitating
the interconnection between different elements be it at
the edge, fog, or cloud levels. Given the requirements
for added flexibility and agility, it is important for PT to
support self-reconfiguration and self-organization capa-
bilities. Furthermore, the higher degree of connectivity
makes it so that cybersecurity becomes a critical point to
address to ensure the privacy, availability and integrity of
the system.

VOLUME 8, 2020



R. S. Peres et al.: Industrial Artificial Intelligence in Industry 4.0

IEEE Access

o Operations Technology (OT): Operations technology
is crucial to value creation, moving from analytics
to actionable knowledge provided by decision-making
support systems. Through the combination of OT with
the previous technologies, a shift can be made from
experience-driven to data-driven production with opti-
mized operational maintenance and management.

o Human-Machine Technology (HT): Industrial Al car-
ries the disruptive potential to profoundly change the
role of the human in modern manufacturing and the way
these systems interact with people. Hence, HT must be
explored to ensure that stakeholders can be empowered
to effectively, intuitively and seamlessly interact with
these systems to fully reap the benefits provided by
Industrial AL. HT can assist personnel through virtual or
augmented reality to improve and facilitate operations
such as maintenance and assembly, or even in cases of
remote diagnosis. Additionally, while HT can be used
to train the workforce in these tasks, it is also important
that enterprises invest in proper training and acquisition
of talent to ensure the full potential of these systems can
be harnessed.

Naturally, these elements must be integrated into new or
legacy systems, at which point CPPS can play a major role
acting as the glue that brings it all together, creating the nec-
essary bridges between the Industrial Al components and the
shop-floor. As such, future research in this field will remain
a truly interdisciplinary effort, requiring the combination of
multidisciplinary expertise and domain knowledge.

From here, Section V will further explore the challenges
portrayed in the conceptual framework, discussing potential
opportunities for the research agenda of Industrial Al

V. CHALLENGES AND OPPORTUNITIES FOR FUTURE
RESEARCH

Concisely, Industrial Al challenges for future research can be
categorized in three fronts:

o FAIR Data for Industrial AI: Ensuring data is easily
findable, accessible, interoperable and reusable is cru-
cial to serve the best interests of the research and indus-
trial communities alike, promoting the advancement of
science to the benefit of society [75].

« FAIR Models for Industrial AI: Beyond data, to enable
the implementation of FAIR frameworks digital assets
such as models should be reliably found and re-used
when appropriate, through persistent identifiers linked
to rich metadata (including for example provenance)
represented through common, standardized and secure
formats.

o Cyber-infrastructures: Proper infrastructures are cru-
cial to ensure the level of quality, security and reliability
required to improve the industrial uptake of Industrial
Al solutions. These include remote operations, cyberse-
curity, privacy-preserving mechanisms, 5G technology
and collaborative prognostics, among others.
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The remainder of this section will address some of the main
specific challenges within these major fronts in further detail.

A. DATA AVAILABILITY

Industrial AI has shown tremendous potential in a wide array
of manufacturing applications, from defect classification in
quality control, to fault detection in predictive maintenance,
ergonomics and human assistance in manual tasks. Still, data
availability remains as a major challenge to overcome in
order to go beyond the pilot stage, as a considerable volume
of research work has been based on the assumption that
sufficient and adequate data is available to successfully train
and validate models.

ML and Deep Learning in particular require a very large
amounts of (mostly labelled) data to achieve proper general-
ization and avoid overfitting. However, in real manufacturing
environments data from different settings, conditions and
configurations is often scarce ( e.g. different failures, defects,
energy consumption), given that these typically represent
undesired states of the system and acquiring said data with
currently adopted practices tends to be unfeasible from both
an economic and operational standpoint. Moreover, labelling
raw data is a time consuming and costly endeavour which
in this context frequently requires expertise and domain
knowledge.

In the industry, given sufficient time and guidance organi-
zational changes and alignment of business models towards
Industrial AI can ensure that data is collected, curated and
stored adequately with the intent of facilitating data-driven
Al applications. In the meantime, from a research perspective
there are currently two main venues being explored to address
this challenge.

1) DATA SYNTHESIS

The first is related with the generation of synthetic data which
closely resembles data from real operational environments
and thus allows the generalization of Industrial Al solu-
tions based on it to real scenarios. This approach has been
successfully employed in roughly 20% of the publications
included in this study as documented in Table 5. For instance
regarding classification problems, traditional approaches to
handle class imbalances due to data availability issues usu-
ally involve artificially re-sampling the data set. One way
to achieve this is by under-sampling the majority class [76],
resulting in a balanced distribution. However, it also implies
that some valuable data can potentially be lost, which can
be particularly critical for small datasets. Another way is
oversampling the minority class [77], with one simple method
being the randomized replication of instances of the minority
to once again achieve a more balanced distribution, at the risk
of potential overfitting.

A popular approach is SMOTE [78], which creates syn-
thetic samples by interpolating among neighboring minority
class instances in feature space. While SMOTE and its exten-
sions have achieved considerable results in recent years [79],
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studies have shown that for high-dimensionality problems its
effects are underwhelming [80].

