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Abstract

Pseudomonas putida is a Gram-negative, rod-shaped bacterium that can be encountered in diverse ecological habitats. This
ubiquity is traced to its remarkably versatile metabolism, adapted to withstand physicochemical stress, and the capacity to thrive
in harsh environments. Owing to these characteristics, there is a growing interest in this microbe for industrial use, and the
corresponding research has made rapid progress in recent years. Hereby, strong drivers are the exploitation of cheap renewable
feedstocks and waste streams to produce value-added chemicals and the steady progress in genetic strain engineering and systems
biology understanding of this bacterium. Here, we summarize the recent advances and prospects in genetic engineering, systems
and synthetic biology, and applications of P. putida as a cell factory.

Key points

• Pseudomonas putida advances to a global industrial cell factory.

• Novel tools enable system-wide understanding and streamlined genomic engineering.

• Applications of P. putida range from bioeconomy chemicals to biosynthetic drugs.
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Introduction

Pseudomonas putida is a Gram-negative, rod-shaped bacteri-
um, frequently isolated from waters, plants, and soils (in par-
ticular, polluted sites) (Fig. 1). The heterogeneity of P.
putida’s natural environment is reflected by its opportunistic
and undemanding nutritional capabilities, rapid growth, as
well as robustness upon challenges with oxidative stress and
toxic chemicals. Initiated by the discovery of the potential of
P. putida in biodegradation of xenobiotics in the 1960s
(Nakazawa 2002), the acquisition of knowledge about the

genetics, biochemistry, and physiology of this microbe has
been continuously progressing over the last five decades.
This led, inter alia, to the decryption of the complete genomic
repertoire (Belda et al. 2016; Nelson et al. 2002) (Fig. 2) and
the construction of genome-scale metabolic models for in
silico simulations and data mapping (Nogales et al. 2020;
Puchałka et al. 2008). Moreover, an ever growing number of
tools for systems-level profiling, targeted genetic and genome
manipulations are being developed (Cook et al. 2018;
Martínez-García and de Lorenzo 2017). This increasing
knowledge and technology, together with the intrinsic bio-
chemical capabilities of the bacterium, offers vast industrial
application potential. Among others, representative members
of the species have been identified as plant growth-promoting
microbes (Glick 2012), bioremediation agents (Dvořák et al.
2017), and hosts for industrial bio-manufacturing, including
the production of bulk and specialty chemicals (Nikel and de
Lorenzo 2018; Poblete-Castro et al. 2012a; Tiso et al. 2014),
natural products, such as rhamnolipids, terpenoids,
polyketides and non-ribosomal peptides (Loeschcke and
Thies 2015), and biopolymers (Mozejko-Ciesielska et al.
2019; Rehm and Valla 1997; Salvachúa et al. 2020a). The
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most prominent and well-studied TOL plasmid-free strain
P. putida KT2440 has been especially considered as a micro-
bial host for biotechnological application, due to its biosafety
status (National Archives and Records Administration 1982).
Other strains for industrial use include the solvent-tolerant
strains P. putida S12, DOT-T1E, and VLB120 (Kohler et al.
2013; Udaondo et al. 2012; Wierckx et al. 2005), the plant
growth-promoting strains BIRD-1 and UW4 (Duan et al.
2013; Matilla and Krell 2018), the phenol-degrading H strain
(Müller et al. 1996), strain LS46 for production of medium-
chain-length polyhydroxyalkanoates (mcl-PHA) (Sharma
et al. 2014), as well as P. putida F1, isolated from soil and
developed into a bioremediation agent (Choi et al. 2003).
Over the past years, research on P. putida has immensely
progressed. Recent prominent innovations include high-
resolution metabolic flux analysis (Kohlstedt and Wittmann
2019; Nikel et al. 2015; Sasnow et al. 2016), synthetic remod-
eling of themetabolic coremachinery (Sánchez-Pascuala et al.
2019), production of green chemicals from lignin feedstocks
(Kohlstedt et al. 2018; Salvachúa et al. 2020a), and the syn-
thesis of new-to-nature products (Martinelli and Nikel 2019).
In this review, we provide an overview on the most recent and
impacting developments in the field, which are shifting the
industrialization of P. putida onto a new level.

Regulation of core carbon and energy
metabolism

The P. putida is often found in contaminated environ-
ments, which speaks in favor of a remarkable adaptation

capability of the microbe to adverse conditions (Silby
et al. 2011). Its atypical cyclic core metabolism, con-
trolled on a redox demand, plays a key role to enable
the high endurance observed (Chavarria et al. 2013;
Nikel et al. 2015) (Fig. 3).

After entry into the periplasmic space, glucose is either
internalized into the cytoplasm or oxidized in the peri-
p l a sm. Glucona te (GLN) and subsequen t ly 2 -
ketogluconate (2KG) are formed via the latter oxidation
pathway. Both acids can be transported into the cytoplasm
followed by phosphorylation into 6-phosphogluconate
(6PG) and 6-phospho-2-ketogluconate (2K6PG). Hence,
there are three different entry pathways of glucose into
the core metabolism, converging at the level of 6PG (del
Castillo et al. 2007). The oxidation pathways enable
P. putida to circumvent the direct ATP-costly glucose
uptake via an ABC transporter (GtsABCD) and to partial-
ly uncouple ATP formation from NADH formation. Two
electrons are released in each oxidation step from peri-
plasmic glucose to GLN and 2KG, which is coupled to
ATP generation via the ATP synthase (Ebert et al. 2011).
Recently, it has been shown that glucose-grown cells gen-
erate an ATP surplus, whereas the oxidation pathway con-
tributes significantly to the supplied ATP (Kohlstedt and
Wittmann 2019). In addition, P. putida possesses an in-
complete Emden-Meyerhof-Parnas (EMP) pathway, due
to the absence of the key glycolytic enzyme 6-
phosphofructo-1-kinase (Pfk). The central intermediate
6PG is further catabolized almost exclusively through
the Entner-Doudoroff (ED) pathway, resulting in the two
C3 intermediates pyruvate (PYR) and glyceraldehyde-3-P

Fig. 1. Isolation, source, and
distribution of P. putida strains
with full genome sequence
available. The P. putida strains
have been isolated from soil,
polluted soil, water, polluted
water, and/or wastewater and
other unspecified sources (Data
from Pseudomonas Genome DB
and NCBI BioSamples Database,
accessed: 05/20/2020; see
Tables S2 for further
information.)
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(G3P). A dominant fraction of the former enters lower
catabolism. However, a significant part (approximately
10–20% under balanced growth conditions) is recycled
back to hexoses via the gluconeogenic EMP pathway, an
amphibolic architecture termed as EDEMP cycle (Nikel
et al. 2015). The NADPH yield is coupled to the reaction
catalyzed by glucose-6-P 1-dehydrogenase (G6PDH) and,
hence, depends significantly on the extent of recycling
and the fraction of glucose phosphorylated via glucoki-
nase (GLK). The ability to adjust the NADPH formation
at the expense of ATP is a key factor to oxidative stress
endurance in P. putida. This feature provides uttermost
benefit in redox-demanding biocatalytic processes, which
has also been shown to be important for the evolvability
of novel catabolic pathways in this bacterium (Akkaya
et al. 2018). Notably, de novo refactoring of the central
carbon metabolism of KT2440 could be demonstrated by
implementation of a functional linear glycolysis, based on
the EMP pathway (Sanchez-Pascuala et al. 2017;
Sánchez-Pascuala et al. 2019), which endows cells with
novel tailor-made properties.

