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ABSTRACT

The core objective of the research presented in this dissertation is to develop new

methodologies based on Bayesian inference procedures for some problems occurring in

manufacturing processes. The use of Bayesian methods of inference provides a natural

framework to obtain solutions that are robust to various uncertainties in such processes as

well as to assumptions made during the analysis. Specifically, the methods presented here

aim to provide robust solutions to problems in process optimization, tolerance control and

multiple criteria decision making.

Traditional approaches for process optimization start by fitting a model and then op-

timizing the model to obtain optimal operating settings. These methods do not account

for any uncertainty in the parameters of the model or in the form of the model. Bayesian

approaches have been proposed recently to account for the uncertainty on the parameters

of the model, assuming the model form is known. This dissertation presents a Bayesian

predictive approach to process optimization that accounts for the uncertainty in the model

form, also accounting for the uncertainty of the parameters given each potential model.

Both single response and multiple response systems are considered. The objective here is

to optimize the model-averaged posterior predictive density (MAP) of the response where

the weighted average is taken using the model posterior probabilities as weights. The MAP

is thus used to maximize the posterior probability of obtaining the responses within given

specification limits.

The Bayesian approach to model-robust process optimization is then extended to the
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case where noise factors and non-normal error terms are present. Traditionally, in process

optimization, methods such as the Dual Response Surface methodology are used in the

presence of noise factors, and methods such as Robust Regression are used when the error

terms are not normally distributed. In this dissertation, the idea of model-robustness using

the Bayesian posterior predictive density is extended to cases where there is uncertainty

due to noise factors and due to non-normal error terms.

The tolerance control problem is the inverse of the process optimization problem. Here,

the objective is to find the specification or tolerance limits on the responses. We propose

a Bayesian method to set tolerance or specification limits on one or more responses and

obtain optimal values for a set of controllable factors. The dependence between the con-

trollable factors and the responses is assumed to be captured by a regression model fit from

experimental data, where the data is assumed to be available. The proposed method finds

the optimal setting of the control factors (parameter design) and the corresponding speci-

fication limits for the responses (tolerance control) in order to achieve a desired posterior

probability of conformance of the responses to their specifications.

In addition to process optimization and tolerance control, a new Bayesian method is

presented for the multiple criteria decision making problem (MCDM). The usual approach

to solving the MCDM problem is by either using a weighted objective function based on

each individual objective or by optimizing one objective while setting constraints on the

others. These approaches try to find a point on the efficient frontier or the Pareto optimal

set based on the preferences of the decision maker. Here, a new algorithm is proposed to

solve certain MCDM problems based on a Bayesian methodology. At a first stage, it is

assumed that there are process responses that are functions of certain controllable factors or
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regressors. At a second stage, the responses in turn influence the utility function of one or

more decision makers. Both stages are modelled with Bayesian regression techniques. The

methodology is applied to engineering design problems, providing a rigorous formulation

to popular “Design for Six Sigma” approaches.

Although the research focusses on applications in process optimization, tolerance control

and MCDM, some of the results can be directly applied to other applications such as process

control. These and other ideas for further research are described in the concluding chapter

of this dissertation.
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Chapter 1

Introduction

In any manufacturing process, there are typically one or more quality characteristics that

are of interest to the process engineer or engineering designer. The quality characteristics

that are the output of the process are referred to as responses. The responses are in general

a function of a number of process parameters or factors that may or may not be under the

control of the process engineer. The parameters that are under the control of the process

engineer are called control variables or control factors and those that are not controllable

are called noise variables. In addition to these, a third category called noise factors may

also be present. These are noise variables that cannot be controlled at the “customer”

level (whether this customer is the manufacturing plant or the end customer), but can

be controlled under careful experimental conditions. For example, in the production of

automotive tires, the type of driver and the driving conditions might be noise factors.

Another example is in the polishing process in semiconductor manufacturing where the

response might be the thickness of the silicon wafers. The control factors might be polishing

pressure and rotation speed. A noise factor may be environmental temperature.

1
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Statistical methods and other Operations Research techniques have been traditionally

used in different stages of manufacturing processes to help improve quality, reduce costs,

etc. The common applications for these methods in manufacturing include:

1. Statistical Process Modelling using design of experiments (DOE) and response surface

methodology (RSM)

2. Process Optimization and Multiple Criteria Decision Making (MCDM)

3. Process Control

4. Tolerancing

5. Reliability and Fault Control

6. Scheduling

In this research, the contributions focus on applications in process optimization, MCDM

and tolerancing, but some of the results presented may directly be applied to other ap-

plications. Although there are no new contributions presented in the statistical modelling

and DOE/RSM area, traditional methods are extensively used throughout this dissertation

in developing the new methods for process optimization, tolerancing and MCDM. Due to

the stochastic uncertainties in the processes and the assumptions made during the analysis

of any process, it is important that the solutions obtained using various statistical and

operations research methods are robust. A robust solution is one which consistently pro-

duces desired responses that are insensitive to the assumptions made as well to the natural

variabilities present in the system. There are different sources of uncertainty with respect
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to which robustness can be achieved. These are discussed in the later chapters. The next

section describes the problems in process optimization, tolerancing and MCDM that are

addressed in the dissertation.

1.1 Dissertation Topics

1.1.1 Process Optimization

In manufacturing processes, it is usually desired to obtain responses that satisfy certain

specifications, which are based on customer preferences. It is frequently the case that all

the responses can be quantified and it will be assumed herein that they must lie between

an upper and a lower specification limit. The objective of process optimization is then

to find the settings of the control variables so that the process responses lie within these

specification limits. It is possible to have responses for which the objective is to make them

as large or as small as possible. This research will concentrate in the case when responses

have specifications and the problem is process optimization. Other type of objectives in

process optimization problems that are typically used include:

1. Target is best: The objective is to reduce the variability of the response around the

given target which is a point rather than an interval

2. Smaller the better: The objective is to minimize the value of the response with a low

variability around the minimum

3. Larger the better: The objective is to maximize the value of the response with a low

variability around the maximum
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Since not all combinations of settings of the control variables may be possible, the opti-

mization should take into account any imposed constraints. In this research, the Bayesian

predictive density is used to find the settings of the control factors that maximize the

probability of conformance of the responses to their specification limits under the given

constraints. Extensions are provided to handle noise factors and non-normal error terms.

1.1.2 Tolerancing

In process optimization, it is assumed that the specification limits are given, and the

objective is to maximize the probability of conformance of the responses to the given limits.

Tolerance control is the inverse problem. Here, the objective is to evaluate the specification

or tolerance limits on the responses for managing their quality. The Bayesian method is

used to find tolerance limits where the coverage or the probability of conformance of the

response is at least equal to some given value. In addition, the problem we address finds

the settings of the control factors that give the smallest such tolerance interval so that there

is least variation among the conforming responses. Since the mean of the responses is also

important, the optimization takes into account constraints on the possible region where

the tolerance interval may lie. Based on these constraints the objective is to minimize the

size of the tolerance interval with respect to the settings of the control factors such that

the interval contains a given probability of conformance for the response. The problem is

also solved for setting tolerance intervals simultaneously on multiple responses.
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1.1.3 Multiple Criteria Decision Making

In practice, decision-making problems typically involve the consideration of two or more

criteria that are often conflicting. These are referred to as Multiple Criteria Decision

Making (MCDM) problems, where one has to take into account trade-offs between the

conflicting criteria. The difference between MCDM problems and process optimization

problems is that in the former, there is an additional function that is of interest, namely

the utility function of the customer or the decision maker. The utility function can be

thought of as a quantitative measure of the decision maker’s satisfaction. As in process

optimization, the responses are a function of the controllable factors. But in addition,

the utility is a function of the outcome of the responses. Taking into account both these

dependencies, the objective is to find the setting of the control factors that maximizes the

utility of the decision maker. In this research, both the dependencies mentioned above are

modelled using Bayesian regression. Since the utility function is obtained as a probability

distribution, the MCDM optimization problem is formulated to find the settings of the

control factors that maximizes the probability that the decision maker’s utility function

is at least equal to some given lower bound. The problem addressed in this research also

extends the methodology to the case where there are multiple decision makers.

1.2 Research Objectives

The overall goal of the proposed research is to develop methodologies for process optimiza-

tion, tolerance control and multiple criteria decision making (MCDM) that provide robust

operating settings with respect to different sources of uncertainty. Sources of uncertainty
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such as noise factors, non-normal error terms, uncertainty of parameters and uncertainty

in the model form are considered. The specific objectives of the research presented in the

dissertation are:

1. Process Optimization for Single Response Systems: In this case, it is assumed

that there are multiple control factors in the process and a single response that is

desired to lie within given specification limits. The goals here are to:

• Develop a method for model-robust process optimization that evaluates the set-

tings of the control factors, at which obtaining the response within the given

specification limits is robust with respect to competing model forms that can

be used to represent the process. In each of the competing model forms, the

parameter estimates are also assumed to be uncertain.

• Extend the model-robust Bayesian methodology for single response process op-

timization in the presence of noise factors.

