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Abstract

Supervisory Control Theory (SCT) was developed by P. J. Ramadge and W. M.
Wonham in the late 80’s as a method of understanding control of a wide variety
of discrete event dynamic systems. A discrete event dynamic system (DEDS) is
characterized by a directed, labeled graph. The nodes of this system are called
the states, the arcs of the system are called transitions. Each transition has an
event label. In this sense, an event causes the DEDS to change from one state to
another. There is a special state called the starting state and a set of special states
called the terminal, marked or final states. A system modeled by a state machine is
assumed to exist in one of the states and transition from state to state as a result
of the generation or execution of events. The alphabet of events is partitioned
into controllable and uncontrollable events. Controllable events may be disabled
by a system supervisor. Given a system to control (called the plant) modeled by
a DEDS, a supervisor will disable certain events from occurring in the system in
order to achieve a certain desired behavior. The supervisor is often designed as
a second DEDS whose transitions correspond to enabled events. When the two
DEDS are run in parallel, the supervisor may exert enabling and disabling control
over the plant.

SCT is well understood in the case when both the plant and the supervisor are
modeled as finite state machines; i.e., the number of DEDS states in both the plant
and supervisor are finite. Several authors have remarked that the theory of SCT
need not be restricted to the finite state case and in many ways they are correct.
However, with the notable exception of a few Petri Net models, almost all of the
results on SCT have been restricted to finite state systems. Specifically, decision
algorithms for controllability and optimality are all restricted to the finite state
case because in the infinite state case they become poorly defined.

The purpose of this thesis is three-fold: First, we develop an extended SCT that
enables the modeling of infinite state systems by adding pushdown stack memory
to the finite state machine models of the DEDS supervisors. Second we show that
there are strong computability bounds on the nature of our new extended models
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with respect to the primary controllability criterion for discrete event control. That
is, certain classes of control specifications cannot be provably enforced. Third, we
provide a new theory of parametric optimal control in DEDS systems that extends
to cases when the controller is a pushdown machine. We explore the problem of
synthesizing a controller that will act optimally for all time. We derive a novel
branch and bound algorithm for synthesizing such an optimal controller.

Three applications of the theoretical framework developed in this thesis are
provided. The first shows how pushdown machines are capable of modeling subsets
of the 802.11 wireless network protocol and displays methods for analyzing such
protocols for robustness to attacks. The second application demonstrates how
to use discrete event control to model computer security policies and shows how
the pushdown stack memory of a deterministic pushdown machine can be used to
enumerate file access information. The third example shows how the pushdown
stack model can generalize the NASA Livingstone modeling system for use in
validating robotic control systems for missions in deep space.

iv



Table of Contents

List of Figures ix

List of Tables xi

Glossary of Symbols and Terms xii

Acknowledgments xv

Chapter 1
Introduction and Thesis Road Map 1
1.1 Discrete Event Control History and Project Summary . . . . . . . . 1

1.1.1 New Results on Infinite State Discrete Event Control Sys-
tems and Thesis Overview . . . . . . . . . . . . . . . . . . . 5

1.2 Example Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.1 Alice’s’ Supervision Problem . . . . . . . . . . . . . . . . . . 6
1.2.2 Machine Maintenance . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Thesis Road Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Chapter 2
An Introduction to Classical Discrete Event Control and Nec-
essary Results from Formal Language Theory 11
2.1 Introduction to Formal Languages . . . . . . . . . . . . . . . . . . . 11
2.2 Finite State Machines . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Pushdown Machines . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Properties of REG, DCFL and CFL . . . . . . . . . . . . . . . . 23
2.5 Decidability and Turing Machines . . . . . . . . . . . . . . . . . . . 24
2.6 Decidable Properties of the Languages REG, DCFL and CFL . . 25
2.7 Algorithms on FSM and DPDA . . . . . . . . . . . . . . . . . . . . 27

2.7.1 Prefix Closure of Regular and Deterministic Context Free
Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

v



2.7.2 Complementation of a language in REG . . . . . . . . . . . 28
2.7.3 Complementation of a language in DCFL . . . . . . . . . . 28
2.7.4 Normal Form for PDA . . . . . . . . . . . . . . . . . . . . . 29
2.7.5 Predicting Machines . . . . . . . . . . . . . . . . . . . . . . 30
2.7.6 Intersection of Languages . . . . . . . . . . . . . . . . . . . 30

2.8 Introduction to Discrete Event Control . . . . . . . . . . . . . . . . 31
2.8.1 An Algorithm to Check Controllability . . . . . . . . . . . . 34
2.8.2 Identifying the Plant Model . . . . . . . . . . . . . . . . . . 37
2.8.3 Supremal Controllable Sublanguage . . . . . . . . . . . . . . 37

2.9 Decidability in Control Theory . . . . . . . . . . . . . . . . . . . . . 38

Chapter 3
On the Decidability of the Control Predicate in Pushdown Sys-
tems 40
3.1 Introduction and Chapter Overview . . . . . . . . . . . . . . . . . . 40
3.2 Proof of Main Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3 Testing Controllability . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.5 Algorithmic Complexity . . . . . . . . . . . . . . . . . . . . . . . . 51
3.6 Undecidability Result . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Chapter 4
Verification of Secure Network Protocols in Uncertain Environ-
ments 53
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Application of Discrete Event Systems to Network Protocols . . . . 55

4.2.1 Protocol Design . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3 Resisting Network Attacks . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.1 Correcting Protocols . . . . . . . . . . . . . . . . . . . . . . 61
4.4 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Chapter 5
An Algorithm to Compute the Supremal Controllable Sublan-
guage for a Class of Pushdown Systems 64
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2 An Algorithm to Compute A Controllable Sublanguage . . . . . . . 65

5.2.1 Previous Results . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2.2 Algorithm Derivation . . . . . . . . . . . . . . . . . . . . . . 66

vi



5.2.2.1 Step 1 . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2.2.2 Step 2 . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2.2.3 Step 4 . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2.2.4 Algorithm Analysis . . . . . . . . . . . . . . . . . . 71

5.3 Undecidability Results . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.4 Parametric Discrete Event Control . . . . . . . . . . . . . . . . . . 75

5.4.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Chapter 6
State Space Models for Software Security Quantification 80
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.2 Modeling the Security State as a Finite State Machine . . . . . . . 81
6.3 Safety Properties of Sublanguages . . . . . . . . . . . . . . . . . . . 82
6.4 Undetected Transitions . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.5 Extension to DPDA Example . . . . . . . . . . . . . . . . . . . . . 87
6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Chapter 7
Optimal Parametric Discrete Event Control 90
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.2 Optimal Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.2.1 Objective Function . . . . . . . . . . . . . . . . . . . . . . . 93
7.2.2 Computing the Objective Function . . . . . . . . . . . . . . 94
7.2.3 The Function MK(X1, . . . , Xn) . . . . . . . . . . . . . . . . . 97
7.2.4 Constraints: K ∈ C(L) and MK(X1, . . . , Xn) |= Π . . . . . . 97
7.2.5 Branch-and-Bound Algorithm for Optimization . . . . . . . 98

7.3 Computational Analysis of the Algorithms . . . . . . . . . . . . . . 104
7.3.1 Computational Complexity Upper Bound . . . . . . . . . . . 104
7.3.2 Computational Experience . . . . . . . . . . . . . . . . . . . 105
7.3.3 Streamlining Operations for Executing Algorithm C in the

Large Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.5 Relation to the Work of Sengupta and LaFortune . . . . . . . . . . 109
7.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Chapter 8
Exception Handling Control and an Application to Robotic
Controller Design 111
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

vii



8.2 Exception Handling Controllers . . . . . . . . . . . . . . . . . . . . 112
8.3 Properties of Exception Handling Controllers . . . . . . . . . . . . . 114
8.4 Types of Stack Modification Operations . . . . . . . . . . . . . . . . 116
8.5 Application of the EHC Parametrization to Robot Control . . . . . 118
8.6 Livingstone Models and Robotic Software Verification . . . . . . . . 118

8.6.1 Running the Algorithm . . . . . . . . . . . . . . . . . . . . . 125
8.7 Induction Proof of Queuing Controllability . . . . . . . . . . . . . . 126
8.8 Conclusions and Future Directions . . . . . . . . . . . . . . . . . . 129

Chapter 9
Conclusion and Future Directions 130
9.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
9.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Bibliography 135

viii



List of Figures

1.1 The Life-Cycle of a Machine at Tina’s Company . . . . . . . . . . . 7
1.2 Graphical Representation of the Corporate Policy for Machine Repair 8

2.1 The Operation of a Finite State Machine on a Word . . . . . . . . . 15
2.2 A Finite State Machine that accepts L. . . . . . . . . . . . . . . . . 15
2.3 A Finite State Machine that accepts Σ∗ when Σ = {0, 1}. . . . . . . 15
2.4 The action of a PDA as it reads in a string of symbols. . . . . . . . 19
2.5 An example PDA that accepts {0n1n|n ≥ 1}. . . . . . . . . . . . . . 21
2.6 A simple three state plant model with a single starting state and a

single final state. The starting state is illustrated by an arrow that
connects to no state. . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.7 A simple control language that disables c whenever b is seen an even
number of times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.8 An intersection of M and G. . . . . . . . . . . . . . . . . . . . . . . 35
2.9 The complement machine to M . . . . . . . . . . . . . . . . . . . . . 36
2.10 The intersection of M ′ and G. . . . . . . . . . . . . . . . . . . . . . 36

3.1 Plant Model and Controller for Widget Production . . . . . . . . . 48
3.2 An intermediate form of M that scans all input but accepts the

same language as M . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3 A machine that accepts of

(

K
)c

. Note there are a number of useless
transitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 The weave of M c and G. This automaton accepts L(G) ∩ L(M)c.
Useless transitions have been grayed out. . . . . . . . . . . . . . . . 50

4.1 Upper-level Automaton . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 Lower-level Automaton . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3 SARAH Automaton . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.4 Spiral design method for wireless network protocols . . . . . . . . . 62

6.1 A small state machine model of the security of a system using an
unpatched version of xterm . . . . . . . . . . . . . . . . . . . . . . . 83

ix



6.2 A small state machine model of the security of a system using an
unpatched version of xterm when an unknown attack disables the
utility of patching xterm. . . . . . . . . . . . . . . . . . . . . . . . . 86

6.3 A small security policy for using an unpatched version of xterm
when an unknown attack disables the utility of patching xterm. . . 87

6.4 System that can count the number of files modified by a system
intrusion and correct each file. . . . . . . . . . . . . . . . . . . . . . 88

7.1 A fully expanded tree; nodes are labeled in order they will be inves-
tigated. The immutable set is shown below each node. . . . . . . . 99

7.2 The controller MK that begins the branch-and-bound process. . . . 107
7.3 The branch-and-bound tree resulting from Algorithm C when run-

ning on the problem given above. . . . . . . . . . . . . . . . . . . . 108
7.4 Solution to problem given above. . . . . . . . . . . . . . . . . . . . 108

8.1 Exception Handling Controller–General Structure . . . . . . . . . . 113
8.2 The flow of information in our scenario. . . . . . . . . . . . . . . . . 120
8.3 Robotic rover plant model. . . . . . . . . . . . . . . . . . . . . . . . 120
8.4 Exception handlers recognize specific requests and store them on

the stack below the currently executing command. . . . . . . . . . . 121
8.5 An quasi-EHC with looping exception handling transitions sup-

pressed for space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
8.6 The branch-and-bound tree with various fathomed nodes. . . . . . . 126
8.7 The minimum cost quasi-exception handling control system for robotic

control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
8.8 Exception handler that preserves the top two stack commands. . . . 128

x



List of Tables

3.1 Event definitions and descriptions . . . . . . . . . . . . . . . . . . . 47

4.1 Controllable Events (Σc) . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Uncontrollable Events (Σu) . . . . . . . . . . . . . . . . . . . . . . . 55

7.1 Running times (seconds) for Java Application executing Algorithm C.105
7.2 Running times (seconds) for C++ Application executing Algorithm

C using only finite state machines for MK . . . . . . . . . . . . . . . 106

xi



Glossary of Symbols and Terms

Event An instantaneous occurrence that causes a state change in a dynamic sys-
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Discrete Event Dynamic System (DEDS) A dynamic system whose state evo-
lution is driven by discrete events.

Finite State Machine (FSM) A dynamic system with a finite number of states.
Transitions between states are caused by discrete events.

Stack A data structure that operates on a last-in-first-out principle. Symbols are
pushed onto the top of the stack and may be popped off the top of the stack.

Pushdown Automata (PDA) A dynamic system whose true state is deter-
mined by a finite state and the configuration of a pushdown stack of symbols.
Transitions between state/stack configurations are caused by discrete events.

Deterministic Pushdown Automata (DPDA) A PDA whose transition struc-
ture is completely deterministic; i.e., if the state/stack configuration of the
system is known and an event occurs, then the next state/stack configuration
is known precisely.

Predicate with variables X1, . . . , Xn A statement about variables X1, . . . , Xn

that is either true or false.

Logical Sentence A statement about mathematical objects that is either true or
false. Given a predicate with variables X1, . . . , Xn, if values are supplied to
these variables, then a logical sentence is produced.

MK(X1, . . . , Xn) |= Π If Π is a set of logical sentences about the mathematical
object MK(X1, . . . , Xn) that is defined by supplying values to the variables
X1, . . . , Xn, then MK(X1, . . . , Xn) |= Π says that every sentence in Π is true
for a given set of values for the variables X1, . . . , Xn.
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Decidable A logical sentence is decidable if there is an algorithm (a computer
program) that can be used to decide whether the sentence is true or false for
any possible set of variable inputs.

∅ The empty set.

| · | The size or length of anything.

⊆ The subset-equality relation.

∩ The set intersection symbol.

Σ The set of discrete events that may occur in the system.

Σc The set of controllable system events.

Σu The set of uncontrollable system events.

String/Word An ordered sequence of events. (Also called an event trace or
history.)

Concatenation The concatenation of two words (s and t) is the word that results
when they are combined in order (i.e., st).

Prefix of a word w Any word s such that there exists t so that w = st.

ǫ The empty string–also the null event signifying no event has occurred.

Σ∗ The set of all finite strings made up of elements of an alphabet Σ (including
ǫ). Note: this also applies to Σ∗

u.

Language (in Σ∗) Any subset of Σ∗.

Language of a Dynamic System (L(·)) The set of possible event traces (words)
that may be emitted by a DEDS as it evolves. (Here · denotes the name of
the DEDS in question.)

Accepted Language of a Dynamic System (LM(·)) The set of possible event
traces (words) that may be emitted by a DEDS as it evolves from a starting
state to a legal ending state. (Here · denotes the name of the DEDS in
question.)

Prefix closure (of a language) Let L be a language. Then the prefix closure
of L (denoted L) is the set of all prefixes of words in L.
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Controllability of language K with respect to language L Language K is
controllable with respect to language L (assuming K ⊆ L) if for every string
s in the prefix closure of K and for every string u ∈ Σ∗

u, if su is an element
of the prefix closure of L, the su is an element of the prefix closure of K.
Note, controllability is a predicate on the languages K and L.

C(L) The set of controllable sublanguages of a language L. If K ∈ C(L), then
K ⊆ L and K is controllable with respect to L.

Supremal Controllable Sublanguage Given K and L languages with K ⊆ L,
then the supremal controllable sublanguage of K with respect to L is the
language supC(K) ⊆ K such that (i) supC(K) is controllable with respect
to L and (ii) if there is another language K ′ ⊆ K such that K ′ is also
controllable with respect to L, then K ′ ⊆ supC(K).

supC(K) The supremal controllable sublanguage of a language K with respect to
some known language L.
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Chapter 1

Introduction and Thesis Road

Map

1.1 Discrete Event Control History and Project

Summary

In January of 1987 P. J. Ramadge and W. M. Wonham published the first paper

on discrete event control [RW87c]. Their approach was to use a state machine to

model a dynamical system–similar to a Markov chain without probabilities. As

time passed, the dynamics of the system were expressed through streams of events,

similar in spirit to the traces of a discrete event simulator. For the sake of this

thesis, an event is an instantaneous occurrence that causes a system to change from

one state to another [CL99]. By a transition, we mean a state transition caused

by the occurrence of an event.

Control of the symbolic dynamic system was defined in terms of a supervisor

that observed the event trace output and turned on or off a certain subset of the

events. Events that could be disabled were called controllable, while the remaining

events were called uncontrollable. In [RW87c] Ramadge and Wonham studied the

following problem: Given the set of all possible event traces called L, and a subset

of target (or objective or desired) event traces K ⊆ L, does there exist a supervisor

that ensures the dynamical system will only output event traces in the target setK.

Ramadge and Wonham identified a key necessary condition for a positive answer
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to this question and called it controllability. (Controllability is formally defined in

Chapter 2.)

Two months after their first paper appeared, Ramadge and Wonham published

a second paper on discrete event control [RW87b]. In this paper, they considered

the problem of recovering when the desired set of event traces K is not controllable

with respect to the set of all possible event traces L. In this case, Ramadge and

Wonham provided an algorithm for determining a new set supC(K) ⊆ K that

was controllable and for which there was a supervisor to enforce the behavior of

supC(K). Thus, Ramadge and Wonham were able to provide a way to find an

usable subset of the desired behaviors for which an enforcing supervisor could be

found. Ramadge and Wonham [RW87a] then went on to explore the problem of

designing K so that it is the intersection of several desired event traces. This is

called the modular supervisory control problem.

The work was picked up by several authors, far too many to list exhaustively.

Two of the most prolific of these authors were R. Kumar and V. K. Garg. In

1990 Kumar, Garg and others began investigating methods of computing supC(K)

more efficiently when K and L had special, more restrictive properties [BGK+90].

(We discuss this work in detail in Chapter 2.) This work culminated in a new

algorithm for computing supC(K) in 1991 [KGM91]. This algorithm was shown to

be the most efficient algorithm for computing supC(K). In 1995, Kumar and Garg

summarized the state of the art in Discrete Event Control in their book Modeling

and Control of Logical Discrete Event Systems [KG95b].

One of the key drawbacks in all this literature were the assumptions on the

state machine model of the dynamical system (and thus the assumptions on the

sets K and L). All the algorithms given in [RW87c, RW87b, RW87a, BGK+90,

KGM91,KG95b] operated only on finite state machine models. All these authors

(Ramadge, Wonham, Kumar etc.) noted that there was no reason that discrete

event control should be limited to finite state models, while subsequently stating

that they would restrict their attention to these models because the algorithms

they published were not convergent with infinite state systems.

This was changed in 1993 when Sreenivas [Sre93] published the first paper on

Discrete Event Control using Petri Nets. A Petri Net is a more complex model of

a discrete event dynamic system that is capable of modeling an infinite number
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of states. Sreenivas showed that for certain Petri Net models (that produce event

trace sets K and L) it was impossible to decide whether K was controllable with

respect to L. This work was continued by Kumar and Halloway in 1996 [KH96]

when they discussed modeling the discrete event dynamic system with a Petri net

and modeling a system that outputs the target language K with a finite state ma-

chine. What is interesting about both of these works is they assume the restrictive

properties originally assumed in [BGK+90].

Investigation into optimality of discrete event dynamic systems began almost

as soon as Ramadge and Wonham introduced their first papers. The subject of

optimality in discrete event systems is still an active area of research and no single

accepted view of optimality has yet come to the fore. Further, many of these

approaches are highly distinct.

Optimal control of discrete event systems was originally investigated by Passino

and Antsaklis [PA89]. This approach to optimal control attempts to drive the plant

model along the shortest path to a final state from the initial state. As such, it

uses a simple modification of Dijkstra’s algorithm [CLRS01,BJS04]. Furthermore,

it modifies the basic assumptions of the Supervisory Control Theory of Ramadge

and Wonham by assuming a forced event model instead of an enabled event model.

Kumar and Garg [KG95a] were the first to formally study optimal supervisory

control using the enabled event paradigm. They consider finite state models of the

plant and controller. They assume costs associated to transitions caused by events

and event disabling. Further, pay-offs are associated with the various reachable

states. An alternate formulation of optimal control in discrete event systems is in

Brave and Heymann [BH93]. In their formulation, they attempt to minimize the

cost of keeping a state machine within a finite set of states. Brave and Heymann do

not include a control cost (a cost for disabling an event) and hence their approach

is not as general as [KG95a].

The most general study of optimal control supervisory control is undertaken

by Sengupta and Lafortune [SL98]. What is interesting about their approach is

the underlying assumptions they make. They consider only non-blocking super-

visors; i.e., they assume that any supervisory control law is controllable if and

only if it does not disable an uncontrollable event. That is, they restrict the class

of supervisors ϕ they consider to obtain fully realized theory. After defining a
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cost function, they attempt to minimize the worst case cost due to uncontrol-

lable events. Hence, they obtain a minimax problem. Further, their analysis uses

a dynamic programming (DP) approach to solving the underlying optimization

problem. While extremely useful in solving small scale problems, DP suffers from

the well known curse of dimensionality [Bel57]. Hence, this approach to optimal

control of discrete event systems may only be suitable for small scale problems.

This work is carried on by Marchand, Boivineau and LaFortune in [MBL00]. In

this case, the authors pose several discrete event control problems (or goals) and

then solve them using the methodology in [SL98]. They then attempt to stitch

these problems together by means of a traveling salesman approach to create an

optimal scheduler for executing multiple goals. While interesting, it seems that

the traveling salesman approach is not only overly complicated but entirely un-

necessary since multi-stage goal scheduling can be accomplished using a simplified

mixed integer programming structure.

The latest investigation into optimal control of discrete event systems was un-

dertaken by Ray et al. [WR02,RP02,FRL02]. In these papers, the authors proposed

a language measure1. This measure is based on the transition structure of an au-

tomaton accepting the language (set of event traces). Unfortunately, this means

that the measure defined is in fact a state machine measure and not unique to the

language accepted by the state machine. This fact has been pointed out by other

authors. In [WR02], a transition matrix is constructed that is similar to the tran-

sition matrix of a Markov chain, save for the fact that the values associated to the

transitions leaving a state must add to less than or equal to 1 (as opposed to 1 in

the case of Markov chains). Costs and rewards are assigned to states. The problem

of determining an optimal controller essential is transformed into the problem of

finding an optimal pure decision strategy in this unusual sub-Markovian structure.

It is worth noting that all the optimal control discrete event control papers refer-

enced operate only on finite state machine models of the discrete event dynamical

systems.

1By measure we actually mean a mathematical measure, a mapping from a sigma-algebra to
the real numbers.
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1.1.1 New Results on Infinite State Discrete Event Control

Systems and Thesis Overview

In 2006 Griffin [Gri06] began investigating a new model for infinite state discrete

event dynamical systems. To do this, he added an infinite stack memory to the

finite state machine model of the dynamics. This effectively provided the dynamic

system with an infinite memory property. The impact this had on determining

controllability was discussed in [Gri06] and [Gri07]. These results form the basis

of the novel results contained in this thesis.

The second set of new material presented in this thesis concerns optimal discrete

event control in infinite state discrete event systems defined using a pushdown

stack. We take inspiration from the work of Sengupta and LaFortune [SL98] by

extending the problem they study and presenting a solution method that works for

our infinite state discrete event dynamic system models. One of the key differences

between their paper and the work presented here is the optimizing algorithm. They

use a dynamic programming solution to identify an optimal and controllable target

set of event traces K, when given a set of event traces L produced by a discrete

event dynamic system. Dynamic programming works in this case because the state

space they consider is finite. We could not extend their dynamic programming

approach because our state space is infinite in nature. Consequently, we define a

bounded depth first search approach that is able to exhaustively search a finite

tree of potential solutions. We are able to show that this is sufficient to identify

an optimal supervisor, even though the resulting supervisor may be modeled by

an infinite state system. In essence, we reduce an infinite state problem to an

equivalent finite search problem.

Finally, three applications of the theoretical framework developed in this thesis

are provided. The first shows how pushdown machines are capable of modeling

subsets of the 802.11 wireless network protocol and displays methods for analyzing

such protocols for robustness to attacks. The second application demonstrates how

to use discrete event control to model computer security policies and shows how

the pushdown stack memory of a deterministic pushdown machine can be used to

enumerate file access information. The third example shows how the pushdown

stack model can generalize the NASA Livingstone modeling system for use in
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validating robotic control systems for missions in deep space.

1.2 Example Problems

In this section, we illustrate some toy problems that capture the spirit of discrete

event control problems.

1.2.1 Alice’s’ Supervision Problem

A supervisor Alice has hired a new worker Bob. Alice may task Bob with two

tasks (for example filing and copying). In turn, Bob may succeed or fail at either

of these tasks and will report this back to Alice. At Alice’s company, there is a

corporate cross-training policy, which states that workers cannot perform the same

task more than twice in a row. Alice’s approach to tasking is constrained by the

corporate policy. The resulting behavior observed in the system (the sequence of

tasking, successes and failures) is the result of Bob’s behavior and Alice’s policy

of supervision. Suppose that Alice chooses a tasking policy for Bob. Techniques

of discrete event control can answer the following questions:

1. Does Alice’s policy conform to corporate policy?

2. Will Alice’s policy cause a system dead-lock?

3. Is there a policy like Alice’s policy that both conforms to corporate policy

and does not cause deadlock?

4. When appropriate costs are assigned, we can ask: What is the least cost

tasking policy for Alice that conforms to corporate policy?

1.2.2 Machine Maintenance

Tina’s company2 maintains a specialized machine that occasionally breaks down

(event a). When this machine is broken, there are two possible courses of action.

Either the machine is repaired in-house (event b) or it is sent out for repair (event

2Tina and Alice do not work at the same company.
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c). A machine that is sent out for repair is eventually returned to the company

(event r). The simple state diagram is shown in Figure 1.1 illustrating the life-cycle

of the machine.

P1 P2

a

b

P3

c

r

Figure 1.1. The Life-Cycle of a Machine at Tina’s Company

We assume that the machine starts out working (State P1) and transitions to

a broken state (P2) by transition a. From this state, the machine can either be

repaired b, or it can be sent out for repair c. In the latter case, the machine is

no longer located at the company (state P3). Once the machine is returned r,

the machine is working again. We indicate that state P1 is the starting state by

the arrow whose head touches state P1 and whose tail is free. The dark circle in

state P1 indicates that we intend to consider only paths through this graph that

terminate in state P1. This will be explained further in Chapter 2.

The company has a strict corporate policy that states that a machine can

only be sent out for repair on alternate times of break-down. This policy was

implemented as a cost saving measure. Tina may choose whether to send the

machine out for repair or not, but she must act within company policy. A graphical

representation of the corporate policy is shown in Figure 1.2.
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C1 C2

a

C3 C4

a

b

C5

c

r

b

Figure 1.2. Graphical Representation of the Corporate Policy for Machine Repair

1.3 Thesis Road Map

This thesis is organized as follows3: In Chapter 2 we provide all necessary back-

ground information on Formal Language Theory and Discrete Event Control. By

necessity, this chapter is quite long. In Chapter 3 we prove our first main result

and show:

Theorem 1.3.1. Controllability is decidable for a specification S generated by a

deterministic pushdown automaton (DPDA) M and a plant language L generated

by a finite state machine G. That is, if S is accepted by a DPDA and L is accepted

by a finite state machine, then it is decidable whether K = S ∩ L is controllable

with respect to L.

We also provide an algorithm for deciding controllability in this case. (Algo-

rithm A.)

Chapter 4 we apply the results of Chapter 3 to the problem of verifying complex

wireless Internet protocols. In Chapter 5, we prove our next main result:

Theorem 1.3.2. Let L be a prefix closed plant language and let K be a prefix

closed language accepted by DPDA. Then the supremal controllable sublanguage of

K (supC(K)) is also accepted by a DPDA.

We further provide an algorithm (Algorithm B) for determining supC(K) in

this case. To do this, we use results proved in Chapter 3. We also define the

3All terms needed to understand these results are defined in Chapter 2. Additionally, key
symbols are listed in the Glossary of Terms and Symbols that appears in the front matter. We
provide this road map so that the reader can choose the order in which she wishes to read this
thesis.
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parametric control problem and show how to solve it using an algorithmic variation

of Algorithm B.

In Chapter 6 we show how to use discrete event control models of computer

security policies coupled with “Attack Graphs”, models of computer system vul-

nerabilities, to derive a safe computer security policy using supremal controllable

sublanguages.

In Chapter 7, we turn our attention to deriving an algorithm to solve the

following non-traditional mathematical program:

min max
w∈K

C(w)

s.t. LM(MK(X1, . . . , Xn)) ⊆ L

K = LM(MK(X1, . . . , Xn))

MK(X1, . . . , Xn) |= Π

K ∈ C(L)

(X1, . . . , Xn) ∈ B (1.3.1)

Here, w is a string in a discrete event language: L is an appropriately defined plant

language; X1, . . . , Xn are binary variables; MK(X1, . . . , Xn) is a function taking

variablesX1, . . . , Xn and returning a machineMK ; andK is the objective language.

The statement MK(X1, . . . , Xn) |= Π indicates that the machine MK(X1, . . . , Xn)

makes true a set of logical sentences Π that describe the structural properties of

MK(X1, . . . , Xn). The set C(L) denotes the set of all controllable sublanguages

of L. To solve this problem, we derive a unique branch-and-bound algorithm and

prove that it will derive an appropriate solution. The branch-and-bound algo-

rithm makes use of Algorithms A and B derived in the preceding chapters. We

discuss the computational complexity of this algorithm and discuss our experience

in implementing it.

In Chapter 8, we apply our results from Chapter 7 to derive a specific form of

parametrized discrete event controller called the Exception Handling Controller.

We show that this control structure has properties making it ideal for use in our

branch-and-bound framework. We then provide an example of its use as a natural

extension to the NASA Livingstone software validation system and provide an

example optimization and verification of a simple robotic control system. Finally,
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we provide conclusions and future directions in Chapter 9.