Recent advances in systems biology
of Pseudomonas

A major challenge in metabolic engineering and synthetic
biology is the understanding of the underlying metabolic and
regulatory networks (Nogales et al. 2020), including the com-
plex links between newly introduced and native biochemical
pathways (Pandit et al. 2017). An important prerequisite to

breed better cell factories is to understand the interactions
occurring between the many cellular components at different
functional and hierarchical levels, i.e., genome, transcriptome,
proteome, metabolome, and fluxome. Recent systems biology
studies, using and combining various omics technologies and
collecting systems-level data in online databases, have greatly
advanced our view on P. putida and have proven valuable to
design more robust and efficient cell factories in a sophisticat-
ed manner (Poblete-Castro et al. 2013; Thompson et al. 2019).

Genomics and metabolic reconstructions

First published in 2002 and revisited in 2016, the full genome
sequence of P. putida KT2440 has shed light on the diverse
transport and metabolic systems (Belda et al. 2016; Nelson
et al. 2002). Moreover, the pangenome of P. putida has been
studied and revealed 3386 conserved genes belonging to the
core genome and comprising genes related to ED and pentose
phosphate (PP) pathway, proline and arginine metabolism,
aromatic compound degradation, as well as a vast collection
of nutrient transporters (Udaondo et al. 2016). Notably, be-
sides sharing 85% of the coding regions with Pseudomonas

aeruginosa, undesirable biotechnological traits, i.e., key viru-
lence factors, exotoxins and type III secretion systems, are
lacking in P. putida (Udaondo et al. 2016). Since 2010, the
number of published genome sequences of P. putida has sig-
nificantly increased (Fig. 2, Tables S1 and S2). Up to now, 28
complete genomes and 88 draft P. putida genomes can be
accessed via the Pseudomonas genome DB (pseudomonas.
com), allowing for the identification of new features for
industrial application.

Fig. 2. Typical carbon flux
distribution throughout central
carbon metabolism of glucose-
grown Pseudomonas putida. The
P. putida features a predominant
ED pathway, coupled with an in-
complete EMP pathway and ac-
tivities of the PP pathway. The C3
intermediates, pyruvate (PYR),
and glyceraldehyde-3-P (G3P),
are recycled back via the
gluconeogenic operation of the
EMP pathway, a network topolo-
gy called EDEMP cycle (Nikel
et al. 2015). Respective enzyme-
coding genes (orange), redox and
energy cofactors (light purple)
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Reconstructed from sequence information, several
genome-scale metabolic models (GSMM) are available for
P. putida (Belda et al. 2016; Henry et al. 2010; Nogales
et al. 2008; Oberhardt et al. 2011; Puchałka et al. 2008;
Sohn et al. 2010; Yuan et al. 2017). Very recently, the
GSMM iJN1462 of P. putida KT2440 was published
(Nogales et al. 2020), which is comparable to high-quality
Escherichia coli models in size and level of detail. With the
increasing number of P. putida genomes available, these
models can facilitate the identification of strains and enzymes
most suitable for the respective industrial application and
drive the design of superior producers (Buschke et al. 2013;
Choi et al. 2019; Poblete-Castro et al. 2013).

Transcriptomics and proteomics

As suggested by the elevated number of open-reading frames
(450 in total), encoding transcriptional factors and 24

alternative sigma subunits of the RNA polymerase, gene ex-
pression in P. putida is tightly regulated at the transcriptional
level (Martínez-Bueno et al. 2002). Transcriptomic profiles of
P. putida KT2440 grown on different substrates have been
studied in response to environmental perturbations (glucose,
fructose, succinate, citrate, ferulic acid, serine, and glycerol)
(D'Arrigo et al. 2019; Kim et al. 2013; Nikel et al. 2014), as
well as profiles during the shift between alternative carbon
sources (Sudarsan et al. 2014). Furthermore, recent
transcriptomic studies under osmotic, oxidative, and
imipenem stress (Bojanovič et al. 2017) and increased heavy
metal concentrations (Peng et al. 2018) added knowledge
about the stress response mechanisms in P. putida. Notably,
during exposure to solvents, a general stress response initiated
the expression of molecular chaperons and other stress resis-
tance proteins during exposure to solvents, which is favorable
for biocatalysis in a hydrophobic milieu (Dominguez-Cuevas
et al. 2006). More latterly, the transcriptional response during

Fig. 3. Available genome
sequences of P. putida strains.
Accumulated number of publicly
available full (light green) and
draft genome sequences (light
yellow) and newly available full
(dark green) and draft genome
sequences (dark yellow),
published in the indicated year
(Data from Pseudomonas

Genome DB and NCBI accessed:
05/20/2020; see Tables S1 and S2
for further information)
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nitrogen-limited mcl-PHAs synthesis on gluconate (de novo

fatty acid synthesis pathway) and oleic acid (β-oxidation path-
way) as the sole carbon sources was studied. Several genes
were suggested as possible targets for strain improvement to-
wards more efficient production (Mozejko-Ciesielska et al.
2018). Moreover, by characterizing laboratory evolved
P. putida KT2440, utilizing genome re-sequencing and
qRT-PCR, the metabolic and transcriptional regulatory bases
of ethylene glycol metabolism in P. putida were uncovered
(Li et al. 2019). Another interesting recent study mimicked
repeated glucose shortage under large-scale heterogeneously
mixed fermentation to investigate the metabolic and transcrip-
tional response of P. putida KT2440 to starvation
(Ankenbauer et al. 2020). A transcriptional regulation pro-
gram linked to the intracellular pool of 3-hydroxyalkanoates,
precursors of PHAs, was identified to be probably associated
with accession of cellular PHA, amino acids, and glycogen to
quickly restore ATP levels and the adenylate energy charge, a
desired feature for large-scale bioreactors. In addition, 20 re-
peatedly upregulated ATP-consuming genes were promoted
as possible technical targets. These genes are likely to be as-
sociated with long-term cellular programs and are superfluous
in a bioreactor environment where glucose starvation is tem-
porary (Ankenbauer et al. 2020).

Proteomics have been used to analyzemcl-PHA biosynthe-
sis (Fu et al. 2015; Możejko-Ciesielska and Mostek 2019;
Nikodinovic-Runic et al. 2009; Poblete-Castro et al. 2012b).
Moreover, studies on post-transcriptional regulatory events,
with vanillin and butanol as the sole carbon source, reported
an increased abundance of enzymes of the tricarboxylic acid
(TCA) cycle, indicating that this cycle is the main pathway for
energy production when glucose is unavailable to P. putida

(Simon et al. 2014; Simon et al. 2015). In addition, an in-
creased abundance of efflux pumps and a rearrangement of
transporter patterns have been shown during toluene exposure
(Wijte et al. 2011). Recently, shotgun proteomics identified
the oxoprolinase-encoding oplBA genes, responsible for the
undesired hydrolysis of valerolactam P. putida, leading to a
more efficient production process (Thompson et al. 2019).
Besides, application of proteomics analysis and genome re-
sequencing enhanced the understanding of the plastic mono-
mer 1,4-butanediol metabolism in P. putida KT2440 (Li et al.
2020).