• Extend the model-robust Bayesian methodology for single response process op-

timization under the assumption of non-normal error terms. The method is

extended for processes with t-distributed errors that have thicker tails than nor-

mally distributed errors.

2. Process Optimization for Multiple Response Systems: In this case, it is as-

sumed that there are multiple control factors in the process and multiple responses

that are desired to lie within each of their given specification limits. The goal is to

extend the model-robust Bayesian methodology for process optimization to multiple

response systems.
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3. Robust Tolerance Control and Parameter Design: Develop a Bayesian ap-

proach for Robust Tolerance Control and Parameter Design.

4. Multiple Criteria Decision Making: Develop a Bayesian method for multiple cri-

teria decision making (MCDM) problems with applications in “Design for Six Sigma”.

1.3 Dissertation Outline

Chapter 2 reviews literature that is relevant to the topics covered in this research. The

reviewed literature can be broadly classified into two categories. The first category includes

current methods that are used in process optimization, in tolerancing and in multiple

criteria decision making (MCDM). These methods are presented in order to demonstrate the

contrast with the new methods presented in this research. The second category of literature

reviewed includes published results that are used in developing some of the methodologies

presented in this research.

In chapter 3, a new method is presented for process optimization using Bayesian model

averaging techniques. The method provides a solution that is robust not only with respect

to the uncertainty in the model parameters but also with respect to uncertainty in the

model form. In this chapter, the methodology is presented for a single response system,

with the assumption of normally distributed errors and the absence of noise factors.

Chapter 4 extends the model-robust Bayesian methodology for process optimization

first to processes where there are noise factors in addition to control factors. The second

extension is to processes where the error distribution is not normal. Instead, t-distributed

errors that have thicker tails than the normal errors are assumed. The results developed
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in this chapter are also for single response systems.

Chapter 5 extends the model-robust Bayesian methodology for process optimization of

the previous chapters to the case of multiple response systems. Multiple response systems

are classified into four categories depending on how the system is modelled. The chapter

shows how, depending on the category, the complexity of the methodology for multiple

response systems varies.

In chapter 6, a Bayesian method for tolerance control and parameter design is presented.

This chapter presents a methodology to set tolerance or specification limits on one or more

responses while at the same time identifying the value of the control factors that provide

the desired limits.

Chapter 7 provides a new Bayesian approach for the multiple criteria decision making

(MCDM) problem. In the problem considered here, there are process responses that are

functions of certain control factors or regressors. In addition, the responses in turn influence

the utility function of one or more decision makers. The method proposed in this chapter

finds the optimal setting of the control factors by considering both the dependency of the

responses on the control factors and that of the decision maker’s utility on the responses,

where both the dependencies are modelled using Bayesian regression.

All the methodologies presented in chapters 3-7 are illustrated by examples, the data

for which come from published literature. Chapter 8 presents the summary of the research

contributions as well as some ideas for future research.



Chapter 2

Literature Review

In this chapter, a review of the literature relevant to the topics in this dissertation is pre-

sented. A brief review of the Bayesian method of inference is provided followed by reviews

of methods in process optimization, process tolerancing and multiple criteria decision mak-

ing that are relevant to the remaining topics in this dissertation. A brief description of the

algorithms for nonlinear optimization, which are used in the examples in the later chapters,

is provided in appendix D.

2.1 Bayesian Methods of Inference

The overall idea of the Bayesian method of inference is to form posterior beliefs by updating

prior beliefs based on the observed data [39, 58, 60]. The posterior beliefs are thus expressed

as a conditional probability given the observed data. The Bayesian method of inference

thus has two parts, the prior that depends upon subjective belief that the experimenter has

before making any experimental observations, and the data that the experimenter observes

9
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from the experiments. This method of inference follows from Bayes’ Theorem given below.

Bayes’ Theorem [8]: Suppose y is a vector of n observations of a response whose joint

distribution p(y|θ) depends on the value of k parameters θ. Suppose that θ has a prior

probability distribution p(θ). Then, given the observed data y, the conditional distribution

of θ is given by Bayes’ theorem:

p(θ|y) =
p(y|θ)p(θ)

p(y)
(2.1)

As p(y|θ) is a function of θ and not y, it is called the likelihood function of θ for given y,

and may be written as l(θ|y). In other words, Bayes’ theorem says that the distribution of

θ posterior to the data y is proportional to the product of the likelihood for θ given y and

the distribution of θ prior to observing the data. Inferences about the unknown quantity

θ are then made from its posterior distribution.

The subjectivity involved in the Bayesian method of inference has been its biggest

cause of criticism as opposed to non-Bayesian or frequentist methods of inference where the

inference is based completely upon the observed data. However, a good argument of the

natural inclusion of subjectivity in all scientific methods of inference is discussed in Press

[58]. More recently, it is becoming increasingly common to accept both frequentist and

Bayesian methods for their advantages rather than to choose one method over the other.

Other advancements in the Bayesian method of inference includes the concept of objective-

Bayesian methods. These are prior distributions that have been developed to reflect little

or no prior information about the unknown parameters. Some of the results developed in

this dissertation will be using the objective-Bayesian method. It is noted that sometimes

mathematically identical results can be obtained when using objective priors as compared
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to frequentist methods, however, the interpretation of the results is different based on the

method of inference used [58]. Two other recent techniques to compute prior distributions

are empirical and hierarchical Bayes techniques [12]. The empirical Bayes technique uses

the observed data to estimate the parameters of the prior distribution in what may seem

as a conflict to the Bayesian paradigm. The method hence draws a lot of criticism from

staunch Bayesians as the prior in this case is in fact chosen posterior to observing the data.

The hierarchical Bayesian approach models the lack of information on the parameters of

the prior distribution through yet another prior distribution on the unknown parameters.

The parameters of this distribution are called hyperparameters. This approach is generally

more popular among Bayesians, but increases the analytical complexity of the methodology

depending on how far down the hierarchy one goes.

Some other useful terms in the Bayesian methodology are given below [58]:

• Improper priors: Improper priors are priors that do not integrate to one over

all values of the parameter. These priors are often used when there is little or no

information a priori.

• Vague priors: Vague priors are improper priors that are uniform across all values of

the unknown parameter. In other words, they express the prior belief that no value

of the parameter θ is more likely than any other value. For example, the vague prior

on a parameter θ on (−∞,∞) is

p(θ) ∝ constant,

and a vague prior on a parameter σ on (0,∞) is

p(σ) ∝ 1

σ
.
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• Conjugate priors: A family of distributions is said to make up a conjugate family

of priors for a given likelihood, if the posterior also belongs to the same family of

distributions.

• Jeffrey’s priors: Jeffrey’s priors are distributions such that the probabilities of the

observable random variables are invariant to changes in the parametrization of the

problem. Based on this requirement, it was shown by Jeffrey that the prior density

for a parameter θ must be of the form:

p(θ) ∝ |J|0.5,

where J is the Fisher information matrix associated with the likelihood function.

The Bayesian method facilitates a very natural way of making inferences on future

values of the response using the posterior predictive distribution. Equation (2.1) gives the

posterior distribution of the parameters θ based on the prior distribution and the observed

responses y in the form of the likelihood function. If y∗ is a future value of the response

that has not yet been observed, it is possible to make inferences on y∗ from its posterior

distribution given by

p(y∗|y) =

∫
p(y∗|θ)p(θ|y) dθ. (2.2)

Thus, the posterior predictive distribution of the response also naturally accounts for the

uncertainty in the true value of the parameters θ as the expression uses the posterior

distribution of θ as opposed to point estimates that are used for prediction in frequentist

approaches.

With this introduction, the next few sections describe both Bayesian and non-Bayesian
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methods that exist in literature for process optimization, process tolerancing and multiple

criteria decision making.

2.2 Review of Process Optimization Methods as Ap-

plied to Robustness Studies

In order to optimize a process, a transfer function model is required to relate the responses

to the control variables. However, many advanced manufacturing processes are complex in

nature and there is seldom a physical model to represent them. Traditionally (Figure 2.1),

preliminary experiments are carried out using Design of Experiments (DOE) techniques,

and a linear statistical model of the following form is fit to the data:

yk = xk
′βk + ǫk (2.3)

where yk is the kth of a total of q responses, xk are the control variables (regressors), βk

are the model parameters, and ǫk are the error terms. Noise factors may be considered

explicitly in the model, as described later in this dissertation. The settings for the control

variables are then determined by optimizing the fitted model under the given constraints.

A common methodology used in process optimization is Response Surface Methodology

(RSM), where a sequence of first or second-order polynomial models (response surfaces)

are fit to the data and optimized [49].

From an application point of view, process optimization is becoming increasingly im-

portant in several types of industries. The emphasis on improving quality while at the same

time reducing costs has led to the adoption of statistical and optimization approaches re-
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Figure 2.1: Traditional Process Optimization

ferred by the name of Six Sigma techniques [9]. In the automotive industry, for example,

the design for six sigma (DFSS) methodology uses traditional process optimization tech-

niques to identify set points for controllable factors earlier in the process or assembly line

in order to meet quality requirements for the end customer.