With the advent of GANs [81], new opportunities for the
generation of reliable synthetic data in manufacturing have
arisen. The GANs can be used to learn the distributions of
the original data and the generate fake, yet realistic samples
to expand the training dataset. Some promising examples
of this can be found in the literature, addressing the class
imbalance problem in applications in which the data of faulty
operational conditions is scarce and difficult to obtain [82]—
[84]. Recent efforts have also shown promising empirical
results on semi-supervised learning [85]-[87] for cases in
which labelling the entire dataset is unfeasible or too costly.

2) TRANSFER LEARNING
The motivation behind the concept of transfer learning lies in
the fact that humans can intelligently apply previous knowl-
edge to solve new problems either faster or with better solu-
tions [88]. For the purposes of Industrial Al, it consists in the
improvement of learning in a new problem for which data is
scarce, through the transfer of knowledge from a related task
in a given source domain for which sufficient data is available.
The applicability of transfer learning in manufacturing can
generally be split into three main scenarios, namely the trans-
fer between different (1) working conditions, (2) different
machines/stations, (3) different types of machine faults or
product defects [11]. A recent application can be found
in [89], where the authors applied transfer learning from
a model trained on non-manufacturing data to manufactur-
ing condition monitoring, as well as transferring between
different working conditions and machines. In another
example [90], transfer learning is applied for bearing fault
diagnosis under different working conditions categorized by
imposing different motor speeds on the test bearings.

B. DATA QUALITY
Following the common saying of ““garbage in, garbage out™,
Industrial AI and ML models in particular rely heavily on
accurate, clean and often appropriately labelled (in super-
vised approaches) training data to produce useful results,
making data quality a critical factor for the industrial suc-
cess of these solutions. Data quality can be organized into
four main dimensions [91]: (1) Intrinsic, which refers to
the characteristics that are native to the data itself, includ-
ing timeliness, completeness, accuracy and consistency [92];
(2) Contextual, meaning the attributes that are dependent on
the context of the task at hand such as relevancy and quantity;
(3) Representational, addressing the fact that systems should
present data in a way that is interpretable and is represented
concisely and consistently; (4) Accessibility, emphasizing
that systems should store and provide access to the data in
a way that it becomes easy to manipulate in a way that is
accessible but also reliable, secure and privacy-preserving.
While some approaches can be found in the literature to
improve specific dimensions of data quality [93], the assess-
ment and measurement of these dimensions have historically
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relied on self-report surveys and user questionnaires [94] due
to their association with subjective and situational judge-
ments for quantification. Thus, further research is needed
to jointly improve the way the different dimensions of data
quality can be monitored and optimized, as this will likely
have a direct impact towards improving the performance of
Industrial Al applications leveraging these data.

C. CYBERSECURITY AND PRIVACY

It is evident that the typical Industry 4.0 combination of
multiple data sources and emerging technologies such as [oT,
cloud computing, Al and blockchain enhance operation effi-
ciency of entire manufacturing processes. Nevertheless, this
also comes at the cost of possible cybersecurity threats as
discussed in Table 6, especially in the context of collecting
large volumes of data for centralized processing, which poses
severe privacy concerns [95].

Recently, federated learning approaches have started to
emerge as a way to mitigate the aforementioned privacy
and scalability issues, distributing the training process across
multiple industrial nodes. Through federated learning, these
nodes can collaboratively build a model without sharing sen-
sitive private data samples, only local parameters.

While this represents a large step-up in terms of addressing
critical issues of data privacy and security, recent studies
have shown that even in federated learning scenarios several
risks can be found, particularly regarding reverse-engineering
attacks that can extract sensitive information about the
datasets directly from the model [96]. As such, itis imperative
that future research addresses privacy-preserving constructs
for Al, with some examples including secure multi-party
computation schemes and differential privacy [97].

D. GOVERNANCE

1) INTERPRETABILITY AND TRUST

The demystification of the ““blackbox’’ nature of some Indus-
trial AI solutions is a crucial factor to enable stakehold-
ers to better comprehend the technology and facilitate its
widespread industrial adoption. It is considerably easier to
convince stakeholders that a given solution should be adopted
to improve the bottom-line if it can be easily broken-down
and its processes validated by domain experts. To this end,
explainable Al emerges as one of the main research direc-
tions to drive the industrial adoption of Industrial Al with
interpretability tools as the main catalyzer.

In this direction, some approaches have gained consider-
able traction in the field over recent years, particularly those
based on model-agonostic methods [98]. These include Local
interpretable model-agnostic explanations, or LIME [99], and
Shapley Additive Explanations [100]. An important aspect
of model-agnostic methods is that they provide increased
model flexibility, since the interpretation method can work
with most ML models. This avoids having to limit the range
of models to those that are inherently interpretable, avoid-
ing a potential lost of predictive performance compared to
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other types of models. Another alternative would be to use
model-specific interpretation methods, with the disadvan-
tage being that such an approach is binding to a specific
model type, making it more difficult to switch later on if
needed [101].