Metabolomics and fluxomics

The cyclic operation of the EDEMP pathway in P. putida has
been proven by the combination of isotope labeling experi-
ment, followed by quenching, extraction, and LC-MS analysis
of intracellular intermediates of the central metabolism, and
in vitro enzyme assays (Nikel et al. 2015; Sasnow et al. 2016).
Lately, a high-resolution flux map of glucose-grown P. putida
KT2440 was obtained from parallel labeling experiments

using [1-13C]-, [6-13C]- and 50% [13C6]-glucose, and straight-
forward GC–MS analysis of hydrolyzed cell pellets
(Kohlstedt andWittmann 2019). By then, GC–MS-based flux
studies in P. putida were extremely limited, due the unresolv-
able cyclic network using common flux approaches. This was
circumvented by deriving the labeling patterns for G6P and
F6P from an extended approach that additionally included
labeling information from glycogen, lipopolysaccharides,
and peptidoglycan. The novel strategy displays a break-
through for systems biology studies of P. putida (Mendonca
et al. 2020) and related strains (Dolan et al. 2020). At a large,
metabolic flux analysis has been foremost conducted with
glucose as the sole carbon source (Kohlstedt and Wittmann
2019; Nikel et al. 2015; Sasnow et al. 2016); thus, the cyclic
operation of the EDEMP pathway was also demonstrated
using glycerol (Beckers et al. 2016; Dolan et al. 2020) as the
sole carbon source. Furthermore, these metabolic flux studies
revealed an inactive glyoxylate shunt during growth on the
glycolytic substrate glucose (Sasnow et al. 2016), whereas
the glyoxylate shunt was found active during growth on the
gluconeogenic substrate glycerol (Beckers et al. 2016) or ac-
etate (Dolan et al. 2020). A recent study has taken up this topic
by using 13C-metabolomics to elucidate a carbon portioning
of glucose and benzoate within the metabolic network.
Carbon atoms derived from glucose were cycled through the
EDEMP and PP pathway, whereas benzoate was preferential-
ly catabolized through the TCA cycle and glyoxylate shunt
and the atoms derived from this substrate did not enter the
EDEMP nor the PP pathway. This segregation was shown to
sustain biosynthetic flux demands (Kukurugya et al. 2019)
and appears an interesting feature for some bio-production
processes, where a multi-substrate feeding strategy can be
advantageous.

Multi-omics integration

Several studies have combined different omics approaches
towards an even more complete picture. Integrating tran-
scriptomics, proteomics, and metabolomics, the differences
between nutrient conditions on PHA and biomass production
in P. putida KT2442 were studied. A significantly different
cellular rewiring was observed for conditions under single
nutrient limitation compared with nutrient co-limitation
(Poblete-Castro et al. 2012b). Moreover, carbon catabolite
repression (CCR) was investigated, using a combination of
metabolic, transcriptomic, and constraint-based metabolic
flux analyses. It was demonstrated that central metabolic
fluxes of cells grown in succinate and glucose as carbon
sources are regulated by CCR and this regulation contributes
to the organization and optimization of the metabolism and
growth (La Rosa et al. 2015). Interestingly, in follow-up stud-
ies, CCR and the resulting metabolic rearrangements were
also shown to be advantageous for growth in complete LB
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medium (La Rosa et al. 2016; Molina et al. 2019). Another
example study investigated the cellular response of P. putida
KT2440 on the transcriptomic, proteomic, and metabolic
levels in a chemostat cultivation. The C4 alcohol n-butanol,
an attractive biofuel, was used either as sole carbon source or
together with glucose. Based on 13C-fluxome analysis, carbon
portioning was observed: glucose was directed into the ED
and PP pathways, and n-butanol fueled the TCA cycle, when
both substrates were consumed. In addition, an unknown n-
butanol degradation pathway was discovered with the help of
transcriptomic and proteomic analyses (Vallon et al. 2015).

Recent advances in genetic engineering

The meanwhile large toolbox for genetic and genome engi-
neering eases the construction workflow of reliable P. putida
production strains. In recent years, the set of modular vectors
of the Standard European Vector Architecture (SEVA) plat-
form has turned out to be a priceless resource for construction
of recombinant P. putida strains (Martínez-García et al. 2015;
Martínez-García et al. 2019; Silva-Rocha et al. 2012). One
traditionally established molecular biology resource for anal-
yses and manipulations of P. putida genomes are fully syn-
thetic derivatives of Tn5- and Tn7-based transposon vectors
(Choi et al. 2005; Martínez-García et al. 2014a). The insertion
of the transposon into the genome can be either random (e.g.,
mini-Tn5 vectors) or site specific (e.g., mini-Tn7 vectors).
Due to the randomness of insertion, Tn5-based transposon
vectors have been applied for the generation of randommutant
libraries (Martinez-Garcia and de Lorenzo 2012), as well as
for random insertions of entire gene clusters (Martínez-García
et al. 2014a) with subsequent screening for superior pheno-
types. Tn7-based transposon vectors were used to create a
library of promoters and translational couplers (Zobel et al.
2015) and to optimize production of secondary metabolites
(Loeschcke et al. 2013). Some of the mini transposon vectors
are furthermore compatible with the SEVA format (Martínez-
García et al. 2014a; Zobel et al. 2015). Inherently, these sys-
tems require a selection marker. Flp recombinase target-
flanked antibiotic resistance determinants have been used for
precise excision of selection markers with the corresponding
recombinase Flp. Thus, one copy of the Flp recognition target
(FRT) site will always remain after excision, limiting the re-
peated use of these procedures (Nikel and de Lorenzo 2013b).
Subsequently, efficient genome editing methods that do not
leave selection markers nor foreign DNA sequences, such as
CRISPR/Cas9 technologies (Aparicio et al. 2018; Kim et al.
2020; Pham et al. 2020; Wirth et al. 2020; Zhou et al. 2020),
DNA recombineering (Aparicio et al. 2020a; Aparicio et al.
2020b; Choi et al. 2018; Choi and Lee 2020), and homologous
recombination-based DNA editing (Galvão and de Lorenzo
2005; Graf and Altenbuchner 2011; Martínez-García and de

Lorenzo 2011), have been developed and applied. The most
widespread homologous recombination-based technique for
genome engineering in P. putida involves two rounds of re-
combination. First, the suicide plasmid pEMG or derivatives,
bearing recognition sequences for the intron encoded I-SceI
homing endonuclease from yeast, is integrated into the ge-
nome. In the second, counter-selection step double-stranded
breaks (DSB) are introduced in the genome by conditional
expression of the I-SceI homing endonuclease encoded by a
helper plasmid. DSBs are repaired by homologous recombi-
nation across the regions of sequence flanking the ends of the
break, allowing for gene deletion, insertion, and replacement
(Martínez-García and de Lorenzo 2011). Thus far, curing of
the helper plasmid requires repetitive passaging of clones in
antibiotic-free medium and is therefore a rather time-intensive
step. Just recently, synthetic control of helper plasmid replica-
tion enabled self-curing of the plasmid in a mere overnight
cultivation (Volke et al. 2020a). Moreover, fluorescent
markers encoded by both the suicide plasmid and the helper
plasmid eased the screening process and amenability of this
approach was demonstrated by 23 kb genomic deletions,
resulting in the streamlined strain SEM10 (Volke et al.
2020a). More recent innovative developments deal with
recombineering methods, such as RecET-based markerless
recombineering system for deletion and integration of large-
sized genes and clusters (Choi and Lee 2020), efficient single-
stranded recombineering by using a thermoinducible system
(Aparicio et al. 2020a), as well as CRISPR/Cas9 technologies.
The latter was utilized for efficient curing of helper plasmids
(Wirth et al. 2020), counterselection of infrequent mutations
created through recombineering (Aparicio et al. 2018), meta-
bolic engineering for PHA bioconversion from ferulic acid
(Zhou et al. 2020), as well as CRISPR interference-mediated
gene regulation (Batianis et al. 2020; Kim et al. 2020). The
incredible pace of development of new tools leaves no doubt
that there will be precise CRISPR-based technologies soon,
speeding up genomic manipulations even further.
Additionally, several tools initially developed in E. coli bear
high potential to be transferred to P. putida (Martínez-García
and Lorenzo 2019).