There are shortcomings in the traditional process optimization approach mentioned in

the previous section (Figure 2.1), many of which arise as a result of various underlying

assumptions in the methodology. Due to the stochastic uncertainty involved in any manu-

facturing process, it is important that the optimal solutions be robust. A robust solution is

one which consistently produces desired responses that are insensitive to the assumptions

made as well to the natural variabilities present in the system. There are different sources

of uncertainty with respect to which robustness can be achieved. Some of these have been

addressed in literature and are discussed below.

1. Robustness with respect to the optimal setting of the control variables:
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Instead of the traditional approach where the optimal solution is a single point es-

timate, this approach provides a confidence region around the estimated optimal

settings ([10, 11, 16, 55]) in order to give an idea of how sensitive, or robust, the

predicted optimal value of the response is around the optimal set point of the con-

trol variables. The confidence region provides information on how flat the response

is around the optimal setting. Thus, as long as there is a good model fit, a larger

confidence region around the estimated optimal setting implies that the solution is

robust to changes around the optimal values of the control variables.

2. Robustness with respect to non-normal error terms: The traditional model-

fitting approach uses ordinary least square (OLS) estimates for the parameters, β, in

the model shown in equation (2.3). However, when the standardized residuals from

the fitted model have large magnitudes (large outliers), the estimates using OLS

are poor. This happens when the noise term, ǫ, deviates from the assumed normal

distribution (i.e., fatter tails in the distribution). In such cases, a robust regression

approach is used [61], where the parameter estimates are obtained using methods

such as Least Absolute Deviations (norm), M-Estimators, Least Median Squares, or

Ranked Residuals ([61, 19]) which are less sensitive to non-normal errors than OLS.

In statistics, this is the most common use of the word “robustness”.

3. Robustness with respect to noise factor variability: In practice, there are

some noise variables that cannot be controlled at the “customer” level (whether this

customer is the manufacturing plant or the end customer), but can be controlled

under careful experimental conditions. These are referred to as noise factors. For
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example, in the production of automotive tires, the type of driver and the driving

conditions might be noise factors. The objective then is to find a solution that is

robust to the variation in the noise factors. This is the so-called Robust Parameter

Design (RPD) problem and was first formulated by Genichi Taguchi ([66, 67, 68]).

This method involves designing an experiment that involves varying both control and

noise factors in a crossed array, with the control factors in the inner array and the

noise factors in the outer array. The data is used to fit a model (such as equation 2.4

below) to a single response as a function of both the controllable and noise factors.

This is called the Dual Response Surface approach (refer [7, 15, 49]), as this model is

then used to get the mean (equation 2.5) and variance (equation 2.6) models (response

surfaces) for the estimated response. These models follow from assuming that the

noise factors, z ∼ (0, σ2I), and from taking the expected value and variance with

respect to z in the fitted equation, that is:

ŷ(x, z) = bo + x′b + x′Bx + z′c + x′∆z, (2.4)

so taking expected value and variance , we get

Ez[ŷ(x, z)] = bo + x′b + x′Bx (2.5)

and

V arz[ŷ(x, z)] = σ2
z(c

′ + x′∆)(c + ∆′x) + σ̂2, (2.6)

where bo, b, B, c and ∆ are estimated parameters, and σ̂2 is the estimated variance of

the error terms (i.e., the mean squared error). The mean and variance models of the

estimated response are used to arrive at the optimal solution by finding a region that
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Figure 2.2: RPD example - Myers and Montgomery [49]

minimizes the variance and meets the specifications for the mean of the response. The

example in figure 2.2, taken from Myers and Montgomery [49] shows a semiconductor

manufacturing process where there is a single response with 2 control factors and 3

noise factors. The specification limits set by the manufacturer are Ez[ŷ(x, z)] < 30,

and V arz[ŷ(x, z)] < 5.5. The unshaded region in figure 2.2 gives the region where the

manufacturer’s specifications seem to be satisfied based on the fitted model.

In the case where the noise factors are correlated, i.e., z ∼ (0,Vz), where Vz is

the variance-covariance matrix, Myers and Montgomery [49] show that the variance

model for the estimated response is

V arz[ŷ(x, z)] = l̂′(x)Vẑl(x) + σ̂2, (2.7)

where l̂(x) = (c + ∆′x). But, as the result in equation (2.7) is not an unbiased
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estimator of V arz[y(x, z)], the authors recommend using instead an estimator that

includes a bias-correction term:

V arz[ŷ(x, z)] = l̂′(x)Vẑl(x) + σ̂2(1 − tr VzC), (2.8)

where C = Var[̂l(x)]/σ2. Miro-Quesada and Del Castillo [47, 48] show that even

though the variance estimate in equation (2.8) is unbiased, it can give a negative

variance estimate, especially in regions where the coded controllable factors are far

away from the origin. The authors reason that this is because the estimate in equation

(2.8) considers only the variability in the noise factors, but not the variability in the

parameter estimates in l̂(x). They propose to use the estimate given by

V̂ ar
z,β

∗ [ŷ(x, z)] = l̂′(x)Vl̂(x) + σ̂2(x(m)′Cx(m)x(m)), (2.9)

where β∗ is the vector containing all the parameters in equation (2.4), x(m) is the

vector containing all the regressors associated with the control factors, and Cx(m) is

the sub-matrix, corresponding to just the control factors, of the design matrix that

includes both the control and the noise factors.

Need for a Bayesian predictive approach: In the example shown in figure 2.2,

it is recommended, based on equations (2.5) and (2.6), to operate at any point in the

unshaded region in order to produce responses that meet the specifications. How-

ever, the optimal setting x∗ using equations (2.5) and (2.6) does not allow us to

predict what fraction of future responses (e.g., proportion of products in a manu-

facturing process) will fall within the specifications as these equations give only the

“mean models” (i.e., they give only point-estimate values for the mean and the vari-

ance of the response at x∗). In other words, there can be no inference made about
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the reliability of the process. A natural way to optimize any process from a quality

and reliability standpoint is thus to maximize the probability of conformance of the

predicted responses to their specification limits [56]. This can be achieved using a

Bayesian predictive methodology. The benefits of using this methodology are that,

(a) the posterior predictive density of the responses can be used to make inferences

on their future values, thus giving us a means to calculate the probability of con-

formance of the future responses, (b) the methodology takes into account the mean

and the variance of the responses including their correlation structure, and (c) the

methodology takes into account uncertainty in the model parameters.

4. Robustness with respect to parameter estimates:

Peterson [56] proposes a Bayesian approach for process optimization that considers

uncertainty in the estimated model parameters. This technique involves obtaining

the posterior predictive density of the responses based on the assumed model, and

maximizing the probability of obtaining the predicted responses within specification

limits.

Peterson [56] assumes the following Standard Multivariate Regression (SMR) model

[35]:

y = x′B + u, (2.10)

where y is a q×1 vector of the responses, x is a p×1 vector of the control factors and

u is a q × 1 vector of the error terms that may be correlated between the responses.

In this context, the predictive density of a future response vector y∗ at a given setting
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of the control factors x∗ is defined as [57]:

P (y∗|x∗, data) =

∫ ∫
L(y∗|x∗, data,B,Σ)P (B,Σ|data) dB dΣ (2.11)

where L is the likelihood function, P (B,Σ|data) is the posterior distribution of the

model parameters, and Σ is the variance-covariance matrix of the error term. It is

noted here that the uncertainty in the model parameters is considered by assuming

that B and Σ are random variables and evaluating their posterior distributions using

Bayes’ theorem as follows:

P (B,Σ|data) ∝ L(B,Σ|data) P (B,Σ) (2.12)

where, L(B,Σ|data) is the likelihood given the data, and P (B,Σ) is the prior distri-

bution of the model parameters.

The objective function for the optimization problem used by Peterson [56] is:

max
x∗

P (y∗ ∈ A|x∗, data) =

∫

A

P (y∗|x∗, data) dy∗ (2.13)

where A is a given specification region. This idea was extended by Miro-Quesada

et al. ([46, 47]) for the case of uncertainty in model parameters in the presence of

noise factors. Two cases of model classes are considered, the SMR case (as mentioned

above) and the Seemingly Unrelated Regression (SUR) case [74]. The SUR model

differs from the SMR model in that the former assumes that the vector of regressors xk

for response yk, k ∈ (1, ..., q) is different for different k, while the latter assumes that

xk is the same for all k ∈ (1, ..., q). In case of the SMR model, the predictive density

under a diffuse prior is shown by Press to have a closed form equal to a multivariate

t-distribution [57]. In case of the SUR model, Miro-Quesada et al. ([46, 47]) use a
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Gibbs sampling procedure adapted from Percy [53] as there is no closed form available

for the predictive density. We can use this methodology to calculate the posterior

predictive density of the response in the example discussed earlier from Myers and

Montgomery [49]. For example, the point (0,0) in the unshaded region in figure 2.2

gives a value of probability of conformance less than 0.5, whereas the probability of

conformance is maximized at a value of 0.61 at the point (0.1,0.8) which is not in the

unshaded region. This is an instance of specifications that are too demanding.