Chapter 2

An Introduction to Classical

Discrete Event Control and

Necessary Results from Formal

Language Theory

2.1 Introduction to Formal Languages

Let Σ be a finite set called the alphabet. A word w is an ordered set of symbols that

come from an alphabet Σ. Throughout, we may use the terms string and word

synonymously. By Σ∗ we denote the set of all finite words composed of elements

of Σ. We denote the empty string by ǫ; since ǫ is a finite word, it is considered an

element of Σ∗.

Example 2.1.1. Let Σ = {0, 1}, then Σ∗ is the set of all finite binary strings. E.g.,

Σ∗ = {ǫ, 0, 1, 00, 01, 10, 11, . . . }.

Any subset of Σ∗ is called a language, though for brevity we will usually call

the subsets of Σ∗ languages. Naturally, Σ∗ is itself a language.

Example 2.1.2. Let Σ = {0, 1}. Let L = {1, 11, 111, . . . }. Then L is a language in

Σ∗.

When defining languages, we sometimes say that a set L is a language over

alphabet Σ. This is equivalent to saying that Σ is an alphabet, and L ⊆ Σ∗. If
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K ⊆ L and L is a language over some alphabet Σ, then K is called a sublanguage

of L and L is called a superlanguage of K. Hence, every language is a set of words.

We may define the concatenation operation on two words w and v as you would

expect. That is, w concatenated with v is the new word wv.

Example 2.1.3. Let Σ = {0, 1} and let w = 00 and v = 11 be two words in Σ∗.

Then wv = 0011.

Clearly, concatenation is associative but not (necessarily) commutative. It is

further clear, that the empty word ǫ acts as an identity for this operation. Hence

Σ∗ is a monoid with the concatenation operator [Jac85].

When L and K are two languages, we may define their concatenation to be the

pairwise concatenation of every string in L with every string in K. The operation

is likewise associative, but not commutative.

Example 2.1.4. Let L = {00, 11} and let K = {101, 11}, then

LK = {00101, 0011, 11101, 1111}

Let L and K be the two languages in question. Their concatenation is formally

defined by the following predicate:

w ∈ LK ⇐⇒ ∃u ∈ L∃v ∈ K(uv = w) (2.1.1)

Remark 2.1.5. Throughout this thesis, we use standard mathematical logic nota-

tion [Sim00]. By this we mean that existential (∃) and universal (∀) quantifiers are

moved to the front of mathematical expressions. A parenthesis contains the main

body of the statement. For example, the mathematical state ∃x(P (x) should be

read, “There exists and x such that statement P (x) holds.”

The ∗ notation (used on Σ∗) is a generalization of concatenation. Let w ∈ Σ∗

be a word. Then w2 = ww; that is the concatenation of w with itself. We set

w0 = ǫ by definition. By w∗ we mean the language containing all non-negative

finite powers of w. That is, w∗ = {ǫ, w, ww,www, . . . }. We may extend this

concept to languages immediately. Let L ⊆ Σ∗. By L2 we mean LL. We define

L0 = {ǫ}. Then we have L∗ = {ǫ} ∪ L ∪ LL ∪ . . . . It is now easy to see why Σ∗

is the set of all finite words composed of elements of Σ. This notation is called
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the Kleene star notation. Note because Σ∗ is a monoid under concatenation we

cannot define wn for n < 0.

We say that a word u is a prefix of a word w if there is some other word v such

that uv = w. Similarly, we say that v is a suffix of a word w if there is some other

word u such that uv = w.

Example 2.1.6. Let Σ = {0, 1} and let w = 0011 and u = 0 be two words in Σ∗.

Then u is a prefix of w. Similarly, if v = 11, then v is a suffix of w.

It is trivial to note that a word w is a prefix of itself because ǫ, the empty

string, allows us to write w = wǫ. Similarly, ǫ is a prefix of every word since for

any word w, w = ǫw.

Fix Σ and let L be a language in Σ∗. The set of all prefixes of the words in

L is called the prefix-closure of L and is denoted L (not to be confused with the

set-theoretic complement of L in Σ∗, which we write as Lc). We have the following

formal definition of L:

u ∈ L ⇐⇒ ∃v ∈ Σ∗(uv ∈ L). (2.1.2)

If L is a language and L = L, then L is said to be prefix-closed.

We have the following formal definition of set-theoretic complement when L ⊆

Σ∗:

w ∈ Lc ⇐⇒ w ∈ Σ∗ ∧ w 6∈ L (2.1.3)

Example 2.1.7. Let Σ = {0, 1} and let L = {00, 11, 101}, then

L = {ǫ, 0, 1, 00, 10, 11, 101}.

Trivially we can see one property of L is that L ⊆ L.

The concept of prefix closure is generalized by language quotients. Let L and

K be two languages. Then the right quotient of L by K is defined as:

u ∈ L/K ⇐⇒ ∃v ∈ K(uv ∈ L). (2.1.4)

Put in simpler terms, a word u is in the quotient L/K if and only if there is some

word v in the language K such that the concatenation uv is a word in L.
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Example 2.1.8. Let L be a language over a fixed alphabet Σ. We can see from the

formal definition of prefix-closure that L = L/Σ∗.

There is likewise a natural concept of suffix-closure that is identical in every way

to prefix closure, except we are concerned with the suffixes of a language instead

of the prefixes. The left quotient of K by L generalizes this concept. Formally, the

left quotient is defined as:

v ∈ L\K ⇐⇒ ∃u ∈ L(uv ∈ K) (2.1.5)

Remark 2.1.9. The notation for left quotient is non-standard. Modern authors

reverse the positions of L and K following conventions developed after 1979. We

use the older form of the notation because Hunt and Rosenkrantz [IR74] use this

notation and we make extensive use of one of their theorems, which use this nota-

tion.

Though these concepts seem dubiously useful, we will use of all of them in

Chapters 3 and 5.

2.2 Finite State Machines

Imagine a word w written out on a ticker tape T and let M be some machine that

when fed in T will indicate whether or not w is in some specified language L. We

say that machine M recognizes a language L if when ever M is allowed to read a

word, it indicates positively or negatively whether w is a member of L.

We often characterize the complexity of a language by the complexity of the

machine required to recognize it. The simplest machine considered by computer

scientists is the finite state machine. A finite state machine, abbreviated FSM and

sometimes called a finite state automaton, is defined by a tupleG = 〈Q,Σ, δ, q0, Qf〉

where Q is a finite set of states, Σ is the alphabet as it always is, δ is a relation in

Q× Σ ×Q (i.e., δ ⊆ Q× Σ ×Q), q0 ∈ Q is called the starting state and Qf ⊆ Q

are called the set of final or marked states. When we omit q0 and Qf , the system

is sometimes called a labeled transition system.

We may envision a finite state machine operating in the following way: Again

let T be a ticker tape with a word written on it. The finite state machine starts
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at the beginning of the tape in its initial state. It reads the first symbol on the

tape and, using its transition relation, changes to a new state based on the input.

The machine then moves to the next symbol and the process is repeated. If the

machine is in a final state after it has consumed the entire tape, then the word is

said to have been accepted. Otherwise, the word is not accepted. The process is

illustrated in Figure 2.1.

0 1 0 1 0 1 ...

FSM: Read Symbol, 
Make State Transition, 

Move Right

Figure 2.1. The Operation of a Finite State Machine on a Word

Example 2.2.1. Consider the language L = (01)∗ = {ǫ, 01, 0101, . . . }. This lan-

guage is accepted by the finite state machine shown in Figure 2.2.

0

1

Figure 2.2. A Finite State Machine that accepts L.

It is important to note that language size is not an indicator of complexity. For

example, the language Σ∗ for any alphabet Σ is accepted by a finite state machine.

To see this, consider the case when Σ = {0, 1}. The language Σ∗ is accepted by

the finite state machine shown in Figure 2.3.

0,1

Figure 2.3. A Finite State Machine that accepts Σ∗ when Σ = {0, 1}.

In discussing the operation of a finite state machine, we mentioned the problem

of non-determinism. There are two types of non-determinism, ǫ-transitions and
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multiple transitions on a single symbol. Consider a finite state machine M and let

q be a state and let σ be a symbol in Σ. If there are two (or more) states q′ and

q′′ such that (q, σ, q′) ∈ δ and (q, σ, q′′) ∈ δ, then clearly there is non-determinism

when the machine is in state q and reads a single symbol σ from the input tape:

the machine could transition either to q′ or q′′.

The second type of non-determinism arises from the use of ǫ-transitions. This

transition type was not considered in our original definition of finite state machine.

In our original definition, we only considered transitions defined on elements of

Σ. Our definition can be extended to include it by considering the case when

δ ⊆ Q×Σ∪{ǫ}×Q. By way of example, again let q, q′ and q′′ be states and let σ

be a symbol in Σ. If (q, σ, q′) ∈ δ and (q, ǫ, q′′) ∈ δ, then we again are faced with

the problem of non-determinism. Say that the finite state machine is in state q

and is about to read symbol σ. There are two possibilities: the machine could read

symbol σ and transition to q′ or, since ǫ is the empty string and can be inserted

anywhere, it could take an ǫ-transition to state q′′.

In the face of non-determinism it seems all our notions of acceptance break

down. However, we say that a word w is accepted by a non-deterministic finite

state machine if there is any sequence of transitions that, when starting at the

initial state, take the finite state machine to a final state while reading w. With this

in mind, let G be a finite state machine. By LM(G) we mean the language accepted

by G; i.e., the set of words w such that there exists a sequence of transitions that

leads G to an accepting state when reading w.

There is another language associated with a finite state machine M , L(M).

This is the set of words w such that there exists a sequence of transitions that

leads M to some (not necessarily final) state in Q when reading w. When there

is a labeled path (defined in the relation δ) leading from the starting state to

every state a path from every state to at least one final state, then the finite state

machine is called trim. Formally, a finite state machine G = 〈Q,Σ, δ, q0, Qf〉 is

trim if and only if the following holds:

1. For all q there exists w = σ1 · · ·σn such that

(q0, σ1, q1) ∈ δ ∧ · · · ∧ (qn−1, σn, q) ∈ δ
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for states q1, . . . , qn−1 ∈ Q and n some finite non-negative integer, and

2. For all q there exists w = σ1 · · ·σm and qf ∈ Q such that

(q, σ1, q1) ∈ δ ∧ · · · ∧ (qm−1, σm, qf ) ∈ δ

for states q1, . . . , qm−1 ∈ Q and m some finite non-negative integer.

In this case, LM(G) = L(G). That is, the prefix closure of LM(G) is L(G).

We will call LM(G) the language accepted by final state and L(G) the language

accepted by G or also the language generated by G. This verbiage will become

clear when we discuss discrete event control.

A formal definition is now required to help us tell the difference between de-

terministic and non-deterministic finite state machines. A finite state machine is

deterministic if

1. For all q ∈ Q and for all σ ∈ Σ there is exactly one q′ in Q such that

(q, σ, q′) ∈ δ.

2. For all q ∈ Q, (q, ǫ, q) ∈ δ and there is no other q′ such that (q, ǫ, q′) ∈ δ.

Any finite state machine that is not deterministic is non-deterministic. Further-

more, when a finite state machine is deterministic, the transition relation is in fact

equivalent to a partial function [Rog87] δ : Q× Σ → Q. We shall treat it as such

when appropriate.

As it turns out, the concept of non-determinism is not very important for finite

state machines since the following theorem holds (Theorem 2.1 of [HU79]):

Theorem 2.2.2. If G is a non-deterministic finite state machine, then there is a

deterministic finite state machine G′ such that LM(G) = LM(G′).

As a result of this theorem, we may define the following class of languages: a

language L ⊆ Σ∗ is called regular if there is a deterministic finite state machine

M = 〈Q,Σ, δ, q0, Qf〉 that accepts L. When we fix an alphabet Σ, the class of reg-

ular languages in Σ∗ will be denoted by REG(Σ) or just REG when the alphabet

Σ is known and fixed.
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Throughout the rest of this thesis, we shall assume that all finite state machines

are deterministic with transition functions δ. It is reasonable to ask, ‘Why have

we spent so much time on this distinction?’ As it turns out, determinism plays

an important role in more complex language classes; in fact it plays the most

important role in the results we will display in Chapter 3. For this reason, a good

grounding in determinism was required.

2.3 Pushdown Machines

Thus far we have examined the set of regular languages, those accepted by finite

state machines. It is our goal now to enhance the power of the finite state ma-

chine by adding to it a pushdown stack–a device on which we may store data

for later access. The resulting structure is called a pushdown machine (or push-

down automaton). Formally, a pushdown automaton (PDA) is a tuple M =

〈Q,Σ,Γ, δ, q0, Z0, Qf〉, where Q is a finite set of states as before, Σ is an alphabet,

Γ is a stack alphabet, q0 ∈ Q is a starting state, Z0 ∈ Γ is the starting stack symbol,

Qf ⊆ Q are the final (or marked) states and δ ⊆ Q × Σ ∪ {ǫ} × Γ × Q × Γ∗ is

a transition relation. It is sometimes convenient to think of δ as a mapping from

Q×Σ∪ {ǫ} × Γ to finite subsets of Q× Γ∗. In this case we will write δ(q, a, Z) to

denote the finite subset of Q×Γ∗ that results. Both notations will be used through-

out this thesis and we will choose which notation to use based on convenience and

clarity of expression.

As before, we may envision the operation of a PDA on an input tape T ; the

machine consists of a finite state system, and a stack. As symbols are read in from

the tape, a (possibly non-deterministic1) transition will be made based on the top

stack symbol, the input symbol and the current state of the machine; the transition

changes the state of the finite state system, and replaces the top stack symbol with

a (possibly empty) string of stack symbols. This operation is shown in Figure 2.4.

Let M be a PDA. By δ(q, a, Z) = {(p1, γ1), . . . , (pn, γn)} we mean that given

an input symbol a when M is in state q with top stack symbol Z, then M may

transition to a new state pi and replace Z ∈ Γ with the string γi ∈ Γ∗ for 1 ≤ i ≤ n.

1Even though we will not consider non-deterministic finite state machines, we will be interested
in non-deterministic pushdown machines.
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Control Head

a a a a b b b b… …A

A

A

A

Stack History String

Stack Input

Pop

!
Push

Figure 2.4. The action of a PDA as it reads in a string of symbols.

Under some conditions, the PDA can edit its top stack symbol independent

of input events. This occurs when an ǫ-transition is fired. In this case, both the

state and top stack symbol of the PDA may be altered, but no new symbols from

the input string are accepted. By δ(q, ǫ, Z) = {(p1, γ1), . . . , (pn, γn)} we mean that

when M is in state q with top stack symbol Z, there may be an ǫ-transition which,

independent of any input symbol, causes M to transition to a new state pi and

replace Z with γi for some 1 ≤ i ≤ n.

Unlike finite state automata, the state of a PDA is captured by both the state

of the machine and the symbols stored in the stack. To formally describe the state

of a PDA, we must specify these values. Traditionally the remaining input string

to be read is also included in this description [HU79].

An instantaneous description (ID) for a PDA M is a triple (q, w, γ), where

q ∈ Q is the state of M , w ∈ Σ∗ is the remainder of the string to be read and

γ ∈ Γ∗ is the state of the stack.

Let M be a PDA. By (q, aw, Zγ) ⊢ (p, w, βγ), we mean that δ(q, a, Z) contains

(p, β). Let ⊢∗ be the transitive closure of ⊢. Then by (q, wv, γ) ⊢∗ (p, v, β), we

mean that there is a series of transitions in δ that causes M to read the prefix w

and transition from state q to state p and transform the stack string from γ to β.

The remaining string v is still available for reading.

A PDA may accept words in two different ways. We say that a PDA accepts a

word w ∈ Σ∗ by final state, if reading w to completion causes a series of transitions

leading from the starting state q0 with Z0 on the stack to some final state q. In

contrast, we say that a PDA accepts a word w by empty stack if reading w to

completion causes a series of transitions leading from the starting state q0 with Z0
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on the stack to any state q ∈ Q with an empty stack. Formally, the final state

language and the empty stack language of M are defined as:

LM(M) = {w ∈ Σ∗ | ∃q ∈ Qf∃γ ∈ Γ∗ ((q0, w, Z0) ⊢
∗ (q, ǫ, γ))}

L∅(M) = {w ∈ Σ∗ | ∃q ∈ Q ((q0, w, Z0) ⊢
∗ (q, ǫ, ǫ))}. (2.3.1)

We will make very little use of the empty stack acceptance criterion in this thesis.

We have included it only for completeness. In fact, the following theorem, proved

in [HU79], shows that the distinction between acceptance by final state and by

empty stack is just a formality. (See Theorems 5.1 and 5.2 of [HU79].)

Theorem 2.3.1. For any PDA M , there exists a second PDA M ′ such that

LM(M) = L∅(M
′). Likewise there exists a third PDA M ′′ such that L∅(M) =

LM(M ′′).

Hence, any language L that is accepted by a PDA M by empty stack, is ac-

cepted by another PDA M ′ by final state and vice versa. A language accepted by

a PDA (in any sense) is called context free. When we fix a Σ, the class of context

free languages in Σ∗ will be referred to as CFL(Σ) or just CFL if Σ is known and

fixed.

For fixed Σ, it is immediately obvious that the regular languages are a proper

subclass of the context free languages. (To see this, just simulate the moves of any

finite state machine and continuously pop and push the symbol Z0.) Put more

formally, we have REG ⊂ CFL.

Example 2.3.2. Consider a PDA M = 〈Q,Σ,Γ, δ, q0, Z0, Qf〉 with the following

properties: Q = q0, q1, q2, Qf = ∅, Σ = {0, 1}, Γ = {Z0, A}, and

δ = {(q0, 0, Z0, q0, Z0A), (q0, 0, A, q0, AA),

(q0, 1, A, q1, ǫ), (q1, 1, A, q1, ǫ), (q1, ǫ, Z0, q2, ǫ)}

This PDA is shown in Figure 2.5.

The PDA we have defined accepts the language L = {0n1n|n ≥ 1} by empty

stack. To see this, consider what happens when the string 0011 is read in. During

the first read: (q0, 0011, Z0) ⊢ (q0, 011, AZ0) because 0 is read, Z0 is the top stack



21

1/A/  ε

0/Z_0/Z_0A,

0/A/AA 1/A/ ε

  /Z_0/  ε ε

Figure 2.5. An example PDA that accepts {0n1n|n ≥ 1}.

symbol and a loop transition is made to q0 and Z0A is pushed onto the stack–

this makes the top stack symbol now A because the symbols are pushed on in

order of Z0 and then A. During the next step, (q0, 011, AZ0) ⊢ (q0, 11, AAZ0).

Then (q0, 11, AAZ0) ⊢ (q1, 1, AZ0) because the symbol A is read off the stack, but

ǫ (nothing) is pushed on. Next (q1, 1, AZ0) ⊢ (q1, ǫ, Z0) and finally, (q1, ǫ, Z0) ⊢

(q2, ǫ, ǫ) by the ǫ-transition from state 1 to state 2. Note, the fact that Qf = ∅

makes no difference in this case since we are allowing this PDA to accept by empty

stack.

The stack keeps track of the number of 0’s read in by pushing a symbol A onto

the stack each time a zero is read. As 1’s are read in, the stack unwinds the A’s

until only the Z0 symbol remains. A non-deterministic transition empties the stack

with no need to read additional symbols. Hence, the empty stack language of this

machine is {0n1n|n ≥ 1}. We see it is n ≥ 1 and not n ≥ 0 since we start with a

non-empty stack and we must read at least one 0 and one 1 to reach a state where

we empty the stack of Z0. It is fairly easy to see at this point, that this machine

will accept no other strings other than the ones we have discussed.

The following “Pumping Lemma” will help us show that the language in the

previous example is not regular.

Lemma 2.3.3 (“The Pumping Lemma”–Lemma 3.1 of [HU79]). Let L be a regular

language. Then there exists a constant n such that if z is any word in L and |z| ≥ n

then we may write z = uvw in such a way that |uv| ≤ n, |v| ≥ 1 and for all k ≥ 0,

uvkw is a word in L. Further, n is no greater than the number of states of the

FSM with the fewest number of states that accepts L.

Example 2.3.4. We can now show that L = {0n1n|n ≥ 1} is not a regular language.

For suppose that it is, then the Pumping Lemma holds [HU79]. But let n be

arbitrarily large and suppose that we choose s ≥ n/2, s ∈ Z then z = 0s1s has
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length at least n. It is clear for any decomposition of z into uvw we will not have

uvkw ∈ L for k > 0. Hence, L cannot be regular.

A PDA M is deterministic (DPDA) if the following hold:

1. If (q1, a, Z, q2, γ) ∈ δ and (q1, a, Z, q
′
2, γ

′) ∈ δ, then q2 = q′2 and γ = γ′.

2. If (q1, ǫ, Z, q2, γ) ∈ δ, then for all a ∈ Σ, δ(q1, a, Z) = ∅.

Condition 1 of the definition ensures that for all q ∈ Q, a ∈ Σ and Z ∈ Γ,

|δ(q, a, Z)| = 1. Thus there is no non-deterministic choice possible when making

transitions. Condition 2 of the definition ensures that there is never a choice

between accepting an input symbol or making an ǫ-transition without accepting

an input symbol. We saw in Theorem 2.2.2 that non-determinism doesn’t make

a difference in the regular languages. In the context free languages, there is a

difference. It is shown in Chapter 5.2 of [HU79] (Page 113) that there is a language

accepted by a PDA that is not accepted by a DPDA. A language accepted by a

DPDA (in any sense) is called deterministic context free. For fixed Σ, the class

of deterministic context free languages in Σ∗ will be denoted DCFL(Σ) or just

DCFL when Σ is understood from context. It can now be seen that for fixed

Σ: REG ⊂ DCFL ⊂ CFL. Further, since the PDA given in Example 2.3.2

is deterministic, we can see that the language {0n1n : n > 0} is in DCFL. In

Example 2.3.4 we showed this language was not regular.

Remark 2.3.5. It will be important for us to talk about subautomata (or sub-

machines). Let M be a finite state machine or DPDA. Then a submachine (or

subautomaton) of M is a second finite state machine or DPDA M ′ such that:

1. The state set of M ′ is a subset of the state set of M .

2. The alphabet of M ′ is equal to the alphabet of M .

3. If appropriate, the stack alphabet of M ′ is equal to the stack alphabet of M .

4. The final states of M ′ are a subset of the final states of M .

5. If appropriate, the start stack symbol of M ′ is the same as the start stack

symbol of M .

6. Finally, the transition relation of M ′ is appropriately defined on its state set

and it is a subrelation of the transition relation of M .
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2.4 Properties of REG, DCFL and CFL

The purpose of this section is to present several important closure properties of

the regular languages, the deterministic context free languages and the context free

languages that will be used later in this thesis. The proofs of all of these claims can

be found in [HU79]. We will provide more details as we state individual results.

Lemma 2.4.1. Fix an alphabet Σ∗. The class REG is closed under (i) union, (ii)

intersection, (iii) left and right quotient, (iv) concatenation, (v) Kleene star and

(vi) complement in Σ∗.

Proof. See Theorems 3.1, 3.2, 3.3 and 3.6 of [HU79].

In particular, since REG(Σ) is closed under left and right quotient, it follows

immediately that REG(Σ) is closed under prefix closure since for any L ⊆ Σ∗,

L = L/Σ∗; that is, if L ∈ REG, then L ∈ REG.

Lemma 2.4.2. Fix an alphabet Σ∗. The class CFL is closed under (i) union, (ii)

concatenation, (iii) intersection with regular language (iv) quotients with regular

language, (v) Kleene star. The class CFL is not closed under (i) intersection, (ii)

complement in Σ∗.

Proof. See Theorems 6.1, 6.4 and 6.5 and 11.3 (as it applies to CFL) of [HU79].

Again, note that if L ∈ CFL, then L ∈ CFL since Σ∗ ∈ REG for any Σ.

Contrast Lemma 2.4.2 with the properties of the class DCFL.

Lemma 2.4.3. Fix an alphabet Σ∗. The class DCFL is closed under (i) intersec-

tion with regular language, (ii) quotient with regular language and (iii) complement

in Σ∗. The class DCFL is not closed under (i) union, (ii) concatenation, (iii) in-

tersection, or (iv) Kleene star.

Proof. See Theorems 10.1, 10.2, 10.4, and 10.5 of [HU79]. Lemma 8.8 of [HU79]

shows in great detail that DCFL is not closed under intersection.

The properties we will use most are the closure of DCFL under complements

and the closure of both CFL and DCFL under quotient with regular languages.
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2.5 Decidability and Turing Machines

The definitions we have given for REG, DCFL and CFL are machine based.

There are alternate grammar or rule based definitions that are outside the scope

of this thesis. The interested reader is directed to [HU79]. The primary question

early research in language theory attempted to address was the inclusion question:

Is there an algorithm to determine whether a word w is an element of language L?

It should be clear to the reader that for the classes of languages we have discussed,

there is an algorithm: namely the word is fed into an appropriate machine, which

either accepts or does not accept according to its acceptance criterion.

There are instances where the question of word inclusion becomes more subtle.

In these cases, we must define what we mean by “algorithm.” A Turing Machine

(TM) is a tuple M = 〈Q,Σ,Γ, δ, q0, Qf〉, where Q is a finite set of states, Σ is a

finite input alphabet, Γ ⊆ Σ is a finite tape alphabet, q0 is a starting state, Qf ⊆ Q

is a set of final states and δ ⊆ Q×Σ∪{ǫ}×Q×Γ×{L,R} as before, we may also

view δ as function from Q×Σ∪ {ǫ} into a set of tuples in the set Q×Γ×{L,R}.

There is a special symbol B in Γ called the blank symbol. Strictly speaking, this

symbol is different from ǫ; to see why, if a, b ∈ Σ, then aǫb = ab, whereas aBb

literally represents “a b”.

Again, let T be a ticker tape that extends infinitely far in both directions with

a word w ∈ Σ∗ written upon it. A TM operates by reading in the ticker tape T

starting at the left most symbol of w. Let a ∈ Σ and suppose that a TM in state

q has just read in a. Then the TM makes a state transition to some new state

q′, writes a symbol from Γ over top of a and either moves left (L) or right (R). If

the TM reads off the right end of the word and no further move can be made and

the state q′ is in Qf , then the TM is said to accept w. Since a TM can re-read

the same position in w many times (by moving back and forth over it), it is very

easy to see that it may take a long time to know whether a word w is accepted by

an arbitrarily chosen TM. In fact, the TM may never stop moving once it starts

reading w. When a TM eventually either accepts or rejects a word w, we say that

the machine halts on w. A TM that halts on all inputs will eventually reach a

decision about every word w ∈ Σ∗. Any language that is accepted by a TM that

halts on all inputs is called recursive. Any language that is accepted by a TM (that
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may or may not halt on all inputs) is called a recursively enumerable language.

Without loss of generality, we may restrict out attention to deterministic TM’s,

since like finite state machines, the languages accepted by deterministic TM’s are

equivalent to the languages accepted by non-deterministic TM’s. (See Theorem 7.3

of [HU79].) In a deterministic TM, the relation δ can be transformed immediately

to a partial function from Q× Σ to Q× Γ × {L,R}.

As it turns out, every TM with Σ = {0, 1} may itself be represented by a coded

string over alphabet Σ = {0, 1}. That is to say any TM M may be assigned a

unique value wM = #(M) with wM ∈ {0, 1}∗. This is called a code of the TM M

and the function # is called a coding [Rog87,HU79]. A detailed description of this

fact is given in Chapter 8 of [HU79]. This gives rise to a few interesting problems.

For suppose that H = {Codes for TM that halt on all inputs.}. It would be nice

to know whether w ∈ H, for then we would know that the TM coded by w

could safely be used on any word without worrying about an infinite computation.

Unfortunately, this is not possible. The following famous theorem was first proved

by Alan Turing in 1936 [Tur36]. A proof is given in Chapter 8 of [HU79] (See

Theorems 8.4 and 8.5).

Theorem 2.5.1. There is no Turing Machine that halts on all inputs and decides

whether w ∈ H for w ∈ {0, 1}∗.

This is called the Halting Problem and is the key result needed in decidability

theory. In decidability theory, a problem is any set of strings L ⊆ Σ∗ for some

Σ; the problem is tacitly understood to be the string inclusion problem: is there

an algorithm–by which we mean a TM–that can decide whether or not a string

w ∈ L. For any other mathematical problem that can be transformed (or coded)

into an inclusion problem we may ask ‘is this problem decidable?’

2.6 Decidable Properties of the Languages REG,

DCFL and CFL

We already know a number of decidable properties of the languages we have dis-

cussed. In this section, we enumerate a number of decidable and undecidable
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properties of these languages. Unless otherwise stated, all of these properties are

proved in [HU79].

Lemma 2.6.1. Fix an alphabet Σ. Let L ∈ REG. The following questions are

decidable: (i) For any w ∈ Σ∗, w ∈ L?; (ii) If H ∈ REG, L = H?; (iii) If

H ∈ REG, H ⊆ L?.

Proof. (i) is obvious: input the word w into a finite state machine accepting L.

(ii) and (iii) are proved in Theorem 3.7 and 3.8 of [HU79].

Lemma 2.6.2. Fix an alphabet Σ. Let L ∈ DCFL. The following questions are

decidable: (i) For any w ∈ Σ∗, w ∈ L?; (ii) If H ∈ DCFL, L = H?; (iii) If

R ∈ REG, R ⊆ L.

Proof. (i) is obvious: input the word w into a DPDA accepting L. (ii) was just

recently proved in 1997 in [S9́7]. This question had been open since formal language

theory began. (iii) is discussed in Theorem 10.6 of [HU79].