Furthermore, industrial processes require defined gene ex-
pressions by natural or synthetic promoters. Besides the al-
ready mentioned constitutive promoter libraries for chromo-
somal expression (Elmore et al. 2017; Kohlstedt et al. 2018;
Zobel et al. 2015), another interesting study demonstrated the
achievability of a wide range of chromosomal expression in
P. putida (Elmore et al. 2017). Moreover, a variety of induc-
ible promoters, both synthetic and natural, have been charac-
terized in P. putida, as covered elsewhere (Martínez-García
and de Lorenzo 2017). Recently, cell density-dependent auto-
inducible promoters based on the RoxS/RoxR Quorum
Sensing system of P. putida have been developed and tested
in the KT2440 strain. Theses promoter systems without the
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need of induction are especially interesting for industrial pro-
cesses where protein expression independent of the addition
of an inducer is desired to reduce the metabolic burden during
exponential growth phase (Meyers et al. 2019). Furthermore,
rrn operons have demonstrated a strong preference for bio-
synthetic gene cluster integration in P. putida, due to stable
integration and strong expression by the native promoters
(Domröse et al. 2019). Finally, it was recently demonstrated
that fine-tuning ofmetabolic pathways via targeted proteolysis
enables a new control layer of engineered pathways (Calles
et al. 2019; Volke et al. 2020b) .

Pseudomonas putida as a bacterial host
for industry: default beneficial built-in
properties

A microbial host needs to meet several performance criteria
and quality requirements for industry, such as easy handling,
predictable and reproducible production behavior, and natural
robustness to ease process establishment. In fact, P. putida
already features many desirable properties by default.
Foremost, there is vast basic knowledge about P. putida, due
to a tremendous research volume—a prerequisite for a simpli-
fied workflow for any further metabolic engineering. In a
nutshell, the lessons learned about P. putida are the following:
(a) The bacterium exhibits fast growth, high biomass yields,
low to no by-product secretion and low maintenance demands
(Poblete-Castro et al. 2012a). (b) The P. putida naturally sus-
tains a surplus production of ATP and high rates of NADPH
regeneration, due to EDEMP overflow metabolism on hex-
oses (Kohlstedt and Wittmann 2019; Nikel et al. 2015) and
the metabolic routes can be also rewired to fuel the EDEMP
cycle in a bottom-up fashion to enable NADPH overproduc-
tion from other gluconeogenic substrates, such as glycerol
(Beckers et al. 2016). (c) The vast regulatory apparatus em-
powers P. putida with a high flexibility to quickly adjust to
steady changing conditions (Kukurugya et al. 2019; Sudarsan
et al. 2014), which is especially desirable in a large-scale bio-
reactor with heterologous microenvironments (Ankenbauer
et al. 2020). (d) The microbe possesses a versatile catabolism
of carbon sources. On top of that, the substrate spectrum of
P. putidawas successfully expanded towards the utilization of
sucrose (Löwe et al. 2017), L-arabinose (Meijnen et al. 2008),
D-cellobiose (Dvořák and de Lorenzo 2018), D-xylose (Bator
et al. 2020; Dvořák and de Lorenzo 2018; LeMeur et al. 2012;
Meijnen et al. 2008; Meijnen et al. 2009), phenol (Vardon
et al. 2015), and ethylene glycol (Franden et al. 2018).
Therefore, cheap, renewable feedstocks with a high level of
impurities, such as glycerol, a by-product from biodiesel pro-
duction (Poblete-Castro et al. 2020b), and aromatic com-
pounds derived from lignin (Kohlstedt et al. 2018; Vardon
et al. 2015), can be exploited for production of value-added

chemicals. The secretion of outer membrane vesicles (OMVs)
has been described as an additional mechanism for extracel-
lular nutrient acquisition (Eberlein et al. 2019; Salvachúa et al.
2020b). (e) A high tolerance against physicochemical stress,
chemical stresses (e.g., heavy metal zinc (Peng et al. 2018),
cadmium (Manara et al. 2012), arsenic (Cánovas et al. 2003)),
solvents (Kusumawardhani et al. 2018), and oxidative stress
has been retraced inter alia to an efficient regulation machin-
ery (Kim and Park 2014), secretion systems, trans-isomeriza-
tion of the cell membrane, and changes in head group com-
position of cell membrane phospholipids (Ramos et al. 2015).
This opens up the possibility to use biphasic systems (Verhoef
et al. 2009;Wierckx et al. 2005), as well as directed laboratory
evolution experiments where toxic compounds are present (Li
et al. 2019). (f) Moreover, P. putida is naturally endowed with
an elevated GC content (61–63%) (Udaondo et al. 2016),
allowing to use it for heterologous expression of genes from
GC-rich microbes bearing secondary metabolite biosynthetic
gene clusters, such as actino- and myxobacteria (Chai et al.
2012; Gross et al. 2006a; Gross et al. 2006b; Kimura et al.
1996; Mi et al. 2014). All these properties render P. putida an
excellent host for industrial biotechnology.

Pseudomonas putida as a bacterial host
for industry: creation of tailor-made synthetic
properties

For the reasons mentioned previously, P. putida has made a
reputation for being a promising microbial chassis for the
bioindustry. Several research groups have started to expand
its natural capacity even further. Streamlined P. putida strains
that harbor reduced genomes offer improved characteristics,
such as increased ATP and NAD(P)H availability, superior
growth properties, and elevated resistance to oxidative stress
(Table 1; Fig. 4).