2.3 Review of Model Averaging Techniques

Though the area of model averaging is not new, it has not been applied in the context of

process optimization. Meyers et al. ([43, 44, 45]) have derived the posterior probability of

models for a class of priors for single response systems. They use a prior on the models

based on the prior probability of a control factor being active. They use the calculated

model posteriors for “factor-screening” in DOE. Chipman [13] presents a modified approach

to this, where the prior probability of the model is chosen based on priors on the terms

in the model rather than on the factors. Kass and Raftery [36] provide the Bayes factor

interpretation of Bayesian model averaging, where the Bayes factor is the ratio of the

posterior odds of the alternative hypothesis to the prior odds. In case of model averaging,

each model that is considered is an alternative hypothesis to some base model which is

the null hypothesis. Choosing the base model is not important as it is assumed that the

posteriors of all considered models sum to 1. Berger and Pericchi ([4, 5]) compare different

approaches for model selection. However, this comparison is made with respect to choosing
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the best model, rather than to average across all models. The methods they consider

include the prior distribution approach that is used here, the Bayes Information Criterion

(BIC), the Intrinsic Bayes factor, and the Fractional Bayes factor. They conclude that the

prior distribution approach is the most valuable when the sample size is small, and in this

case all the other approaches become suspect. It is important to note here that the idea

of model averaging for process optimization purposes is critical for experiments with small

sample sizes, as the degree of uncertainty in the model in case of smaller samples is higher.

Hoeting at al. ([30, 31]) present a BIC approach for model averaging for calculating

the predictive density for the purpose of “forecasting”. Though the idea is similar to the

posterior predictive density, there are serious drawbacks when considering small sample

sizes because the BIC criteria is an asymptotic criteria and not as reliable for small samples.

Draper [18] recommends to first find a good model and then average over a class of models

expanded around this model. This is particularly useful when the number of models to be

averaged over is very large.

Press [58] shows that the posterior predictive density for a diffuse prior in the parameters

is a t-distribution in the case of single response, and a multivariate t-distribution in the case

of multiple responses under the SMR model. The diffuse prior is, however, not suitable for

model-averaging. The reason for this and the form of some possible priors are discussed in

section 3.4. Fernandez et al. [21] use Bayes factors to evaluate model posteriors using the

similar priors proposed here. The authors recommend choosing the priors of the parameters

based on their predictive ability in single response systems obtained using simulation. They

apply the results to “forecasting” problems. Apley and Kim [2] present a Bayesian approach

to process control by minimizing the mean square error for a single response system using
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the posterior mean and covariance of the parameters, instead of the posterior predictive

density of the response. They note that this can be extended to averaging over models,

but do not give any results, and do not use a predictive approach.

2.4 Review of Tolerancing Methods

Tolerancing is an important step in the designing and manufacturing of a product. In

practice, there are variations associated with products and processes at every step in a

manufacturing plant. In addition, there is also variation associated with measurements.

Therefore, from a cost and quality perspective it is important to quantify the variations at

different stages of a manufacturing process. There are different problems related to toler-

ancing that have been studied in the literature [32]. In most of the cases, tolerancing is not

considered in conjunction with a regression model to describe the relationship between the

factors and the responses. Most of the literature in tolerancing comes from mechanical tol-

erancing where tolerances are typically expressed using conventional plus/minus tolerances

or using geometric dimensioning. In this context, some of the typical problems addressed

are:

1. Tolerance Analysis: Tolerance analysis involves identifying the variation in the

response by taking into account individual tolerances on the factors. This is done at

the design stage in manufacturing to ensure that the tolerance on the response meets

the requirements. A review of statistical approaches to tolerance analysis is presented

in [51].
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2. Tolerance Synthesis: As opposed to tolerance analysis, here, the tolerance on the

response is first quantified and this tolerance is used to arrive at the tolerance limits

for the factors.

3. Tolerance Transfer: Tolerance transfer methods are used to connect the design

stage with the manufacturing stage by a suitable tolerance scheme. Here, tolerance

charting is a common method used [40].

In the standard approaches to statistical tolerancing [26], if Y is a quality characteristic

with probability distribution P θ
Y , where θ are the parameters, and if a sample (y1...yn) of n

independent observations is available, two common statistical methods have been used for

constructing a tolerance region A. These are defined as,

1. the α-expectation tolerance region, given by:

E[C(A)] = α, (2.14)

2. the α-content tolerance region at confidence level γ, given by:

p[C(A) ≥ α] = γ, (2.15)

where C(A) is the coverage of the region A. These definitions are applicable for both clas-

sical or frequentist and Bayesian approaches. Both approaches are discussed in Guttman

[25, 26]. However, they do not consider the problem of tolerance control in conjunction

with regression, where the response depends on the settings of control factors. Also, the

methods in the literature do not address the problem of finding the smallest tolerance

region that satisfies one of the two criteria shown in equations (2.14) and (2.15).
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The idea of a robust tolerance design was originally proposed by Taguchi [67]. Taguchi

recommended tolerance design as the stage in quality control that follows parameter de-

sign. Parameter design is used to fit regression models to data and identify levels of the

controllable factors that give the required mean and variation of the fitted response mod-

els. This methodology is also called “robust engineering” as it aims to provide the desired

quality that is robust to the presence of noise factors. Taguchi’s robust tolerance design

is used to adjust the tolerances of the controllable factors that have a large influence on

the response(s). Taguchi’s idea is related to what is called “transmission of errors”, where

variation in the controllable factors causes additional variation in the responses. In some

sense, the idea of setting tolerances on control factors is paradoxical to their very definition

by which it is assumed that control factors can be set to desired values by the manufacturer.

But in practice, it is arguable if control factors in the strictest sense of the definition exist.

Thus it is also important to consider the transmission of errors due to inherent variation

in the setting of the control factors while setting tolerances on the responses.

There have been other contributions in the tolerancing literature based on Bayesian

methods. Singpurwalla [64] provides a Bayesian framework to approaching Taguchi’s idea of

parameter and tolerance design. Wolfinger [71] uses a Bayesian simulation based approach

in order to set tolerance intervals for variance component models. Hamada [28] uses a

Bayesian method to set tolerance interval control limits for control charts used in process

monitoring.



26

2.5 Review of Multiple Criteria Decision Making

MCDM problems in the presence of uncertainty are traditionally solved using stochas-

tic programming or statistical methods. The statistical approach to MCDM differs from

stochastic programming methods in that the former uses information or data collected

about the system in the analysis of solutions while the latter uses only a priori information

about the random variables in the analysis (see [70]). In this research we focus on statisti-

cal methods using a Bayesian method of inference. Other non-Bayesian statistical MCDM

approaches that use data collected on the system, typically fit expected value models that

are in turn used to obtain the efficient frontier or Pareto set [65]. An example of the Pareto

set is given in figure 2.3. In the figure there are two responses f1 and f2 that are to be

minimized. The feasible range shown in the figure is plotted in the space of the responses

and is the set of all possible values of the responses that can be obtained based on their

expected values. In the figure, the dark line in the feasible shows the pareto set or the

efficient frontier. Note that points A and B shown in the figure lie in the efficient frontier.

The efficient frontier is thus made up of all such points in the feasible space where it is

not possible to minimize one of the functions f1 or f2 any further without compromising

on the other function. As opposed to these points point C shown in the figure is not on

the efficient frontier as it is possible to move to another point in the feasible space while

at the same time minimizing both f1 and f2. Once the efficient frontier is obtained using

expected value models, there are different methods suggested in the literature that can be

used to identify the operating point on the efficient frontier. Some of the methods used

are:
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Figure 2.3: Traditional MCDM methods using the Pareto Set

1. Weighted Objective Function: Here, the decision maker (DM) sets weight wi on

criterion fi for all the K criteria, such that
∑

wi = 1. The weighted sum
∑

wifi is

then used to form a single objective optimization problem.

2. Method of Global Criterion [72, 73]: Here, no input from the DM is taken. The

optimization problem is formulated to minimize the deviation from the ideal solution,

where the ideal solution f ∗
i for criteria fi is the optimum for fi ignoring all other

criteria. The objective function here for K criteria is given by

Z =
K∑

i=1

(
f∗

i − fi

f∗
i

)p

,

where a value of p = 1 or p = 2 is commonly used.

3. Compromise Programming [72, 73]: Compromise programming is similar to the

method of global criterion, except that here Lp metrics are used to measure the
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deviation. The objective function to be minimized is given by

Lp =

[
K∑

i=1

wp
i (f

∗
i − fi)

p

]1/p

.

Typically, values of p = 1 (rectilinear distance), p = 2 (Euclidean distance) or p = ∞

(Tchebychev norm) are used. The wi are weights for each criterion that are assigned

by the decision maker.

4. Interactive Methods: These are methods where a single, a pair or a cluster of solution

points from the efficient frontier is/are shown to the DM to get a utility measure.

Based on the DM’s answer, a new solution or a new pair or cluster of solutions is/are

shown to the DM. This is repeated until the DM is “satisfied” with the solution.

There are different interactive methods in the literature based on this logic [63].

