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Abstract

During the past decade, advances in technology and science have led to many
large-scale distributed systems which can be characterized as networks. Some ex-
amples include the World Wide Web, the Internet, the power grid, wireless sensor
networks, and military (net-centric) logistics. The scale of the size of these net-
works is substantially different from the networks considered in traditional graph
theory. Further, these networks do not have any pre-specified structure/order or
any design principles. Hence, the problems posed in such networks are very novel.
Recent years has witnessed an explosion of interest across different disciplines, in
understanding and characterizing such large-scale networks, which led to develop-
ment of a new field called “Network science”. This activity was mainly triggered
by significant findings in real-world networks which led to a revival of network
modeling and gave rise to many path breaking results. Until now, a major part
of this research was focused on modeling and characterizing the behavior of the
networks. However, the ultimate goal of modeling these networks is to understand
and optimize the dynamical processes taking place in the network.

Search and routing is one of the most important and prevalent process in many
real-world networks. Many times one needs to transport raw material/computer
files/messages from one node to another using the edges of the network. In tra-
ditional graph theory, there do exist abundant number of algorithms that can
compute the optimal paths in the network. However, these algorithms assume
that global information of the network is available, i.e. how each and every node
is connected in the network is known. But in some scenarios, it is not possible
to have access to global information of the network and we need to have decen-
tralized algorithms that can navigate through the network by using only local
information. In this dissertation, we address an important process of search and
routing in large-scale networks. This forms the core problem of this thesis. Fx-
amples include routing of sensor data in wireless sensor networks, locating data
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files in peer-to-peer networks, connecting relief workers in a disaster scenario, and
finding information in distributed databases. Decentralized search and routing
in networks is broadly classified into two types of networks, namely, non-spatial
networks and spatial networks.

In non-spatial networks, we study trade-offs presented by local search algo-
rithms in networks which are heterogeneous in edge weights and node degree. We
demonstrate that search based on a network measure, local betweenness centrality
(LBC), utilizes the heterogeneity of both node degrees and edge weights to perform
the best in scale-free weighted networks. We show that the performance of LBC
search is similar to BC search, which utilizes the maximum information about a
neighbor. Further, we demonstrate that the search based on LBC is universal and
performs well in a large class of complex networks. We also test the algorithms on
the peer-to-peer network, Gnutella, and discuss the results obtained.

In spatial networks, we consider a family of parameterized spatial network mod-
els that are heterogenous in node degree. We investigate several algorithms and
illustrate that some of these algorithms exploit the heterogeneity in the network
to find short paths by using only local information. In addition, we demonstrate
that the spatial network model belongs to a class of searchable networks for a wide
range of parameter space. Further, we test these algorithms on the U.S. airline
network which belongs to this class of networks and demonstrate that searchability
is a generic property of the U.S. airline network. These results provide insights on
designing the structure of distributed networks that need effective decentralized
search algorithms.
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CHAPTER
ONE

Introduction

In the past few years, there have been many path-breaking results in different areas
of science and technology, especially in the graph theory [10, 14]. These advances
in technology have revolutionized many existing engineering systems and also led
to a vast number of possibilities which were not feasible earlier. At the same time,
these advances have increased the complexity and scale of the system tremendously
which give rise to many new challenges for Operations Research (OR) community
(63, 144]. For example, the advances in micro-electro-mechanical systems (MEMS)
technology, communications, and processing capabilities have enabled manufactur-
ing tiny and low cost sensors which can sense remote or dangerous locations that
were inaccessible earlier [10]. A large number of such tiny sensors which are capa-
ble of sensing, communicating and data processing coordinate amongst themselves
forming a wireless sensor network (WSN) to achieve a larger sensing task. The
sheer number of these tiny sensors and unpredicted dynamics in the network would
give rise to many unique challenges in the design of unattended WSNs. Tools and
techniques developed in the past are insufficient to deal with the complexity in
these systems [122]. We need radically new approaches to address and control
many of these new emerging systems. In this dissertation, we try to address these
new challenges by utilizing significant advances made during recent years in the
new field of “Network Science” [128].