Naturally, P. putida is a strict aerobic bacterium, due to the
absence of fermentative pathways and the inability to use al-
ternative electron acceptors. By tackling this problem, the per-
formance of P. putida in large bioreactors can be enhanced.
Synthetic fermentation pathways and nitrate/nitrite respiration
were introduced in strain KT2440, which resulted in higher
survival under anoxic conditions (Nikel and de Lorenzo
2013a; Steen et al. 2013). In addition, anoxic cultivation of
P. putida was demonstrated in the anodic compartment of a
bioelectrochemical system (BES), using redox mediators and
an anode as extracellular electron sink to balance the intracel-
lular redox and energy factors (Lai et al. 2016; Schmitz et al.
2015; Yu et al. 2018). The novel field of electro-
biotechnology ofP. putida provides an excellent starting point
for high-yield production of sugar acids without the need for
oxygen (Lai et al. 2019). Furthermore, an interesting develop-
ment has managed to engineer the morphology of P. putida to
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render the lifestyle from a planktonic towards a biofilm-based
one, which can exhibit a higher tolerance to harsh reaction
conditions during biotransformations (Benedetti et al. 2016).
This is an unique property of Pseudomonas species, where the
whole-cell catalyst can be manipulated to adopt a spatial con-
figuration that greatly facilitates the purification of extracellu-
lar products (Volke and Nikel 2018). Moreover, autodisplay
of enzymes can be advantageous in some whole-cell biocata-
lytic approaches: Being connected to the cell as a matrix, the
surface-displayed biocatalyst is readily stabilized and purified
and substrates and products do not necessarily need to cross
the membrane barrier (Jose 2006). Recently, an improved
autotransporter-based surface display of an esterase and a β-
glucosidase was demonstrated using P. putida KT2440, uti-
lizing the native P. putida OprF signal peptide (Tozakidis
et al. 2020). Very promising, in order to make the cell surface
more accessible to the outer medium, 230 genes were deleted
from the parent strain P. putida KT2440 (∼ 4,7% genome
reduction size), including surface adhesion proteins,
exopolysaccharides, fimbriae, the O-antigen side chain, the
flagellum, and other envelope-associated components
(Martinez-Garcia et al. 2020). The resulting strain EM371
displays a platform strain for artificial adhesins, which was
already used for the successful display of designer protein
scaffolds on the surface of P. putida cells, opening up the
possibility to engineer artificial cellulosomes (Dvořák et al.
2020a). Under harsh bioprocess conditions, however, the

degree of surface exposure may need to be further tweaked,
since the larger cell surface contact area of EM371 also leads
to an increased sensitivity to external stressors (Martinez-
Garcia et al. 2020).

Bioproduction and industrial application

Not surprisingly, works on biotechnological application of
this bacteria evaluated and conceived P. putida for its use in
bioremediation (de Lorenzo 2008; Jiménez et al. 2002; Shim
and Yang 1999; Udiković-Kolić et al. 2012), as a biocontrol
agent and plant growth-promoting bacteria (Gouda et al.
2018; Matilla and Krell 2018). Furthermore, the application
spectrum of P. putida has grown considerably over the last
few years and P. putida has proven to be an excellent bacterial
host to produce polymers, bulk chemicals, drugs, and high-
price specialties (Fig. 5).

Polyhydroxyalkanoates

Endopolymeric mcl-PHAs are naturally synthesized by
P. putida as a carbon and energy storage compound under
specific conditions, such as carbon excess during nutrient
limitation (N, O2, P, S) (Poblete-Castro et al. 2012b). The
family of PHA polyesters is one of the best-known product
classes studied in Pseudomonas species (Prieto et al. 2016).

Table 1. Top-down approaches for constructing streamlined P. putida strains

Strain Genome
reduction

Deletion Characteristics Reference

407.1-Δ2 ~ 4.4% ΔPP_3534-PP_3733;
ΔPP_4290-PP_4308

Similar or better growth than the wild-type strain Leprince et al.
(2012)

407.3-Δ2 ~ 7.4% ΔPP_3534-PP_3733;
ΔPP_3533-PP_3360

Similar or better growth than the wild-type strain Leprince et al.
(2012)

EM42 ~ 4.3% Δflagellar operon, ΔendA-1,
ΔendA-2, Δprophages, ΔTn7,
ΔTn4652, ΔhsdRMS

Superior growth properties; increased energy charge, higher
NADPH level; improved genomic stability and plasmid structural
stability than strain KT2440

Martínez-García
et al. (2014b)

EM383 ~ 4.3% ΔrecA Derivative of EM42; improved genomic stability Martínez-García
et al. (2014b)

SEM10 ~ 4.8% Δβ-lact(-like) genes
ΔpvdD

ΔbenABCD

Derivative of EM42; Increased susceptibility towards β-lactam
antibiotics, enhanced biosafety, reduced autofluorescence, facili-
tated use of 3-methylbenzoate as an inducer
(no colored by-products)

Volke et al.
(2020a)

EM371 ~ 4.7% Δflagellum
Δfimbriae
Δsurface adherence proteins
ΔEPS
ΔO-antigen side chain
ΔTn7
Δprophage 4

Improved accessibility of the cell surface, improved genomic
stability, improved resistance to UV than strain KT2440

Martinez-Garcia
et al. (2020)

KTU-U13 ~ 4.1% Δgenomic islands Similar growth, increased plasmid stability,
potential improvement of expression level of heterologous
proteins

Liang et al.
(2020)
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PHAs offer an excellent alternative for petroleum-based
plastics, due to their biodegradability and competitive mate-
rial properties, such as biocompatibility, lack of toxicity,
insolubility, and thermostability (Mozejko-Ciesielska et al.
2019). The structural composition of PHAs can be adjusted
by feeding of precursors (Wang et al. 2010), cultivation con-
ditions, and strain engineering (Tripathi et al. 2013). The
companies Kaneka (Japan), Telles (USA), Jiangsu Nantian
(China), Tianjin GreenBio (China), Tepha (USA), DSM
(The Netherlands), Biomer Biotechnology (Germany), Bio-
on (Italy), Polyferm (Canada), and Biomatera (Canada) re-
port to produce PHA polymers on an industrial scale using
P. putida (Poltronieri and Kumar 2017). The global PHA
market size is expected to grow from US$ 57 million in
2019 to US$ 98 by 2024, wherein the major constrain for
growth is the cost competitiveness to conventional polymers
(MarketsandMarkets™ 2019). The P. putida can produce
mcl-PHAs from a broad spectrum of carbon sources, giving
the opportunity to use cheap renewable feedstocks, such as
crude glycerol from biodiesel production (Poblete-Castro
et al. 2014), plant-derived fatty acids (Cerrone et al. 2014),
food waste (Follonier et al. 2014), lignin-derived aromatics
(Liu et al. 2017; Salvachúa et al. 2020a), and even non-
degradable plastic waste, PET monomers (Kenny et al.

2008). In recent studies, the first production of PHAs from
cellobiosan, levoglucosan (Linger et al. 2016), and cellobi-
ose (Dvořák et al. 2020b) was reported. The P. putida EM42-
expressing bglC from Thermobifida fusca, encoding β-glu-
cosidase, accumulates mcl-PHA and concomitantly secretes
xylonate, a platform chemical (Dvořák et al. 2020b). Such
co-production of valuable bioproducts from low-cost sub-
strates along with PHA represents a good opportunity to
mitigate the overall PHA production costs (Li et al. 2017).
Besides feedstock costs, downstream processing and product
recovery is an important cost factor for the industrial produc-
tion of intracellular compounds, which needs to be addressed
to make the industrial application economical feasible. Some
of the conventional methods include solvent extraction and
chemical digestion. However, these methods are also marked
with possible environmental drawbacks, high costs, or deg-
radation of the polymer. Recently, a recovery of nearly 94%
of the synthesized mcl-PHA after 3 h could be shown with
cell disruption through a programmable cell lysis system in
P. putida KT2440 engineered to respond to osmotic state
(Poblete-Castro et al. 2020a). Taken together, recent
achievements will pave the way to further reduce process
costs at the level of raw material selection and downstream
processing.