What [S9́7] actually proves is that if M1 and M2 are two DPDA, then it is

decidable whether LM(M1) = LM(M2). Likewise, for all of these statements, we

assume that we are given some accepting machine (FSM, DPDA, PDA, TM) for

the specified languages.

Lemma 2.6.3. Fix an alphabet Σ. Let L ∈ DCFL. The following questions are

undecidable: (i) If H ∈ DCFL, H ⊆ L?; (ii) If H ∈ DCFL, H ∩ L ∈ DCFL?;

(iii) If H ∈ DCFL, H ∩ L ∈ CFL?

Proof. See Theorem 10.7 of [HU79].

Lemma 2.6.4. Fix an alphabet Σ. Let L ∈ CFL. The following questions are

decidable: (i) For any w ∈ Σ∗, w ∈ L?; (ii) L = ∅?.

Proof. (i) is obvious: Input the word w into a PDA accepting L. (ii) is proved in

Theorem 6.6 of [HU79].

Lemma 2.6.5. Fix an alphabet Σ. Let L ∈ CFL. The following questions are

undecidable: (i)L = Σ∗?; (ii) If H ∈ CFL, L = H?; (iii) If H ∈ CFL, L ∩H ∈

CFL?
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Proof. See Theorems 8.11, 8.12 and 8.13 of [HU79].

There are many other decidable and undecidable properties of CFL and DCFL.

In general for REG almost every property one can think of is decidable. The fol-

lowing useful lemma is proved in [IR74]. We will use it several times throughout

the remainder of this thesis.

Lemma 2.6.6 (Theorem 2.3 of [IR74]). Let P be any predicate2 on the languages

accepted by PDA over the alphabet Σ = {0, 1}, such that:

1. P (Σ∗) holds and

2. Either PLeft = {L′ | L′ = {x}\L, x ∈ Σ∗, P (L) holds} or PRight = {L′ | L′ =

L/{x}, x ∈ Σ∗, P (L) holds} is a proper subset of the languages accepted by

PDA over Σ, when L is accepted by a PDA over the alphabet Σ.

Then for arbitrary PDA G, the predicate P (LM(G)) is undecidable.

2.7 Algorithms on FSM and DPDA

In this section, we review several algorithms that will be used throughout the

remainder of this thesis.

2.7.1 Prefix Closure of Regular and Deterministic Context

Free Languages

Let M = 〈Q,Σ, δ, q0, Qf〉 be a finite state machine. If M is trim, then the machine

M = 〈Q,Σ, δ, q0, Q〉 will accept the prefix closure of LM(M).

Similarly, if M = 〈Q,Σ,Γ, δ, q0, Z0, Q〉 is a PDA, then LM(M) is prefix closed.

The generic algorithm for computing the prefix closure of M is discussed in detail

in [Har80], when it is demonstrated that the family DCFL is closed under quotient

with REG. Throughout this thesis, we will never need the more general algorithm

and we will construct our DPDA so that all states are final. Hence, the languages

they accept are prefix closed a priori. We will denote this operation as M . So that

LM(M) = LM(M).

2In this case, a predicate is a statement about one or more inputs using an appropriately
defined logic.
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2.7.2 Complementation of a language in REG

Let M = 〈Q,Σ, δ, q0, Qf〉 the following algorithm will construct a machine M ′

accepting the complement of LM(M).

Let M ′ = 〈Q ∪ {d},Σ, δ′, q0, (Q−Qf ) ∪ {d}〉

1. Define a state d not currently in Q.

2. For all a ∈ Σ, if there is no p ∈ Q such that (q, a, p) ∈ δ, then let (q, a, d) ∈ δ′.

Otherwise, if there is such a p, then let (q, a, p) ∈ δ′.

3. For all a ∈ Σ, let (d, a, d) ∈ δ′.

4. Finally, set the final states of M ′ to (Q−Qf ) ∪ {d}.

Theorem 3.2 of [HU79] shows that this machine accepts LM(M)c. We will denote

this operation on M by M c.

2.7.3 Complementation of a language in DCFL

Let M be a DPDA and let L = LM(M). We describe an algorithm for computing

the complement of L provided in Chapter 10 (pp. 235-239) of [HU79]. The first

step is to transform M so that regardless of what word w is placed on its tape,

it will always scan the entire word. Let M = 〈Q,Σ,Γ, δ, q0, Z0, F 〉 define M ′ =

〈Q ∪ {q′0, d, f},Σ,Γ ∪ {X0}, δ
′, q′0, X0, F ∪ {f}〉 where:

1. δ(q′0, ǫ,X0) = (q0, Z0X0); i.e., we replace the original start state and stack

symbol with new ones.

2. If for some q in Q, a in Σ and Z in Γ, δ(q, a, Z) and δ(q, ǫ, Z) are both

empty, then define δ′(q, a, Z) = (d, Z); and for all a in Σ and q in Q, define

δ′(q, a,X0) = (d,X0); i.e., make state d act as it does when we find the

complement of a regular language.

3. δ′(d, a, Z) = (d, Z) for all a in Σ and Z in Γ ∪ {X0}

4. If for q and Z and for all i there exists qi and γi such that (q, ǫ, Z) ⊢i (qi, ǫ, γi),

then δ′(q, ǫ, Z) = (d, Z); this detects conditions on which the DPDA may

make an infinite number of ǫ-transitions without accepting.
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5. δ′(f, ǫ, Z) = (d, Z) for all Z ∈ Γ ∪ {X0}

6. For any q in Q, Z in Γ and a in Σ∪{ǫ}, if δ′(q, a, Z) has not been defined in

Rules 1-5, then define δ′(q, a, Z) = δ(q, a, Z).

Lemma 10.3 of [HU79] proves that this machine accepts the same language as

LM(M), but that it will scan all inputs.

Now, assume that M = 〈Q,Σ,Γ, δ, q0, Z0, F 〉 is a DPDA that has been trans-

formed so that is will scan all inputs. Then the following algorithm will construct

a DPDA M ′ that accepts LM(M)c.

Let M ′ = 〈Q′,Σ,Γ, δ′, q′0, Z
′
0, F

′〉 where

Q′ = {(q, k)|q ∈ Q, k = 1, 2, 3}

Let F ′ = {(q, 3)|q ∈ Q} and define:

q′0 =







(q0, 1) if q0 ∈ F

(q0, 2) if q0 6∈ F

Now define δ′ as follows:

1. If δ(q, ǫ, Z) = (p, γ), then for k = 1 or k = 2 define δ′((q, k), ǫ, Z) = ((p, k′), γ)

where k′ = 1 if k = 1 or p ∈ F ; otherwise, k = 2.

2. If δ(q, a, Z) = (p, γ) for some a ∈ Σ, then δ′((q, 2), ǫ, Z) = ((q, 3), Z) and

δ′((q, 1), a, Z) = δ′((q, 3), a, Z) = ((p, k), γ) where k = 1 for p ∈ F and k = 2

for p 6∈ F .

Theorem 10.1 of [HU79] proves that the language LM(M ′) = LM(M)c. In Chapter

5 we will discuss these two algorithms in detail. We will denote this operation on

M by M c.

2.7.4 Normal Form for PDA

A DPDA is said to be in normal form if the following is true: If δ(q, a,X) = (p, γ),

then either:
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1. γ = ǫ (pop),

2. γ = X (no change), or

3. γ = Y X (push)

It is easy to see that any long stack push can be transformed into a series of pushes,

where each stack symbol is added one at a time. Hence, we can transform any

DPDA M into a new DPDA M in normal form. Lemmas 10.1 and 10.2 of [HU79]

have a detailed proof of this fact; though even Hopcroft and Ullman [HU79] note

that this is a fairly clear fact.

2.7.5 Predicting Machines

Let M = (QM ,Σ,Γ, δM , q0, Z0, FM) be a DPDA in normal form (see [HU79], Lem-

mas 10.1-10.2) and let A = (QA,Σ, δA, p0, FA) be a FSM. A predicting machine

π(M,A) is a DPDA with form

(QM ,Σ,Γ × ∆, δ, q0, X0, FM)

where ∆ = 2QM×QA (The power set of QM × QA). If (r, x, [Z, µ]γ) is an ID of

π(M,A) (x a string), then µ consists of the pairs (q, p) ∈ QM ×QA such that there

is a w ∈ Σ∗ for which δA(p, w) ∈ FA and (q, w, Zβ) ⊢∗ (s, ǫ, α) for some s ∈ FM ,

where β is the string of first components (the projection) of γ. The information

associated with this top stack symbol [Z, µ] tells for states q and p whether there

is some input string that causes both M and A to accept when started from their

current states and run with that input. We will use Predicting Machines in Chapter

5, but only a passing familiarity with their technical details will be required and

all other pertinent information is introduced in this chapter. Extensive details can

be found in Chapter 10.3 of [HU79].

2.7.6 Intersection of Languages

Let Gi = 〈Qi,Σ, δi, qi
0, Q

i
f〉 (i = 1, 2) be two finite state machines. Define M =

〈Q,Σ, δ, q0, Qf〉 where:

1. Q = Q1 ×Q2
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2. Qf = Q1
f ×Q2

f

3. q0 = (q1
0, q

2
0)

4. δ((q1, q2), a) = (p1, p2) if and only if δ1(q1, a) = p1 and δ(q2, a) = p2.

Then LM(M) = LM(G1) ∩LM(G2). It is clear that LM(M) is a regular language.

Now, suppose that G1 = 〈Q1,Σ,Γ, δ1, qi
0, Z

1
0 , Q

i
f〉 is a DPDA. Define M =

〈Q,Σ,Γ, δ, q0, Z0, Qf〉 where:

1. Q = Q1 ×Q2

2. Qf = Q1
f ×Q2

f

3. q0 = (q1
0, q

2
0)

4. δ((q1, q2), a, Z) = ((p1, p2), γ) if and only if δ1(q1, a, Z) = (p1, γ) and δ(q2, a) =

p2.

Then LM(M) = LM(G1)∩LM(G2). This is proved in Theorem 6.5 of [HU79] It is

clear that LM(M) is a deterministic context free language. We will denote these

operations on G1 and G2 by G1 ∩G2.

2.8 Introduction to Discrete Event Control

In this section we finally begin our discussion of discrete event control. Discrete

Event Control (or the Supervisory Control Theory (SCT) of Discrete Event Dy-

namic Systems (DEDS)) was founded by Ramadge and Wonham in 1987 [RW87c,

RW87b] in their two seminal papers. Let P be a system that is to be controlled.

This is called the plant model (or just the plant). We suppose that the dynamics

of the plant may be modeled by a state machine G = 〈Q,Σ, δ, q0, Qf〉. When Q

is finite, this is just a finite state machine as we have defined it in the previous

sections. As time moves forward, the plant generates symbols in Σ and changes

state according to the rules set forth in δ. In discrete event control, we call the

symbols events. We suppose at time 0, the plant is in state q0. The set of states

Qf are states in which the plant may stop functioning “legally.” By convention,

we assume that the plant models are trim (See Section 2.2).
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P1 P2

a

b

P3

c

a

Figure 2.6. A simple three state plant model with a single starting state and a single
final state. The starting state is illustrated by an arrow that connects to no state.

Example 2.8.1. Consider a simple plant model shown in Figure 2.6.

As time moves forward, the symbols produced by the plant form a history

w(t) ∈ Σ∗. Here, w(t) is a word for each time step t and t may be either used to

count the steps executed by the plant or may be an actual time counter in R+. By

L(G) we mean the set of possible history strings w(t) we may see at any time. It

is now easy to see that w(t) ∈ L(G) for all t. This is why we referred to L(G) as

the language generated by a finite state machine G. To reduce the complexity of

our mathematical expressions, we will often drop the time component of w(t) and

just refer to histories of G as w ∈ L(G).

When modeling plants, we partition Σ into Σc and Σu. The events in Σc are

controllable. An event is controllable if it can be prevented from occurring by choice.

The events in Σu are uncontrollable. These events cannot be prevented by choice.

Example 2.8.2. Consider the plant model shown in Figure 2.6. Suppose that Σc =

{a, c} and Σu = {b}. Then if we desired, we could permanently turn off event c

but b may occur no mater what we choose.

A supervisor for G is a mapping ϕ : L(G) → P(Σ), where P(Σ) is the power set

of Σ. If ϕ(w) = E ⊆ Σ, then whenever the supervisor observes sequence w being

generated by the plant model G, it will enable events in E and disable events in

Σ \ E. In this way, the supervisor may exert some control over the plant model

G. It is easy to see that by disabling certain events in Σc, the language produced

by the plant must be contained in L(G). We refer to the language generated

by G when under the control of ϕ as L(ϕ/G). This is the set of words w such
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that there is a sequence of transitions in G that lead from the initial state to

some state and so that at each step, the supervisor ϕ enables the transition used.

The definition of LM(ϕ/G) is completely analogous. Note, this notation is used

originally in [RW87c] and is not intended to indicate a quotient of any kind. The

notation ϕ/G is supposed to represent the supervisor ϕ acting in control over the

plant G. Even the authors of [RW87c] noted that this could be confusing. We

will always use the Greek letter ϕ to denote a supervisor, thus minimizing the

confusion.

We may now state the fundamental question of classical discrete event control:

Let K ⊆ LM(G). Does there exist a supervisor ϕ such that LM(ϕ/G) = K? The

fundamental theorem (Theorem 6.1) of [RW87c] answers this question:

Theorem 2.8.3. Let K ⊆ LM(G). Then there exists a supervisor ϕ such that

LM(ϕ/G) = K if and only if

1. K is controllable with respect to LM(G), that is: KΣu ∩ L(G) ⊆ K and

2. K is LM closed that is: K ∩ LM(G) = K.

The key criterion is Condition 1, which is called the controllability criterion, or

the definition of controllability for discrete event systems.

The language K is the target or objective language; it describes desirable pat-

terns of execution for the plant. The goal of the supervisor is to force the plant

to execute a desired pattern of behavior. To do this, the supervisor observes the

output w at any time and formulates a disabling plan ϕ(w). Ramadge and Won-

hams’s theorem states that a supervisor exists that can force G to behave in a

desired way only if controllability holds.

Kumar et al. [KGM91] showed that controllability is equivalent to KΣ∗
u ∩

L(G) = K. Griffin [Gri06] noted that this expression is itself equivalent to the

logical sentence:

∀w ∈ K∀u ∈ Σu(wu ∈ L(G) =⇒ wu ∈ K). (2.8.1)

We will use expressions like Expression 2.8.1 as the definition of controllability

throughout this thesis. If L ⊆ Σ∗, we define C(L) to be the set of controllable
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sublanguages of L. Hence, if K is controllable with respect to L, then we can

write K ∈ C(L).

The principle objective of discrete event control is to determine when, given a

language K and a plant G, there is a supervisor (a strategy for disabling events) so

that LM(ϕ/G) = K. Hence, the objective of discrete event control is to understand

controllability. Ramadge and Wonham showed that controllability is decidable for

the case when K is an element of REG(Σ) (that is both K and LM(G) are regular

languages). They gave an algorithm to check this property in [RW87c].

At first, controllability may seem like a mysterious concept. However, it is

really a planning concept. Think of the controllability criterion as the following:

There is a plan K for the behavior of a plant. You want to build a controller to

make the plant G behave according to the specified plan. One can only do this if

the plan K is well thought out enough so that whenever you have been executing

the plan for any amount of time and something terrible occurs (an uncontrollable

event), then you have already planned for that eventuality. Put simply, discrete

event control is all about planned exception handling.

2.8.1 An Algorithm to Check Controllability

One way to understand the action of the supervisor ϕ is as a second state machine

M that runs synchronously withG. Machine Gmay generate a symbol from Σ only

if machine M may read it. The resulting language generated by the synchronously

running machines is L(M) ∩ L(G).

Example 2.8.4. We will work with the plant model shown in Figure 2.6. Suppose

that K is the language produced by the finite state machine M shown in Figure

2.7. It is easy to see that LM(M) ⊆ LM(G). We can observe the effect of running

M in parallel with G by observing the machine that accepts the intersection of

the two languages: Figure 2.8 shows the state changes that occur when the two

machines are run simultaneously. Starting in states (P1, C1), G generates an a

and M reads an a. The machines transition to states (P2, C2). Now, since c is

not present in state C2 in M , we see that c is disabled. Hence, G may generate

a b and M will read a b and the machines will transition to states (P1, C3). The

plant G now generates an a again and the machines move to state (P2, C4). Since
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C1 C2

a

C3 C4

a

b

C5

c

a

b

Figure 2.7. A simple control language that disables c whenever b is seen an even number
of times.

P1, C1 P2, C2

a

P1, C3 P2, C4

a

b

P3, C5

c

a

b

Figure 2.8. An intersection of M and G.

c is available now, we say that c is enabled and a transition to state (P3, C5) may

be taken.

We will illustrate an algorithm for checking for controllability by an example.

This is not the algorithm given in [RW87c]. It is a simpler form of the algorithm.

A formalized version of this algorithm will be used in Chapter 3.

Example 2.8.5. Consider the Plant and Controller in Figures 2.6 and 2.7. To

check controllability, we first append a dump state qd to the machine M and

form the complement of M . The complement of M is a machine M ′ such that

LM(M ′) = Σ∗ \ LM(M) and L(M ′) = Σ∗ and M ′ has only the extra dump state

and extra transitions leading to the dump state.

When constructing the complement ofM , if a symbol transition σ is not defined

at a state q, then we define δ(q, σ) = qd. We define δ(qd, σ) = qd for all σ ∈ Σ.

Lastly, we set the only final state of M ′ to be qd. We show the complement of M
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in Figure 2.9.

C1 C2

a

C3 C4

a

b

C5

c

a

b

DMP

b,c

a,c

b,c

b

b,c

a,b,c

Figure 2.9. The complement machine to M .

The second step is to form the synchronous composition of M ′ and G. This will

be done just as we did in the previous example. The result is shown in Figure 2.10

The states corresponding to the dump state in M ′ are shown circled in the figure

P1,C1 P2,C2

a

P1,C3 P2,C4

a

b

P3,C5

c

a

b

P3, D

c

P2, D
P1, D

a

a

b

c

Figure 2.10. The intersection of M ′ and G.

and are labeled (P1, D), (P2, D), (P3, D). We will call these “dump” states and

the remaining states “non-dump states”. We now have the following fact: if there

is an uncontrollable transition leaving the non-dump states and entering the dump

states, then the language K is uncontrollable with respect to the plant model G.
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We will prove a very strong form of this statement in Chapter 3.

Recall our discussion about controllability. We suggested that the reader think

of K as a plan and the controllability criterion as saying something about the com-

pleteness of the plan in the face of exceptions (uncontrollable events). Transitions

leading to the dump state in M ′ are precisely the transitions that are not in the

plan. So, if an uncontrollable event leads into the dump states, then there is no

plan for that uncontrollable event. In our example, no uncontrollable events lead

to the dump states, so we’ve planned for all exceptions. We can disable (“turn

off”) c thus preventing ourselves from entering the dump states. This is precisely

what is meant by controllability.

2.8.2 Identifying the Plant Model

All discrete event control problems begin by determining a plant model. Most

discrete event control problems assume that the plant model is provided, or can

be determined using some system description. An alternative approach is to use a

hidden Markov model [Rab89] discovery algorithm along with an observed sequence

of events w. A better hidden Markov model algorithm for this problem is the CSSR

Algorithm of Crutchfield and Shalizi [SS04, SSC02b, SSC02a]. Their algorithm

takes a series of symbols and a single numeric value d, the maximal history length

of interest, and produces a plant model with associated transition probabilities.

The only draw back to this approach is no unique start state or final states can

be identified. However, the controller designer may be able to determine this

information from additional data.

2.8.3 Supremal Controllable Sublanguage

For the remainder of this section, let L = LM(G) and suppose that G is trim so

that L(G) = L. This will simplify our notation significantly. One nice property of

controllability is that it is preserved under union.

Lemma 2.8.6. Let K1, K2 ⊆ L be controllable sublanguages. Then K1 ∪ K2 is

also a controllable sublanguage of L.

Proof. See Proposition 7.1 of [RW87c].
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It may be the case that given K ⊆ L, there is no supervisor to enforce K.

The supremal controllable sublanguage of K (with respect to L or G) is the largest

sublanguage supC(K) ⊆ K such that supC(K) is controllable with respect to G

(or L). It follows from Lemma 2.8.6 and from a simple Zorn’s Lemma argument

that supC(K) exists for any given K and L. In the case when K is controllable,

then supC(K) = K. In [RW87b] Ramadge and Wonham showed that if K ∈ REG

and L ∈ REG, then supC(K) ∈ REG. They gave an algorithm to determine

supC(K) in this case. Kumar et al. [KGM91] gave a simpler algorithm that runs

in quadratic time when K = K and L = L, that is both the plant language and

objective language are prefix closed. We will return to the subject of supremal

controllable sublanguages in detail in Chapters 5 and 6.

2.9 Decidability in Control Theory

In [RW87c], Ramadge and Wonham note that the state setQ need not be restricted

to a finite set. This statement was repeated in most of the earliest papers on

discrete event control, yet no one really addressed the problem of discrete event

control with infinite state sets. Why? Consider the definition of controllability in

Expression 2.8.1. Let us replace LM(G) with L and consider the full definition in

the absence of our convenient prefix closure notation. Expression 2.8.1 is equivalent

to

∀w∀u(u ∈ Σu ∧ ∃s(ws ∈ K) ∧ ∃t(wut ∈ L) =⇒ ∃v(wuv ∈ K)). (2.9.1)

This statement says, “For all strings w and for all symbols u, if u is in Σu and

there is some s such that ws is in K and there is some t such that wut is in L,

then there is some v such that wuv is in K also.” By migrating the existential

quantifiers to the front of the logical expression, we can write this equivalently as:

∀w∀u∃s∃t∃v(u ∈ Σu ∧ (ws ∈ K) ∧ (wut ∈ L) =⇒ (wuv ∈ K)). (2.9.2)

Without loss of generality, let either L or K be the language accepted by a Tur-

ing Machine that halts on all inputs; i.e., a recursive language. In the parlance

of Mathematical Logic, Expression 2.9.2 is called a Π0
2 sentence [Rog87]. A ∆0

1
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sentence is any combination (with AND’s, OR’s and NOT’s) of expressions of the

form w ∈ L or w ∈ K, when K and L are recursive languages. For this reason, ∆0
1

expressions are also called recursive. They can be decided by a Turing machine.

A sentence that is of the form ∃x1, . . . ,∃xnR(x), where R(x) is a ∆0
1 expression is

called Σ0
1. The truth of these sentences is not decidable for all values of x. A Π0

2

sentence is obtained from a Σ0
1 sentence by prepending any number of universal

(∀) quantifiers to it. Figuratively speaking, if a Σ0
1 sentence is undecidable, then a

Π0
2 sentence is really undecidable. Hence we have found an interesting result:

Theorem 2.9.1. For arbitrarily chosen recursive languages K and L with K ⊆ L,

it is undecidable whether or not K is controllable with respect to L.

This is why there were no results on infinite state machines early in the history

of discrete event control. Once you leave finite state machines behind, you must

exercise extreme caution or the fundamental criterion of controllability becomes

undecidable. This fact was shown in practice first by Sreenivas [Sre93]. Sreenivas

showed that when K and L are languages accepted by so-called labeled Petri nets,

then it is undecidable whether K is controllable with respect to L. He also showed

that when K and L are labeled free Petri nets3, then it is decidable whether K

is controllable with respect to L. This was the first instance of an infinite state

machine being used for discrete event control. Until 2006, this was the only instance

of the use of a machine capable of expressing an infinite number of states in discrete

event control.

3The precise definition of Petri Net, Labeled Petri Net and Labeled Free Petri Net is not

important. The concepts are not used elsewhere in this thesis.



Chapter 3

On the Decidability of the Control

Predicate in Pushdown Systems

3.1 Introduction and Chapter Overview

In this Chapter we show the decidability of the controllability predicate when

objective language K is accepted by a DPDA and the plant language L is accepted

by a FSM. The majority of the results presented here are published in [Gri06].

Before proceeding, we first introduce some terminology that is essential to

understanding this chapter. We have previously stated that the object of a su-

pervisor ϕ is to enforce some language K ⊆ L, where L = LM(G) is the marked

language accepted by a state machine plant model G. Often times, the target (or

objective) language K is derived by intersecting L with some given specification

language S ⊆ Σ∗. We think of S as describing the desired behavior of the system

irrespective of the physical constraints (L) in the plant. The objective language

K = S ∩ L is the physically obtainable acceptable behavior. As we know from

Chapter 2, a supervisor ϕ exists only if K = S ∩ L is controllable with respect to

L (or equivalently G). We say that a specification S is controllable with respect

to L if K = S ∩ L is controllable. In the event that S ⊆ L, then clearly S = K

and the result is still the same.

Our main goal in this chapter is to prove the following theorem:

Theorem 3.1.1 (Griffin 2006). Controllability is decidable for a specification S
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generated by a DPDA M and a plant language L generated by a finite state machine

G. That is, if S is accepted by a DPDA and L is accepted by a finite state machine,

then it is decidable whether K = S ∩ L is controllable with respect to L.

To prove this theorem, we will first derive an equivalent and more useful expres-

sion for the controllability predicate (Expression 2.8.1). We then use the results

of Sénizergues [S9́7] to show that our new, equivalent, definition of controllability

is decidable when S (or K) is accepted by a DPDA and L, the plant language,

is accepted by a finite state machine. Having established this result, we go onto

provide an algorithm that will determine whether a given S (or K) is controllable

with respect to a given L. We end this chapter with a protracted example of the

use of this algorithm.

As an ancillary result, we also show that it is undecidable for an arbitrary

specification S generated by a non-deterministic pushdown automaton and plant

language L generated by a finite state machine whether K = S ∩L is controllable

with respect to L.

3.2 Proof of Main Theorem

The proof of the first lemma relies on several laws of logic [Sim00].

Lemma 3.2.1 (Griffin 2006, [Gri06]). Let S be a specification and let L be a plant

language. If K = S ∩ L, then the following are equivalent:

1. KΣ∗
u ∩ L = K.

2. K = S ∩ L is controllable with respect to L.

3.
((

K
)c

∩ L
)

/Σ∗
u =

(

K
)c

∩ L.

Proof. We shall prove 1 and 2 to be pairwise equivalent and likewise 2 and 3 to be

pairwise equivalent.

(1 ⇐⇒ 2) This is Theorem 3.2 of [KGM91].

(2 ⇐⇒ 3) We first prove 2 =⇒ 3: The fact that ǫ is an element of Σ∗
u shows

that
(

K
)c

∩ L ⊆
((

K
)c

∩ L
)

/Σ∗
u, since

((

K
)c

∩ L
)

ǫ =
(

K
)c

∩ L. Suppose that σ

is a member of
((

K
)c

∩ L
)

/Σ∗
u. Then it follows that σ ∈ L, since there is a u ∈ Σ∗

u
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such that σu ∈ L and L is prefix closed. It now suffices to show that σ ∈
(

K
)c

.

Suppose not; there is a σ ∈ K (and hence L) and a u ∈ Σ∗
u such that σu ∈ L but

σu 6∈ K. This contradicts controllability. Hence, σ ∈
(

K
)c

.

To prove 3 =⇒ 2, assume that
((

K
)c

∩ L
)

/Σ∗
u =

(

K
)c

∩ L. In set theo-

retic notation that is:
{

s : ∃u ∈ Σ∗
u

(

su ∈ L ∧ su 6∈ K
)}

=
{

s : s ∈ L ∧ s 6∈ K
}

.

By equality, we have the following universal sentence:

∀s
(

∃u ∈ Σ∗
u

(

su ∈ L ∧ su 6∈ K
)

=⇒
(

s 6∈ K ∧ s ∈ L
))

.

By contrapositive and DeMorgan rules, we may transform the implication inside

the universal quantifier to obtain the new (equivalent) sentence:

∀s
((

s ∈ K ∨ s 6∈ L
)

=⇒ ¬∃u ∈ Σ∗
u

(

su ∈ L ∧ su 6∈ K
))

We now apply three logical rules: (i) (A∨B) =⇒ C ≡ (A =⇒ C)∧ (B =⇒ C),

(ii) ∀x(A(x) ∧ B(x)) ≡ ∀xA(x) ∧ ∀xB(x), and (iii) ¬∃x(A(x)) ≡ ∀x(¬A(x)) to

obtain:

∀s
(

s ∈ K =⇒ ∀u ∈ Σ∗
u

(

su 6∈ L ∨ su ∈ K
))

∧

∀s
(

s 6∈ L =⇒ ∀u ∈ Σ∗
u

(

su 6∈ L ∨ su ∈ K
))

We know that (¬A ∨ B) ≡ (A =⇒ B) and we use this to deduce the equivalent

sentence:

∀s
(

s ∈ K =⇒ ∀u ∈ Σ∗
u

(

su ∈ L =⇒ su ∈ K
))

∧

∀s
(

s 6∈ L =⇒ ∀u ∈ Σ∗
u

(

su ∈ L =⇒ su ∈ K
))

.

The first conjunct, namely ∀s
(

s ∈ K =⇒ ∀u ∈ Σ∗
u

(

su ∈ L =⇒ su ∈ K
))

is the

definition we’ve given for controllability. The second conjunct is tautological. To

see this, note that s 6∈ L implies that su 6∈ L by prefix closure. Hence su ∈

L =⇒ su ∈ K is always true (because su ∈ L is false). This, in turn, implies that

s 6∈ L =⇒ ∀u ∈ Σ∗
u

(

su ∈ L =⇒ su ∈ K
)

is true (because su ∈ L =⇒ su ∈ K

is true).