Graph theory has been a powerful analytical tool for understanding and solving



various problems in OR. The study on graphs (or networks) traces back to the
solution of the Konigsberg bridge problem by Euler in 1735. It was the first
mathematical proof in graph theory. Later, in the twentieth century, graph theory
has developed into a substantial area of study which is applied to solve various
problems in engineering and several other disciplines [7]. Euler’s great insight
lay in representing the Konigsberg bridge problem as a graph problem with a
set of vertices and edges. Though Euler’s representation laid the foundation to
graph theory, the size of many networks make them computationally difficult to
be analyzed using the traditional exhaustive methods of graph theory. In the
last few years there has been an intense amount of activity in understanding and
characterizing large-scale complex systems represented as networks, which led to

development of a new field called “Network science” [128].

1.1 Engineering systems as networks

Many complex engineering systems can be characterized as networks. The individ-
ual entities or components can be represented as nodes and interactions between
them as edges. For example, sensor networks where sensors can be considered as
nodes and connected by an edge if there is a direct communication channel between
them. Characterizing them as networks helped researchers to develop various tech-
niques and models in understanding and predicting the behavior of these complex
systems [14, 33, 56, 122]. Other examples include:

o World Wide Web: It can be viewed as a network where web pages are the
nodes and hyperlinks connecting one webpage to another are the directed
edges. The World Wide Web is currently the largest network for which
topological information is available. It had approximately one billion nodes
at the end of 1999 [103] and is continuously growing at an exponential rate.
A recent study [77] estimated the size to be 11.5 billion nodes as of January
2005.

e Internet: The Internet is a network of computers and telecommunication

devices connected by wired or wireless links. The topology of the Internet is



studied at two different levels [64]. At the router level, each router is rep-
resented as a node and physical connections between them as edges. At the
domain level, each domain (autonomous system, Internet Service Provider)
is represented as a node and inter-domain connections by edges. The number
of nodes, approximately, at the router level were 150,000 in 2000 [71] and at
the domain level were 4000 in 1999 [64].

Market graph: Recently, Boginski et al. [34, 35] represented the stock market
data as a network where the stocks are nodes and two nodes are connected
by an edge if their correlation coefficient calculated over a period of time
exceeds certain threshold value. The network had 6556 nodes and 27,885
edges for the U.S. stock data during the period 2000-2002 [35].

Phone call network: The phone numbers are the nodes and every completed
phone call is an edge directed from the receiver to the caller. Abello et al.
[3] constructed a phone call network from the long distance telephone calls
made during a single day which had 53,767, 087 nodes and over 170 million
edges.

Power grid network: Generators, transformers, and substations are the nodes
and high-voltage transmission lines are the edges. The power grid network of
the western United States had 4941 nodes in 1998 [169]. The North American
power grid consisted of 14,099 nodes and 19, 657 edges [12] in 2005.

Airline network: Nodes are the airports and an edge between two airports
represent the presence of a direct flight connection [32, 76]. Barthelemy et al.
[32] have analyzed the International Air Transportation Association database
to form the world-wide airport network. The resulting network consisted of
3880 nodes and 18810 edges in 2002.

Scientific collaboration networks: Scientists are represented as nodes and
two nodes are connected if the two scientists have written an article to-
gether. Newman [119, 120] studied networks constructed from four different
databases spanning biomedical research, high-energy physics, computer sci-
ence and physics. On of these networks formed from Medline database for
the period from 1961 to 2001 had 1,520,251 nodes and 2, 163,923 edges.



e Mowie actor collaboration network: Another well studied network is the
movie actor collaboration network, formed from the Internet Movie Database
[1], which contains all the movies and their casts from 1890s. Here again,
the actors are represented as nodes and two nodes are connected by an edge
if the two actors have performed together in a movie. This is a continuously
growing network with 225,226 nodes and 13, 738, 786 edges in 1998 [169].

The above are only a few examples of complex networks pervasive in the real
world [14, 33, 56, 122]. The size of these networks is substantially larger from
the networks considered in traditional graph theory. Further, these networks do
not have any pre-specified structure/order or any design principles. To differen-
tiate these networks from regular graphs they are often called as complex net-
works. These networks are often characterized by diverse behaviors that emerge
as a result of non-linear spatio-temporal interactions among a large number of
components [144]. Typical behaviors include self-similarity, infinite susceptibility,
self-organization, and emergence. The problems posed in such networks are of-
ten novel. Tools and techniques developed in the field of traditional graph theory
involved studies that looked at networks of tens or hundreds or in extreme cases
thousands of nodes and focused on regular graphs. The substantial growth in size
of many such networks (see figure 1.1) and lack of any order in the network neces-
sitates a different approach for analysis and design. The new methodology applied
for analyzing complex networks is similar to the statistical physics approach to
complex phenomena.