Therefore, the modularity of model-agnostic interpretation
methods makes them highly desirable for Al research in the
long-term, particularly for the automation of interpretability
at scale. Since the interpretations are decoupled from the
underlying ML model, replacing either side of the process
is easier, following the trend of automated feature engineer-
ing, hyper-parameter optimization, model selection and ulti-
mately model interpretation.

2) ALGORITHMIC FAIRNESS AND BIAS

The topic of algorithmic fairness and bias is particularly
challenging as there is no universally accepted notion of fair-
ness. On top of this, bias can originate from several sources
other than the data itself, including the data pipeline and
its pre-processing steps, people involved and their respective
actions (whether intentional or not).

Several mitigation actions can be taken, including the
collection of additional data, adapting data-processing and
post-processing (e.g. thresholding). Regardless, one of the
first steps towards the mitigation of Al unfairness and bias
should be auditing. Some efforts towards facilitating this
process are currently being made, including the Aequitas
open-source library [102] which intends to empower both
practitioners and policymakers to audit ML models for dis-
crimination and bias, thus being able to make equitable deci-
sions regarding the development and deployment of predic-
tive solutions.

Furthermore, often it is possible to come across scenar-
ios in which there is a trade-off between performance and
fairness. Models that are fairer or less discriminatory across
different subsets of the population often do so at the cost of
global performance. Hence, it is important to assess in which
application contexts the trade-off is worth it, for instance
depending on whether or not human welfare is directly
impacted by the outcome of the system.

3) COMMON MISCONCEPTIONS

Interpretability, fairness and bias are definitely important
aspects that should be taken into account when approaching
the topic of Industrial AI. However, this does not necessarily
mean that algorithms and models should always be fully or
even equally interpretable or fair. In this regard, one should
first consider the domain and intended application. Could the
solution adversely impact human welfare? Perhaps, if factory
workers are directly impacted by the outcome of an Industrial
Al-based high stakes decision-making process then this is
crucial, yet such is not always the case.

Moreover, the potential trade-off with other important
metrics must be considered. Would improving the inter-
pretability or fairness of the solution significantly impact its
performance, security or privacy in a negative manner? These
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are questions which do not necessarily have an immediate
answer, thus making it imperative for the future research
agenda on Industrial Al to include ways to assess, quantify
and audit such characteristics in a continuous way, ensuring
that stakeholders have all the knowledge required to take
informed and conscious business actions.

VI. LIMITATIONS

Due to the exclusion criteria used while performing the
retrieval of identified research from the electronic databases,
it is possible that some relevant publications might have
been left out of the study. This is particularly true regarding
the specific focus on the tailoring and deploying Industrial
Al solutions in real industrial environments, as records were
included on the basis of mentioning a variation of ‘“‘real
world/environment/scenario/use case” within the respective
abstract. Furthermore, the inclusion of articles published
solely in the English language naturally implies the exclu-
sion of non-English documents and possible relevant content
contained therein.

Additionally, the conceptual framework presented in
Section IV has been developed based on the systematic
review of existing Industrial Al literature and empirical
evidence in the context of manufacturing technology devel-
opment and strategic management. It provides an holistic
view of the core elements manufacturing organizations and
technology providers should consider to overcome current
Industrial Al roadblocks and successfully transition towards
data-driven business models aligned with Industry 4.0.
Hence, some adaptation and tailoring to specific manu-
facturing settings and other industries is expected to be
necessary.

Lastly, despite being a well-established research field,
some of the more recent facets of Industrial Al are still in
their infancy. Due to this aspect of novelty, some of the
publications cited in this work are still in their pre-print form
and can thus be subjected to changes in the future.

VII. CONCLUSION
A systematic review of journal publications indexed to the
Web of Science, Scopus and ScienceDirect databases was
conducted following PRISMA guidelines to clearly define
and characterize the current landscape of the Industrial Al
research in manufacturing. To address the first RQ “What
is the current status of Industrial Al in manufacturing?”’,
the study identified the main research trends, enabling tech-
nologies and application areas of Industrial Al, with particu-
lar emphasis on real-world deployments of such solutions.
This made it possible to identify and characterize the
core design principles that define Industrial Al applications,
corresponding to the second RQ, having implications in the
design, implementation and deployment of future Industrial
Al solutions in manufacturing. To this end, the findings
from the systematic review and characterization of the land-
scape were formalized into a conceptual framework to assist
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manufacturers in the transition towards a data-driven culture,
providing an holistic view of the Industrial Al ecosystem.

Lastly, to address the final RQ *“What are the main chal-
lenges and future research directions?”’, further considera-
tions regarding the current status of Industrial Al applications
led to the categorization of the main challenges currently
being faced in the field, enabling the formulation of possible
venues for future research efforts to facilitate the transi-
tion towards successful data-driven industrial deployments of
Industrial Al solutions.
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