More recently, there have been developments in the application of Bayesian methods to

certain MCDM problems, though these do not fall in the category of the MCDM problems

that are discussed in this research. One such example is by Hahn [27] who uses Bayesian

inferencing to derive priorities in Saaty’s Analytic Hierarchy Process (AHP) [62].



Chapter 3

Model-Robust Process Optimization

using Bayesian Model Averaging

3.1 Introduction: Process Optimization

In the “end game” of Response Surface Methodology (RSM, see [6, 49]), optimization of

a process traditionally consists of two steps as shown in figure 2.1. The first step is to

design the experiment, collect data and fit a polynomial model, usually of second order

or higher to allow for curvature. Once the model is fitted, the next step is to optimize

the response based on the fitted model and obtain estimated optimal operating settings.

The second step in this process strongly depends on the assumption that the fitted model

is the correct representation of this process. It is possible that a second different model,

which arguably fits the data as well as the first model, provides considerably different

optimal operating conditions (see the example section in this chapter for cases when this

occurs). A frequentist approach, common in RSM practice, is to assess the effect of the

29
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uncertainty of the parameter estimates on the optimum by computing a confidence region

on the location of the optimum (see [55]). A more recent Bayesian approach implicitly

considers the uncertainty of the parameters given the model form [56, 46]. The technique

used by these authors involves obtaining the posterior predictive density of the response

based on the assumed model, and maximizing the probability of obtaining the predicted

response to lie within certain limits or specifications.

In this chapter, the Bayesian predictive approach is taken one step further by averaging

over possible competing models. Here, no single model is assumed. Instead, as a first

step, the Bayesian posterior probabilities for all possible models (belonging to a class, or

classes, of models that are appropriate for the process) are calculated. Once the model

posteriors are determined, the next step is to determine the posterior predictive density of

the response for each of the competing models. The model-averaged posterior predictive

density (MAP) is then computed by taking the weighted average of the densities over all

competing models. The model posteriors computed earlier are used as the weights. The

MAP is then used to maximize the probability of obtaining a response value within the

given specification limits. The proposed method is illustrated by means of a block diagram

in figure 3.1.

As the uncertainty in the model is more acute in cases where there are fewer runs, the

examples provided in the later sections will focus on smaller designs. However, the main

idea can be applied to any design where the form of the best model is in question.

In the next section, the technical details about the application of Bayesian model aver-

aging to process optimization are discussed. The predictive approach we adopt focuses on

making inferences on future values of the “observable” y [23]. For doing this, the posterior
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System 
Identification: 
Identify 
Responses, 
Control Variables 
and Noise 
Variables 

DOE,  
Data Collection 

Analyze data 

Impose 
constraints, 
Optimize the 
cumulative MAP 
with constraints 

Fit Model 1 Fit Model 2 Fit Model m 

Calculate 
MAP for the 
responses 

… 

Figure 3.1: Proposed Method for Process Optimization



32

predictive density of the response under a particular choice of priors and the assumed like-

lihood needs to be derived. This is discussed in section 3.2.2 and the details are shown in

appendix B. This is followed by two examples, one of which is a mixture experiment and

the other a small composite design.

3.2 Bayesian Model Averaging

Consider a process with a single response variable y which is dependent on a (p× 1) vector

of regressors x that are in turn functions of k controllable factors. It is assumed that a

suitable experiment with n runs has been designed and carried out and the data from the

experiment is available. The vector of responses from the experiment is given by the (n×1)

vector y. Each observation of the model is assumed to be generated from a model linear

in the parameters of the form

y = x′β + ǫ, (3.1)

where ǫ is the error term, and β is the vector of process parameters (i.e., x is in model

form). The particular functional form of the x′β term (a function of the k controllable

factors) is not known with certainty. In this chapter, we focus on the case where ǫ is

normally distributed.

It is assumed that the goal of the optimization is to identify the values of the controllable

factors that result in a response y such that L < y < U where L denotes a given lower

bound (or specification) and U denotes a given upper bound. The approach adopted here

maximizes the posterior predictive probability of obtaining the response y within these

bounds. In this procedure, the potential models that are under consideration based on
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a family or families of models are listed first. Next, the posterior probability of each of

these models given the experimental data P (Mi|y) is calculated. The posterior predictive

density of the response is then calculated for each model Mi as a function of the controllable

variables. This is denoted by P (y∗|Mi,x
∗,y), where y∗ is the posterior value of the response

at a new set of observed regressors x∗. In order to average the predictive density of the

response over all competing models, the weighted average of P (y∗|Mi,x
∗,y) is taken over

all i, using the model posteriors P (Mi|y) as the weights. The model-averaged posterior

predictive density (MAP) is thus of the form of a mixture of distributions over all competing

models, namely:

MAP = P (y∗|x∗,y) =
∑

i

P (y∗|x∗,y,Mi)P (Mi|y). (3.2)

The optimal control variables are then determined by maximizing the probability that

the predicted response lies within the target bounds, i.e.,

max
x∗
1,...,x∗

k

P (L ≤ Y ∗ ≤ U) =
∑

i

[∫ U

L

P (y∗|Mi,x
∗,y)dy∗

]
P (Mi|y), (3.3)

where the maximization is over the k control factors (x1, x2, ..., xk) that x∗ depends on.

It should be pointed out that this approach does not average the optimal levels of the

controllable factors for each model. Instead, the optimal levels of the controllable factors are

prescribed by averaging the predictive density of the response over all models. Constraints

on the controllable factors xi can be included in (3.3) if desired.

3.2.1 Calculating model posteriors

There is considerable literature on the calculation of model posterior probabilities (see [43],

[58] and the references therein). The most common approach is to assume a candidate
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list of models based on a class (or classes) of models with fi out of the total k factors

present in model Mi. A useful method to determine model priors, proposed by Meyer et

al. [43, 44, 45] is to choose the model priors based on the active factors (i.e., the factors

present in each model). Denote the probability of factor j to be active as πj, j ∈ {1, ..., k}.

Assuming that the prior probabilities of active factors are independent, the model prior is

given by

P (Mi) =
∏

j∈Mi

(πj)
∏

j′ /∈Mi

(1 − πj′). (3.4)

Note that this is an improper prior, that is the sum of the probabilities of the models a

priori need not add up to 1. If πj = π, ∀j ∈ {1, ..., k}, then P (Mi) = πfi(1− π)k−fi . Let ri

be the number of terms in model Mi and ti be the number of terms in model Mi excluding

the constant term. Thus, if the model includes a constant term, we have that ti = ri − 1,

otherwise ti = ri. Let Xi be the (n× ri) design matrix corresponding to Mi. The posterior

probability of Mi is given by Bayes’ theorem,

P (Mi|y) =
P (y|Mi)P (Mi)∑
i P (y|Mi)P (Mi)

, (3.5)

where P (y|Mi) is the marginal likelihood of the model given the data. This marginal is

defined as:

P (y|Mi) =

∫

σ2

∫

β
i

P (y|Mi, σ
2,βi)P (σ2, βi|Mi) dβi dσ2, (3.6)

where P (y|Mi, σ
2,βi) is the likelihood function. Under the assumption of normality of the

error terms, the likelihood is given by:

P (y|Mi, σ
2, βi) ∝ σ−nexp

[−1

2σ2
(y − Xiβi)

′(y − Xiβi)

]
. (3.7)

P (σ2,βi|Mi) is the joint prior of the model parameters for model Mi. The parameters βi

and σ2 are assumed to be independent a priori. The priors on the parameters are chosen
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as

βi ∼ N(0,Σiσ
2), (3.8)

P (σ2) ∝ 1

σ2
, (3.9)

and

P (βi, σ
2) = P (σ2)P (βi). (3.10)

Here, it is assumed that Σ−1 = (X′
iXi)Vi, where Vi = 1

g




0 0

0 I ti


, and g is a parameter

whose value is to be chosen. Thus, the priors on all the βi’s except for the constant term

are assumed to be normally distributed using Zellner’s g-prior [74]. The priors on the βi

for the constant term and on log(σ2) are assumed to be non-informative. A discussion on

the choice of priors is included in section 3.4.

From the assumed priors and from equation (3.7), the integral in equation (3.6) can be

computed and yields (see [45], [58]):

P (y|Mi) ∝ γ−ti|Σ−1
i + X′

iXi|−
1
2 S

−
(n−1)

2
i , (3.11)

where γ is such that

g

γ2
Vi = Σ−1

i . (3.12)

Then, by omitting the constant denominator in equation (3.5),

P (Mi|y) ∝ πfi(1 − π)k−fiγ−ti|Σ−1
i + X′

iXi|−
1
2 S

−
(n−1)

2
i , (3.13)

where

Si = (y − Xiβ̂i)
′(y − Xiβ̂i) + β̂i

′
Σ−1

i β̂i (3.14)

= y′y − y′Xi(Σ
−1
i + X′

iXi)
−1X′

iy, (3.15)
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and

β̂i = (Σ−1
i + X′

iXi)
−1X′

iy. (3.16)

Here, Si is the Bayesian analog to the residual sum of squares and β̂i gives the parameter

estimates for model Mi. The probabilities for each of the models computed from the above

equations are scaled by dividing each one of them by the sum of all the probabilities in

order to obtain the model posterior probabilities for the models that sum to 1.