During the last few years there has been a tremendous amount of research ac-
tivity dedicated to the study of these complex networks. This activity was mainly
triggered by significant findings in real-world networks which are elaborated in
chapter 2. There was a revival of network modeling that gave rise to many path
breaking results [14, 33, 56, 122] and provoked vivid interest across different disci-
plines of the scientific community. Prominent models include small-world networks
by Watts and Strogatz [169] and scale-free networks by Barabdasi and Albert [26]
and scale-free networks. Until now, as a first step, a major part of this research was
focused on modeling and characterizing the behavior of the networks. However,
the ultimate goal of modeling these networks is to understand and optimize the

dynamical processes taking place in the network. This dissertation focusses on an



Figure 1.1. Pictorial description of the change in scale in the size of the networks found
in many engineering systems. This change in size and lack of any order in the network
necessitates a change in the analytical approach.

important process of search and routing in these large-scale networks.

1.2 Search and routing in networks

Search and routing is one of the most important and prevalent process in many
real-world networks. In many networks, one needs to route raw material /computer
files/messages from one node to another along the edges of the network. Most
of the times it is important that the paths used for routing are optimal with
respect to resources such as time and cost. Some examples include transporting
raw material /finished products from one node to another in supply chain networks;
traveling from one place to another using the road network; searching for a person
in a social network; routing files from one computer to another in the Internet;
searching for a web page on the WWW; traveling from one place to another using
the airline network. Finding optimal paths in the networks can be approached in
different ways depending upon availability of information. If the information on
how each and every node is connected in the network is known, one could use an
abundant number of algorithms available in literature for calculating the optimal
paths [7, 48]. For instance, one could use breadth first search (BFS) algorithm if
all the edges in the network have equal edge weights or use Dijkstra’s algorithm if
the network has unequal non-negative edge weights. Consider the networks shown

in figure 1.2(a) and 1.2(b). The objective is for node 1 to send a message to node



(a) (b)

Figure 1.2. Illustration for different ways of routing message from node 1 to node 30.
(a) In this case, each node has global connectivity information about the whole network.
Hence, node 1 calculates the optimal path and send the message through this path. (b)
In this case, each node has only information about its neighbors (as shown by the dotted
curve). Using this local information, node 1 tries to send the message to node 30. The
path obtained is longer than the optimal path.

30 in the least number of hops. In the network shown in figure 1.2(a), each node
has global connectivity information about the network. In such a case, node 1 can
calculate the optimal path using traditional algorithms [7] and send the message
through this path (1 - 3 - 12 - 30, depicted by the dotted line). However, in some
scenarios, it is not possible to have access to the global information of the network
and hence need decentralized algorithms that can navigate through the network

by using only local information. This forms the core problem of this dissertation.

1.2.1 Problem definition: Decentralized search and rout-
ing

Decentralized search and routing is the process in which a node tries to find a

network path to a target node using only local information. By local information,

we mean that each node has information only about its first, or perhaps second

neighbors and it is not aware of nodes at a larger distance and how they are

connected in the network. Consider the network shown in figure 1.2 (b), in which

each node knows only about its immediate neighbors. Node 1, based on some

search algorithm, chooses to send the message to one of its neighbors: in this



case, node 4. Similarly, node 4 also has only local information, and uses the same
search algorithm to send the message to node 13. This process continues until the
message reaches the target node. We can clearly see that the search path obtained
(1-4-13-28-23-30) is not optimal. However, given that we have only local
information available, the research problem in this dissertation is to design optimal
search and routing algorithms in different kind of networks. Further, we study
how the structure of the network influences the quality of the paths found using
local information. The performance of the decentralized algorithms highly depends
on the structure of the networks [6, 95, 156, 157, 168]. In some networks, the
algorithms can find the paths with lengths in the order of the shortest paths found
using global information (the paths with lengths in the order of shortest paths are
termed as 'short paths’). These networks which can inherently accommodate local
search are called searchable networks.