Hence we have shown that if
((

K
)c

∩ L
)

/Σ∗
u =

(

K
)c

∩ L if and only K is
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controllable in L.

Remark 3.2.2. At this point, we are ready to prove the main theorem of this

chapter. The proof relies on the results mentioned in Lemma 2.6.2. Specifically, we

use the power of the result of Sénizergues, which states that it is decidable whether

the language generated by a given DPDA M1 is the same as the language generated

by a second DPDA M2; i.e., whether LM(M1) = LM(M2) [S9́7]. Sénizergues’ result

gives us an extremely quick and elegant way to prove the main theorem of this

chapter. However, as we will see in the next section, using Sénizergues’ result is

not a particularly efficient way to check controllability.

Proof of Main Theorem. Let K = S ∩L. Then K is generated by a DPDA, hence
(

K
)c

is generated by a DPDA by Theorem 10.3 of [HU79]. Likewise,
(

K
)c

∩ L

and
((

K
)c

∩ L
)

/Σ∗
u are generated by DPDA by Theorem 10.5 of [HU79]. Apply

Lemma 2.6.2 with Lemma 3.2.1 to obtain the result.

Corollary 3.2.3. Let L be a plant language, let S be a specification and let K =

S ∩ L. Then the following are equivalent:

1. The question: “Is K = S ∩ L controllable with respect to L?” is decidable.

2.
(

K
)c

∩ L =
((

K
)c

∩ L
)

/Σ∗
u is decidable.

3. KΣ∗
u ∩ L = K is decidable.

3.3 Testing Controllability

One problem in using the result of Sénizergues [S9́7] is that his algorithm for

determining the equivalence of the two DPDA does not have a running time bound.

This problem has been investigated by Stirling [Sti02], who has proved that the

time bound is at worst a primitive recursive function. However, this could still

imply that the time required for the procedure is super-exponential.

Our goal is to show that we can compute whether
(

K
)c
∩L =

((

K
)c

∩ L
)

/Σ∗
u

by checking whether there is a path labeled by a string υ ∈ Σ∗
u leading backward

from a marked state of a machine accepting
(

K
)c
∩L to a non-marked state. This
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is analogous to current controllability checking procedures [CL99] as outlined in

Chapter 1.

If M is a DPDA, then a Σu reverse path in M between states qm and q1 is a

sequence of states q1, . . . , qm and a string υ = u1 . . . un ∈ Σ∗
u such that for ζ1 ∈ Γ∗,

and σ ∈ Σ∗ (i) (q0, συ, Z0) ⊢∗ (q1, υ, ζ1) and (ii) (q1, υ, ζ1) ⊢∗ (qm, ǫ, ζf ) for some

ζf ∈ Γ∗. Note we are considering the possibility of ǫ-transitions in this path.

This approach will not work for arbitrary DPDA’s since it may be the case that

we can never reach a given state q from the starting state. Furthermore, we may

be unable to determine whether or not the transition used to arrive at q will even

be fired. If this is the case, then the fact that there is a string υ in Σ∗
u that leads

from this state to a final state is unimportant. This problem can be solved by

determining whether each transition used in the construction of υ could actually

be fired and whether or not the state q can be reached.

Lemma 3.3.1. There is an algorithm to remove all unreachable states and useless

transitions from a DPDA M .

Proof. To determine whether a state q inM is unreachable, construct a new DPDA

M ′ whose only marked state is q. It is easy to see that LM(M ′) = ∅ if and only if q

cannot be reached, i.e., q is unreachable. By Theorem 6.6 of [HU79] it is decidable

whether L(M ′) = ∅. To remove unreachable states from M , iterate through the

states of M , testing each for reachability. Remove unreachable states.

Consider a transition (q, x,X, q′, γ) ∈ δ. That is, when the DPDA M is in

state q with top stack symbol X and symbol x is read, then M transitions to

state q′ and pushes string γ onto its stack. To determine whether this transition is

useless, construct a new PDA M ′ with only one marked state, qd, not in the state

set of M . Replace the transition (q, x,X, q′, γ) by the transition (q, x,X, qd, γ).

Then add transitions at qd to empty the stack. By determinism, it is clear that

LM(M ′) = ∅ if and only if the transition (q, x,X, q′, γ) could never fire in M .

Applying Theorem 6.6 of [HU79] again, we see that this question is decidable. To

remove useless transitions from M , iterate through the transitions of M , testing

each for uselessness. Remove useless transitions. This completes the proof.

It is worth noting that it is not sufficient to check for unreachable states in order

to remove useless transitions, since the configuration of the DPDA is determined
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not only by its state but also by its stack. Hence, a transition may never fire

because the appropriate stack symbol never appears on top of the stack at the

correct time and not just because a certain state is never reached.

Theorem 3.3.2. Let L be a language generated by a DPDA and let

M = (Q,Σ,Γ, δ, q0, Z0, Qf )

be a DPDA accepting L by final state with no useless transitions or unreachable

states. Then L/Σ∗
u = L if and only if no Σu reverse path leaves Qf

1.

Proof. Suppose that L = L/Σ∗
u and Qf is not closed under Σ∗

u reverse paths. Then

there is a word s = συ such that s is accepted by M in some final state qf and there

is a reverse path from qf along υR leading to a state q 6∈ Qf . By the determinism

of M , if σ were to be accepted, then it would be accepted in q or there would be

a series of ǫ-transitions leading to another accepting state q′. Hence σ is not an

element of L thus contradicting our assumption.

Conversely, suppose that L 6= L/Σ∗
u and Qf is closed under Σ∗

u reverse paths.

Then there is a string σ in L/Σ∗
u but σ is not in L. Let υ be a string in Σ∗

u such that

συ ∈ L. There is a final state qf such that M accepts συ in qf . Since σ is a prefix

of συ, there is at least one state q not in Qf such that (q0, σ, Z0) ⊢∗ (q, ǫ, γ) and

(q, υ, γ) ⊢ (qf , ǫ, γ
′). Then this defines a Σ∗

u reverse path that leaves the marked

states, since we assumed that σ 6∈ L. This completes the proof.

It is easy to see that we can check whether a DPDA has its final states closed

under Σu reverse paths by traversing the graph backward from the marked states

following ǫ-transitions and uncontrollable transitions, once we have removed un-

reachable states and useless transitions. Alternatively, we may use a predicting

machine as we discuss in Chapter 5.

Algorithm A checks for the controllability of a DPDA controller and a finite

state machine plant model. Assume we are given a DPDA M that accepts S a

specification and a plant model G that accepts a plant language L. The first step

is to compute a machine MK that accepts that language K we wish to analyze

for controllability. We do this by forming a machine MK = M ∩ G that accepts

1We call this being closed under Σu reverse paths.
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K = S ∩ L. The next step is to form a machine N that accepts K
c
∩ L. We do

this because we must check whether (K
c
∩ L)/Σ∗

u = K
c
∩ L. To do this check,

we look at machine N and determine whether or not N has any Σu reverse paths.

We discussed how to do this above. If we find a Σu reverse path, then K is not

controllable with respect to L. Otherwise, K is controllable with respect to L.

Algorithm Description 3.3.1 – Algorithm A

1. GivenM accepting S the specification andG accepting L, the plant language.
2. Compute MK = M ∩G.
3. Compute machine MK accepting K.
4. Compute machine MK

c
accepting K

c
.

5. Compute machine G accepting L.
6. Compute a machine N = G ∩MK

c
.

7. Remove useless states and transitions from N .
8. If N has any Σu reverse paths, then K is not controllable with respect to L.

If N does not have any Σu reverse paths, then K is controllable with respect
to L.

3.4 Example

We consider a contrived automated fabrication scenario. A machine has been

constructed that can take requests from users who require widgets. The users and

machine are separated, so user requests may come into the machine while it is

building a widget. Manufacturing of a widget requires five basic steps:

1. Cut (the basic shape),

2. Bend (make a bend in the shape),

3. Rotate (rotate the product counter-clockwise 180◦),

4. Bend (make a second bend in the shape),

5. Punch (make a round hole in the shape), and

Suppose that manufacturing studies have indicated that bending rarely fails,

so after steps 1, 3, and 5, the product is inspected by an electronic eye for quality
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assurance. If the electronic eye detects a fault, the widget is discarded and the

process begins again. At the completion of each job, an operator may choose to

start a new production round or halt production. We define the following event

alphabet for this process:

(a) Σc

Event Description
c Cut
b Bend
r Rotate
p Punch

(b) Σu

Event Description
f Fault in quality assurance test
u New production request
h Halt production

Table 3.1. Event definitions and descriptions

Let Γ = {C,B,R, P, Z0}, where lower-case events correspond to their upper-

case counterparts. The controller for this process is shown in Figure 3.1(b). Marked

states are denoted by a thick state border. Denote this machine by M .

The proposed control system has nine states but cannot be modeled by a finite

state machine. To see this we observe that the control system must be able to store

instructions for each u event that occurs. Apply the Pumping Lemma for Regular

Languages (Chapter 2). Choose n ≥ 0 and consider the string w = uk(cbrbp)k ∈

LM(M), for k > 0 so that w is the shortest string possible with length greater

than n. (In particular, k = ⌈n/6⌉, so |w| − n ≤ 5.) Choose x, y, z ∈ Σ∗ so that

xyz = w and |xy| ≤ n. Then it is easy to see that no matter how x, y and z are

chosen, if i ≥ 2 for which xyiz 6∈ LM(M). Thus, LM(M) is not regular and hence

cannot be generated by a finite state machine because it fails to meet the criteria

of the Pumping Lemma.

If we assume that the widget making machine is capable of executing any

combination of bending, rotating etc. before receiving a halt signal, then it is clear

that the proposed control system is controllable. Such a plant model is shown in

Figure 3.1(a). Denote this plant model by G. We shall prove the controllability

by Algorithm A. We have constructed M so that LM(M) ⊂ L(G) = LM(G). This

fact can be checked by inspection. If it were not the case that LM(M) ⊆ LM(G),

then we could compute a DPDA that accepts K = LM(M) ∩ LM(G) using the

procedure defined in Chapter 2. In the present case we see that M accepts L ∩ S
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u

p, c, r, b, n, u, f

h

(a) Plant Model

1 2

7
u/Z0/Z0CBRBP !/Z0/CBRBP

f/B/!

f/R/!

f/P/!

f/C/!

!/B/!

!/R/!

!/P/!

c/C/!

b/B/!

r/R/!

p/P/!

3

4

u/C/C

6

5

u/B/!

u/R/R

u/P/P

!/C/CBRBPC

!/R/RBPCBR

!/P/PCBRBP

!/P/BPCBRBP,

!/R/RBPCBR

8

h/C/C

h/B/B

h/R/R

h/P/P

h/Z0/Z0

(b) Pushdown Automata Controller

Figure 3.1. Plant Model and Controller for Widget Production

as required by step one of Algorithm A, where L = LM(G) and S = LM(M). To

consider K we mark every state of M . Figure 3.2 shows an intermediate form of

M required to compute a machine accepting
(

K
)c

.

This automaton accepts L(M) but scans an entire input string; i.e., we add

transitions that may or may not be used to ensure that regardless of the string

input on the tape, the control head of the DPDA will scan the whole string. This

intermediate form is defined in Chapter 2. Note useless transitions have been

added to insure that the state machine does not halt on any input. For example,

consider the transition u/X0/X0 defined at state 2. This transition will never be

fired because there is no transition to pop the stack symbol Z0 that is positioned

above X0 at the start state. Denote this automaton by N .



49

2

7u/Z0/Z0CBRBP !/Z0/CBRBP

f/B/!

f/R/!

f/P/!

f/C/!

!/B/!

!/R/!

!/P/!

c/C/!

b/B/!

r/R/!

p/P/!

!/Z0/ Z0

3

4

u/C/C

6

5u/B/!

u/R/R

u/P/P

!/C/CBRBPC

!/R/RBPCBR

!/P/PCBRBP

!/P/BPCBRBP

!/R/RBPCBR

1

0

!/X0/ X0 Z0

d
*/C/C

*/B/B

*/X0/X0

*/Z0/Z0

*/C/C

*/B/B

*/P/P

*/X0/X0

*/Z0/Z0

*/C/C

*/B/B

*/R/R

*/P/P

*/X0/X0

c,b,r,p,f/Z0/Z0

*/C/C

*/B/B

*/R/R

*/P/P

*/Z0/Z0

*/C/C

*/R/R

*/P/P

*/X0/X0

*/Z0/Z0

b,r,p/C/C

c,r,p/B/B

b,c,p/R/R

b,r,c/P/P

b,r,p,c,u,f /X0/X0

*/C/C

*/B/B

*/R/R

*/X0/X0

*/Z0/Z0

*/C/C

*/X0/X0

*/C/C

*/B/B

*/R/R

*/P/P

*/X0/X0

*/Z0/Z0

8

*/X0/X0

h/C/C, h/B/B

h/R/R, h/P/P

h/Z0/Z0

Figure 3.2. An intermediate form of M that scans all input but accepts the same
language as M .

We next apply the procedure defined in Chapter 2 to find the complement of

LM(N). Denote this machine by N c. It is shown in Figure 3.3.

The weave of G and N c is shown in Figure 3.4. Unreachable transitions have

been grayed out. Thus we see that the step reducing M to N c will leave useless

transitions in the complementary DPDA. This shows that the reduction step of

Algorithm A is necessary.

It is now clear that every uncontrollable transition that enters a marked state

is a useless transition. The only transition entering the marked states is labeled

by controllable events and connects state (2, 1) with (d, 2), an ǫ transition then

connects state (d, 2) to the marked state (d, 3). Thence we conclude that the

system is in fact controllable. If we had failed to define an uncontrollable event

or a deadlock occurred that caused this system to be uncontrollable, then one

of the transitions that were added in the intermediate form would not be useless

and hence an uncontrollable transition would lead from a non-marked state to a

marked state (possibly using ǫ transitions). It follows at once that our widget
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h/Z0/Z0
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*/X0/X0

Figure 3.3. A machine that accepts of
(

K
)c

. Note there are a number of useless
transitions.
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*/X0/X0, */Z0/Z0

2,1

u/Z0/Z0CBRBP

3,1

4,1

5,1

6,1

7,1

u/C/C

u/B/!

u/R/R

u/P/P

f/R/!, f/C/! 

f/P/!, f/B/!

!/P/BPCBRBP
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h/C/C, h/B/B
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8,1

*/X0/X0

Figure 3.4. The weave of M c and G. This automaton accepts L(G) ∩ L(M)c. Useless
transitions have been grayed out.
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making control system is controllable.

3.5 Algorithmic Complexity

In this section, we prove that Algorithm A is P -complete 2.

Theorem 3.5.1. Algorithm A is P -complete with log-space reductions.

Proof. Step 6 of Algorithm A requires us to remove useless states and transitions

from machine N . In Lemma 3.3.1 we showed that to check this required verifying

that a certain DPDA accepted the empty language. Theorem 13.12 of [HU79]

shows that the emptiness problem for Context Free Grammars is complete in P

with log-space reductions. Hence, it follows that the emptiness problem for arbi-

trary DPDA is at worst P -complete. Now, since we may choose arbitrary DPDA

S, and let LM(G) = Σ∗, it follows at once that Algorithm A is P -complete. This

concludes the proof.

3.6 Undecidability Result

Lemma 3.6.1. Let Σ = {0, 1}; either let Σu = {0} or Σu = {1} and let P (K) be

the predicate on Σ saying KΣ∗
u = K, for some language K accepted by PDA over

Σ. Then P is undecidable.

Proof. We apply Lemma 2.6.6. First, if K = Σ∗, then clearly KΣ∗
u = K, hence P

holds for Σ∗. Now, let x ∈ Σ∗ be a word. If {x}\K 6= ∅, then {x}\K is infinite;

suppose that y ∈ {x}\K. Then xy ∈ K. Choose any prefix z of y. Then xz ∈ K.

Let u ∈ Σ∗
u. Then xzu ∈ K and hence there is some w ∈ Σ∗ such that xzuw ∈ K.

Therefore, zuw ∈ {x}\K. Thus we have shown that given any word y ∈ {x}\K,

we can find a longer word y′(= zuw) also in {x}\K. Hence it follows that {x}\K

is infinite. The finite, non-empty, context free languages are not in the set

PLeft = {K ′ | K ′ = {x}\K, x ∈ Σ∗, P holds for K}.

2P is the space of all problems computable in polynomial time on a deterministic Turing
Machine. Compare this to the class NP , which is the set of all problems computable in polynomial
time on a non-deterministic Turing machine. Discussion of these problems is far outside the scope
of this thesis and would add excessive volume. The reader is referred to Chapters 12-13 of [HU79]
or [CLRS01] for details.
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Hence PLeft is a proper subset of the languages accepted by PDA over Σ. Applying

the conclusion of Theorem 2.3 of [IR74] (see Lemma 2.6.6) we have that P is

undecidable for a language K given by an arbitrary PDA G.

Theorem 3.6.2 (Griffin 2006). It is undecidable for an arbitrary specification

S generated by a non-deterministic pushdown automaton and plant language L

generated by a finite state machine whether K = S ∩L is controllable with respect

to L.

Proof. Let L = Σ∗, this is regular. Controllability of the language K reduces to

the predicate considered in the theorem.

3.7 Conclusion

We have shown that it is not decidable whether arbitrary specifications generated

by PDA are controllable against regular plant models. We have demonstrated the

positive result that controllability can be tested for specifications generated by

DPDA and regular plant models.

Deterministic pushdown automata can be used to form specifications that are

more complicated than regular specifications. In particular, the pushdown stack

can be used as a to-do list for future action. In this case, uncontrollable events can

be seen to alter the composition of the list causing the controller to re-plan future

actions. Furthermore, nested response to uncontrollable events can be encoded

using DPDA. For example, suppose that a string w must be enabled each time an

uncontrollable event u is observed. Then the resulting behavior {unwn|n ≥ 1} ⊆ K

cannot be specified by a finite state automaton and hence a DPDA must be used.

It is worth noting that we have not said anything about the case when both

the specification and plant are given by DPDA. We have reasons to suspect that in

this case the controllability predicate is undecidable. However, we are not aware

of any proof of this statement.



Chapter 4

Verification of Secure Network

Protocols in Uncertain

Environments

4.1 Introduction

In this chapter, we provide a method for determining whether or not a given

protocol specified by automata models can cope with all known uncontrollable

hazards, and a method of estimating the confidence level for controllability of a

protocol in the case where this fails. Many of the results presented here were

published in [DGP+06] Our method for protocol checking and verification takes

formalisms from the literature of discrete event control. By protocol checking and

verification, we mean verifying that a protocol is logically correct, that it does not

cause deadlocks, and that it has been defined to respond to uncontrollable events

that may occur in a system implementing it. As protocols and open standards

have become increasingly important, a significant amount of work has been done

on verifying and designing protocols [HHL+93]. In the past, others have suggested

that discrete event control was insufficient for verifying protocols because of certain

inadequacies in the power of the models used [BCV90]. We have corrected some

of these problems by extending the elementary theory of discrete event control to

include specifications written as deterministic pushdown automata; these machines

are capable of accepting a wider class of languages than finite state machines and
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hence can model more complicated systems. In addition to this, we have defined

a maximum probability method for analyzing a protocol’s response to a priori

unspecified uncontrollable events. Our approach uses a specialized hidden Markov

model that serves as a generator of uncontrollable events. Using this approach we

can precisely define what we mean by robustness in uncertain environments.

The analysis we suggest provides a simple solution to many of the problems

noted in [BCV90]. It was observed that systems as complicated as networks are

often impossible to model in a discrete event control context. By extending the

class of models that can be analyzed using discrete event control, we have extended

the class of protocols that can be successfully verified using this approach. Fur-

thermore, by defining an optimal robustness measurement for un-modeled uncon-

trollable events, we have reduced the amount of complexity that must be modeled

in order to verify a given protocol. Once these problems are removed, it becomes

clear that hierarchical discrete event control techniques are a natural approach for

analyzing and verifying protocols for logical correctness. Moreover, hierarchically

designed protocols allow the complexity to be spread out over several layers, thus

allowing us to design more complicated protocols built up from simpler, layered

protocols. Each of these layers and their interactions can by verified using the

approach we define below.

We apply our approach to the verification of a simple two-level protocol spec-

ifying the behavior of two wireless nodes as they attempt to establish a secure

connection. Recent work has been done in the formal modeling and analysis of

network protocols [BCV90,SAFK+03]. As we become more dependent on wireless

networks for communication, the design and implementation of secure network

protocols will become more important. It is simply impossible to design ad hoc

protocols that will be responsible for secure communications throughout the world.

Off-line analysis and verification of protocols before they are standardized will save

time and money in the long run. The use of pushdown-automata to model aspects

of protocols that cannot (or should not) be modeled by finite state automata rep-

resents a novel approach to protocol modeling and verification.

The remainder of this chapter is organized as follows: Section 4.2 presents a

simple two-level hierarchical protocol that will be used to demonstrate the tech-

niques we describe. Section 4.3 discusses the hidden Markov model approach to
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Out of Range with Return Temporarily Out of Range
Association Request Response

Management Frame Exchange Beacon Sent/Received
Timed Out/No Retries Receive Acknowledgment

Connection Authorized/Associated Send Packet/Start Timer
Timed Out Timed Out/Retries Left

Receive Packet Send Acknowledgment

Table 4.1. Controllable Events (Σc)

Security Exception Permanent Out of Range
Out of Range T Seconds Elapse

D Seconds Elapse

Table 4.2. Uncontrollable Events (Σu)

verifying robustness of protocols in uncertain environments. Section 4.4 presents

future work and conclusions respectively.

4.2 Application of Discrete Event Systems to Net-

work Protocols

In this section we use techniques from discrete event control to analyze a two-level

example protocol. Consider the events shown in Tables 4.1 and 4.2:

The protocol we describe defines a procedure to be followed when two wireless

devices attempt to make a secure connection for transmitting packets. The protocol

specifies the following network behaviors:

1. Allow a number of retries before aborting transmission attempt if packet

transmission fails

2. Allow nodes to communicate only when connection has been both associated

and authorized

3. Abort connection request if receiving node is permanently out of range

4. Receiving node should send an acknowledgment upon receipt of packet; trans-

mitting node should wait for acknowledgment or timeout before aborting a

connection
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5. Beacon should be both sent and received before beginning association or

authorization procedure for connection

In order to apply techniques from discrete event control, we must define a

suitable plant model against which to test controllability. We make no domain

knowledge assumptions; hence let Σ∗ be the plant language in the example. We

wish to restrict the behavior of the plant language to allow only the strings in Σ∗

that meet the specifications.

4.2.1 Protocol Design

In this section we give an example protocol to be followed when two nodes attempt

to establish communication and exchange data. The lower level of this hierarchy

models information exchange and retry logic. (Retry logic procedures similar to

these have been implemented in many wireless network protocols [Lin03,Cor03].)

The upper level represents the negotiations needed to establish a secure connection

between two nodes. Figure 4.1 shows the negotiations that occur when two nodes

attempt to make a secure connection. The most obvious restriction made at this

level is that all accepted strings must begin with the event Beacon Sent & Received.

If the state Authorized & Associated is reached, then the lower-level specification

determines further behavior (see Figure 4.2). (The control scheme of this model is

consistent with current deployments of the 802.11 wireless protocol.)

FREE

UNASSOC.
UNAUTH.

UNASSOC.
AUTHORIZED

AUTHORIZED
ASSOCIATED

BEACON
SENT &
RCV’D;

EXCHANGE

ASSOC.
REQUEST &
RESPONSE

OUT OF RANGE
PERMANENT
OUT OF RANGE

OUT OF RANGE
WITH RETURN

TEMPORARILY
OUT OF RANGE

SECURITY

MGMT
FRAME

EXCEPTION

Figure 4.1. Upper-level Automaton
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When one node determines that it needs to communicate with another node,

it listens for available access point (AP) node beacons, chooses one, initiates an

authorization and association sequence, and then begins the data exchange. Each

of these compound events may involve lower-level events. (For instance, autho-

rization entails the exchange of eight messages built from a “shared secret” string

known to both initiator and recipient: query, challenge, encrypt-with-secret, autho-

rization, and their symmetric counterparts.) As sample complications, we signal

a security exception should an appropriate trigger occur (i.e., a duplicate MAC

address is received), and abort the connection if a permanently out of range status

is determined (perhaps due to a mid-message interrupt).

RECIEVE PACKET

SEND/ START TIMER

LISTENING CONNECTED

WAIT
COMPUTE

DELAY; 
WAIT

SEND ACKNOWLEDGMENT

PACKET
ACKNOWL.
PREPARE

D SEC.
PASS

T SEC.
PASS

CONNECTION
AUTH/ASSOC

TIMED OUT

TIMED OUT; RETRIES LEFT

RECIEVE ACKNOWLEDGMENT

TIMED OUT; NO RETRIES

Figure 4.2. Lower-level Automaton

The upper level in the hierarchy is modeled by an FSA. Hence, the language

it generates is regular. The node is modeled using a deterministic PDA, thus

its language is deterministic context free. Taking the intersection of these two

languages gives the deterministic context free specification language of the protocol

model. The plant language is given by Σ∗, a regular language. By Theorem 3.1.1

the controllability of the protocol can be decided.

In the upper level specification, the marked states are Free and Authorized

Associated. We consider Security Exception an uncontrollable event since it is ex-

ecuted in response to something uncontrollable happening (i.e., a duplicate MAC

address received). Should this event occur, the Association Request and Response

sequence is again initiated which leads back to a marked state. The other un-

controllable events, Out of Range and Out of Range - Permanent both lead the
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network back into a marked state.

The data exchange process is modeled by the lower level. A PDA is used here

since a stack is used to keep track of the timeout and delay factors, as shown in

the generic node model of Figure 4.2.

At this level, the uncontrollable events are the elapsing of the timeout (while

the transmitting node waits for an acknowledgment packet) and delay (the node

waits before retransmitting) periods. The loop transitions at State “Wait” and

“Compute Delay: Wait” both pop symbols off the stack to simulate the passage of

time. The “Start Timer” event leading to those states will push a certain number

of time unit stack symbols onto the stack. Since a stack is used to keep track of the

timeout period, the stack emptying is a controllable event (i.e., it can be disabled),

and similarly for the delay period. The marked states at this level are Listening

and Connected. The lapse of the timeout period and subsequently the lapse of the

delay period are controllable events which lead to one of the marked states, thus

the protocol is controllable with respect to the base plant model.

This system is simple enough to analyze by hand; it is clear simply from the

definitions that the system is controllable. Hence the protocol has been designed

to respond to all uncontrollable events that may occur at any state.

Controllability verification is the simplest protocol verification possible. It guar-

antees that the protocol will not deadlock in a non-accepting state and that it is

sufficiently well designed to accept uncontrollable events that may occur. For

larger systems, we are implementing a software tool [DGP03] that will assist in

designing and automatically verify controllability for large protocols described via

deterministic pushdown automata.

4.3 Resisting Network Attacks

In this section, we describe a method for verifying that a protocol maximizes the

probability that control is maintained even if unobservable, uncontrollable events

occur. To illustrate our approach, we describe a method for securing the wireless

network protocol we’ve described against intrusion detection. Our approach is a

form of specification based intrusion detection [SCS98,Den87]. This approach was

pioneered in [Den87] and since then has become one of the major approaches to
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intrusion detection.

In our model, we do not account for the fact that an adversary node may eaves-

drop on the first and third transmissions of the authorization exchange, thereby

gaining the ability to forge valid packets without access to the WEP “shared se-

cret.” An adversary might also send packets with “stolen” MAC headers, in an

attempt to fool the system into believing it was a legitimate node.

Suppose we discovered that an adversary is attempting to gain unauthorized

access, and that the previously unobservable events “MAC spoof” and “packet

sniff” are observed.

Since these events were not part of the original model, they are unobservable

to the original controller and their dynamics are not modeled by the existing au-

tomata. However, if we can make a probabilistic “guess” automata describing the

attacker’s strategy, we may still say something about the (probabilistic) controlla-

bility of the new system.

Definition 4.3.1 (SARAH). A Synchronous Automata Representing Attackers’

Heuristics (SARAH) is a quadruple, M = (ΣS, QS, pij, ei), where:

1. ΣS is an alphabet,

2. QS is a finite set of states capable of emitting symbols from the alphabet,

3. pij is a set of state transition probabilities, and

4. ei is a set of (state-wise) event-generation probabilities

A SARAH is a hidden Markov model whose transition and emission probabili-

ties are linked. Moreover, a SARAH is an (unmarked) FSA whose state transitions

are probabilistic and represent changes in attacker strategy that are unobservable

events for the network, and whose self-loops are deterministic and contain all of

the target network’s controllable events. Within a SARAH’s states, uncontrollable

events which cause state transitions in the network model are probabilistically

generated.

The synchronous automata of Figure 4.3 defines a possible time evolution for

an attack strategy acting on the wireless network described above. We do not know

the state evolution of this SARAH a priori, and thus cannot say with certainty
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Figure 4.3. SARAH Automaton

which attacks may occur at which times. However, we can identify the most likely

state evolution, as follows:

Let σ = x1 . . . xl be the string of newly observed SARAH events. Let η be a

sequence denoting the state-wise time evolution of the adversary model (i.e. the l

terms of η are all taken from SARAH’s state set, Q.)

We wish to find a sequence of SARAH states (ηi ∈ Q) that leads to the maximal

probability of generating the ith prefix of σ.

Let vk(i) denote the maximal probability over all paths ending at k:

vk(i) := max
η|ηi=k

P (x1, . . . , xi|η) (4.3.1)

It is possible to identify the most likely strategy by computing the a posteriori

probabilities for each of the l sequences; however, this computation is not scalable

for large automata. Alternately, we may construct a tree to represent the possible

paths through the SARAH. The Markov property of SARAH requires that optimal

paths through this tree must have optimal prefix-paths, and so it is straightforward

to apply dynamic programming [Bel57] techniques to find the most likely path. The

key is to consider (at each time point) only the best path leading to each state.