Fig. 4. Genome-reduced strains of P. putidaKT2440 constructed to date.
The diagram represents the genealogy of parent strain KT2440 and its
genome reduced derivatives. (a) Cyclic, random large-scale deletions
using a mini-Tn5 transposon combined with the FLP-FRT recombination
system. A first deletion round resulted in strain 407-Δ1 (gray box;ΔPP_

3534-PP_3733), and subsequent deletion rounds resulted in strains
407.1-Δ2 (light green;ΔPP_4290-PP_4308) and 407.3-Δ2 (dark green;
ΔPP_3533-PP_3360). (b) Large target deletions, using the homologous
recombination-based I-SceI methodology of the flagellar operon (ΔPP_

4329-PP_4397), 4 prophage elements, Tn7 transposase and Tn4652
transposon, deoxyribonucleases I encoded in endA-1 and endA-2, and
the hsdRMS operon (ΔPP_4740-PP_4742) encoding a I DNA

restriction-modification system resulted in strain EM42 (yellow).
Further deletion of recA resulted in strain EM383, and elimination of
eight β-lactamase(-like) genes, pvdD (involved in siderophore forma-
tion), and the benABCD gene cluster led to strain SEM10. (c) Large target
deletions, utilizing the I-SceI methodology, of genes encoding flagellum,
fimbriae, surface adhesion proteins, exopolysaccharides, O-antigen side
chain, and envelope-associated compounds and Tn7-like transposase op-
eron (orange). (d) Large target deletion of 13 genomic islands using an
upp-based counter-selection system resulted in strain KTU-U13 (blue).
Reduced genome sizes, depicted as smaller cycles than that of strain
KT2440, are not drawn to scale of genome reduction
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Alginates

Even though less studied,P. putida can produce exopolymeric
alginates (Conti et al. 1994) and dehydration has been sug-
gested as the general signal for the production of this polysac-
charides (Chang et al. 2007). Alginate is a common additive to
cosmetics and foods and has many medical applications.
However, up to now, alginate production has been mainly
studied in the pathogenic P. aeruginosa and there has been
no commercial application associated to these efforts (Liu
et al. 2019; Valentine et al. 2020).

Cis,cis-muconic acid

The arsenal of oxidoreductases, mono- and dioxygenases
encoded in the genome of P. putida, enables this bacterium
to degrade a variety of aromatic compounds found in the re-
newable feedstock lignin (Nogales et al. 2017). The aromatics
are channeled through catabolic funneling via the β-
ketoadipate (β-KA) pathway converging in only a few central
intermediates (i.e., catechol, protocatechuate (PCA)), which
are ring-cleaved and further converted into TCA cycle inter-
mediates. One intermediate of this pathway, cis,cis-muconic
acid (MA), is a very promising molecule, as it can be used as a

starting material for the synthesis of value-added chemicals,
such as caprolactam, terephthalic and adipic acid, as well as a
bulk chemical in polymer reactions for the production of
muconic homo- and copolymers (Khalil et al. 2020). Upon
disruption of the degradation route at the level of muconate
cycloisomerase (CatB), a stoichiometric conversion of aro-
matic substrates into MA can be achieved (van Duuren et al.
2011). Several studies reported successful MA production
using P. putida KT2440 (Johnson et al. 2017; Johnson et al.
2016; Kohlstedt et al. 2018; Salvachúa et al. 2018; Sonoki
et al. 2018; van Duuren et al. 2012; van Duuren et al. 2011;
Vardon et al. 2015). In a landmark study, the biotransforma-
tion of a broad range of aromatic monomers, namely
protocatechuate, ferulate, coniferyl alcohol, vanillin, caffeate,
p-coumarate, 4-hydroxybenzoate (feeding into the PCA
branch) and catechol, benzoate, and phenol (fueling the cate-
chol branch), into MA was demonstrated. For this purpose,
the PCA branch of β-KA pathway was connected to the cat-
echol branch by heterologous expression of PCA decarboxyl-
ase encoded by the aroY gene from Enterobacter cloacae,
with a simultaneous disruption of the natural PCA degradation
route catalyzed by protocatechuate 3,4-dioxygenase (PcaHG).
As a result and important proof of concept, 0.7 g L−1MAwas
produced from alkaline pretreated liquor—a waste stream

Fig. 5. Bioproduction using engineered P. putida strains. Substrates
generated from renewable feedstocks, such as lignocellulose, oils and
silage can be used to produce value added products for application in
the food and feed (Δ), health and hygiene (♥), packaging and housing

(★), transportation and energy sector (■), and for agriculture and
technical application (o). Entry points of the respective substrates in the
metabolism (dashed orange line), new to P. putida substrates (orange)
and products (green)
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from bioethanol production (Vardon et al. 2015). However,
for some aromatic monomers tested, accumulation of interme-
diates was observed, indicating an inefficient conversion to
MA (Vardon et al. 2015). Subsequently, improvement of
MA production efficiency from aromatics of the PCA branch
was achieved by increasing PCA decarboxylase activity via
co-expression of accessory proteins ecdBD from E. cloacae

(Johnson et al. 2016) and by tackling this bottleneck on the
regulatory level by eliminating CCR (Johnson et al. 2017).
Since all lignin-derived aromatics eventually merge at the lev-
el of the highly toxic intermediate catechol, this node is of
interest as metabolic engineering target. In a seminal study,
during processing of toxic catechol, cellular energy limitation
was identified as a major challenge (Kohlstedt et al. 2018). To
overcome this drawback on the operation side, implemented
specific feed pauses during fed-batch fermentation allowed
the regeneration of cellular energy levels and a final MA titer
of 64.2 g L−1 from catechol was obtained, exceeding previ-
ously reported values by more than tenfold. A second strategy
reported in this study created superior KT2440 cell factories.
Several rounds of metabolic engineering resulted in an im-
proved platform strain for catechol conversion: increased cat-
echol 1,2-dioxygenase activity by implementing a copy of the
catA2 gene (natively directly downstream of the catA gene
under control of the native Pcat promoter). Thereby, a strongly
improved tolerance to catechol and a higher catechol degra-
dation rate could be achieved. The developed process was
transferred to pilot-scale–producing MA at the kilogram scale
with 98% purity. Subsequently, by heterologous expression of
a phenolhydroxylase, the strain is now able to additionally
convert phenol into MA and cresols into methylated deriva-
tives of MA. The final strain produced 13 g L−1 MA from a
softwood lignin hydrolysate (Kohlstedt et al. 2018).
Engineered strains for MA are no longer able to grow on
aromatics; therefore, glucose is commonly used as the growth
substrate. Recently, a study reported glucose-independentMA
production using engineered KT2440. This strain was able to
produce small amounts (20 mg L−1) of MA from
depolymerized softwood lignin (Sonoki et al. 2018).
Moreover, MA production was also achieved using glucose
as the sole substrate (Bentley et al. 2020; Johnson et al. 2019).

Adipic acid and nylon 66

To showcase the entire value chain from lignin to bio-based
nylon, MA underwent hydrogenation to adipic acid, a precur-
sor for commercial nylon-66 (Kohlstedt et al. 2018; Vardon
et al. 2015; Vardon et al. 2016). The combined chemical and
biochemical process is displayed in Fig. 6. A recent limited
life cycle assessment concluded the feasibility of the bio-
based production of adipic acid from softwood lignin-
derived aromatics based on P. putida as the whole-cell biocat-
alyst (van Duuren et al. 2020) and even possible offset credits

were promoted for the bioethanol biorefinery, if the lignin in
the their wastewater is no longer burnt but converted to the
value-added product adipic acid instead (Corona et al. 2018).
Purification of MA produced by P. putida from lignin model
compounds by activated carbon treatment was demonstrated
with a good recovery at > 97% purity. Subsequently, Pd/C-
aided catalytic hydrogenation of MA yielded bio-based adipic
acid (Vardon et al. 2015).