It should be noted that not all models in the original candidate list will have significant

posterior probabilities. Hence, it is recommended to choose a subset of m models from

the original list based on the calculated posteriors. Methods for choosing this subset are

discussed in appendix A.

3.2.2 Calculating the predictive density

The predictive density for the new response y∗ at a new set of regressors x∗ for a given

model Mi is given by:

P (y∗|Mi,x
∗,y) =

∫

σ2

∫

β
i

P (y∗|Mi,x
∗,y, σ2,βi)P (βi, σ

2|y,Mi) dβi dσ2, (3.17)

where P (y∗|Mi,x
∗,y, σ2,βi) is the likelihood function, and P (βi, σ

2|y,Mi) is the joint

posterior of the model parameters [57]. Based on the observed data, the probability that

the predicted response lies between the lower and upper bounds for a given model at a

given set of regressors x∗ is obtained using the cumulative posterior predictive density, that

is:

P (L ≤ Y ∗ ≤ U |Mi,x
∗,y) =

∫ U

L

P (y∗|Mi,x
∗,y)dy∗. (3.18)
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If the model parameters log(σ2) and βi are assumed to have non-informative priors, then

it has been shown by Press [58] that the predictive density obeys a tn−ri
distribution. For

the priors assumed here, the predictive density is shown in appendix B to follow a tn−1

distribution. The cumulative posterior predictive density can thus be obtained from the

c.d.f. of a t-distribution that is very easy to compute using the incomplete beta function.

This avoids the use of any numerical methods for the integration in equation (3.18). The

cumulative predictive density is computed by:

P

(
y∗ − x∗′β̂i

σ̂i

√
1 + x∗′(Σ−1

i + X′
iXi)−1x∗

< t|Mi,x
∗,Y

)
=

1

2

[
1 + I t2

ν+t2

(
1

2
,
ν

2

)]
, (3.19)

where Iz(a, b) is the incomplete beta function, ν = n− 1, and σ̂2
i = Si/(n− 1). The objec-

tive function in equation (3.3) is thus the cumulative model averaged posterior predictive

density, and can be calculated at a given observation x∗ using equations (3.13) and (3.19).

3.3 Examples

There are two hyper-parameters to be chosen in the priors, namely π and g. In both of the

examples below, we choose a value of π = 0.5, which implies equal prior chances of a factor

being active or inactive. The parameter g is chosen based on the value of γ that gives the

lowest posterior probability for the null model (model with just the constant term). This

choice is suggested by Meyer at al. [43], and is discussed further in section 3.4. A study of

the sensitivity of the solution to the choice of priors is also done by solving the optimization

problem for various values of these parameters.

The optimizations were carried out using MATLAB’s fmincon routine. This function

uses a sequential quadratic programming method. This is used to maximize the cumulative



38

MAP between the upper and lower bounds, over all feasible values of x1, ..., xk. As with

most nonlinear programming algorithms, this method requires an initial starting point

x1, ..., xk. In order to avoid local optimums, different random starting values arranged in

a latin hypercube were utilized (see [59]) to better cover the feasible region. In the two

examples that follow, convergence to the same point was always achieved, so the optimality

of the solutions obtained seems to be well established.

3.3.1 Example 1: Mixture Experiment

This example, taken from Frisbee et al. [22], shows a mixture experiment where the re-

sponse is glass transition temperature of films cast from poly(DL-lactide) (PLA), and the

controllable variables are amounts of non-ionic surfactants, namely, Polaxamer 188 NF

( Pluronic r© F68), Ployoxyethylene 40 monostearate (Myrj r© 52-S) and Polyoxyethylene

sorbitan fatty acid ester NF (Tween r© 60). The authors are interested in finding the com-

position of the controllable factors that minimize the glass transition temperature. The

data from [22] is given in Table 3.1. The authors fit a regression equation that is given by:

y = 18.50x1 + 13.88x2 + 36.06x3 − 35.21x1x3 + 19.55x2x3. (3.20)

Based on the fitted equation, Frisbee et al. [22] use contour plots to determine the minimal

plateau region for glass transition temperature. However, as the experiment consisted of

only 11 runs, the accuracy of the model used is suspect. There are a some other regression

models that provide a reasonable fit to the data, and each of these would result in a different

optimal solution. Cahya [10] suggested that a different class of models, namely a Becker
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x1 x2 x3 y

1.000 0.000 0.000 18.90

0.000 1.000 0.000 15.20

0.000 0.000 1.000 35.00

0.500 0.500 0.000 16.10

0.500 0.000 0.500 18.90

0.000 0.500 0.500 31.20

0.333 0.333 0.333 19.30

0.666 0.167 0.167 18.20

0.167 0.666 0.167 17.70

0.167 0.167 0.666 30.10

0.333 0.333 0.333 19.00

Table 3.1: Mixture data from [22] where the response is Glass Transition temperature
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model [3], also adequately represents this process. The Becker model is of the form

y = b1x1 + b2x2 + b3x3 + b4 min(x1, x2) + b5 min(x1, x3) + b6 min(x2, x3). (3.21)

The ordinary least square (OLS) regression statistics for the models in equation (3.20) and

(3.21), as well as for all other models belonging to these two classes of models are shown

in Table 3.2. Higher order terms in each model were considered only if the corresponding

lower order terms were present. In the table, each row represents a competing model and

under the columns containing the model terms (effects), a ‘1’ indicates that the term is

present in the model and a ‘0’ indicates otherwise. The OLS statistics shown in the table

are based on the sum of squares of the residuals (SSE), the total sum of squares (SST ),

and the standard error (S.E.). It is noted that since the mixture models are fitted without

the constant term, the SSE/SST ratio is greater than 1 for some models. This means

that the model y = ȳ, where ȳ is the mean of the observed responses, fits the data better

than the models for which the SSE/SST ratio is greater than 1. Even based on the OLS

statistics, there are many possible models that can be used to represent the process.
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In order to perform Bayesian model-robust optimization, the first step was to define

the prior parameters required for model averaging. Using the method proposed by Meyer

et al. [43], a value of γ = 10 was chosen. The parameter π was then set at 0.5 for all

the factors. The sensitivity of the optimal solution with respect to the chosen parameters

is discussed later. Model posteriors were calculated for all models discussed earlier. The

resulting posterior probabilities are shown in the last column of Table 3.2 for each model.

Since there are no constant terms in the mixture models considered, Zellner’s g-prior is

used for all the βi, i.e., Σ−1
i = (1/g)(X′

iXi) in equation (3.8). In this case, the cumulative

posterior predictive density is given by (see appendix B),

P

(
y∗ − x∗′β̂i

σ̂i

√
1 + x∗′(Σ−1

i + X′
iXi)−1x∗

< t|Mi,x
∗,Y

)
=

1

2

[
1 + I t2

ν+t2

(
1

2
,
ν

2

)]
, (3.22)

where Iz(a, b) is the incomplete beta function, ν = n, and σ̂2
i = Si/n.

Based on the model posteriors, only models with P (Mi|data) > 0.0279 were considered

for averaging as they accounted for 95% of the probability. Table 3.3 shows these models.

The model numbers correspond to the respective models in Table 3.2. As the objective is to

minimize the response, the lower bound L was set at ∞ and the upper bound U was set at

18 for illustration purposes. The optimization of the MAP resulted in point(0.133, 0.867, 0)

as the optimum levels of the controllable factors, where the probability of obtaining Y ∗ ∈

(−∞, 18) was 0.9388. Table 3.3 also shows the optimal values of the controllable factors

at which the posterior predictive densities of each individual model is maximized for Y ∗ ∈

(−∞, 18). The maximum value of the posterior predictive density is given in the column

labeled ‘z∗’. It can be seen that the optimal solution can vary drastically based on the

model chosen.



43

ModelNo. P (Mi|data) x∗
1 x∗

2 x∗
3 z∗

1 0.3557 0 1 0 0.9998

2 0.1430 0 1 0 0.9969

3 0.1380 0 1 0 0.8933

4 0.0910 0.2756 0.7244 0 0.9998

5 0.0803 0 1 0 0.7358

6 0.0759 0.2249 0.7751 0 0.8993

7 0.0392 0.3243 0.6757 0 0.7695

8 0.0279 0.2469 0.7531 0 0.9960

Table 3.3: Optimum for individual models for example 1

Figure 3.2 shows the cumulative MAP plotted on a 2-D simplex as well as a 3-D plot.