We do this as follows:

vk :=







1 if k = q0

0 else
(4.3.2)
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vq(i+ 1) := eq

(

xi+1 max
k∈Q

[vk(i)pkq]

)

(4.3.3)

where,

plm = P (ηi = m|ηi−1 = l) and (4.3.4)

el(x) = P (xi = x|ηi = l)). (4.3.5)

We obtain the probability of realizing the observed uncontrollable sequence σ

from the state sequence which generates the best fit to the observed sequence from:

P (σ|ηbestfit) = maxk∈Q[vk(l)pk,Qf
] (4.3.6)

This process uses only O(l|Q|) storage locations to compute vk(i) in O(l|Q|2)

steps, making it computationally attractive.

If the protocol is controllable under parallel composition with a state machine

constructed from the best fit sequence, the network is robust to corruption from

the most (historically) likely attack style. By running the network model in parallel

with SARAH and performing the controllability analysis on the combined system,

we can determine the probabilistic controllability of the network given our attack

model. Let C(S||N) be the indicator function that returns 1 if the combination is

controllable, and 0 if not.

Definition 4.3.2. Let N be a set of protocols. A protocol N in N is optimally

robust against a SARAH S if it maximizes the sum:

∑

s

C(S||N)P (σ|ηs)P (ηs)

4.3.1 Correcting Protocols

If a protocol has been verified against common network attacks and has been

found to be vulnerable to a particular attack, then it is necessary to correct the

problems in the protocol. There is a large literature on correction of discrete

event control specifications, [KGM91,RW87b] contain a good introduction. Most
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of the approaches used are automated and correct an uncontrollable specification

by removing control paths within the specification that lead to system deadlock

for a given plant model. We have argued in [DGP03] that this is not sufficient

for correcting all types of discrete event control specifications because it can lead

to the removal of key control paths in the specification. In [DGP03] we provide

an algorithm that determines control pathologies for finite state machines. Using

this algorithm, a human can debug specifications systematically to ensure that

the resulting specification is controllable. These pathologies are general across

deterministic context free languages and apply in the more general case we’ve

outlined in this thesis. By analyzing the Σu reverse paths determined by Algorithm

A, we can identify causes of uncontrollability and correct them in the protocol by

hand.

Using definition 4.3.2 and the methods outline in [DGP03] or Chapter 5 we can

systematically construct a protocol that is optimally robust using a spiral design

method (see Figure 4.4).

Reject

Verify Protocol with {1,2,...n} Attacks

Verify Protocol with no Attacks

Correct Protocol

Accept Protocol

Design Protocol

Accept

Accept

Reject

Figure 4.4. Spiral design method for wireless network protocols

This procedure is illustrated in [DGP03]. It can be simplified using automated

design and verification tools that can help the user check and correct incorrect

specifications.

4.4 Future Directions

In this chapter, we applied discrete event control methodology to a generic protocol

with a single environmental perturbation. An obvious next step is to obtain a
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real-world network environment characterization and simulate a detailed protocol

in depth.

We have identified a likely avenue for additional theoretical work: Formulate

a parametric optimization for protocols modeled as discrete event systems. This

will be useful, for instance, in optimizing timeout periods for retry logic. Given

statistical data for the distribution of uncontrollable events, we would like to be

able to optimize the protocol-defining automata and other design parameters for

maximal reliability. It would be highly desirable to extend this method to provide

a rigorous algorithm for determining a measure of security of a protocol.

4.5 Conclusion

We have demonstrated how discrete event control theory can be used in the design

and verification of wireless network protocols, even in the case where certain un-

controllable events cannot be identified until the protocol is deployed. For example,

this is the case with unanticipated strategies for attacking the network.

We have also provided a method for determining whether or not a given protocol

specified by automata models can cope with all known uncontrollable hazards, and

a method of estimating the confidence level for controllability of a protocol in the

case where this fails. This approach can be used for designing new protocols for

wireless networks that are robust to attack.



Chapter 5

An Algorithm to Compute the

Supremal Controllable

Sublanguage for a Class of

Pushdown Systems

5.1 Introduction

In this chapter, we study positive decidability results on supremal controllable

sublanguages of pushdown machines. The majority of the results presented in

this chapter are available in [Gri07], which has been accepted for publication and

is available as a pre-print. Section 5.4 is not included in [Gri07] and is used in

Chapters 6 - 8. The main goal of this chapter is to prove the following theorem:

Theorem 5.1.1 (Griffin 2007 [Gri07]). Let L be a prefix-closed plant language

and let K be a prefix closed sublanguage of L that is accepted by a DPDA. Then

supC(K) is accepted by a DPDA.

To prove this theorem, we develop an algorithm that extends the supremal

controllable sublanguage finding algorithm of [KGM91]. We show how to use the

results proved in Chapter 3 to derive this algorithm.

As an ancillary result, we also show when K is accepted by an arbitrary context

free sublanguage of a regular plant language L, then it is undecidable whether



65

supC(K) = ∅. This demonstrates conclusively that the non-deterministic context

free languages are extremely difficult to use in discrete event control.

5.2 An Algorithm to Compute A Controllable

Sublanguage

In this section we derive an algorithm to compute supC(K) ⊆ K, when K is

uncontrollable with respect to L and both K and L are prefix closed and K is

accepted by a DPDA and L is accepted by a finite state machine. To accomplish

this, we use a few lemmas that were proved in [Gri06]. We then apply these lemmas

to the construction of our algorithm.

5.2.1 Previous Results

The first lemma relates a certain quotient of the plant and the complement of the

control language to the controllability criterion.

Lemma 5.2.1. Let S be a specification and let L be a plant language. If K = S∩L,

then the following are equivalent: (i) K = S ∩ L is controllable with respect to L.

(ii)
((

K
)c

∩ L
)

/Σ∗
u =

(

K
)c

∩ L. (See Lemma 3.2.1.)

The second lemma asserts that there is an algorithm to remove any unreachable

state from a DPDA. It also asserts that we can remove any useless transitions from

a DPDA. A useless transition is one that, by nature of the machine’s structure,

will never fire during DPDA reading.

Lemma 5.2.2. There is an algorithm to remove all unreachable states and useless

transitions from a DPDA M . (See Lemma 3.3.1).

The third lemma details how to use the two preceding lemmas to check for

controllability in deterministic pushdown systems. Recall if M is a DPDA, then a

Σu reverse path in M between states qm and q1 is a sequence of states q1, . . . , qm

and a string υ = u1 . . . un ∈ Σ∗
u such that for ζ1 ∈ Γ∗, and σ ∈ Σ∗ (i) (q0, συ, Z0) ⊢

∗

(q1, υ, ζ1) and (ii) (q1, υ, ζ1) ⊢
∗ (qm, ǫ, ζf ) for some ζf ∈ Γ∗. Note we are considering

the possibility of ǫ-transitions in this path.
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Lemma 5.2.3. Let L be a language generated by a DPDA and let

M = (Q,Σ,Γ, δ, q0, Z0, Qf )

be a DPDA accepting L by final state with no useless transitions or unreachable

states. Then L/Σ∗
u = L if and only if no Σu reverse path leaves Qf . (See Theorem

3.3.2.)

5.2.2 Algorithm Derivation

Before getting into the details of the algorithm, we first summarize the approach.

Let K ⊆ L be the desired (uncontrollable) sublanguage. Our algorithm is moti-

vated by the algorithm in [KGM91]. Let both K and L be prefix closed. Let MK

be a DPDA that accepts K by final state and let a finite state machine A accept L.

Since K and L are prefix closed, suppose every state of MK is final and every state

of A is final. Finally, assume that there are no useless transitions or unreachable

states in M . If there are, we know from Lemma 3.3.1 that we can remove them.

Algorithm B works as follows: we first form a machine that we can check for

Σu reverse paths, just as in Algorithm A. We denote this machine by N ′. An

interesting fact about N ′ is that it has the structure of MK embedded inside it.

We use this fact extensively. We identify all the states that have Σu reverse paths

leading from them. The idea now is to remove any controllable transition that

leads to these states. Suppose we can isolate these states (i.e., cut them out of the

DPDA), then the uncontrollability will disappear (because we no longer have any

Σu reverse paths that are reachable. If we cannot isolate these states, then the

supremal controllable sublanguage is empty. We use the fact that the transition

structure of MK is embedded inside N ′ to remove these transitions from MK as we

remove them from N ′. The result is a new structure M ′′
K that generates supC(K).

This algorithm is a variation on Kumar’s algorithm for obtaining a finite state

machine that generates the supremal controllable sublanguage when K,L ∈ REG

and K and L are both prefix closed [KGM91]. In a sense, this algorithm extends

this classical result to the case when K ∈ DCFL.

We will prove the following about Algorithm B.

Theorem 5.2.4. L(M ′′
K) = supC(K).
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Algorithm Description 5.2.1 – Algorithm B

1. Form a new machine MK that scans all inputs but still accepts K.
2. Use MK to construct a machine N accepting Kc ∩ L. The structure of this

machine retains information about K and L in its states.
3. Trim N of useless states and transitions obtaining N ′.
4. Form a predicting machine π(N ′, U) where U is the one state finite state

machine accepting Σ∗
u. During an execution of π(N ′, U), the top stack symbol

tells for each state q ofN ′ whether there is some input string in Σ∗
u that causes

N ′ to accept if started in state q. That is, whether or not there is a Σu reverse
path terminating at this state.

5. Find all controllable transitions in π(N ′, U) that are between original states
of MK and that create a condition where the top stack symbol indicates
a Σu reverse path connects the next state to a final state. Remove these
transitions from MK to form M ′

K .
6. If LM(M ′

K) is still uncontrollable with respect to L, then supC(K) = ∅.
Otherwise:

7. Trim M ′
K of useless states and transitions obtaining M ′′

K .

Before proving Theorem 5.2.4, we first show that we can keep track of the

original states and transitions of M throughout the steps of Algorithm B. All of

the construction steps are taken directly from Hopcroft and Ullman, Chapters 6

and 10. The novelty herein lies in the use of these steps to produce a supremal

controllable sublanguage.

5.2.2.1 Step 1

We show that we can keep track of the transitions of MK when creating MK . Let

MK = 〈Q,Σ,Γ, δ, q0, Q〉 The procedure for forming MK is described in [HU79] and

Chapter 2. Let

MK = 〈Q ∪ {q′0, d, f},Σ,Γ ∪ {X0}, δ
′, q′0, X0, Q ∪ {f}〉, (5.2.1)

where:

1. δ′(q′0, ǫ,X0) = (q0, Z0X0), where X0 marks the bottom of the stack.

2. If for some q ∈ Q, a ∈ Σ and Z ∈ Γ, δ(q, a, Z) and δ(q, ǫ, Z) are both empty,

then δ′(q, a, Z) = (d, Z). Further, for all q ∈ Q and a ∈ Σ, δ(q, a,X0) =
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(d,X0).

3. δ′(d, a, Z) = (d, Z) for all a ∈ Σ and Z ∈ Γ ∪ {X0}.

4. Let q ∈ Q and Z ∈ Γ. If for all i there exists qi and γi such that (q, ǫ, Z) ⊢i

(qi, ǫ, γi), then δ′(q, ǫ, Z) = (d, Z) if no qi is final and δ(q, ǫ, Z) = (f, Z) other-

wise. (This rule allows us to detect structures that allow an infinite number

of ǫ-transitions. [HU79], pp. 237-238 shows this can be made effective.)

5. δ(f, ǫ, Z) = (d, Z) for all Z ∈ Γ ∪ {X0}.

6. For any other q ∈ Q, a ∈ Σ ∪ {ǫ} and Z ∈ Γ, if δ′(q, a, Z) is not defined by

rule 2 or 4, then δ′(q, a, Z) = δ(q, a, Z).

It is easy to see that the only rules using the definition of δ in MK are 4 and 6.

Clearly, we can keep track of the transitions from MK in Rule 6. The ǫ-transitions

that are changed from MK to MK are not particularly important to us in the use

of Algorithm B, however we can book-keep any transition δ(q, ǫ, Z) = (d, Z) or

δ′(q, ǫ, Z) = (f, Z) that arose from the use of Rule 4. Thus we have shown that we

can keep track of transitions in MK that are also in M . Note now, every state of

M ′ is final except d and q′0.

5.2.2.2 Step 2

We first show that we can keep track of the transitions of MK when computing a

machine M
c

K accepting Kc. By the very construction of M
c

K from Hopcroft and

Ullman, we know that M
c

K must simulate MK . Let

M
c

K = 〈Q′′,Σ,Γ ∪ {X0}, δ
′′, q′′0 , X0, F 〉, (5.2.2)

where Q′′ = {(q, k)|q ∈ Q ∪ {q′0, f, d}, k = 1, 2, 3}. Let F = {(q, 3)|q ∈ Q ∪

{q′0, f, d}} and let q′′0 = (q′0, 2), because as we remarked, q′0 is not final in MK . For

notational ease, let Q′ = Q ∪ {q′0, f, d}. We define δ′′ as follows

1. If δ′(q, ǫ, Z) = (p, γ), then for k = 1 or k = 2,

δ′′((q, k), ǫ, Z) = ((p, k′), γ)
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where k′ = 1 if k = 1 or p ∈ Q ∪ {f} and k′ = 2 if k = 2 and p 6∈ Q ∪ {f}.

2. If δ′(q, a, Z) = (p, γ) for a ∈ Σ, then δ′′((q, 2), ǫ, Z) = ((q, 3), Z) and

δ′′((q, 1), a, Z) = δ′′((q, 3), a, Z) = ((p, k), γ)

where k = 1 if p ∈ Q ∪ {f} (the original final states of MK) and k = 2 if

p 6∈ Q ∪ {f}.

Observe that k = 2 only when a transition to state d is made because d is the

only non-final state aside from q′0 and there are no transitions to q′0. Hence, all

transitions generated in Rule 6 of Step 1 will become transitions connecting states

of the form (q, 1) to other states of the form (p, 1). Original transitions will either

connect (q, 1) with (f, 1), in which case they are just like normal transitions in

MK . Added transitions will connect states of the form (q, 1) to (d, 2). Either way,

we can differentiate these transitions as we construct M
c

K .

We now show that we can differentiate transitions in the original machine and

a machine accepting L ∩ Kc. Since our notation is becoming cumbersome, we

will show this fact for an arbitrary deterministic pushdown machine M and a

deterministic finite state machine A. Let M = 〈QM ,Σ,Γ, δM , q0, Z0, FM〉 and let

A = 〈QA,Σ, δA, p0, FA〉. Define:

M ′ = 〈QA ×QM ,Σ,Γ, δ, (p0, q0), Z0, FA × FM〉

Let δ((p, q), a,X) contain ((p′, q′), γ) if and only if δA(p, a) = p′ and δM(q, a,X)

contains (q′, γ). If a = ǫ, set δ(p, a) = p. Clearly, if a transition (q, a, Z, q′, γ) were

in M , and a transition ((p, q), a, Z, (p′, q′), γ) ∈ δ, then clearly it is copied to M ′.

By determinism of A and M , we know that M ′ will also be deterministic. Hence,

we have shown we can keep track of the transitions of our original machine M

accepting K after Step 2 of Algorithm B.

5.2.2.3 Step 4

Trivially, since Step 3 of Algorithm B only removes states and transitions, we will

still be able to differentiate the transitions originally in MK after Step 3. In fact,

if we can prove that the transition structure of MK is still present after Step 4,
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then we are done. We know the algorithm will be executable. It will remain to

prove that it provides us with a useful sublanguage; i.e., to prove Theorem 5.2.4.

Before proceeding, it is necessary for the machine N ′ to be in normal form for

a deterministic pushdown machine. Hopcroft and Ullman [HU79] define normal

form as a condition where the only stack operations are to (i) erase the top stack

symbol or (ii) to push a single new stack symbol onto the stack. It is easy to

construct such a machine from an existing machine and further, we can assume

that our original M is a machine of this form. The construction procedure in Steps

1-3 will not change this fact.

Let N ′ = 〈QM ,Σ,Γ, δM , q0, Z0, FM〉. We know the states of N ′ are of the form

(p, (q, k)), where q ∈ Q ∪ {q′0, f, d} k = 1, 2, 3 and p is a state of the deterministic

finite state machine accepting L. We know that the accepting states look like

(p, (d, 3)), since in the machine MK , d was the only non-final state with transitions

going in. We can similarly describe Γ, Z0 and δM . Note, Σ has been constant

throughout.

Let U = 〈{p},Σu, δU , p, {p}〉 be the finite state machine accepting Σ∗
u with one

state. The predicting machine π(N ′, U) = (QM ,Σ,Γ × ∆, δ,X0, FM) where ∆ =

QM × {p}. If (r, x, [Z, µ]γ) is an ID of π(M ′
1, U), then µ contains the set of states

(q, p) ∈ FM such that there is a string u ∈ Σ∗
u such that (r, u, Zγ1) ⊢∗ (q, ǫ, α),

where γ1 is the string of first components of γ and α is some string in Γ∗.

Following the convention of Hopcroft and Ullman, let N ′(q, Z) be a determin-

istic pushdown machine with the structure of N ′ but started in state q with stack

symbol Z. Let LM(N ′(q, Z)) be as usual. Let Nr(N
′(q, Z)) be the set of strings

that cause N ′(q, Z) to erase its stack and enter state r. We now define δ for

π(N ′, U) as follows:

1. If δM(r, a, Z) = (s, ǫ), then δ(r, a, (Z, µ)) = (s, ǫ).

2. If δM(r, a, Z) = (s, Z), then δ(r, a, (Z, µ)) = (s, (Z, µ)).

3. If δM(r, a, Z) = (s, Y Z), then δ(r, a, (Z, µ)) = (s, (Y, ν)(Z, µ)), where ν is the

set of pairs (q, p) such that either LM(M ′
1(q, Y )) ∩ Σ∗

u is non-empty or there

is some t in QM such that Nt(N
′(q, Y )) ∩Σ∗

u is non-empty and (t, p) is in µ.

Let X0 = (Z0, µ0) where µ0 = {(q, p)|LM(M(q, Z0)) ∩ Σ∗
u 6= ∅}.
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The construction of π(N ′, U) shows that its structure is identical to the struc-

ture of N ′, except that the stack symbols have been modified to carry information

about U . Hence we can identify the original transitions of MK that were identified

in Step 1.

5.2.2.4 Algorithm Analysis

Suppose that there is a transition in π(N ′, U) that originated in MK of the form

τ = (q, c, (Z, µ), q′, (Y, ν)), with q not a final state, q′ not a final state and ν, whose

first symbol contains an element of the form (qf , p), where qf = (s, (d, 3)) and s is a

final state of A, the machine accepting L; by assumption, every state of A is final,

since L is prefix closed, d is the dead state introduced in Step 1, p is the only state

of U and c ∈ Σc. Then there is a string in Σ∗
u leading from state q′ to a final state

of N ′. That is to say, a Σu reverse path leading out of the final states. We know

that we have trimmed N ′ of useless transitions and unreachable states. Hence, we

know that this transition τ can fire in N ′. We can therefore conclude that if we

disable this one transition, we will eliminate a single instance of uncontrollability.

To see this, consider repeating Steps 1 through 4 again on the modified MK . The

transition we just removed, would be added to MK , only now it would go to state

d in Step 1 instead of state q′. It follows immediately that we have “closed off” a

Σu reverse path from entering the final states. After repeating this process for all

transitions of this type, one of two conditions will be true:

1. There is a transition (q, u, (Z, µ), q′, (Y, ν)) with u ∈ Σu satisfying all the

same properties as τ . In this case, since we have eliminated all controllable

transitions in MK leading to uncontrollability, we can conclude that some

uncontrollable transition in MK leads to uncontrollability. Thus supC(K) =

∅.

2. There are no more transitions satisfying the properties of τ with either a

controllable event or uncontrollable event.

In either case, we know that every state of M ′′
K is final and hence LM(M ′′

K) is prefix

closed. We further can see that LM(M ′′
K) ⊆ K. Finally, in Case 2, we have shown

that LM(M ′′
K) is controllable with respect to L, since by construction a machine
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accepting L ∩ LM(M ′′
K) will have its final states closed under Σu reverse paths.

Using this argument and Lemma 5.2.3, we have proved the following.

Theorem 5.2.5. LM(M ′′
K) ⊆ K and LM(M ′′

K) is controllable with respect to L.

It now suffices to prove that L(M ′′
K) is supremal.

Proof of Theorem 5.2.4. Suppose L(M ′′
K) is controllable (Case 2). To show that

L(M ′′
K) is supremal, proceed by contradiction. Suppose s ∈ L(M ′′

K) and s ∈ K

and for some c ∈ Σc, let sc ∈ K and scΣ∗
u ∩ L ⊆ K. Since we only removed

controllable transitions, we know such a situation must arise if supC(K) 6= L(M ′′
K).

By determinism, the string s leads M ′′
K and MK to the same (corresponding)

state and these states are unique. We must have deleted a transition of the form

(q, c, A, q′, γ) from MK to get M ′′
K . We did this because there is some string u ∈ Σ∗

u

such that from a corresponding state in π(N ′, U) there is a path following the

elements of u causing scu ∈ Kc ∩ L. By determinism of π(N ′, U), we know that

there could not have been another path leading to a non-final state in π(N ′, U).

It follows at once that supC(K) = L(M ′′
K).

Theorem 5.2.6. When K and L are prefix closed and K is accepted by a de-

terministic pushdown machine and L is a regular language, then supC(K) is also

accepted by a deterministic pushdown machine.

Proof. This follows immediately from the results above.

Theorem 5.2.7. Algorithm B is P -complete.

Proof. Algorithm B contains the steps of Algorithm A as a sub-algorithm. Hence it

is at least P -complete. The construction of a predicting machine given in Chapter

10 of [HU79] shows that this problem is also contained in P . Hence, this algorithm

is P -complete.

5.3 Undecidability Results

We now turn our attention to proving the following proposition.
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Theorem 5.3.1. Let G be a finite state machine with language L(G) and marked

language LM(G). If K ⊆ LM(G), K 6= ∅ is accepted by an arbitrary PDA MK,

then it is undecidable whether supC(K) = ∅ when |Σu| ≥ 2.

To prove this proposition we will use four lemmas that, when taken together,

establish the result. The first lemma was established by Hunt and Rosenkrantz

[IR74].

Lemma 5.3.2. Let P be any predicate on the languages accepted by PDA over the

alphabet Σ = {0, 1}, such that: (i) P (Σ∗) holds and (ii) Either PLeft = {L′ | L′ =

{x}\L, x ∈ Σ∗, P (L) holds} or PRight = {L′ | L′ = L/{x}, x ∈ Σ∗, P (L) holds}

is a proper subset of the languages accepted by PDA over Σ, when L is accepted by

a PDA over the alphabet Σ. Then for arbitrary PDA G, the predicate P (LM(G))

is undecidable.

We use this result to prove the second lemma.

Lemma 5.3.3. Let Σ = {0, 1} and let P (K) be the predicate on Σ saying Σ∗ ⊆ K,

for some language K accepted by PDA over Σ. Then P is undecidable.

Proof. If K = Σ∗, then Σ∗ ⊆ K = Σ∗ and P (Σ∗) is true. Now let K be a language

for which P holds. We will show that if {x}\K is non-empty, then {x}\K is

infinite. Suppose that y ∈ {x}\K. Then xy ∈ K and x is a prefix of K. Since

x ∈ K and Σ∗ ⊆ K, it follows that for any arbitrary z ∈ Σ∗, xzy ∈ K. Hence,

there exists some w ∈ Σ∗ such that xzyw ∈ K. Thus we have shown that if |z| ≥ 1,

there is a longer string zyw ∈ {x}\K if y ∈ {x}\K. It follows at once that {x}\K

is infinite in size.

From this argument, PLeft cannot contain any finite context free languages and

hence cannot contain all context free languages. Applying the conclusion of Lemma

5.3.2, we see that the predicate P is undecidable for arbitrary PDA G.

Corollary 5.3.4. If |A| ≥ 2 is an alphabet and G is an arbitrary PDA over

alphabet Σ with A ⊆ Σ, then it is undecidable whether A∗ ⊆ LM(G).

Proof. We proceed by double induction on the size of A and the size of Σ. Clearly,

we have established base case |A| = 2, |Σ| = 2. Suppose that the statement

holds for |Σ| ≤ n and |A| = 2, then we will show that it holds for |Σ| = n + 1.
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By contradiction, suppose not, there is an Algorithm Z to determine whether

A∗ ⊆ LM(G) when G is an arbitrary PDA over alphabet Σ and |Σ| = n+ 1. Take

a language L generated by some PDA M over alphabet Σ′ ⊆ Σ.

If A 6⊆ Σ′, then A∗ 6⊆ L. If A ⊆ Σ′, then construct a new PDA M ′ using all

the symbols of Σ such that M ′ first executes all the moves of M and then push

some arbitrary finite string of symbols from Σ \Σ′ on to the end of all elements of

L. It is easy to see, A∗ ⊆ L if and only if A∗ ⊆ LM(M ′). Hence use Algorithm Z

to test whether A∗ ⊆ LM(M ′). This contradicts our induction hypothesis. Hence,

Algorithm Z does not exist.

To pass to the general case, suppose that the statement is true for |Σ| ≤ n

and |A| ≤ m ≤ n. It is clear that the contradiction argument we used above

applies just as well in this case. And hence, the corollary follows immediately by

the double induction.

Remark 5.3.5. There is an algorithm to decide whether A∗ ⊆ LM(G) in the case

when |A| = 1. To test this case, it suffices to analyze the parse tree of the corre-

sponding context free grammar that generates LM(G) to determine whether there

is a branch containing A∗. This can be done with a recursive algorithm similar

to the Coverability Algorithm used in Petri Net analysis (see [CL99], Chapter 4,

Section 4.2). It is easy to see that it is trivially decidable whether A∗ ⊆ LM(G)

when |A| = 0.

Our third lemma establishes a lower bound on the supremal controllable sub-

language of a prefix closed language. The result should be clear without proof,

though the proof is trivial.

Lemma 5.3.6. Let K 6= ∅ be accepted by an arbitrary pushdown automaton G. Let

L be a plant language. Consider supC(K) with respect to L. Then, supC(K) 6= ∅

iff L ∩ Σ∗
u ⊆ supC(K).

Proof. Suppose that supC(K) 6= ∅. We know from Cassandras and LaFortune

that since K is prefix closed so to will supC(K) be prefix closed. From this it

follows that ǫ ∈ supC(K). Since ǫ ∈ supC(K), it follows from the definition of

controllability that ǫΣ∗
u ∩L ⊆ supC(K) or L∩Σ∗

u ⊆ supC(K). Conversely, suppose

that L ∩ Σ∗
u ⊆ supC(K). Then supC(K) is non-empty because ǫ ∈ L ∩ Σ∗

u.
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Corollary 5.3.7. Let K 6= ∅ be accepted by an arbitrary pushdown automaton G.

Let L be a plant language. supC(K) 6= ∅ iff L ∩ Σ∗
u ⊆ K.

Proof. It is trivial that if supC(K) 6= ∅, then L ∩ Σ∗
u ⊆ K since supC(K) ⊆ K.

To prove the converse, suppose that L ∩ Σ∗
u ⊆ K. Then L ∩ Σ∗

u is a controllable

subset of K. To see this, let w ∈ L∩Σ∗
u. Choose u ∈ Σ∗

u. Then w ∈ Σ∗
u and hence

wu ∈ Σ∗
u. If wu ∈ L, then wu ∈ L ∩ Σ∗

u. Hence, [L ∩ Σ∗
u]Σ

∗
u ∩ L ⊆ L ∩ Σ∗

u. Hence,

supC(K) 6= ∅.

In our final lemma, we show that it is undecidable whether supC(K) = ∅ with

respect to L when K is accepted by an arbitrary pushdown automaton G and L

is an arbitrary regular plant language.

Lemma 5.3.8. Let K be accepted by an arbitrary pushdown automaton G. Let L

be a regular plant language. Finally, suppose that |Σu| ≥ 2. Then it is undecidable

whether supC(K) = ∅ with respect to L.

Proof. Suppose that is was decidable whether supC(K) = ∅ and consider the case

when the plant language L = Σ∗. By Corollary 5.3.7 we know that supC(K) 6= ∅

if and only if L ∩ Σ∗
u ⊆ K. For the case we are considering, supC(K) 6= ∅ if and

only if Σ∗
u ⊆ K. Applying Lemma 5.3.3, we see for arbitrary K, it is undecidable

whether Σ∗
u ⊆ K for |Σu| ≥ 2.

Finally, we can prove Theorem 5.3.1.

Proof of Theorem 5.3.1. By way of contradiction, suppose that it is decidable

whether supC(K) = ∅ with respect to arbitrary regular language L. We know

from [HU79] that K is also accepted by a PDA and that L is also regular. Hence,

it follows that it is decidable whether supC(K) = ∅ with respect to L. But this con-

tradicts Lemma 5.3.8. Thus, it is impossible to decide whether supC(K) = ∅.

5.4 Parametric Discrete Event Control

In this section we propose a problem like that of the problem of parametric control

for discrete event control systems. By parametric control, we mean that we must

choose some structural parameters that will produce a controller with a chosen
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form; for example, given a PID control structure, a solution to the parametric

control problem is a set of coefficients that provides a specific PID form [Cas02].

In this case, we will give the structural form: a pushdown automaton with a

desired transitional structure, and then attempt to identify a specific instance that

satisfies desired properties.

We provide Algorithm D to solve the parametric discrete event control problem.