Recently, the feasibility of direct de novo synthesis of
adipic acid from lignin model compounds was demonstrated
using P. putida KT2440 (Niu et al. 2020). To this end, the
pathway design profited from the C6 structure of the β-KA
pathway intermediate 3-ketoadipoyl-CoA, i.e., there is no
need to exploit a condensation reaction between an acetyl-
CoA and a succinyl-CoA unit as previously reported for
adipic acid biosynthesis using glucose- or glycerol-grown
E. coli (Cheong et al. 2016; Yu et al. 2014; Zhao et al. 2018).

2,5-Furandicarboxylic acid

The important platform chemical hydroxymethyl
furfuraldehyde (HMF) can be derived from mono- and poly-
saccharides and pre-treated biomass (Dutta et al. 2012).
Further catalytic oxidation of HMF yields the building block
2,5-furandicarboxylic acid (FDCA), which has potential ap-
plications in the production of plasticizers, polyamides, and
polyesters (Corbion 2020; Sousa et al. 2015). One polymer of
particular interest is polyethylene furanoate (PEF), a copoly-
mer of ethylene glycol and FDCA, which represents an ideal
substituent for polyethylene terephthalate (PET) in packaging,
due to its exceptional thermal and superior barrier properties
(Sousa et al. 2015). It may also serve as precursor for poly(1,4-
cyclohexanedimethylene furandicarboxylate (PCF) (Wang
et al. 2018). The global FDCA market is growing with an
assessment at US$ 243.9 million in 2020 and is expected
increase to US$ 321.3 million by the end of 2026 (QY
Research 2020). Companies, such as Stora Enso (Stora Enso
2019), Novamont (Novamont 2019), and Avantium (2023:
5000 tons/year) (Avantium 2020) are currently entering the
market with the construction of (pilot) plants for the produc-
tion of biomass-derived FDCA. Whereas, chemocatalysis is
the predominant route for the production of FDCA, which
exhibits some disadvantages, such as costly metal catalysts,
utilization of organic solvents, and the requirement of high
temperature and pressure (Yuan et al. 2020). However, bio-
catalytic approaches are hindered by the toxic biological ef-
fects of furan aldehydes, attributable to ROS-induced oxida-
tive stress (Allen et al. 2010; Almeida et al. 2009). Engineered
P. putida KT2440 was able to grow on HMF and furfural as
the sole carbon source after heterologous expression of the
catabolic HMF and furfural gene clusters from Burkholderia

phytofirmans (Guarnieri et al. 2017). For biotransformation of
HMF to FDCA, P. putida S12 was chosen as a host, due to its
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natural tolerance to chemical stressors and the availability of
endogenous aldehyde dehydrogenases to oxidize HMF to its
corresponding, less toxic carboxylic acid (Koopman et al.
2010). By episomally expressing the oxidoreductase encoding
hmfH gene from Cupriavidus basilensis HMF14, the efficient
production of FDCA was reported for the first time, using a
whole-cell transformation (Koopman et al. 2010).
Subsequently, FDCA production was optimized by episomal
coexpression of hmfH, aldehyde hydrogenase adh and hmfT1

transporter gene from C. basilensis HMF14 in P. putida,
resulting in high, reproducible production rates (Wierckx
et al. 2012). Recently, chromosomal co-integration of hmfH
and hmfT1 in P. putida S12 was demonstrated by coupling λ-
Red-mediated recombineering with CRISPR/Cas9 technolo-
gy (Pham et al. 2020). Very promising, application of the
patent dealing with FDCA production from HMF, using
P. putida is filed by a subsidiary of Corbion, a company which
is active in the industrial production of PEF derived from
FDCA (Corbion ; Wierckx et al. 2012).

Aromatics

The natural tolerance and ability to metabolize aromatics
have been exploited for the region-selective bioproduction
o f 3-methy l ca t echo l (Hüsken e t a l . 2001) , t he
bioproduction of o-cresol from toluene in a two-phase 1-
octanol/water system (Faizal et al. 2006), as well as epoxi-
dation of styrene in a water/octanol two-liquid phase system
(Blank et al. 2008). Other produced building blocks include
pyruvate and lactate from p-coumarate and benzoate
(Johnson and Beckham 2015). Moreover, the bioconver-
sion of ferulic acid to the flavor agent vanillin was achieved
with resting cells (Graf and Altenbuchner 2014).
Interestingly, in this study, the sole deletion of the vanillin
dehydrogenase gene (vdh) did not suppress degradation of
the later and one hitherto unknown molybdate-dependent
oxidoreductase was found to probably complement the

vdh inactivation. The natural tolerance of P. putida towards
aromatic compounds has not only been exploited for bio-
conversions and -transformations, but also for de novo syn-
thesis of aromatic compounds originating from shikimate
pathway intermediates. Using the solvent-tolerant P. putida
S12 strain production of cinnamic acid (Nijkamp et al.
2005), phenol in a biphasic fed batch cultivation system
with octanol (Wierckx et al. 2005) and p-hydroxystyrene
in a water/1-decanol phase (Verhoef et al. 2009) were re-
ported. Anthranilate, p-coumaric acid, and para-
hydroxybenzoic acid were synthesized from glucose by
KT2440-derived strains (Calero et al. 2016; Kuepper et al.
2015; Yu et al. 2016).

Biosurfactants

Rhamnolipids are biodegradable and low toxic biosurfactants.
The activity of biosurfactants enhances the solubility of hy-
drophobic molecules in water by decreasing the surface ten-
sion (Rehm 2009). Potential applications can be found in food
industry, cosmetics, cleaning agents, biocontrol, and soil re-
mediation (Fracchia et al. 2014; Loeschcke and Thies 2015).
The P. putida is able to produce short-chain rhamnolipids after
heterologous integration of the rhlAB(C) operon from
P. aeruginosa (Tiso et al. 2017; Wittgens et al. 2011) and
long-chain rhamnolipids after expression of rhl genes from
Burkholderia glumae (Wittgens et al. 2018). Wherein, the
chain length depends on the respective expressed rhl genes
rather than the available 3-hydroxy fatty acids, a property
which can be used for the production of tailor-made
rhamnolipids (Wittgens et al. 2018). The chemical company
Evonik Industries (Essen, Germany) announced the first in-
dustrial production of rhamnolipids in 2016 (Evonik
Industries 2016), followed by an issued patent in 2017 for
rhamnolipid production from n-butane by P. putida KT2440
(Thum et al. 2017).