The 2-D plot shows the points at which P (−∞ < Y ∗ < 18|y, x∗
1...x

∗
k) was evaluated, with

the squares representing points where P (−∞ < Y ∗ < 18y, x∗
1...x

∗
k) > 0.7. The 3-D plot

shows the same points with cumulative MAP plotted on the vertical axis. Figure 3.3 shows

P (−∞ < Y ∗ < 18|Mi,y, x∗
1...x

∗
k), plotted at the same points for the eight competing models

with the squares representing points where the individual predictive density is greater than

0.7. In order to better understand the importance of maximizing the MAP, table 3.4

shows the probabilities of conformance for various cases of the true model and the assumed

model. The table shows the value of P (L ≤ Y ∗ ≤ U |Mi,y, x∗
1, ..., x

∗
k) where Mi is the true

model and control factors x∗
1, ..., x

∗
k are set at their optimal values obtained from solving

from maximizing this probability using the assumed model. Thus, for example, if the
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Figure 3.2: Simplex and 3-D plot of cumulative model-averaged posterior predictive density

for example 1
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Figure 3.3: Simplex plot of cumulative posterior predictive densities for individual models

for example 1
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assumed model is model 1, then the probability of conformance is maximized at the point

(0, 1, 0), as shown in table 3.3, yielding a probability of 0.9998. However, this is actually

the probability of conformance only if the true model is also model 1. If, for example, it

so happens that the true model is model 7, then the probability of having Y ∗ ∈ (−∞, 18)

is actually 0.6584 when using the solution point (0, 1, 0), obtained with the wrong model.

Similarly, the last column on the table shows P (L ≤ Y ∗ ≤ U |Mi,y, x∗
1, ..., x

∗
k) for the

true model, evaluated at the solution x∗
1, ..., x

∗
k obtained from maximizing the MAP. Based

on the column statistics, it can be seen that operating at the point which maximizes the

MAP has highest average probability of conformance (and among lowest std. deviation of

this probabilities) compared to probabilities provided by solutions obtained by assuming

single one of the competing models. The MAP also has higher minimum probability of

conformance, thus it improves the worst-case scenario (worst true model). Therefore, it

is seen that regardless the true process model (within the assumed family of models), the

solution obtained using the model-average approach provides an operating point that gives

relative high probabilities of conformance. It is in this sense that the solutions obtained

are robust to the uncertainty in the form of the true model.
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Table 3.5 shows the sensitivity of the solution with respect to the chosen parameters γ

and π. It is seen that the sensitivity of the solution to π is dependent on γ. At the value

of γ chosen, the optimal controllable variables as well as the optimal predictive density are

insensitive to the choice of π.

3.3.2 Example 2: Small-composite Design

The second example uses data from Czitrom and Spagon [14] for a chemical vapor deposition

(CVD) process. The goal of the experiment was to investigate the Uniformity and Stress

responses. This example illustrates the model-averaging approach on the first response.

The central composite inscribed (CCI) design that was used and the experimental data are

shown in Table 3.6. There are two controllable factors: Pressure and ratio of the gaseous

reactants H2 and WF6 (denoted by H2/WF6). The goal was to minimize the response,

as a smaller value of “Uniformity” indicates a more uniform layer being deposited on a

wafer. The models considered included combinations of main effects, two-way interactions

and quadratic effects. In all the models higher order effects were included only if the

corresponding main effect(s) is(are) present in the model. Table 3.7 lists these models

along with their least square regression statistics and posterior probabilities. The prior on

the factors, π, was set at 0.5 and a value of γ = 2 was chosen using the method described

in section 3.4.

Models with P (Mi|data) > 0.0254 were used for model averaging as they accounted for

95% of the probability. Based on these models and within the region {−1 ≤ x1 ≤ 1,−1 ≤

x2 ≤ 1}, the MAP was maximized for Y ∗ ∈ (−∞, 5) at the point (1.0000,−0.9198) yielding
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γ π x∗
1 x∗

2 x∗
3 z∗

0.5 0.25 0.6841 0.3159 0.0000 0.7213

0.5 0.50 0.6703 0.3297 0.0000 0.6993

0.5 0.75 0.7433 0.2567 0.0000 0.6891

2 0.25 0.6167 0.3833 0.0000 0.6906

2 0.50 0.5043 0.4957 0.0000 0.6759

2 0.75 0.5043 0.4957 0.0000 0.6759

5 0.25 0.3233 0.6767 0.0000 0.8252

5 0.50 0.3232 0.6768 0.0000 0.8252

5 0.75 0.3233 0.6767 0.0000 0.8252

10 0.25 0.1330 0.8670 0.0000 0.9388

10 0.50 0.1330 0.8670 0.0000 0.9388

10 0.75 0.1330 0.8670 0.0000 0.9388

30 0.25 0.0213 0.9787 0.0000 0.9856

30 0.50 0.0213 0.9787 0.0000 0.9856

30 0.75 0.0213 0.9787 0.0000 0.9856

100 0.25 0.0000 1.0000 0.0000 0.9767

100 0.50 0.0000 1.0000 0.0000 0.9825

100 0.75 0.0000 1.0000 0.0000 0.9825

Table 3.5: Sensitivity of solution with respect to the parameters γ and π for example 1
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Coded Pressure Coded H2/WF6 Uniformity

1 0 4.6

0 0 6.2

0.71 -0.71 3.4

-0.71 0.71 6.9

-1 0 7.3

0 0 6.4

-0.71 -0.71 8.6

0 -1 6.3

0.71 0.71 5.1

0 1 5.4

0 0 5

Table 3.6: Design and experimental data for CVD process [14]
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Model no. constant A B AB A2 B2 R2 R2
Adj S.E. P (Mi|data)

1 1 1 1 1 0 0 0.8703 0.8148 0.6145 0.2827

2 1 1 0 0 0 0 0.7186 0.6874 0.7982 0.2396

3 1 1 1 1 1 0 0.8715 0.7858 0.6607 0.108

4 1 1 1 1 0 1 0.8703 0.7839 0.6637 0.1053

5 1 1 0 0 1 0 0.7198 0.6498 0.8449 0.0907

6 1 1 1 0 0 0 0.7285 0.6607 0.8316 0.0671

7 1 1 1 1 1 1 0.8716 0.7431 0.7235 0.0416

8 1 1 1 0 1 0 0.7297 0.6139 0.8871 0.0254

9 1 1 1 0 0 1 0.7285 0.6122 0.8891 0.025

10 1 1 1 0 1 1 0.7298 0.5496 0.9581 0.0098

11 1 0 0 0 0 0 0 0 1.4276 0.0035

12 1 0 1 0 0 0 0.0099 -0.1001 1.4974 0.0009

13 1 0 1 0 0 1 0.0099 -0.2376 1.5882 0.0003

Table 3.7: Least square regression statistics and posterior probabilities for competing mod-

els for example 2
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Model no. P (Mi|data) x∗
1 x∗

2 z∗

1 0.2827 1 -1 0.9665

2 0.2396 1 N/A 0.8132

3 0.1080 1 -1 0.9569

4 0.1053 1 -0.9017 0.9618

5 0.0907 1 N/A 0.7776

6 0.0671 1 1 0.8477

7 0.0416 1 -0.9018 0.9464

8 0.0254 1 1 0.8178

Table 3.8: Optimum for individual models for example 2

a maximum probability of conformance of 0.8851. The optimum values of the controllable

factors obtained by maximizing the individual predictive densities, and the maximum value

of the predictive density for the individual models for Y ∗ ∈ (−∞, 5) are given in table 3.8.

It can be seen that for all the models the optimum value of x1 is 1, but the optimum setting

for x2 can vary anywhere from -1 to 1. Figure 3.4 shows the surface plot of the cumulative

posterior predictive density of the response Y ∗ ∈ (−∞, 5) for different possible values of the

control factors. Model-robustness analysis for the competing models is given in Table 3.9.

(Note that models 2 and 5 are independent of the second factor, x2 (H2/WF6). In the

table, for the columns associated with these two models, the probabilities of conformance

were evaluated at the point (1, 0)). Similarly as in the previous example, it can be seen

that the solution obtained by maximizing the MAP is robust to the uncertainty in the true
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Figure 3.4: Surface plot of the P (Y ∗ ∈ (−∞, 5))
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model of the process. Table 3.10 shows results of sensitivity analysis to the solution with

respect to the parameters π and γ. The sensitivity of the solution to π is dependent on

the value of the γ chosen. Here, also, it is seen that at a given value of γ, the solution is

insensitive to the selection of the π parameter.
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3.3.3 Pre-Posterior Analysis

In the above example the maximum model averaged posterior probability of conformance

to the specifications (−∞, 5) was 0.8851. In practice, a process engineer may feel that such

probability of conformance is too small. There are two possible reasons for a relative low

probability of conformance. The first reason is that the data is limited, and so given the

available data, this is the highest probability of conformance that can be obtained. In this

case, running more experiments and using the additional data could give a higher value

of posterior probability of conformance, especially when the repeatability of the observed

measures is high. The second reason is that the specification limits set by the process

engineer are unrealistic. In such case there is no point in running more experiments as the

additional data will not increase the probability of conformance. These two situations can

be discerned by using a pre-posterior approach, as suggested by Peterson [56]. Table 3.11

shows the posterior probability of conformance, z∗, as well as the optimal levels of the

control factors, (x∗
1, x

∗
2), and the mean and standard deviation estimates of the posterior

response at (x∗
1, x

∗
2) for two cases. Both cases use the same values for the hyper-parameters

as before with π = 0.5, and γ = 2. The first case (labelled “data” in table 3.11) uses the

original data that is shown in table 3.6, and the second case (labelled “data+replicate” in

table 3.11) uses the original data along with a replicate of the original data appended to the

data. The data used in the second case would be valid if the experimental observations are

completely repeatable. The way to mimic more data is simply based on replicating the Xi

matrices and changing the corresponding degrees of freedom in the MAP computations [56].