Decentralized search is an intriguing and relatively little studied problem that
has many practical applications. In many networks, information such as data files
and sensor data is distributed and stored at the nodes of a network. In addition, the
nodes have only limited or local information about the network. Examples include
routing of sensor data in wireless sensor networks [10, 142], locating data files in
peer-to-peer networks [91, 175], and finding information in distributed databases
[42]. The importance of search efficiency becomes even more imminent in the case
of ad-hoc networks, where the networks are decentralized and distributed, and real
time search is required to find the target node. Figure 1.3 provides the pictorial
description of the thesis structure and presents the salient points. As shown in
this figure, we broadly formulate the decentralized search problem in two types
of networks, namely, non-spatial networks and spatial networks. In non-spatial
networks, the global position of a node cannot be quantified and it is difficult to
know whether a step in the search process is towards the target node or away from
the target node. This makes the local search process even more difficult. Whereas
in the spatial networks, the global position of the target node can be quantified
and each node has this information. This information will guide the search process

in reaching the target node quicker.
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Figure 1.3. Pictorial description of the structure of this dissertation. Firstly, we present
an overview of Network Science and then introduce the problem of search and routing
in networks. The problem is broadly classified into search in non-spatial networks and
search in spatial networks. Later, we present several algorithms for these two problems
and test them on real-world networks. We discuss embedding non-spatial networks in a
metric space as a part of future work.




1.2.2 Research challenges, objectives, and methodology

Finding short paths in the network using local information alone could be chal-
lenging and may be not feasible in many networks. Due to limited information,
the algorithms may not be able to choose the edges that lead to the optimal
paths. In 1960’s, Milgram [111] conducted an experiment to demonstrate that
short chains of acquaintances exist between any two people in the social networks.
Later, Kleinberg [95] made the even more striking observation that people are
able to find these short paths using local information alone. Even though it was
demonstrated that short paths can be found using local information, many models
in literature do not explain this phenomenon. Kleinberg [95] and later Watts et
al. [168] argued that the emergence of such a phenomenon requires special topo-
logical features. Independently, they proposed different models that explain this
phenomenon. Unfortunately, the model proposed by Watts et al. is specific to
social networks and the model given by Kleinberg represents only a small subset
of complex networks. It is not completely clear how the structure of the network
influence the performance of the search algorithms. The objective of this thesis
is to design and investigate decentralized algorithms in different networks broadly
classified as non-spatial and spatial networks.

In non-spatial networks, since the position of the target node cannot be quan-
tified and is unknown, it is extremely difficult to find short paths using local infor-
mation. In such networks, Adamic et al. [6] demonstrated that high-degree search
is more efficient than random-walk search, especially, in the networks with power-
law degree distribution. In a random-walk search, the node that has the message
passes it to a randomly chosen neighbor, and the process continues until it reaches
the target node. Whereas, in a high-degree search, the node that has the message
passes it to the neighbor with highest degree. However, they assume that the edges
in the network are equivalent which does not hold in many real-world networks. In
fact, many researchers pointed out that edge-weights have significant influence on
many processes in the network [17, 24, 28, 76, 100, 137, 139]. Our objective is to
design algorithms that considers the edge-weights and perform better in weighted
complex networks. We define a local measure, local betweenness centrality, that
considers both the edge-weights and the degree of the neighbors. This measure

is adapted from the definition of betweenness centrality [122] and gives the most
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central neighbor in the local neighborhood. We consider an algorithm based on
this measure and investigate its performance by extensive simulation.

For spatial networks, we consider a family of parameterized spatial network
models that are heterogenous in node degree. Many real-world networks such as
the Internet [173] and the worldwide airline network [73], can be described by this
family of spatial network models. Our objective is to design decentralized search
algorithms for this type of network model and demonstrate that this simple model
defines a class of searchable networks. We propose several algorithms that consider
the heterogeneity in the network and the direction of travel. We investigate their
performance for a large range of parameter space in the network model. The

following section summarizes the results obtained for these two problems.