The algorithm begins by assuming that a plant model G is provided. Based on

the results we have proved so far about decidability in discrete event control (see

Chapter 3), we assume that G is a finite state machine. Suppose that L = LM(G).

We then assume that a specification machine M is provided. Naturally, M may be

either a DPDA or a FSM. Machine M accepts some language S (i.e., S = LM(M))

that describes the discrete event strings that are desirable to the controller designer.

Machine M may be constructed without regard to the true plant model G–it

simply describes the behaviors that are preferred by the designer. We compute a

machine MK = M ∩G that accepts K = S ∩ L. This is the language that results

when the desired behavior (S) is combined with the possible behavior (L). The

language K is to be the controllable sublanguage of L. If K is not controllable

with respect to L, then we use Algorithm B on the DPDA MK with plant model

G. If Algorithm B returns ∅, then there is no substructure of MK that yields

a controllable sublanguage for L. On the other hand, if Algorithm B does not

return ∅, then the new DPDA produced, call it M ′
K , will generate a language

K ′ = LM(M ′
K). This language will be controllable with respect to L. Further,

M ′
K has a structure similar to MK except that some of the transitions that were

present in MK have been removed (by Algorithm B). The result is a solution to

the parametric control problem. We’ve found a substructure of MK (namely M ′
K)

such that K ′ is controllable with respect to L.

The problem in Step 1 is a design problem associated with defining what is

acceptable to the controller designer. Step 2 is readily solved by algorithms for

intersecting a finite state machine and a pushdown machine. Step 3 can be checked

using the algorithms from Chapter 3 or [Gri06]. Finally, Steps 5 and 6 are end

steps. The key to executing this algorithm is to determine a method for computing

Step 4.

The remainder of this section is given over to showing that Algorithm B
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Algorithm Description 5.4.1 – Algorithm D

1. Produce a pushdown machine M that accepts a specification S. This specifi-
cation may be generated without reference to a plant model, it simply details
desired behavior of any plant with a given alphabet Σ.

2. Given a plant model G compute machine MK = M ∩ G accepting K =
LM(L) ∩ LM(M). Machine MK is the parametric controller.

3. If K is controllable, GOTO 5. Otherwise, K is not controllable, GOTO 4.
4. Apply Algorithm B to MK and G to remove transitions from MK that cause

uncontrollability. Denote this new machine M ′
K . If L(M ′

K) = ∅ GOTO 6.
Otherwise GOTO 5.

5. The machine MK is the solution to the parametric control problem.
6. There is no controller meeting the specification S and developed from the

structure prescribed by M . The problem is ill-posed.

for computing supremal controllable sublanguages of deterministic pushdown ma-

chines can be used to identify a new controller M ′
K that is a substructure of MK

and that accepts a subset of K that is controllable with respect to L; i.e., to show

that Step 4 is algorithmically possible.

5.4.1 Algorithm

In Algorithm B we created a transition deletion procedure for when K was prefix

closed and L was prefix closed. This transition deletion procedure is inspired by

the work in [KGM91]; in fact it is the same basic algorithm with modifications

made for the pushdown structure. In Theorem 5.2.5, we proved that the language

K ′ = LM(M ′
K) is controllable with respect to L. This proof did not require that

L be prefix closed. On the other hand the proof for supremacy did require the

prefix closure. Hence we have the following fact:

Theorem 5.4.1. Let S be a specification produced by M and G be a plant model

accepting language L and suppose K = S∩L is not controllable. Suppose Algorithm

B is run with MK = G∩M and G and produces a non-empty result. Then a new

specification S ′ = LM(M ′
K) produced by Algorithm B is a controllable sublanguage

of S and L.

Proof. Controllability follows from Theorem 5.2.5. The fact that S ′ is a subspeci-

fication is an immediate consequence of the construction of the algorithm.
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Remark 5.4.2. Naturally, if L(MK) and LM(G) are prefix closed, this algorithm

also has the pleasing property that it is the supremal controllable sublanguage. If

L is not prefix closed, then K ′ may not be the supremal controllable sublanguage,

but it will be a language derived from the original parametric controller MK re-

quiring the least number of modifications to force controllability. (This fact follows

implicitly from Kumar’s optimality proof [KGM91].

Remark 5.4.3. Suppose that we apply Algorithm D to machinesMK andG. Recall,

we are operating on a machine that accepts the language LM(MK)
c
∩ LM(G).

Suppose that we remove a set of transitions T to obtain M ′
K . It follows that if any

of the transitions in T were not removed, then the resulting M ′
K would produce a

language K ′ controllable with respect to LM(G).

Suppose that we remove another controllable transition τ ′ from M ′
K . Suppose

further that after removing element τ ′ from M ′
K we replace some transition τ ∈ T.

We now have a machine M ′′
K with some transition τ ∈ T enabled and another

transition τ ′ 6∈ T disabled. Then there are two possibilities:

1. The language LM(M ′′
K) is still controllable with respect to LM(G). If this is

the case, then we showed that τ must be effectively disabled by the removal

of τ ′. To see this, recall that transition τ is only added to T because it leads

to a Σu-reverse path (defined in Chapter 3.3); i.e., τ now becomes a useless

transition in the machineM ′′
K . If it were not useless, then τ could still fire and

a Σu-reverse path could be reached and LM(M ′′
K) would be uncontrollable

with respect to LM(G). Hence, disabling τ ′ has the effect of also disabling τ .

2. The language LM(M ′′
K) is not controllable with respect to LM(G). In this

case at one Σu-reverse path still exists that creates the condition of uncon-

trollability.

Hence we have proved that the set T is the unique set of transitions that must

be removed to obtain machine M ′
K from MK by effectively disabling the fewest

number of transitions. That is, there is no alternate set of transitions that can

still be disabled to achieve controllability.

Remark 5.4.4. In a very real way, Kumar et al.’s algorithm for supremal con-

trollable sublanguage is brilliant. It makes the minimal number of changes to



79

a supervisor necessary to return controllability. We are harnessing its structure

preserving properties here to address the problem of Step 4 of Algorithm D.

5.5 Conclusion

In this chapter we developed an algorithm for computing the supremal controllable

sublanguage of a language K when K is accepted by a DPDA and the plant

language L is accepted by a FSM and both are prefix closed. We further showed

that this supremal controllable sublanguage was also accepted by DPDA’s. As

a complement to this, we showed that when K is accepted by arbitrary non-

deterministic PDA, it is undecidable whether supC(K) = ∅ with respect to an

arbitrary regular plant language L. When taken with the results of Chapter 3

or [Gri06] this shows that languages accepted by arbitrary PDA are not practical

as controller target languages. On the contrary, these results show promise for

using languages accepted DPDA and in particular prefix closed languages accepted

by DPDA’s as control specifications.

We have left several open questions worth investigation. First, we have not

developed an algorithm for computing supC(K) when K is accepted by a DPDA

and not prefix closed. We have also not discussed any closure properties; i.e., in

this case, it may not be the case that supC(K) is accepted by a DPDA. We believe

that these questions are worth further investigation.

Finally, we have introduce the concept of Parametric Control in discrete event

systems. This concept will be used throughout the remainder of this thesis.



Chapter 6

State Space Models for Software

Security Quantification

6.1 Introduction

In this chapter we investigate state space models of the security of computer

systems. The majority of the results presented in this chapter were published

in [GMT05]. We use a discrete event dynamic system model of security dynamics.

We show how to derive events and transitions from existing security taxonomies.

We then apply the theory of discrete event control to define safety properties of

the computer system in terms of the basic concepts of controllability used in dis-

crete event control for two special sublanguages KS and KV. These languages

correspond to maximally robust controllable sublanguages. We also use this appli-

cation to foreshadow our theory of optimal parametric control presented in Chapter

7.

A discrete event dynamic system (DEDS) model of the security of a system is

a finite state machine G whose states correspond to varying levels of security

and whose transitions are labeled with specific attacks and recovery methods,

generically referred to as events. The number of states and transitions in the

model is limited only by the sophistication of the information available about the

system.

We assume that the restorative actions of the system are controllable; i.e., that

they can be disabled at the discretion of a system administrator. We assume that
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the attacks in the system are uncontrollable; i.e., they are executed outside the

control of a system administrator. Let Σ be the set of all events and suppose that

Σc are the controllable events and Σu are the uncontrollable events. Our model

assumes that all events can be partitioned into either Σc or Σu. We shall further

partition our states so that they are either safe or vulnerable or compromised. We

define a state as safe if it represents a condition in which no known vulnerabilities

can be exploited. A state is defined to be vulnerable if there is a known attack that

can compromise the system. Finally, a system is compromised if an attacker has

successfully executed an attack or series of attacks on a system and no restorative

measures have been taken.

Our analysis will proceed in three stages:

1. Model the security state of the system as a finite state machine.

2. Identify a suitable language K corresponding to a desirable security policy

and determine the safety properties of K.

3. If cost information is available, formulate the problem as an optimization

problem. We will take up the issue of optimal control in Chapter 7.

6.2 Modeling the Security State as a Finite State

Machine

Other authors have discussed modeling system security state as a finite state ma-

chine. Phillips and Swiler [PS98] introduced the notion of modeling system state in

a graph structure. This was taken up by Sheyner et al. [SW03,JSW02a,JSW02b]

who reintroduced the concept as an attack graph and applied elementary compu-

tational tree logic to the analysis of safety properties. Sheyner [SW03] provides

a detailed description of methods for modeling security states of networked sys-

tems, however neither Swiler nor Sheyner et al. suggest using the existing security

taxonomies.

Landwehr [LBMC93] presents a taxonomy of security flaws. While this overview

is out of date, it is a reasonable place to begin cataloging potential elements for the

set of uncontrollable events Σu. Howard and Longstaff [HL98] have extended the
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original taxonomy concept to include a common language for discussing security

incidents. Likewise, Axelsson [Axe00] presents a taxonomy of intrusion detection

systems (IDS) that can help users modeling computer system security when IDS

are in use. Finally, [LKJ98] presents a unique taxonomy of security pathologies

and their remedies. This ontology is unique in its presentation of restorative ac-

tions and, for that reason, is particularly useful in defining the elements in the set

Σc (the controllable events).

Example 6.2.1. Consider the xterm example from [LKJ98]. The xterm program in

X Windows running under the effective root user (su) has a flawed logging facility

in some Unix variants. This flaw allows an attacker to create new files or modify

existing files by appending information to it. The vulnerability stems from the

use of root privileges when making key system calls instead of the original user’s

privilege level. The discovery of this vulnerability may constitute an uncontrollable

event. Its exploitation is certainly an uncontrollable event.

Three immediate remedies are available for this vulnerability:

1. Remove super-user privileges from xterm

2. Disable the logging facility of xterm

3. Patch xterm to remove this vulnerability

Each of these actions is a controllable event. The state machine model shown

in Figure 6.1 adequately describes a fragment of the security of the system under

consideration (i.e., a Unix system running X Windows with an unpatched version

of xterm). In this case, States 0 and 5 are safe states, State 1 is a vulnerable

state and States 2, 3 and 4 are compromised states. As we said, this represents

only a fragment of the true security state of the entire system. Additionally, state

machine models for entire networks can be developed as in [SW03].

6.3 Safety Properties of Sublanguages

In order to use the tools of discrete event control on our system, we must define

a sublanguage of interest for a supervisor to enforce. Let GS be a second finite
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Figure 6.1. A small state machine model of the security of a system using an unpatched
version of xterm

state machine with the same structure as G in which we mark the safe states. Let

KS = LM(GS).

Proposition 6.3.1. The language KS is controllable with respect to L(G) if and

only if for any series of system compromises there is a series of restorative actions

κ that return the system to a safe condition.

Proof. The proof follows immediately from the formulation of controllability.

We shall call a system for which KS is controllable repairable since any vul-

nerabilities or attacks (i.e., uncontrollable events) can be repaired and the system

can be driven back into a safe state. As a consequence of [RW87c] we have the

following result:

Corollary 6.3.2. A system can be verified for repairability in O(|G|4) time.

Proof. Ramadge and Wonham [RW87c] prove that controllability can be verified

in quartic time.

In an ideal world, computer systems are always repairable. It may be the

case however that KS is not controllable. In this case, it is reasonable to wonder

whether KS is not controllable because of some vulnerability inherent in the system

or because some potential security policy is itself creating an unsafe condition.

The maximal controllable sublanguage of KS is denoted supC(KS) and is de-

fined as the largest controllable sublanguage of KS (with respect to L(G)).
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Proposition 6.3.3. Assuming that safe states are correctly identified, if supC(KS) =

∅, then KS is not controllable because of vulnerabilities inherent in the system.

Proof. The maximal controllable sublanguage supC(KS) is obtained by disabling

controllable events leading to an uncontrollable condition. If no such events exist,

then supC(KS) = ∅ and consequently inherent vulnerabilities in the system (i.e.,

uncontrollable events) cause the resulting security flaw.

In the case when supC(KS) 6= ∅, then we call the security policy KS securable

and refer to supC(KS) as the secured policy. Kumar et al. [KGM91] have pro-

vided a quadratic time algorithm for constructing a finite state machine accepting

supC(KS).

Corollary 6.3.4. We can determine whether a system is securable in O(|G|3).

Proof. Compute a machine to accept supC(KS) (O(|G|2)). Grow a Dijkstra Tree

from the start state (O(|G|3)). If the tree contains no path from the start state to

a final state, then supC(KS) = ∅.

Example 6.3.5. In Example 6.2.1, if S = {0, 5}, then it is easy to see that KS

is controllable. Conversely, if S = {0}, then it is easy to see that KS is not

controllable and furthermore, supC(KS) = ∅. In this case however, it was a poor

choice of safe states that led to the uncontrollability and not (necessarily) the

uncontrollable events.

If KS is uncontrollable and supC(KS) = ∅, it is still possible to say something

about the security of the underlying system. Let V be the set of vulnerable states

and consider a finite state machine GV with the same structure as G but with

states in both S and V marked. Let KV = LM(GV).

Proposition 6.3.6. The language KV is controllable with respect to L(G) if and

only if for any series of system compromises there is a series of restorative actions

κ that return the system to an uncompromised condition.

We call a system in which KV is controllable salvageable. In this case, we see

that the salvageable property is much weaker than the repairable property, for

even a system that is salvageable is still in a vulnerable state. Furthermore, it is

easy to see that the analysis we performed for KS holds for KV and hence that
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salvageability can be checked in O(|G|4) time. Likewise, the maximal controllable

sublanguage supC(KV) can also be computed and checked for emptiness in O(|G|3)

time. If supC(KV) 6= ∅, then we refer to it as the secured salvageable security

policy. Clearly such a policy is sub-optimal in terms of overall system security, but

better than the case when supC(KV) = ∅. In this case, the system is inherently

insecure.

It is worth noting that the controllability analysis is similar to the attack graph

analysis proposed by Sheyner et al. [SHJ+02, SW03, JSW02a, JSW02b]. Like the

formal analysis proposed in [JSW02b] our controllability analysis corresponds to

the verification of a formula in computational tree logic. We view our analysis

as being more sophisticated however because of our use of supremal controllable

sublanguages for analyzing restorative security policies. Such activities are not

considered in the cited works.

6.4 Undetected Transitions

As noted earlier, perhaps one of the most serious security issues is an undetected

vulnerability, that is an attack that can be performed on a system without the

users’ knowledge. In such an instance, the state of the system may be compromised

but the user believes that the system exists in an safe state.

Traditional discrete event control models use a mask to represent unobservable

events (see [KG95b], Chapter 4). We find this practice unnecessarily complicated

and useless in our case since it may require the modeler to give names to attacks

or vulnerabilities that have not yet been conceived. Consequently, we take an

equivalent and alternate approach, ǫ-transition non-determinism. An ǫ-transition

in a finite state machine is a silent transition that produces no event. They are

ideal for representing unobservable phenomena.

Example 6.4.1. Consider the modified security model of Figure 6.2. In this case,

we have added an unobservable transition (ǫ) from State 1 to State 6. We assume

that this compromise state disables the utility of patching xterm.

In this case, we can still analyze the controllability of KS (respectively KV)

to determine whether our system is repairable. However, our analysis will not

yield as much useful information. Non-determinism means that it is impossible
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Figure 6.2. A small state machine model of the security of a system using an unpatched
version of xterm when an unknown attack disables the utility of patching xterm.

to determine when we are in a specific state and executing a specific restorative

action. In Example 6.4.1, we will still have the string νπ in KS, but we will also

have the string νπδ in KS as a result of the non-determinism associated with the

single ǫ transition.

The growth in KS can make analysis of controllability in determining a security

policy nearly useless since non-determinism may cause the policy to specify useless

restorative actions. A solution to this problem is to deterministically select a

control policy K ⊆ KS and verify it for controllability.

The choice of K is very much a design problem and no theory is available for

designing K from scratch. If K is uncontrollable, the policy designer may choose to

use the maximal controllable sublanguage to correctK. This process is not without

its caveats, since K may be uncontrollable as a result of human error and not

inherent system insecurity. Damiani, Griffin and Phoha [DGP03] have developed

methods for correcting it if K is uncontrollable that do not involve the use of

maximal controllable sublanguages. The techniques they present can be adapted

to DPDA controllers using the algorithms set forth in Chapter 3. The algorithm

presented in [DGP03] will identify the sources (and corrective suggestions) for the

security policy K in quadratic time.
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A simple approach to designing K is to separate the control policy into deter-

ministic and non-deterministic components. In this case, restorative actions are

taken only when it is certain they will lead to an improvement in system secu-

rity. If the resulting language K is uncontrollable, then a trade-off must be made

between executing a restorative action that is useless and doing nothing (which

leads to the uncontrollability of K). In this case, the policy designer must use a

heuristic approach to settling these design decisions.

Example 6.4.2. We can divide the security policy for the problem in Example 6.4.1

into the case when a known attack has occurred and the case when we do not know

whether an attack has occurred. At State 1 we enable only ρ and δ since we are

certain those will secure the system. At States 2 and 3 we enable only π, for that

is the better solution to our problem and we can be sure that patching xterm will

be effective. It is clear that K is controllable in this small example.

ρ,δ

file appended
file created
altered file corrected
remove xterm privledges
disable logging facilities in xterm
path xterm

ν
α
φ
χ
ρ
δ
π

1

2

3

40

5

0 Secure State
xterm vulnerability available1

2 System compromised by file append

3 System compromised by file create

4 System remains compromised (not vulnerable)

5 System no longer vulerable to xterm attack

6 System cannot be patched

ν
α

φ
ρ,δ,π

ρ,δ,π

χ

xterm vulnerability found

Figure 6.3. A small security policy for using an unpatched version of xterm when an
unknown attack disables the utility of patching xterm.

6.5 Extension to DPDA Example

In this section, we extend our xterm example to use a DPDA to count the number

of file alterations that occurred because of a system intrusion. This section does

not appear in [GMT05].

Consider the DPDA shown in Figure 6.4. This DPDA will make a note in the

stack each time a file is created or modified as a result of an intrusion. Further,
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φ/∗/Φ∗

1

2

40

5

3

χ/Φ/
χ/Α/

χ/Ζ/
χ/Ζ/

ν

ρ,δ,π

ρ,δ,π

ρ,δ,π

xterm vulnerability found
file appended
file created
altered file corrected
remove xterm privledges
disable logging facilities in xterm
path xterm

ν
α
φ
χ
ρ
δ
π
Φ file created record
Α file modified record
Ζ initial stack symbol

α/∗/Α∗

φ/∗/Φ∗

α/∗/Α∗
φ/∗/Φ∗

α/∗/Α∗

Figure 6.4. System that can count the number of files modified by a system intrusion
and correct each file.

using the transitions defined at State 4 the policy enforces a complete system

clean up before arrival in the secured state. Using a plant model with the safe (or

vulnerable) states marked, we could verify this policy for controllability and hence

determine whether the policy was secure or salvageable.

Note, that in Chapter 5 we do not provided a method for computing the supre-

mal controllable sublanguage in the case when the controller is modeled by DPDA

and the plant is modeled by an FSM but neither generate prefix closed languages.

In this case, if the security policy were not secure, we could define securability or

salvageability as a parametric control problem as we defined it in the last section

of Chapter 5. Let MK be the model of the security policy (i.e., a DPDA as in

Figure 6.4. In this case, the policy would be securable (salvageable) if there were a

controllable submachine M ′
K of MK that is controllable with respect to the given

system security model. Thus the work presented in [GMT05] and summarized

in this chapter extends easily to the extended notion of discrete event control we

provide in this thesis.
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6.6 Conclusion

In this chapter, we have seen how to apply the theory of discrete event control to

modeling and analyzing security policies. We have also seen how our pushdown

automaton models of control policies can enhance the modeling power of security

policies, by allowing them to count arbitrary numbers of access violations (as in

the final example). This extended the original models shown in [GMT05].



Chapter 7

Optimal Parametric Discrete

Event Control

7.1 Introduction

In this chapter, we define and study an optimal parametric control problem in

the Supervisory Control Theory (see Chapter 2). As usual, let Σ be a discrete

event alphabet with Σ = Σu ∪ Σc. As defined in Chapter 2, Σc denotes the set of

controllable events, while Σu is the set of uncontrollable events and Σc ∩ Σu = ∅.

Let X1, . . . , Xn be binary variables; we write this as X1, . . . , Xn ∈ B = {0, 1}.

Let G be a trim plant model with marked language L = LM(G) and language

L = L(G). We assume that G is given as part of the problem statement.

Let MK(X1, . . . , Xn) be a function taking variables X1, . . . , Xn and returning

a machine (e.g., FSM, DPDA, PDA, TM) that will define a language K ⊆ L.

The language K is the target language–the language that describes desirable event

traces to be emitted by the plant. Recall that C(L) denotes controllable sublan-

guages of L (see Chapter 2). The statement MK(X1, . . . , Xn) |= Π indicates that

the machine MK(X1, . . . , Xn) makes true a set of logical sentences Π that describe

structural properties of the machine MK(X1, . . . , Xn). For the remainder of this

chapter, we will assume that Π is given. Let C(w) denote the cost associated with

a string w. This too will be defined explicitly in Section 7.2. We concentrate on

the following optimal discrete event control problem:
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min
X1,...,Xn

max
w∈K

C(w)

s.t. LM(MK(X1, . . . , Xn)) ⊆ L

K = LM(MK(X1, . . . , Xn))

MK(X1, . . . , Xn) |= Π

K ∈ C(L)

(X1, . . . , Xn) ∈ B (7.1.1)

This is similar to the optimal control problem studied by LaFortune et al.

in [SL98] however in this chapter:

1. We consider MK(X1, . . . , Xn) to have range consisting of deterministic push-

down automata; i.e., for each possible value assignment to the variables

X1, . . . , Xn, MK is in DPDA. (Since DPDA are generalizations of FSM,

we may also consider the case when MK(X1, . . . , XN) contains FSM.)

2. Instead of using a dynamic programming approach to the optimal control

problem (as in [SL98]), we apply a branch-and-bound algorithm driven by

the constraints. We compare and contrast the problem we are solving with

the problem investigated in [SL98] in Section 7.5 and show why we do not

use a dynamic programming approach in our solution.

3. We will provide an example where elements in the range of MK(X1, . . . , Xn)

will have specific structure (See Chapter 8).

The approach proposed is like a classical optimal parametric control problem

phrased for discrete event systems. Recall, classical parametrized control asks the

question, “Assuming a PID controller is to be used what are the optimal tuning

parameters to use in order to minimize a cost function.” In the case of statistical

parametric control, the cost function may be the mean square error leading to

MMSE parametric control or a cost function involving the gradient of the control

function if large deviations in the controllable vector are undesirable [Cas02].

Our problem is similar to this. We specify a mapping MK(X1, . . . , Xn). The

output of this function must have certain properties (satisfy Π) and further it must
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give rise to an objective language K such that K ∈ C(L); this is another implicit

property of the output of MK(X1, . . . , XN). We then attempt to find the optimal

control structure satisfying these properties that minimizes a given cost function.

Using the results in Chapter 3, we have the following theorem:

Theorem 7.1.1. There is no algorithm to solve Problem 7.1.1 when the range

of MK(X1, . . . , XN) contains machines whose accepted languages are not properly

contained in the class DCFL over a given alphabet Σ. Further, there is only an

algorithm to solve Problem 7.1.1 only if Π is decidable.

Proof. The proof is clear from Theorem 3.6.2. If the languages of machines in the

range of MK(X1, . . . , XN) are not contained in DCFL, then there is no algorithm

in general to check controllability. Hence we cannot analyze our constraints for

feasibility. The statement on the decidability of Π follows from a similar argument.

For the remainder of this chapter, we will assume that logical sentences may

use two types of constants (nouns)

1. Constants from: Q = {q0, . . . , qn}, Σ = {σ1, . . . , σm} and Γ = {Z0, . . . , Zk}

and

2. Constants from the sets Qf and δ

They may relate these two together using the ∈ relation. An example sentence,

∃p1((q0, σ1, Z0, p, Z0) ∈ δ ∧ (q0, σ2, Z0, p, Z0) 6∈ δ)

is a simple sentence saying there is a transition from the start state q0 on input σ1

with top stack symbol Z0 to state p, but no such transition on input symbol σ2.

Clearly, if we restrict our attention to this class of sentences Π, then for all

functions MK(X1, . . . , Xn) whose range consists of DPDA, MK(X1, . . . , Xn) |= Π

is decidable for fixed X1, . . . , Xn.

7.2 Optimal Control

Recall Problem 7.1.1 defined above. We are now in a position to define precisely

what our objective function is, what we mean by the function MK(X1, . . . , Xn)



93

and the constraints K ∈ C(L) and MK(X1, . . . , Xn) |= Π. Let G be a fixed plant

model with L = LM(G).

7.2.1 Objective Function

In [SL98] Sengupta and LaFortune proposed the minimax objective function for

a regular language L. For each event, Sengupta and LaFortune assumed a given

enabling cost κα(a) and a given execution cost for each event a ∈ Σ, κρ(a). Both of

these costs may be negative, thus making them rewards. Given a string w accepted

by a machine MK , the cost of the string w could be computed by inductively

determining which events were enabled during string execution and which events

in w had actually been executed.

Let w = a1 · · · an be a string. Let w(i− 1) = a1a2 · · · ai−1 for 1 ≤ i ≤ n. Also,

let w(0) = ǫ. Define

κα(MK |w(i− 1)) =
∑

a∈Σ,w(i−1)a∈L(MK)

κα(a)

This is the cost associated with enabling events in machine MK assuming that

w(i − 1) has already been observed. This is because if w(i − 1)a ∈ L(MK),

then after string w(i − 1) has been observed it is possible to see event a, hence

w(i− 1)a ∈ L(MK). Thus, even a must be enabled.

Then the cost of string w is:

C(w) =
n

∑

i=1

βi−1(κα(MK |w(i− 1)) + κρ(ai)) (7.2.1)

Trivially for β ∈ [0, 1), there is a supremal value C∗ such that for all w ∈ L,

C(w) ≤ C∗. Hence we need not concern ourselves with questions of convergence.

Remark 7.2.1. The cost function defined in [SL98] is identical to the one given

above except [SL98] assume β = 1. In order to guarantee a convergent optimization

algorithm, Sengupta and LaFortune assumed that all closed loops in the machine

MK had zero net cost. (Otherwise, when considering arbitrarily long loops, the

controller could easily produce an infinite cost.) We do not make this restriction.

Other differences between our approach and that in [SL98] are discussed in Chapter
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7.5.

Remark 7.2.2. One negative point about abandoning Sengupta and LaFortune’s

approach is the affect a short term time horizon has on the overall objective func-

tion. We appreciate that this violates the principle of infinite operation embedded

in the controllability predicate, however we counter that many real world optimal

control problems often contain either a finite time horizon, (in which case strict

controllability is not needed) or they use a depreciation constant in an infinite

time horizon. Therefore, we do not feel that this is in anyway detrimental to our

theory. Further, we believe it opens an new avenue of research for those interested

in pursuing a theory of optimal parametric discrete event control in which β = 1.

7.2.2 Computing the Objective Function

In general, it is simpler to approximate the objective using a numerical technique.

This is because computing a closed form expression for the objective function

requires us to compute a specific representation of the strings that are generated

by MK(X1, . . . , Xn) for all values of X1, . . . , Xn. This is simple in some instances

(e.g., Example 2.3.2), but may be highly complex for arbitrary DPDA. In our

research, we could not identify a straight-forward way to solve this problem, and

hence developed an approximation method.

To approximate the objective numerically, we chose an ζ value. Let Cmax be

the largest combined event and enabling cost. The maximal enabling cost may

be computed by looking at the enabling costs associated with each state of the

controller MK . That is, given a state q in MK , the enabling cost of state q can be

computed by summing the enabling cost associated with each transition defined

at q.

It follows that any string of length n must have total cost less than

n
∑

k=0

βkCmax.

More importantly, there is some value n so that

∞
∑

k=n

βkCmax < ζ.
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It follows that:

n =









log
(

ǫ(1−β)
Cmax

)

log(β)









(7.2.2)

is the minimum integer value of n for which this is true. Hence, we may compute

the objective function to ζ precision by exploring all strings up to length n. This

can be done in a secondary branch-and-bound framework. This problem is like a

traveling salesman problem [CLRS01]. In this case however, we are looking for the

longest route of n steps. We can also compute minw∈LM(M ′

K
)C(w) in this way as

well. To do so, compute the minimum cost of all strings up to length n and also

any string with length less than n that is accepted by M ′
K that has no continuation

(i.e., accepting strings that cause deadlock in both the plant and the controller).

We provide Algorithm E, a subroutine that will approximate the solution

to the problem maxw∈LM(MK(X1,...,Xn)C(w), when there is not a substructure of

MK(X1, . . . , Xn) that allows an infinite number of ǫ-transitions to occur.