Fig. 6. Cascaded biochemical and chemical route for nylon-66 produc-
tion using metabolically engineered P. putida. Lignin depolymerization,
microbial conversion of aromatic monomers to MA, subsequent product

recovery and purification, hydrogenation to adipic acid and final poly-
condensation with hexamethylenediamine (HMDA) to nylon-66
(Kohlstedt et al. 2018)
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Terpenoids

The high tolerance of P. putida against the toxicity of inter-
mediates or terminal products has proven to be advantageous
to produce terpenoids, one of the largest and structurally di-
verse groups of natural compounds. Taking the natural resis-
tance into advantage, the successful de novo production of
geranic acid, a monoterpenoid with several reported antibiotic
activities and uses as flavor and fragrance agent, could be
shown. This study also revealed a remarkably higher resis-
tance of P. putida to more than 6-fold higher product concen-
trations in comparison to E. coli and Saccharomyces

cerevisiae (Mi et al. 2014). Furthermore, oxy-functionalized
derivatives of specific terpenoids are sometimes desired for
their specific bioactivities. Naturally, such derivatives only
occur in low amounts and both their isolation and their chem-
ical synthesis are rather uneconomical. Thus, in vivo enzymat-
ic transformation of toxic monoterpenoids by heterologously
expressed cytochrome P450 monooxygenases as an alterna-
tive is under study. As an example, the conversion of limo-
nene to perillic acid (Mirata et al. 2009; van Beilen et al. 2005)
and the hydroxylation of 1,8-cineole (Mi et al. 2016) was
achieved. In addition, another class of terpenoids, the caroten-
oids zeaxanthin and β-carotene, has been successfully pro-
duced in P. putida (Beuttler et al. 2011; Loeschcke et al.
2013). In this context, the astonishing metabolic plasticity of
P. putida was demonstrated by reshaping the native, cyclical
EDEMP pathway into a linear EMP pathway by heterologous
expression of glycolytic genes from E. coli. This led to in-
creased levels of PYR and G3P, both precursors of carotenoid
production, resulting in 1.3-fold increase in carotenoid pro-
duction compared with the parental strain (Sánchez-Pascuala
et al. 2019). Further increase of precursor supply seems to be a
crucial factor for efficient production.

Polyketides and non-ribosomal peptides

Polyketides (PKs) and non-ribosomal peptides (NRPs) dis-
play diverse groups of natural products that have commonly
medically relevant activities. Both are assembled by conden-
sation of simple carboxylic or amino acid building blocks. The
produced polymers can be cyclized and decorated to form the
final product. The PKs 2,4-diacetylphloroglucinol (Martinez
et al. 2004) and the UV-protective pigment flaviolin (Gross
et al. 2006a) were successfully produced in P. putida. An
interesting PK/NRP hybrid compound is the antibiotic
prodigiosin, due to its anticancer and immunosuppressant ac-
tivities (Domröse et al. 2015). In E. coli prodigiosin transcrip-
tion is inhibited (Danevčič et al. 2016). Yet, this is not the case
for P. putida. The TREX expression system, which includes
elements of transposon Tn5, enabled the random chromosom-
al integration of the pig gene cluster, derived from the native
producer Serratia marcescens W83. Remarkably, a higher

titer could be reached using a strong intrinsic chromosomal
promoter (Domröse et al. 2015) compared with utilization of a
synthetic T7 RNA polymerase-dependent promoter
(Loeschcke et al. 2013). This study led to the discovery of
rRNA promoters as strong native promoters for heterologous
expression of biosynthetic gene clusters in P. putida

(Domröse et al. 2019). Furthermore, through the expression
of myxobacterial hybrid systems, the antibiotics
myxochromide S (Stephan et al. 2006) and tubulysin (Chai
et al. 2012) could be synthesized. Since many of the biosyn-
thetic gene clusters required for the production of natural
products are larger than 6 kb (Loeschcke and Thies 2015),
sophisticated tools are needed for chromosomal integration.
One such tool is the recent developed RecET-based
markerless recombineering system for P. putida (Choi and
Lee 2020). The site-specific integration of a 7.4-kb violacein
cluster could be shown (Choi et al. 2018). Moreover, the first
synthetic polyketide synthase-like pathway for the production
of the omega-3 fatty acid docosahexaenoic acid (DHA) was
successfully expressed in P. putida KT2440 (Gemperlein
et al. 2016).

Recombinant protein production

The expression of antibodies in P. putida KT2440 could be
achieved with proper folding and promising yields
(Dammeyer et al. 2011; Jiménez et al. 2015). In addition,
whole-cell P. putida or isolated enzymes thereof find actual
industrial application (Poblete-Castro et al. 2012a; Rehm
2009; Tiso et al. 2014). An example company is DSM
(The Netherlands), which has reported to produce chiral com-
pounds using isolated enzymes from P. putida ATCC 12633
(Hermes et al. 1993; Rehm 2009). Whole-cell P. putida
biocatalysts are enabled to produce 5-cyanopentanamide
(DiCosimo et al. 1996), D-p-hydroxyphenyl glycine
(Schulze and Wubbolts 1999), and 5-methylpyrazine-2-
carboxylic acid (Kiener 1992). Furthermore, strain BIRD-1
is commercially available as plant growth-promoting bacteri-
um (Fosfogel, Bio-Iliberis R&D, Granada, Spain).

Conclusion and outlook

The choice of microbial hosts for biotechnological applica-
tions had long been based on historical tradition (Calero and
Nikel 2019) rather than on the bacterial chassis (platform)
which meets the desired process criteria in the best possible
way. This is mainly because microorganisms that have been
extensively investigated and characterized can be more eas-
ily manipulated to maximize production, and concurrently
their behavior during industrial scale-up is more predict-
able. Recent advantages in synthetic and systems biology
tools support turning the tide of the choice of microbial host
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for industry (Wehrs et al. 2019). This is especially true for
P. putida. Long known for its versatile metabolism and low
nutritional requirements (Timmis 2002), recent advances in
omics technologies now enable the discovery of new attrac-
tive features of representatives by genome sequencing, the
decryption of the central core and energy metabolism by
flux analysis (Kohlstedt and Wittmann 2019; Nikel et al.
2015), and the regulation of gene expression on the tran-
scriptional and translational levels. Findings thereof, to-
gether with improvements of genetic engineering tools,
are of particular value to complete our holistic understand-
ing of P. putida and ease the development of superior in-
dustrial strains. Moreover, it should be stressed that the
capability of producing value-added chemicals from alter-
native feedstocks (Kohlstedt et al. 2018; Poblete-Castro
et al. 2014; Salvachúa et al. 2020a; Wierckx et al. 2012) is
a superior feature to pass into the envisaged circular
bioeconomy. Beyond the wide product range already dem-
onstrated for P. putida, a promising upcoming approach is
re-designing the biochemical portfolio by introducing com-
plete synthetic pathways (bio-bricks) to access new-to-
nature products, such as halogenated molecules and
boron-containing structures in the near future (Nieto-
Domínguez and Nikel 2020; Nikel and de Lorenzo 2018).
This will open a full new branch of biotechnologically pro-
ducible molecules and represents an important step regard-
ing the limited fossil-based resources. However, as in the
case of other microbes (Wehrs et al. 2019), despite exten-
sive studies and demonstration of feasibility of production
on a small scale, large-scale industrial applications of
P. putida do not yet add up in numbers, with PHA,
FDCA, and rhamnolipid production as rare exceptions, as
discussed previously. Nevertheless, successful proof-of-
concept studies and product life cycle assessments are im-
portant starting points for subsequent process optimization
and development of viable business cases. But more impor-
tantly, they underline the extraordinary metabolic versatil-
ity and robustness of P. putida as serious player, who will
ultimately contribute to a greener and more sustainable
cradle-to-cradle economy.
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