1.2.3 Summary of results

For non-spatial networks, we proposed a decentralized search algorithm based on a
new local measure called local betweenness centrality. We studied complex trade-
offs presented by efficient decentralized search and showed that heterogeneity in
edge weights has a huge impact on the search process. Moreover, the impact of
edge weights on the performance of the search algorithms increases as the het-
erogeneity of the edge weights increases. We also demonstrated that the search
strategy based on LBC utilizes the heterogeneity in both the node degree and edge
weight to perform the best in power-law weighted networks. We observed that the
performance of LBC search is similar to BC search, which utilizes the maximum
information about a neighbor. Further, we observed that the exponent for the
scaling of LBC search with network size decreases as the heterogeneity in edge
weights increase. Whereas, the exponent for scaling of high degree search remains
the same. This implies that the LBC search exploits low weight edges for nav-
igation. Furthermore, we demonstrated that in unweighted power-law networks,
the neighbor with the highest degree is usually the same as the neighbor with
the highest LBC. Hence, our proposed search strategy based on LBC is universal
and is efficient in a larger class of complex networks. However, when tested in
a peer-to-peer network, Gnutella, the results were not consistent with the results

obtained from simulations. The reasons for this behavior are not completely clear
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and we discuss some possibilities in the future work section.

For spatial networks, we proposed several search algorithms that combine the
direction of travel and the degree of the neighbor and illustrated that some of these
algorithms exploit the heterogeneity in the network to find short paths by using
only local information. In addition, we demonstrated that the spatial network
model belongs to a class of searchable networks for a wide range of parameter space.
Further, we tested these algorithms on the U.S. airline network which belongs to
this class of networks and demonstrated that searchability is a generic property of
the U.S. airline network. In addition, the spatial network model and the airline
network are searchable for a wide range of search algorithms. We demonstrated
that direction plays the most important role in efficient search, and even slight
blending of direction with degree is sufficient to drastically improve the efficiency
of the search algorithms. Hence, searchability is a property of the network rather
than of the functional forms used for the search algorithm. As conjectured by oth-
ers [6, 98], the results presented in this thesis support the hypothesis that many
real-world networks evolve to inherently facilitate decentralized search. These re-
sults provide insights on designing the structure of distributed networks that need

effective decentralized search algorithms.

1.3 Thesis outline

The outline of the thesis is as follows. Chapter 2 introduces the new direction
of inter-disciplinary research, Network Science, and discusses significant results
in the literature. Firstly, we introduce different statistical properties that are
prominently used for characterizing large-scale networks. We also present the
empirical results obtained for many real complex networks that initiated a revival
of network modeling. In section 2.2, we summarize different evolutionary models
proposed to explain the properties of real networks. In particular, we discuss
Erdos-Rényi random graphs, small-world networks, and scale-free networks. In
section 2.3, we discuss the dynamical processes in networks by concentrating on
network resilience because of its high relevance to engineering systems and discuss
a few other topics briefly. Section 2.4, we discusses the literature on decentralized

search in networks which is the primary focus of this thesis.
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In chapter 3, we present the problem of decentralized search and routing in
large-scale networks. We formulate two research problems and discuss the applica-
tions of these problems. In chapter 4, we give the details of the methodology and
results obtained for search in non-spatial networks. We present several algorithms
and analyze the performance of these algorithms for different types of networks.
Further, we present the results obtained for the peer-to-peer network, Gnutella.

In chapter 5, we present the results obtained for the decentralized search prob-
lem in spatial networks. We present several algorithms and illustrate that some of
these algorithms exploit the heterogeneity in the network to find short paths by
using only local information. Further, we test these algorithms on the U.S. airline
network which belongs to this class of networks and demonstrate that searcha-
bility is a generic property of the U.S. airline network. Finally in chapter 6, we
conclude and summarize the results obtained in this thesis. Further, we present

the uniqueness of this thesis and discuss potential directions for the future work.



CHAPTER
TWO

Network Science and Optimization -

An overview

Many complex distributed systems across different disciples such as communica-
tions, sociology, and biology can be characterized as networks, and this in turn
allows for understanding their structure, modeling and predicting their behaviors.
As discussed in the previous chapter, tools and techniques developed in the field
of traditional graph theory focused on regular graphs and involved studies that
looked at networks of tens or hundreds or in extreme cases thousands of nodes.
For example, consider the problem of finding the shortest route between two ge-
ographical points. The problem can be modeled as a shortest path problem on
a network, where different geographical points are represented as nodes and they
are connected by an edge if there exists a direct path between the two nodes. The
weights on the edges represent the distance between the two nodes (see figure 2.1).
Let the network be G(V, E') where V is the set of all nodes, F is the set of edges
(i, j) connecting the nodes and w is a function such that w;; is the weight of the
edge (7, j). The shortest path problem from nod