Algorithm E operates as follows: We will simulate the operation of the DPDA

(or FSM) MK(X1, . . . , Xn) as it generates strings. We initialize data structures

to store the state and stack of MK(X1, . . . , Xn). We initialize the incumbent

solution to −∞ (since we are attempting to identify maxw∈LM(MK(X1,...,Xn)C(w)).

We determine and upper bound on n using Equation 7.2.2. This will allow us to

bound our search at some point.

We then choose an enabled transition and simulate a move of MK(X1, . . . , Xn),

updating the state and stack. We record the cost associated with this move using

the objective function defined in Equation 7.2.1. We repeat this process until one

of two things happens:

1. The string we have simulated has length greater than n. In this case, we

know the computed cost will not grow significantly greater. If the cost is

greater than the incumbent solution, then the incumbent is replaced.

2. It is shown that the cost of the string cannot be any larger than an incumbent

solution.

When either of these two events occur, we remove the last symbol (going back

to the previously recorded state and stack combination) and move on to the next

enabled transition that has not been explored.
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It is easy to see that this algorithm will exhaustively explore all strings gener-

ated byMK(X1, . . . , Xn) with length less than n. It is also clear that we could mod-

ify Algorithm E to find the minimum cost string generated by MK(X1, . . . , Xn).

The change to do this is trivial, and we do not discuss this in detail. To do this,

we simply explore minimal cost strings and use a branch-and-bound on the lowest

cost string, not the highest cost one.

Algorithm Description 7.2.1 – Algorithm E

Initialization: Suppose we have machine MK and we want to approximate the
objective function with strings of length n. Enter the search step with the start
state of MK and set I = ∅, m = 0, and γmax = −∞ and γ = 0. Let Cmax be the
largest event and enabling cost.
Search Step: We enter the search step with state q of MK , a set I and counter m.

1. If m > n, then stop. If γ > γmax, then set γmax = γ and return;
2. Find the first transition τ defined at q in MK with appropriate stack symbol

if necessary and that is not contained in I. If no such transition exists,
return.

3. Set γ′ = βn(C(q) + C(t)), where C(q) is the enabling cost associated with
state q and C(t) is the event cost of the transition t.

4. If γ′ + βn+1
∑m−1

k=0 β
kCmax = γ′ + βn+1 Cmax(1−βm)

1−β
< γmax return;

5. Add τ to I;
6. If τ is not an ǫ-transition, then transition MK on τ and find the new state q′;

store stack information as appropriate. GOTO STEP 1 on MK , q′, γ′, m+1
and set I ′ = ∅.

7. If τ is an ǫ-transition, then transition MK on τ and find the new state q′;
store stack information as appropriate. GOTO STEP 1 on MK , q′, γ′, m
and set I ′ = ∅.

Theorem 7.2.3. Algorithm E converges iff there is no substructure of MK in

which an infinite number of ǫ-transitions can occur.

Proof. Step 1 of Algorithm E will return when m > n. Hence, no path of length

larger than n can ever be explored. The value of m is incremented at each level of

descent in Step 6, however if Step 7 is executed instead of Step 6, then m is not

incremented because ǫ-transitions do not increase string length, but may modify

the stack structure of a DPDA. Hence, if an infinite number of ǫ-transitions is

executed, then Algorithm E may never terminate. The converse is clear by a

similar argument.
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Lemma 7.2.4. Algorithm E will find an ζ approximation of the true objective

value. Furthermore, the problem of objective function approximation is contained

in NP.

Proof. The fact that Algorithm E can find an approximation of the objective func-

tion is clear from its structure. It will continue searching through the space of

strings of length < n until a maximal one is discovered. Other smaller strings

will be fathomed by Step 4. Further, it is clear from the nature of the problem

that approximating the objective function is in NP, since this problem can be

phrased as a pure integer programming problem with variables xij defined so that

i = 0, . . . , n and j is defined over the transitions of MK . The transition structure

of MK must then be coded as a series of constraints. Since Integer Programming is

NP-complete [HU79,CLRS01] it follows that this problem is contained in NP.

7.2.3 The Function MK(X1, . . . , Xn)

In our formulation, let M be a pushdown machine providing a specification lan-

guage S. For the fixed plant model G, compute a machine MK = M ∩ G. This

machine accepts the language S∩L. Suppose that MK has controllable transitions

τ1, . . . , τn. For binary variableXi, we haveXi = 1 if and only if τi is enabled inMK .

Hence, we may define MK(X1, . . . , Xn) to be the machine obtained from MK by

enabling or disabling the appropriate transitions. Clearly, MK = MK(1, 1, . . . , 1).

Thus, our principal constraint K = LM(MK(X1, . . . , Xn)) enforces the parametric

control notions we defined in Section 5.4. Note the slight abuse of notation we

have introduced: here MK(X1, . . . , Xn) is the function returning a submachine of

MK , the intersection of M and G; and we have MK = MK(1, 1, . . . , 1).

7.2.4 Constraints: K ∈ C(L) and MK(X1, . . . , Xn) |= Π

By K ∈ C(L) we simply require that the resulting language of the supervised

system must be controllable with respect to the plant language L = L(G).

Let ψ1, . . . , ψm be a set of statements in Π. We will say that MK(X1, . . . , Xn) |=

Π for fixed values of X1, . . . , Xn if and only if each sentence in Π is true in the

automatonMK(X1, . . . , Xn). That is, the graph structure ofMK satisfies sentences

in Π [CLRS01].
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Suppose that ψ is a sentence Π and fix values for X1, . . . , Xn Suppose that

MK(X1, . . . , Xn) 6|= ψ; that is, ψ is not true in MK(X1, . . . , Xn). We will say that

ψ is reachable from MK(X1, . . . , Xn) if there is a finite set of variables Xi1 = · · · =

Xik = 1 so that when we set Xi1 = · · · = Xik = 0, then MK(X1, . . . , Xn) |=

ψ. Alternatively, ψ is reachable if there is a finite set of controllable transitions

τ1, . . . , τk inMK(X1, . . . , Xn) that can be disabled and thus make the new structure

satisfy ψ. The concept of reachability will be important in our branch-and-bound

optimization algorithm.

7.2.5 Branch-and-Bound Algorithm for Optimization

We provide a depth first search branch-and-bound algorithm below. At each node

of the branch-and-bound tree, we will have a set of fixed variable indexes, I (for

immutable). These are variables that are fixed in value and cannot be modified.

The algorithm we provide operates as follows. Initially, all variables are initial-

ized to 1. This means that every controllable transition in MK is enabled. We test

to see whether the parametric control problem is solvable with MK(X1, . . . , Xn).

If not, then we stop. We also test to see if Π is reachable; if not we stop. In

each case, we stop because we’ve determined we can never find a substructure

of MK(X1, . . . , Xn) that is controllable with respect to the plant model and that

satisfies Π. We use Algorithm D to solve the parametric control problem. If Al-

gorithm D disables some transitions in MK(X1, . . . , Xn), then we identify the new

values for X1, . . . , Xn. If possible, we determine an incumbent solution. At this

point, we are ready to descend. We choose a (non-zero) variable (say X1) and set

it to zero. This disables a transition in the base structure MK . We add 1 to the

immutable set I. With 1 in I this means we cannot change the value of X1 at any

node below level 1 of the tree.

We descend down the tree repeating the testing process above and also checking

for feasible solutions that yield an objective function value that is smaller than the

current incumbent solution. When we cannot set any more variables to 0, we

climb back up the tree and change the Xi variables that were set to 0 to 1; we then

descend with these values fixed at 1. Ultimately, we will return to the root node

and X1 will be changed from 0 to 1. The process then repeats with X1 = 1 (and
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immutable). A completely expanded search tree is shown in Figure 7.1

1

X1=1

X2=1

X3=1

2

X1=0

X2=1

X3=1

6

X1=1

X2=0
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X1=1

X2=1

X3=0

7

X1=1

X2=0

X3=0

3

X1=0

X2=0

X3=1

5

X1=0

X2=1

X3=0

4

X1=0

X2=0

X3=0

I={}

I={1}

I={1,2,3}

I={1,2}

I={1,2}

I={1,2,3}

I={1,2,3}

Figure 7.1. A fully expanded tree; nodes are labeled in order they will be investigated.
The immutable set is shown below each node.

In the main body of the algorithm, there are a few caveats. First, if Algorithm

D attempts to disable a transition corresponding to a variable with index in the

immutable set, then search along this branch is discontinued. This is because we

can be certain we have already explored this structure–otherwise, the index would

not be both in the immutable set and have its corresponding variable set to 1.

Second, we have devised a cost bound based on the fact we are solving a minimax

problem that allows us to stop exploring a branch when we are certain no improved

solution can be obtained. (This is explained completely in Lemma 7.2.5.) Finally,

we can stop descending along a branch when we are certain Π is not reachable

with the current variable set X1, . . . , Xn.

In short, the algorithm (which we call Algorithm C, shown on pages 100-101)

is an exhaustive search algorithm that implicitly enumerates some of the nodes in

the search when it is clear they will not yield an improved solution. This fact is

shown in Theorem 7.2.6.

Lemma 7.2.5. Let N1 and N2 be two nodes in the branch-and-bound tree produced

by Algorithm C and suppose that M1
K and M2

K are the controllable substructures of

MK generated after Step 2 for these two nodes respectively. Finally, suppose that

N1 is the parent of N2. Then:

1. minw∈LM(M1

K
)C(w) ≤ minw∈LM(M2

K
)C(w) and
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Algorithm Description 7.2.2 – Algorithm C : Initialization

Given MK(X1, . . . , Xn) and G, initialize X1 = X2 = · · · = Xn = 1.

1. Use Algorithm A to test whether LM(MK(X1, . . . , Xn)) is controllable with
respect to LM(G).

(a) If LM(MK(X1, . . . , Xn)) is not controllable with respect to LM(G), then
GOTO 2.

(b) Otherwise use the Tableau Method from [Sim00] to test whether Π is
reachable from MK(X1, . . . , Xn).

i. If Π is not reachable. STOP, the problem is infeasible.
ii. Otherwise GOTO 3.

2. LM(MK(X1, . . . , Xn)) is not controllable with respect to LM(G); apply Al-
gorithm D.

(a) If Algorithm D returns ∅, STOP, the problem is infeasible.
(b) Otherwise, let A be the machine output from Algorithm D. Use A to

determine current values of X1, . . . , Xn.
(c) Use the Tableau Method from [Sim00] to test whether Π is reachable

from MK(X1, . . . , Xn).

i. If Π is reachable from MK(X1, . . . , Xn), then GOTO 3.
ii. Otherwise, STOP, the problem is infeasible.

3. If MK(X1, . . . , Xn) satisfies Π, then set the incumbent objective value C0 to
the objective value of LM(MK) computed using Algorithm E. Declare the
incumbent solution to be X0

1 = X1, . . . , X
0
n = Xn. Otherwise, set C0 = ∞

and set the incumbent solution to NULL.
4. Initialize I to the set of variable indexes of variables that are currently zero.

2. maxw∈LM(M1

K
)C(w) ≥ maxw∈LM(M2

K
)C(w).

Proof. In obtaining M2
K from M1

K , we remove a transition. This effectively re-

moves a collection of strings from LM(M1
K) to obtain LM(M2

K). If the strings pro-

ducing a maximal cost were removed, then it follows that maxw∈LM(M1

K
)C(w) >

maxw∈LM(M1

K
)C(w); otherwise maxw∈LM(M1

K
)C(w) = maxw∈LM(M1

K
)C(w). Like-

wise, if the strings producing a minimal cost were removed, then it follows that

minw∈LM(M1

K
)C(w) < minw∈LM(M1

K
)C(w); otherwise it is immediately clear that

minw∈LM(M1

K
)C(w) = minw∈LM(M1

K
)C(w).
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Algorithm Description 7.2.3 – Algorithm C : Branching Step

Suppose we have arrived at node N with X1, . . . , Xn and immutable set I. Store
a reference copy of X1, . . . , Xn at this node.

1. Let Y1 = X1, . . . , Yn = Xn. Choose i from 1 to n such that i is not in I and
set Yi = 0. (Effectively, we will delete a transition τ from MK(X1, . . . , Xn).)
Move i to I. If no such variable is available, then fathom this node.

2. Test that MK(Y1, . . . , Yn) is controllable with respect to LM(G) using Algo-
rithm A.

(a) If MK(Y1, . . . , Yn) is controllable with respect to LM(G) then GOTO 4.
(b) Otherwise GOTO 3.

3. Apply Algorithm D (From Chapter 5) to MK(Y1, . . . , Yn).

(a) If Algorithm D returns ∅, then GOTO 1.
(b) Otherwise, let A be the machine output from Algorithm D. Use A to

determine current values of Y1, . . . , Yn.

i. If any variable Yj has been set to zero, but j is in I then GOTO 1.
ii. Otherwise, add the indexes of any of the Y1, . . . , Yn that were set

to zero by Algorithm D to I. GOTO 4.

4. Test that Π is reachable from MK(Y1, . . . , Yn) using the Tableau Method
from [Sim00].

(a) If Π is reachable, GOTO 5.
(b) If not, then GOTO 1.

5. Compute minw∈LM(MK(Y1,...,Yn))C(w) using Algorithm E for minimum cost.

(a) If minw∈LM(MK(Y1,...,Yn))C(w) > C0, then GOTO 1.
(b) Otherwise GOTO 6.

6. If Π is satisfied by MK(Y1, . . . , Yn) as computed using the Tableau Method
from [Sim00], and C0 > maxw∈LM(MK(Y1,...,Yn))C(w), computed using Al-
gorithm E, then set C0 = maxw∈LM(MK(Y1,...,Yn))C(w) and set X0

1 =
Y1, . . . , X

0
n = Yn. GOTO 7.

7. Create a branch with X1 = Y1, . . . , Xn = Yn and a copy of the current set I

from node N . GOTO 1 on X1, . . . , Xn and I′.

Convergence: When the algorithm is finished execution, either X0
1 , . . . , X

0
n is the

optimal solution or the problem will have been identified as infeasible.

Theorem 7.2.6. Given M , G and MK = M ∩G, if there is a substructure M ′
K of

MK that is controllable, then Algorithm C will find it. Further, Algorithm C will
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find the values of X1, . . . , Xn that solve Problem 7.1.1.

Proof. It suffices to show that Algorithm C will implicitly enumerate all possible

substructures of MK that can be obtained by disabling controllable transitions.

Trivially, in Step 1 of the branching process, we remove a transition and add this

transition to the immutable transitions at node N–we do this by adding index i

to the immutable set. If we return to Step 1 at Node N , this transition will never

be removed again in any child node of N because the immutable set propagates

down the tree as shown in Step 7. Hence, at least we know that all branches are

independent and if we only executed these two operations we would eventually

consider all possible ways of disabling controllable transitions in MK .

In Steps 2 and 3, if neither MK(Y1, . . . , Yn) nor A is controllable, then by

Theorem 5.4.1, we know that no substructure of MK(Y1, . . . , Yn) can ever be con-

trollable. Hence, we may implicitly enumerate all child nodes that occur below

this node by fathoming this node. On the other hand, suppose that an index in

I (the immutable set) is removed in creating A, then by the independence of the

branches, this structure has already been enumerated in an earlier branch and we

may ignore it.

Finally, if A is controllable and no immutable variables have been changed,

then we know by Theorem 5.4.1 that we have removed the minimum number of

transitions from MK(Y1, . . . , Yn) to achieve controllability and we may continue.

In Step 4, if Π is unreachable fromMK(Y1, . . . , Yn), then there is no combination

of transition disabling that can force our decidable predicate constraints to be true

along the remainder of the current branch. Hence, we may fathom away all further

branches resulting from this node.

We have shown in Lemma 7.2.5 that minw∈LM(MK(Y1,...,Yn))C(w) increases as

the tree descends. Hence, if the minimal cost of a string in MK(Y1, . . . , Yn) is

greater then the current incumbent cost, this branch can yield no better solution

and all subsequent nodes can be immediately fathomed. This depends on the

uniqueness statement discussed in Remarks 5.4.2 and 5.4.3. The second remark is

so important that we reiterate it here:

Reiteration of Remark 5.4.3

Suppose that we apply Algorithm D to machines MK and G. Recall, we are

operating on a machine that accepts the language LM(MK)
c
∩ LM(G). Suppose
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that we remove a set of transitions T to obtain M ′
K from MK . It follows that if any

of the transitions in T were not removed, then the resulting M ′
K would produce a

language K ′ uncontrollable with respect to LM(G).

Suppose that we remove another controllable transition τ ′ from M ′
K . Suppose

further that after removing element τ ′ from M ′
K we replace some transition τ ∈ T.

We now have a machine M ′′
K with some transition τ ∈ T enabled and another

transition τ ′ 6∈ T disabled. Then there are two possibilities:

1. The language LM(M ′′
K) is still controllable with respect to LM(G). If this is

the case, then we showed that τ must be effectively disabled by the removal

of τ ′. To see this, recall that transition τ is only added to T because it leads

to a Σu-reverse path (defined in Chapter 3.3); i.e., τ now becomes a useless

transition in the machineM ′′
K . If it were not useless, then τ could still fire and

a Σu-reverse path could be reached and LM(M ′′
K) would be uncontrollable

with respect to LM(G). Hence, disabling τ ′ has the effect of also disabling τ .

2. The language LM(M ′′
K) is not controllable with respect to LM(G). In this

case at one Σu-reverse path still exists that creates the condition of uncon-

trollability.

As we said in Remark 5.4.3, Case 1 above shows that T is the unique set of

transitions that must be removed to obtain machine M ′
K from MK by effectively

disabling the fewest number of transitions. That is, there is no alternate set of

transitions that can still be disabled to achieve controllability.

Let us consider the impact this information has on the value of the objective

function and the algorithm. When we disable τ ′ in Case 1 above, the resulting

objective value must be no greater than the objective value obtained for M ′
K . This

follows from Lemma 7.2.5 and the fact that if removing τ ′ leads to a controllable

machine M ′′
K , then effectively transition τ is also removed and hence cannot affect

the objective function value. On the other hand, if τ leads to an uncontrollable

system, then we may apply Algorithm D again and the result follows inductively.

Removal of the transition τ ′ will occur on a descendant node–assuming that the

index corresponding to transition τ is not an element of the immutable set at this

node. The lower bound computed at a node in Step 5 is valid only for descendants

of this node and is a value below which the objective function cannot fall while
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proceeding along this branch. We know this to be true by the uniqueness shown

in Remark 5.4.3 and above) and by Lemma 7.2.5.

Finally, in Step 6, we identify new incumbent solutions. Hence, whenever a

new controllable and feasible substructure MK(Y1, . . . , Yn) is identified with lower

maximal cost than the current incumbent, it is deemed the new incumbent solution.

Thus we have shown that in the absence of Steps 2-4 of the branching process

in Algorithm C we would enumerate all possible substructures of MK . We then

showed that Steps 2-5 allow us to implicitly enumerate a number of branching steps,

thus reducing the algorithm running time. Hence, it follows that if Algorithm C

returns a solution it is optimal and controllable and satisfies Π. Thus, it must be

the solution to Problem 7.1.1.

7.3 Computational Analysis of the Algorithms

We show the computational complexity of evaluating a single branching step in

the branch-and-bound tree is in NP. We also provide two tables showing our

computational experience with this algorithm, indicating that where possible, par-

allelization for exploring the branch-and-bound tree would be required to tackle

large scale problems.

7.3.1 Computational Complexity Upper Bound

Theorem 7.3.1. Each problem solved at any node of the branch-and-bound tree

of Algorithm C is at least in NP.

Proof. We know that the Boolean satisfiability problem is NP-complete. Hence,

if at any time we must check whether or not there is a substructure of MK that

satisfies a set of Boolean constraints, this is a Boolean satisfiability problem and

hence for arbitrary structuresMK , it is NP-complete. We may choose any arbitrary

structure for MK by setting L = LM(G) = Σ∗ and M = MK . Hence, we may code

an arbitrary graph structure in MK . It follows at once that we may code an

arbitrary Boolean satisfiability problem using this structure.

We have already shown that the sub-algorithms used in this algorithm

1. Algorithm A (Theorem 3.5.1)
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No. States Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Mean
3 7 6 9 12 12 8 7 8.7
4 38 42 28 28 41 39 44 37.13
5 173 132 256 118 40 165 146 147.5
6 613 636 686 447 747 714 321 594.86

Table 7.1. Running times (seconds) for Java Application executing Algorithm C.

2. Algorithm B (or Algorithm D) (Theorem 5.2.7)

3. Algorithm E (7.2.4)

are either P -complete or at worst NP -complete. Hence, each branching step at is

at worst an NP -complete problem.

7.3.2 Computational Experience

We explored executing this algorithm in two contexts. In the first case, we used a

trim finite state plant model G that was randomly generated. We used a randomly

generated deterministic pushdown machine M with LM(M) = LM(G). Hence,

MK = M at the root of the branch-and-bound tree. In this case, the number of

states of M was identical to the number of states of G. Algorithm C was coded

in the Java programming language. Each state of G had three transitions defined

at it. We varied the number of states in the finite state machine model and used

the branch-and-bound algorithm to identify the optimal substructure of M . The

running times for varying numbers of states in the plant model G is shown in Table

7.1. In all cases, we used no graph logic constraints. That is, Π = ∅.

We also implemented Algorithm C in C++ only focusing on finite state struc-

tures. In this case, the running times are significantly faster than those for Java.

This is most likely do the simpler control checking process for finite state machines

and the fact that C++ is a compiled language. Table 7.2 shows the results for this

case.

As is clear from the results, problem specific streamlining of Algorithm C may

be necessary to solve large-scale problems.
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No. States Run 1 Run 2 Run 3 Mean
5 0 1 0 0.33
7 0 0 1 0.33
9 1 2 4 2.33
11 14 9 9 10.67
13 49 54 50 51
15 197 202 206 201.667
17 826 796 791 804.33

Table 7.2. Running times (seconds) for C++ Application executing Algorithm C using
only finite state machines for MK .

7.3.3 Streamlining Operations for Executing Algorithm C

in the Large Scale

The running times shown in Tables 7.1 and 7.2 indicate that algorithm streamlining

may be necessary to tackle large-scale problems. In our experience, the most

complex and time consuming part of the algorithm was controllability checking,

even in the discrete event case. We provide three recommendations for enhancing

the speed of Algorithm C if no specific knowledge of G and MK is available.

1. (Streamlining Cost Computation): Since we must re-compute the cost at each

branch-and-bound node, it is useful to store information on the transitions

used by the maximal (and minimal) cost strings. When branching, if these

transitions are disabled, then recomputing maximum and minimum costs is

necessary. If not, then the costs need not be recomputed. Even though,

computing cost did not dominate the time in our computational experience,

for large values of β and small values of ǫ, this can become a concern.

2. (Streamlining Boolean Constraint Checking) Since we solve a satisfiability

problem at each branch-and-bound node, we can store the solution to this

problem. If, at any branch, we do not remove a transition that was enabled

in the solution to this problem, then clearly, the solution is still valid and we

may skip Branching Step 4 of Algorithm C.

3. (Streamlining Controllability Checking): The major subroutines used in

checking controllability are intersection and checking the uselessness of states

and transitions. The problem of intersection is quadratic in the number
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of states of the plant and controller machine and is difficult to streamline.

Checking for useless states and transitions can be sped up by implementing

a parallel checking system. That is, using a multiple processor architecture

with shared memory, we can check multiple states and transitions simultane-

ously. We attempted to simulate this with a multi-threaded algorithm and

in our experience this decreased the time to check controllability by between

10% and 50%. Since control checking and analysis was the most time con-

suming process in our tests, we expect that parallelization of this step may

be the only way to attack large scale real-world problems.

7.4 Example

In this section, we show a simple example of the branch-and-bound tree produced

when analyzing a small controller. For simplicity, we assume the plant language

L = LM(MK(1, 1, . . . , 1)), the specification. That is, we do not have to construct

MK(1, 1, . . . , 1) from some initial specification M as in Algorithm D. This also

ensures controllability at the root node of the branch-and-bound tree. We assume

Σc = {b1, b2, c1, c2}.

The base controller MK(1, 1, . . . , 1) is shown in Figure 7.2 We have appended

0

1 (a, 1) 3

4

 (a, 1) 

 (b1, 2) 

2
 (c1, 1)  (r1, 3) 

 (b2, 2) 

5

 (c2, 1) 

 (r2, 7) 

Figure 7.2. The controller MK that begins the branch-and-bound process.

cost information to the transitions in MK . There are four variables X1, . . . , X4

where X1 corresponds to the transition labeled b1 connecting State 1 and State

0; X2 corresponds to the transition labeled c1 connecting State 1 with State 2;

X3 corresponds to the transition connecting State 4 with State 3 labeled b2; and

X4 corresponds to the transition connecting State 4 with State 5 labeled c2. The

resulting branch-and-bound tree is shown in Figure 7.3. In this problem, we assume

that Π = ∅. In the branch-and-bound tree, we show the variable values to the left



108

of the tree nodes and we show the corresponding transition that is removed along

the edges of the tree. The shade of the node indicates whether the node is feasible

or fathomed. If it is feasible, the shade indicates whether a new incumbent solution

is defined at this point. If the node is infeasible, the shade indicates why the node

was fathomed. The resulting solution is shown in Figure 7.4

1

2

remove b1

3

remove c1

4

remove b2

5

remove c2

6

remove c1

8

remove b2

7

remove c2

No Descent Possible

No Descent Possible

This node is feasible.

This node is infeasible.

This node is cost fathomed.

This node has a new incumbent.

X1=1,

X2=1,

X3=1, 

X4=1

X1=0,

X2=1,

X3=1, 

X4=1

X1=1,

X2=0,

X3=1, 

X4=1

X1=1,

X2=1,

X3=0, 

X4=1

X1=1,

X2=1,

X3=1, 

X4=0

X1=0,

X2=0,

X3=1, 

X4=1

X1=0,

X2=1,

X3=0, 

X4=1

X1=0,

X2=1,

X3=1, 

X4=0

Figure 7.3. The branch-and-bound tree resulting from Algorithm C when running on
the problem given above.

0 1
 (a, 1) 

3 4
 (a, 1) 

2
 (c1, 1)  (r1, 3) 

 (b2, 2) 

Figure 7.4. Solution to problem given above.
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7.5 Relation to the Work of Sengupta and LaFor-

tune

The problem Sengupta and LaFortune investigated was fundamentally different

than the one we investigate.

1. [SL98] assumes a plant model G is provided. The objective of the algorithms

presented in [SL98] is to identify the optimal substructure ofG that can act as

a non-blocking controller. A controller is non-blocking if it does not prevent

the plant from reaching a final state during its execution. In the case they

study, the language of the identified substructure is controllable if and only

if it is non-blocking.

2. [SL98] does not assume any a priori controller design problem; i.e., they do

not assume the existence of a controller machine MK . Nor do they impose a

second set of logical constraints (i.e., there is no set Π).

It is clear that our problem reduces to the problem studied in [SL98] when we

make the following simplifying assumptions.

1. The plant model (G) is a finite state machine and MK is a finite state ma-

chine.

2. The base structure MK is identical to the plant model G.

3. Π = ∅

Though Sengupta and LaFortune discuss the possibility that they can extend

their approach to infinite state machines, it is not clear how their solution method

would work in this case.

We mentioned that [SL98] uses a dynamic programming (DP) approach to solve

an optimal discrete event control problem. We do not use a DP approach for two

reasons:

1. [SL98] assumes no a priori controller structure and operates solely on sub-

structures of the plant. As we have already mentioned this is not the problem

we study in this chapter.
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2. A DP analysis relies on a knowledge of the termination states. In this case,

the potential termination states are given by the final states and all possi-

ble stack configurations and hence form an infinite discrete (hence discon-

nected) set. The branch-and-bound method proposed here seems to be a

more straight-forward approach to solving this problem. However, an open

question that results from this research is whether DP can be applied to solve

the optimal parametric control problem we’ve posed.

7.6 Conclusions

In this chapter we defined the optimal parametric control problem for discrete event

control. We provided a branch-and-bound algorithm that solves this problem when

the parametric control function MK(X1, . . . , Xn) has range properly contained in a

set of DPDA and the depreciation constant β < 1. We showed that this algorithm

was convergent and that each branching action was at worst an NP -complete

problem.

There are a number of potential future directions for this research. The problem

of optimal control when β = 1 is not considered in this work. Further, we’ve only

provided a numerical approximation method for computing the objective function

at each node in the branch-and-bound tree. There are conditions where an exact

function can be computed. An analysis of these cases would significantly enhance

the speed of computation. Finally, we’ve also discussed many ways of speeding up

the branch-and-bound process using multi-threading or multi-processor systems. A

computational analysis of this approach would show the potential for this branch-

and-bound problem to be used in large scale problems.



Chapter 8

Exception Handling Control and

an Application to Robotic

Controller Design

8.1 Introduction

Ramadge and Wonham style discrete event control is the study of the fight against

uncontrollable events. At its very core, a specification S ⊆ Σ∗ should simply be

a collection of rules for dealing with uncontrollable events in an attempt to drive

a plant model to produce a desirable sequence of symbols by enabling specific

controllable events. Finite state models of specifications have limited memory,

which is determined by the number of states present in the system. Hence, when

a number of uncontrollable events occur sequentially, responses to each must be

stored by encoding the information in the state space of the specification S.

Example 8.1.1. Suppose that an uncontrollable event u ∈ Σu indicates that an

order has been placed in a manufacturing system. Each order requires a sequence

of events (in Σc) to occur on an assembly line. If multiple orders are placed

simultaneously, we must record this fact in the states and transitions of a state

machine describing a specified behavior. The number of states in the state machine

limits the maximum number of simultaneous orders that can be recorded. If too

few states are available an order is lost. If too many states are available, the model
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suffers from state explosion and is not parsimonious.

The use of a DPDA can reconcile many of these problems. Using the stack as a

storage mechanism, we can record uncontrollable events as they occur. The control

mechanism can then respond to these events by enabling subsets of controllable

events. Once a response is complete, the next uncontrollable event can be dealt

with. We formalize the concept of using the stack of a DPDA to remember and

handle long strings of uncontrollable events as an exception handling controller

(EHC).

8.2 Exception Handling Controllers

An EHC is a DPDA with the following state types:

1. Execution States (required),

2. Response States (required),

3. Stack Modification States (optional),

4. A single Start State (required) and

5. A single Stop State (optional).

If no stop state is given, the controller must execute indefinitely.

For each controllable event c ∈ Σc there is a corresponding stack symbol C ∈ Γ.

Additionally, there may be a finite, but arbitrarily large, number of auxiliary stack

symbols Z0, . . . , Zn. Then Γ =
⋃

i{Zi}∪
⋃

c∈Σc
{C}. The transition structure of an

EHC has the following properties

1. If q0 is a start state, then there is a transition with the form (q0, ǫ, qE, Z0, γZ0)

in the set δ for some executor state qE.

2. If qE is an executor state, then for some (possibly empty) set of controllable

events E ⊆ Σc, δ(qE, c, C) = (q′E, ǫ) or δ(qE, c, C) = (q′E, C
′) for some other

executor state (or the Stop State) q′E and for each c ∈ E.
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3. If qE is an executor state, then for some u ∈ Σu δ(qE, u, Z) is defined for

some Z ∈ Γ and further, δ(qE, u, Z) = (qR, Z) where qR is a response state.

Further, for any Zi, if δ(qE, ǫ, Zi, q
′
E, γ) is defined, then there are no other

transitions from qE with top stack symbol Zi and qE is an executor state.

4. If qR is a response state then there is at least one transition of the form

(qR, ǫ, Z, q
′, γ) where q′ is a stack modification state or an execution state.

5. If qM is a stack modification state, then there is at least one transition of

there form (qM , ǫ, Z, q
′, γ) for some Z ∈ Γ and q′ is either different stack

modification state or an execution state.

6. If qS is a stop state, then there are a set of looping ǫ-transitions at qS that

empties the stack.

In an EHC, every executor state is final and Z0 is the initial stack symbol.

Figure 8.1 shows the general structure of an EHC.

EXECUTESTART FINISH

Stack: EmptyStack: Z0

c/C/" "

u/C/C

Stack: PLAN

RESPOND

MODIFY 

STACK 

(REPLAN)

ε/C/PLAN_PART

ε/C/PLAN

c/C/" "

ε/C/" "

ε/C/PLAN_PART

Figure 8.1. Exception Handling Controller–General Structure
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Remark 8.2.1. We will implicitly assume that the ǫ-transitions associated with the

stack modification states produce a consistent path to return to an execution state.

That is, we assume that there is no chance of deadlocking in one of these states

because of improperly formed stack operations. This fact is easily checkable by

verifying that the push and pop operators defined in the ǫ-transitions provide a

path entering and leaving these states and by ensuring that if the top stack symbol

is unknown, all possible top stack symbols are considered in the transitions.

8.3 Properties of Exception Handling Controllers

Theorem 8.3.1. If M is an exception handling controller accepting LM(M), then

LM(M) is prefix closed.

Proof. Let w ∈ LM(M). By definition, the only accepting states of M are execu-

tion states. Therefore, there is a series of ǫ transitions taking w from some state

that is not an execution state to a state that is an execution state. Suppose that

w = sa, where a ∈ Σ. Suppose that (q0, s, Z0) ⊢
∗ (q, ǫ, γ). If q is an executing state,

then s is accepted. Suppose that q is not an executing state. If it is a response

state, then there is a series of ǫ-transitions leading back to an accepting state, and

hence s is accepted. If, q is a stop state, then there is no string extending s and

hence w does not exist. By assumption, we know that if q is a stack modification

state, then there is a series of ǫ-transitions leading back to an accepting execution

state. Hence s is accepted. Trivially, ǫ ∈ LM(M) by the definition of exception

handling controller. This completes the proof.

Theorem 8.3.2. If M is an exception handling controller, then a machine M c

accepting LM(M)c is derived from M by:

1. Adding a single state (DUMP).

2. If qE is an executor state and a ∈ Σ is not defined for a stack symbol A ∈ Γ,

then define (qE, a, A,DUMP, A) ∈ δ, the transition function.

3. For each executor state qE declare qE non-final and

4. Declare DUMP final.



115

5. For all a ∈ Σ, A ∈ Γ define (DUMP, a, A,DUMP, A) ∈ δ.

Proof. Let L = LM(M). We will show Lc ⊆ LM(M c). Choose w ∈ Lc. There is a

shortest prefix of w such that w ∈ L. Let w = st, where s is this prefix. We have

already shown that L is prefix closed and further that any accepted string must lead

to an executing state. Since the structure of M c is identical to that of M except

when M is undefined at executing states, it follows that (q0, s, Z0) ⊢∗ (qE, ǫ, γ)

where qE is an executor state. Let t = av, a ∈ Σ and let γ = Aγ′. Trivially, if a

transition at a were defined at qE with stack symbol A, then s would not be the

shortest prefix of w accepted by M . Hence, when reading w with M c, there will

be a transition to DUMP on a. The definition of the transitions at the dump state

ensures that w will be accepted by M c. Hence Lc ⊆ LM(M c).

We will now show that LM(M c) ⊆ Lc. Choose w ∈ LM(M c). By definition,

w is accepted at DUMP and there is a longest prefix w = st such that s ∈ L;

without loss of generality, let t = a, a ∈ Σ. If sa ∈ L, then there is a transition in

M at some state qE defined for a and an appropriate stack symbol. Clearly, this

contradicts our definition for M c, which is still deterministic. Thus, it follows that

w 6∈ L. Thus we have shown that L(M c) = Lc.

Definition 8.3.3. A quasi-exception handling controller is a deterministic push-

down machine with all the properties of an exception handling controller except

not all execution states need be final.

Theorem 8.3.4. If M is an exception handling controller accepting S = LM(M)

and G is a finite state machine (with no non-deterministic) transitions accepting

L = LM(G). Then S ∩ L is accepted by a quasi-exception handling controller.

Proof. The proof is a straight-forward consequence of intersecting a deterministic

pushdown machine and a finite state machine. (See Chapter 2, Section 2.7.6.)

Remark 8.3.5. The prefix closure of a quasi-exception handling controller is ob-

tained by marking every execution state. Hence, this fact combined with Theorems

8.3.2 and 8.3.4 will be important for efficiently computing the controllability pred-

icate.
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Furthermore, taking complements in quasi-exception handling controllers is

precisely like taking complements in exception handling controllers except we re-

verse the marking on the executor states; i.e., some executor states may be non-

final. These become final in the complement.

Remark 8.3.6. In a quasi-EHC, there is no substructure that can cause an infinite

number of ǫ-transitions to occur. This is clear since ǫ-transitions are only used to

modify the stack after uncontrollable events have occurred.

Theorem 8.3.7. Let G be a plant model, M an exception handling controller and

MK the result of intersecting M and G. Let K = LM(MK) and L = LM(G). Let

N be a machine accepting L∩K
c
. Then K is controllable with respect to L if and

only if there is no uncontrollable transition leading from a non-final state of N to

a final state of N .

Proof. (⇒): Necessity is a trivial consequence of Theorem 3.3.2.

(⇐): Sufficiency is established by showing that whenever MK is uncontrollable

there is an uncontrollable transition connecting a non-final state of N to a final

state of N by an uncontrollable transition. By Theorem 8.3.2 when computing

the complement of an EHC, it follows that no ǫ-transitions will lead from the non-

final states to the final states. Intersecting such a complement with a finite state

machine will not change this fact. Thus, it follows at once that if there is any Σu

reverse path in N , it must be a single uncontrollable transition.

8.4 Types of Stack Modification Operations

Stack modification occurs in the stack modification states and is in response to

uncontrollable events. (It is possible to use the stack markers Z0, . . . , Zn to force

re-planning as well using an ǫ-transition from the execute state however, we will

not discuss this in detail.) There are three types of modification that can occur in

response to an uncontrollable event:

1. Erasure: In an erasure operation, part of the existing stack is irretrievably

erased. The “planned” controllable events corresponding to this portion of

the stack may not be executed.
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2. Write: In this case, new stack symbols are written directly above the existing

stack symbols. Any plans currently in operation are suspended and a new

plan begins execution.

3. Shuffle Write: Using finite state storage, a portion (whose length is propor-

tional to the amount of finite state storage available) is removed from the

stack. A new stack is appended below this plan and then the previously

executing plan is rewritten to the stack.

We give an example of conditions where each of these operations is rational:

Erasure The controller is directing the top-level activities of an air campaign.

The uncontrollable event indicates that a target is no longer of importance.

Existing plans to attack it are erased.

Write Your controller is directing high-level behavior of a robotic rover. A mes-

sage is received from an operator indicating that a soil sample must be taken

at present coordinates immediately. All plans currently in operation are

suspended and a new plan is executed.

Shuffle Your controller is directing the behavior of a manufacturing system. Re-

quests must be kept in relative order, but all requests must be processed

(hence infinite storage memory may be required to avoid state explosion).

New orders are placed as far down on the stack as possible to simulate a

FIFO queue.

Note in the Shuffle example, a true FIFO queue cannot be simulated with a

single pushdown stack and a finite number of states. Two pushdown stacks are

required. A machine with two pushdown stacks is equivalent to a Turing machine

and hence by the undecidability results given in Theorem 3.6.2, arbitrary control

systems of this type cannot be verified for controllability.
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8.5 Application of the EHC Parametrization to

Robot Control

The properties of quasi-exception handling controllers make them ideal candidates

for optimal parametric discrete event control:

1. Taking their complements is simpler than for arbitrary deterministic push-

down machines. In a sense they are almost regular.

2. Uncontrollability can be checked without creating a predicting machine [HU79]

as shown in Theorem 8.3.7.

3. Executing Algorithm B (D) is also simpler as a result of Theorem 8.3.7.

4. It is clear from the algorithms presented so far, the class of quasi-EHC struc-

tures is closed under Algorithms B, D and thus C.

8.6 Livingstone Models and Robotic Software Ver-

ification

We now show a very simple example of Algorithm C for obtaining an optimal quasi-

EHC structure for robotic control. This quasi-EHC is checked for controllability

against a finite state model of robotic operation. Checking for controllability is a

form of model validation [CGP99].

Static model validation is the process by which a formal system model is

checked for certain properties. Models having necessary properties are validated.

Model validation is usually carried out by means of an automated theorem prover

(ATP) operating on a pre-specified logic– sometimes Computational Tree Logic

(CTL) [GHR99] though in the case of the Prototype Verification System (PVS), a

higher order logic (HOL) [OSRSC01] is used. Livingstone is a labeled-transition-

system-based modeling language use by the National Aeronautics and Space Ad-

ministration (NASA) for modeling and validating critical systems used on space-

craft. Livingstone specifications have been used to model several NASA appli-

cations including e.g. the propulsion system for the now discontinued X-34 space
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plane. Labeled transitions systems are finite state machines and hence Livingstone

models may be considered plant models in the Discrete Event Control Paradigm.

There are well known translations of Livingstone Models to SMV models [NP02,

Pec00] . SMV [CCO+05] is an ATP for use with CTL and its derivative Linear

Temporal Logic (LTL) [GHR99]. Most Livingstone models are evaluated by trans-

lation to SMV.

We can use discrete event control formalisms for model validation without

requiring the use of a cumbersome and generic ATP. We use the underlying au-

tomata theory inherent in CTL to test safety properties of system models. We

have shown that safety properties provable in CTL are equivalent to controllabil-

ity properties of discrete event control systems [GMT05]. Specifically, we show

that the predicate formula AG(¬unsafe), which says that for all paths starting

from a given state, and for each state in the path, no state is unsafe, is equivalent

to a specialized formulation of the controllability predicate. This sentence is used

most often in security validation [PD02,SW03,JSW02a,SHJ+02]. We have shown

in [GMT05,DGP+06] that this approach to model checking can be used for verify-

ing both software/network systems and communications protocols. We have also

shown that for certain safety properties we can verify properties of systems that can

be modeled as pushdown automata–a class of infinite state automata [Gri06,Gri07].

Types of systems that can be modeled as pushdown automata include many pro-

gramming languages and exception handling systems. This makes them ideal for

validating artificial intelligence systems that execute exception handling.

As a cost savings mechanism, a space agency will reduce the support staff

for its interplanetary rovers. A control system on the rover will handle requests

that are transmitted from an orbiter. These requests are received from Earth

and are produced by mission scientists using a web interface. The control system

on the rover must be validated to ensure that no requests will lead to deadlock

(thus disabling the rover); controllability is essential in this example. The mission

engineers designing the controller wish to optimize it in terms of power use. This

scenario is shown in Figure 8.2.

Consider the plant model shown in Figure 8.3

This plant model describes the functioning of a robotic rover that can receive

requests for operations from a web-service. The rover can execute the following
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Figure 8.2. The flow of information in our scenario.

Figure 8.3. Robotic rover plant model.
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behaviors:

1. Move to a specific position

2. Execute a geologic survey

3. Execute a meteorologic survey

4. Sleep and recharge its battery,

5. Store and communicate the data that has been collected.

Several requests can be made, including a request for both a meteorological and

geological survey. This can be satisfied either by simultaneously executing the

surveys, which uses more power but takes less time, or by executing them in series.

Similarly, the results of a dual survey can either be communicated simultaneously

or in series.

To store an arbitrary number of requests, a stack structure must be used,

otherwise it is possible that some request will not be processed. The exception

handling mechanism is shown in the abstract in Figure 8.4.

Figure 8.4. Exception handlers recognize specific requests and store them on the stack
below the currently executing command.

The quasi-EHC controller (shown in Figure 8.5 has a number of executor states

(all states shown). The response and stack modification states have been sup-

pressed for readability, but have the form shown in Figure 8.4.

From any executor state a number of uncontrollable request events may be

fired. When this occurs, the top stack symbol is removed (transition ǫ/C/ǫ) and

replaced by the symbol CR, where R is the command corresponding to the request

r. In Figure 8.4 separate transitions would have to be provided for each of the

possible values of C.
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Figure 8.5. An quasi-EHC with looping exception handling transitions suppressed for
space.
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In this quasi-EHC, we allow the state to be defined by the requests that have

come in (the stack) and by the action currently being performed by the controller

(e.g., geologic survey, move, store data etc.). We use a top stack symbol (Z) to

indicate an existing mission. Hence from the READY state the transition

GEO_SURVEY_EVENT/REQUEST_GEO_SURVEY_EVENT/Z

indicates that mission mode is activated and the controller will transition to states

corresponding to executing a geologic survey. The next appropriate mission con-

trollable events are determined by state structure. This makes the EHC easier

present and restricts the stack to recording requests only. During a dual task mis-

sion, communications activity is the auxiliary stack symbol ZComm. indicates

that a communications mission is to be performed. The stack symbols ZDual1

and ZDual2 are used to indicate that dual survey mission is to be performed. The

symbol ZDual1 indicates the surveys are performed simultaneously (more power

consumed, but less time). The symbol ZDual2 indicates the surveys are performed

in serial (longer time, but more power consumed).

The current mode (e.g., performing a survey, ready for next command, etc.)

is given by the top stack symbol. The EHC maintains this top stack symbol

until a specific mission is complete. In the case of a geologic survey, completion

occurs when communication of the geologic survey data is transmitted and the

Z symbol is popped off the top of the stack. The next request can then be read

in and operation will continue. This effectively allows the controller to block on

any new missions until the current mission is complete, instead storing the mission

requests in its stack. Note, when using the storage structure shown in Figure 8.4,

the requested missions will always be processed in reverse order. Adding a more

complex exception handling mechanism could allow the system to behave more

like a queue.

The branch-and-bound algorithm must now decide whether or not transitions

DUAL_SURVEY_EVENT/REQUEST_DUAL_STACK/ZDual1

COMM_DUAL_EVENT/ZComm/Z

should be enabled or disabled. Clearly, a branch-and-bound algorithm is not

needed to decide so trivial a thing, however it helps illustrate the purpose. We
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have the following constraints that can be written formally and make up the set

Π:

• Request geologic survey events are processed by a geological survey event.

• Request Meteorological Survey Events are processes by a meteorological sur-

vey event.

• Request dual survey events are processed either by a dual survey event or

serial survey events.

• Request move events are processed by a move event.

• Power warn events are processed by a sleep event.

An example of logical expression for Requirement 1 is: There exists a transition

labeled by GEO SURVEY EVENT defined at the state READY, or if qE is the

ready state, then we may write:

∃q ∈ Q∃t ∈ δ (δ(qE,GEO SURVEY EVENT,REQUEST GEO STACK) = (q, Z))

where Q is the state set of the machine in question and δ is the transition relation.

We assign the following costs:

Event Name: Cost

GEO SURVEY EVENT 2.5

STORE GEO EVENT 1

COMM GEO EVENT 1

MET SURVEY EVENT 1.5

STORE MET EVENT 1

COMM MET EVENT 1

DUAL SURVEY EVENT 5

STORE DUAL EVENT 2

COMM DUAL EVENT 3

with all other event costs being zero. Clearly moving power should be considered

in a real application, but for our example, we need only consider the impact of

executing a dual survey request as a series of geologic and meteorological requests

or not.
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8.6.1 Running the Algorithm

Without loss of generality, we will consider the impact of running the algorithm

and consider four specific nodes. (See Figure 8.6.) At the “Root” node there is

an incumbent cost of 33.167 because the initial quasi-EHC (shown in Figure 8.5 is

controllable and satisfies the logical specifications given in Π. Hence X1 = X2 =

· · · = Xn = 1 is a feasible solution (but not optimal). This value can be computed

using Algorithm E.

Assume that we assign the following binary variables to enabling or disabling

transitions as follows:

1. X1 = 0 corresponds to disabling the event

MET_SURVEY_EVENT/REQUEST_MET_STACK/Z

2. X2 = 0 corresponds to disabling the event

STORE_MET_EVENT/Z/Z

3. X3 = 0 corresponds to disabling the event

COMM_DUAL_EVENT/ZComm/Z

In the branch-and-bound framework, we first investigate the solution X1 = 0,

X2 = X3 = . . . , Xn = 1. In this case, when we disable the event corresponding

to X1, the control structure MK(X1, . . . , Xn) is controllable, but violates one of

the constraints described in Π. (Specifically, it violates Constraint 2.) Hence, this

node is fathomed.

We next attempt solution X1 = 1, X2 = 0, X3 = X4 = . . . , Xn = 1. In this

case, the control structure MK(X1, . . . , Xn) is uncontrollable and Algorithm D will

return ∅. Hence, we fathom this node as well.

We next attempt the solution X1 = X2 = 1, X3 = 0, X4 = X5 = · · · =

Xn = 1. In this case, the control structure MK(X1, . . . , Xn) is controllable and

no constraints are violated. A new incumbent solution is found with objective

value 21.465. We will continue branching on this node until we set the variable

corresponding to the event
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DUAL_SURVEY_EVENT/REQUEST_DUAL_SURVEY_EVENT/ZDual1

to zero. At this point, we will identify a new incumbent solution with objective

value 15.123. The algorithm will continue other branching, but every other node

will be fathomed because of uncontrollability or inability to satisfy the constraints

given in Π. Hence, for the prescribed event costs, the optimal solution disables

both of the events in question. The final branch-and-bound may look something

like the tree shown in Figure 8.6.

N2

INC=33.167

INC=15.123

INC=21.465

N1

ROOT

Figure 8.6. The branch-and-bound tree with various fathomed nodes.

The resulting control structure is shown in Figure 8.7. Note the both events

have been disabled, leading to a smaller structure.

8.7 Induction Proof of Queuing Controllability

The EHC defined in Figure 8.7 with exception handler 8.4 is clearly controllable.

It is easy to see that every execution path ultimately leads back to the ready

state where the next requested action can be removed from the stack and acted

upon. Clearly, this is true regardless of the order in which we push the requests

onto the stack; i.e., suppose we have the exception handling structure shown in

Figure 8.8: then the resulting system is still controllable, but we keep the top

two stack commands in the correct order before recording a new request. Clearly,

for any n we could construct an EHC with appropriate structure that retained

the appropriate order for the first n commands on the stack. We now have the

following theorem:
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Figure 8.7. The minimum cost quasi-exception handling control system for robotic
control.
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Figure 8.8. Exception handler that preserves the top two stack commands.

Theorem 8.7.1. For arbitrary n the quasi-EHC with the structure given in Figure

8.7, capable of keeping the top n stack symbols in order is controllable with respect

to the plant model given in 8.3.

Proof. We have argued already that this fact holds for n = 1. Suppose it is true

for all n ≤ N , we show it holds true for N + 1. Suppose that the stack consists

of N symbols and a new request comes in and is placed on the stack. Then this

is indistinguishable from the case when there are N symbols on the stack that

execute in proper order, clearing the stack and a new request is entered on the

stack. By the induction hypothesis, we know that each of these cases cannot

produce uncontrollability. Hence, the theorem holds for N + 1 and is proved

inductively.

Thus, we can in fact implement a true queue structure with no fear of uncon-

trollability. This fact, is interesting. A queue machine is strictly more powerful

than a stack machine and hence, the undecidability theorem in [Gri06] implies that

no general algorithm exists to verify controllability in this case. However, it may

be the case that induction methods will allow controllability verification for some

classes of queue machines when used with exception handling control structures.
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8.8 Conclusions and Future Directions

In this chapter we have defined the concept of exception handling controller. Ex-

ception handling controllers are deterministic pushdown machines that are de-

signed to store an executable plan on the pushdown stack. They have computa-

tional properties that make them similar to but more powerful than finite state

machines. This makes them ideal for use in the branch-and-bound algorithm de-

fined in Chapter 7. We showed an example of their use as a natural extension to

the Livingstone models used by NASA for modeling critical systems on deep-space

hardware.

In this chapter we also demonstrated how an induction proof could be used to

show that a “queue” machine can be proved controllable with respect to a finite

state machine plant. This proof shows that it is possible to check controllability

for structures more complex than just deterministic pushdown machines and raises

the natural question, when can an induction method be used to explore queue

machines?



Chapter 9

Conclusion and Future Directions

9.1 Summary

In this thesis we have generated four new algorithms for use in discrete event

control. In Chapters 1 and 2 we introduced our main topics and provided key

preliminary results needed to motivate the remainder of the thesis.

In Chapter 3 We showed that it is not decidable whether arbitrary specifica-

tions generated by PDA are controllable against regular plant models. We have

demonstrated the positive result that controllability can be tested for specifications

generated by DPDA and regular plant models.

Deterministic pushdown automata can be used to form specifications that are

more complicated than regular specifications. In particular, the pushdown stack

can be used as a to-do list for future action. In this case, uncontrollable events can

be seen to alter the composition of the list causing the controller to re-plan future

actions. Furthermore, nested response to uncontrollable events can be encoded

using DPDA. For example, suppose that a string w must be enabled each time an

uncontrollable event u is observed. Then the resulting behavior {unwn|n ≥ 1} ⊆ K

cannot be specified by a finite state automaton and hence a DPDA must be used.

All of these results were published in [Gri06].

In Chapter 4 we demonstrated how discrete event control theory can be used

in the design and verification of wireless network protocols, even in the case where

certain uncontrollable events cannot be identified until the protocol is deployed.

For example, this is the case with unanticipated strategies for attacking the net-
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work.

We have also provided a method for determining whether or not a given protocol

specified by automata models can cope with all known uncontrollable hazards, and

a method of estimating the confidence level for controllability of a protocol in the

case where this fails. This approach can be used for designing new protocols for

wireless networks that are robust to attack.

In Chapter 5 we developed an algorithm for computing the supremal control-

lable sublanguage of a language K when K is accepted by a DPDA and the plant

language L is accepted by a FSM and both are prefix closed. We further showed

that this supremal controllable sublanguage was also accepted by DPDA’s. As

a complement to this, we showed that when K is accepted by arbitrary non-

deterministic PDA, it is undecidable whether supC(K) = ∅ with respect to an

arbitrary regular plant language L. When taken with the results of Chapter 3

or [Gri06] this shows that languages accepted by arbitrary PDA are not practical

as controller target languages. On the contrary, these results show promise for us-

ing languages accepted DPDA and in particular prefix closed languages accepted

by DPDA’s as control specifications. Finally, we have introduced the concept of

Parametric Control in discrete event systems.

In Chapter 6 we showed how to apply the theory of discrete event control

to modeling and analyzing security policies. We also showed how our pushdown

automaton models of control policies can enhance the modeling power of security

policies, by allowing them to count arbitrary numbers of access violations (as in

the final example). This extended the original models shown in [GMT05].

In Chapter 7 we defined the optimal parametric control problem for discrete

event control. We provided a branch-and-bound algorithm that solves this prob-

lem when the parametric control function MK(X1, . . . , Xn) has range properly

contained in a set of DPDA and the depreciation constant β < 1. We showed

that this algorithm was convergent and that each branching action was at worst

an NP -complete problem.

Finally, in Chapter 8 we defined the concept of exception handling controller.

Exception handling controllers are deterministic pushdown machines that are de-

signed to store an executable plan on the pushdown stack. They have computa-

tional properties that make them similar to but more powerful than finite state



132

machines. This makes them ideal for use in the branch-and-bound algorithm de-

fined in Chapter 7. We showed an example of their use as a natural extension to

the Livingstone models used by NASA for modeling critical systems on deep-space

hardware. We also demonstrated how an induction proof could be used to show

that a “queue” machine can be proved controllable with respect to a finite state

machine plant. This proof shows that it is possible to check controllability for

structures more complex than just deterministic pushdown machines and raises

the natural question, when can an induction method be used to explore queue

machines?

9.2 Future Directions

Plants and Controllers that are DPDA: Neither in this thesis, nor in the

published literature, have we said anything about the case when both the spec-

ification and plant are given by DPDA. We have reasons to suspect that in this

case the controllability predicate is undecidable. However, we are not aware of any

proof of this statement.

Supremal Controllable Sublanguage of DPDA Control Languages that

are not Prefix Closed: We have left several open questions worth investigation.

First, we have not developed an algorithm for computing supC(K) when K is

accepted by DPDA and not prefix closed. We have also not discussed any closure

properties; i.e., in this case, it may not be the case that supC(K) is accepted by

DPDA. We believe that these questions are worth further investigation. Extending

this theory would go along way to enhancing the theory of discrete event control.

Partial Observability in DPDA Controlled Systems: There is a good deal

of study in partially observable discrete event systems [KGM91]. In such a system,

there is a mask on the events generated by the plant so that only some of them are

observable. A good deal of work has been done on showing conditions under which

controllability can be decided when such an event mask is in place. Naturally,

this work only exists for finite state systems and there is no work on deterministic

pushdown machine control systems. Thus, a new area of study that extends this
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work is to investigate partial observability in DPDA controlled systems.

Timed DPDA Systems In [BW92, BW94] Brandin and Wonham introduced

the notion of timed discrete event control. In this study, transitions have temporal

predicates that prevent them from firing. [CL99] has a detailed description of timed

automata. Brandin and Wonham were able to prove an analogous controllability

result to the seminal result of Ramadge and Wonham [RW87c]. Extending DPDA

based control to timed systems introduces a new level of complexity. Evaluating

controllability requires finding the complement of a formal language. Introducing

temporal information into the discrete event system makes this process more diffi-

cult. A study of timed discrete event pushdown systems as controllers is essential

to complete the study begun in this thesis.

Hierarchical Discrete Event Control In [ZW90], Zhang and Wonham intro-

duced the notion of hierarchical discrete event control. In this study, a single plant

model is controlled by a supervisor, while the supervisor is itself controlled by a

second supervisor. The supervisor’s supervisor does not receive a complete picture

of the events in the plant, but instead receives an aggregate picture. Aggrega-

tion is accomplished by transforming longer symbol strings into single (aggregated

symbols). There is a deep theory of hierarchical consistency in multi-layer finite

state machines. In this case, plant models and supervisors are modeled as finite

state machines. Supervisor supervisors are also modeled as finite state machines.

Extension of the DPDA framework to hierarchical discrete event control is diffi-

cult. If both supervisors are modeled as DPDA, then the combined system may

not be verifiable for controllability. An important area of extension for this work

is to hierarchical discrete event control models.

Improvements to the Optimal Control Analysis: There are a number of

potential future directions for this research. The problem of optimal control when

β = 1 is not considered in this work. Further, we’ve only provided a numeri-

cal approximation method for computing the objective function at each node in

the branch-and-bound tree. There are conditions where an exact function can be

computed. An analysis of these cases would significantly enhance the speed of
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computation. Finally, we’ve also discussed many ways of speeding up the branch-

and-bound process using multi-threading or multi-processor systems. A computa-

tional analysis of this approach would show the potential for this branch-and-bound

problem to be used in large scale problems.

Two Player Discrete Event Control Games: We have considered the case

when there is a single controller acting on a plant. Consider the case when two

controllers are acting on a plant simultaneously. The controllable events for Player

1 are uncontrollable for Player 2. Then we can define a natural two player game just

as we defined an optimal control problem. A necessary condition for equilibrium

is that both players have controllable control languages with respect to the plant

model, when it is controlled by the opposite player (a constrained plant model).

An interesting and unexplored question is whether or not a player will ever have an

advantage if they use a DPDA controller. To solve this problem, we must analyze

the various cost structures that could be imposed on the events and the plant

structure. It may be that optimal responses to finite state controller strategies

are also finite state strategies. It may also be possible that a DPDA response will

provide a better response.
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