For each of these two cases, the results are shown for various values of specification limits.
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γ π x∗
1 x∗

2 z∗

0.5 0.25 1 -1 0.4878

0.5 0.50 1 -1 0.5191

0.5 0.75 1 -1 0.5218

1 0.25 1 -0.9151 0.7149

1 0.50 1 -0.9154 0.7487

1 0.75 1 -0.9154 0.7621

2 0.25 1 -0.9684 0.8428

2 0.50 1 -0.9198 0.8851

2 0.75 1 -0.9198 0.9094

5 0.25 1 -0.7760 0.8438

5 0.50 1 -0.7928 0.8992

5 0.75 1 -0.7930 0.9305

10 0.25 1 -1 0.8090

10 0.50 1 -0.5696 0.8557

10 0.75 1 -0.5995 0.8967

100 0.25 1 -0.9072 0.5563

100 0.50 1 0.5146 0.7038

100 0.75 1 0.7584 0.7944

Table 3.10: Sensitivity of solution with respect to parameters π and γ for example 2
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data data+replicate

z∗ x∗
1 x∗

2 mean std. dev. z∗ x∗
1 x∗

2 mean std. dev.

Y ∗ < 5 0.8851 1 -0.9198 3.5792 0.9670 0.9955 1 -1 2.8083 0.7599

Y ∗ < 4 0.6494 1 -1 3.5296 0.9896 0.9338 1 -1 2.8083 0.7599

Y ∗ < 3 0.3329 1 -1 3.5296 0.9896 0.5986 1 -1 2.8083 0.7599

Y ∗ < 2 0.1057 1 -1 3.5296 0.9896 0.1499 1 -1 2.8083 0.7599

Table 3.11: Pre-posterior analysis for example 2

It can be seen from the table that for the specification limits used earlier (−∞ < Y ∗ < 5),

the posterior probability of conformance increases from 0.8851 to 0.9955 when one more

replicate is used. Therefore, this is evidence that in this case it is worth considering running

additional experiments in order to obtain a higher posterior probability of conformance

given the data. However, when the specification limits are set as (−∞ < Y ∗ < 2), the

posterior probability of conformance increases from 0.1057 to only about 0.1499. Thus,

even when the repeatability of the process is high, the highest possible posterior probability

of conformance is still very low. In this case, this is evidence that there is a need for re-

designing the specification limits on the response.

3.4 Choice of Priors and Hyper-parameters

The previous sections were based on the assumption of an non-informative prior for log(σ2),

a non-informative prior on the β for the constant term, and a normally distributed g-prior

for the remaining β’s. Other choices of prior that are typically considered in the literature
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are the use of a non-informative prior for all the β’s, or the use of a normally distributed

g-prior for all the β’s.

A non-informative prior for all the β’s is the same as the prior we use earlier when g →

∞. The non-informative prior is convenient for the calculation of the posterior predictive

density since the resulting distribution is a t-distribution [58]. However, in the calculation

of the model posteriors, this prior tends to favor the null model (i.e., a model with just the

constant term). This can be explained based on Bayes’ factors, since the model posteriors

can be used for model selection in a Bayesian hypothesis testing for the true model [36].

Fernandez et al. [21] use Bayes factors to recommend using a non-informative prior just

for the constant term β rather than using the g-prior for all the β’s. They make the

recommendation based on the ease of choosing the hyper-parameters when computing the

Bayes’ factors for the model posteriors.

For the priors chosen, there are only two hyper-parameters to be chosen, namely π and

γ. In all cases here, we have assumed π = 0.5, so that the model posteriors are proportional

to the marginal likelihood of the data. To choose γ, Meyer et al. [43] recommend using the

value that minimizes the posterior probability of the null model. They use an empirical

Bayesian approach to show that this value of gamma also maximizes the posterior density,

p(γ|y). As was done in the examples of section 3, a sensitivity analysis of the solutions with

respect to variations on these two parameters should be conducted. Further justification

for (essentially equivalent) priors as used here can be found in Meyer et al. [43].
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3.5 Discussion

A Bayesian methodology for process optimization is proposed that prescribes operating

points that are robust to uncertainty in the response model. Analytical results have been

derived to obtain closed form expressions for the cumulative model-averaged posterior pre-

dictive density. The results have been applied to two examples that demonstrate the

advantages of model-averaging using the Bayesian predictive approach. For cases where

the model-averaged posterior probability of conformance to the specifications is small, a

pre-posterior analysis is recommended. As shown in example 2, this analysis could be used

to determine if additional experiments could result in a higher probability of conformance

or if the specifications were too demanding to start with.

All the results in this chapter were based on the assumption that there are no noise

factors present and that the error terms are normally distributed. In the next chapter, the

methodology for model-robust process optimization is extended in the presence of noise

factors and when the error terms follow the t-distribution which has a thicker tail than the

normal distribution.



Chapter 4

Model-Robust Process Optimization

with Noise Factors and Non-normal

Error Terms

4.1 Introduction

As seen in the previous chapter, a natural way to optimize any process from a quality

and reliability standpoint is to maximize the probability of conformance of the predicted

responses to their specification limits (see [56]), and this can be achieved using a Bayesian

predictive approach. The benefits of using this methodology are that, (a) the posterior pre-

dictive density of the responses can be used to make inferences on their future values, thus

providing a mechanism to calculate the probability of conformance of the future responses,

(b) the methodology takes into account the mean and the variance of the response, and

(c) the methodology takes into account uncertainty in the model parameters. Peterson
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[56] uses a Bayesian approach that involves obtaining the posterior predictive density of

the response based on an assumed model, and maximizing the probability of obtaining

the predicted response within certain limits or specifications. Miro-Quesada, Del Castillo

and Peterson [46] extended this approach to include the presence of noise factors. In the

previous chapter, this idea was taken one step ahead by using Bayesian model averaging to

compute the model-averaged posterior predictive density (MAP) of the response in a single

response process. The MAP is used for optimization with respect to the control factors

in order to obtain the levels of the control factors that maximize the posterior probability

of obtaining the response within some given specification limits. The solution presented is

thus robust to the uncertainty in the true process model as well as to the model parameters

for each competing model that is considered to represent the process. It was assumed in

the previous chapter that there are no noise factors present in the system, and that the

error terms in all the competing models are normally distributed. It is the purpose of this

chapter to extend the MAP approach to cases where there are noise factors and when errors

are t-distributed.

4.2 The Model-robust Approach for Process Optimiza-

tion

In the previous chapter the process model was assumed to be of the form

y = x′β + ǫ, (4.1)
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where the scalar response variable y is dependent on a vector of regressors x given by a

(p× 1) vector that are in turn functions of k controllable factors (i.e., x is in model form),

ǫ is the error term, and β is the vector of process parameters. Given specification limits L

and U for the response, the optimization problem was formulated as

max
x∗
1,...,x∗

k

P (L ≤ Y ∗ ≤ U) =
∑

i

[∫ U

L

P (y∗|Mi,x
∗,y)dy∗

]
P (Mi|y), (4.2)

where y∗ is the predicted value of the response at a new set of observed regressors x∗ and y is

the (n×1) vector of observed responses from the experiment. The optimization was carried

out with respect to the k control factors (x1, x2, ..., xk). P (Mi|y) is the posterior probability

of model Mi given the data, and P (y∗|Mi,x
∗,y) is the posterior predictive density of the

response for the model Mi, given the data at a new set of observed regressors, x∗. For the

priors given by equations (3.4), (3.8), (3.9) and (3.10), the model posteriors were given by

P (Mi|y) ∝ πfi(1 − π)k−fiγ−ti|Σ−1
i + X′

iXi|−
1
2 S

−
(n−1)

2
i , (4.3)

where

g

γ2
Vi = Σ−1, (4.4)

Si = (y − Xiβ̂i)
′(y − Xiβ̂i) + β̂i

′
Σ−1

i β̂i (4.5)

= y′y − y′Xi(Σ
−1
i + X′

iXi)
−1X′

iy, (4.6)

and

β̂i = (Σ−1
i + X′

iXi)
−1X′

iy. (4.7)

It was also shown that the posterior predictive density for model Mi follows a t-distribution,

y∗|Mi,x
∗,y ∝ tν

(
x∗β̂i, σ̂

2
i

[
1 + x∗′(Σ−1

i + X′
iXi)

−1x∗
])

. (4.8)

In the next section these results are modified to account for the presence of noise factors.
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4.3 Extension to Noise Factors

In practice, there are some factors that cannot be controlled at the “customer” level

(whether this customer is the manufacturing plant or the end customer), but can be con-

trolled under careful experimental conditions. These are referred to as noise factors. For

example, in the production of automotive tires, the type of driver and the driving conditions

might be noise factors. The objective in process optimization then is to find a solution,

given by the optimal levels of the control factors, that is also robust to the variation in the

noise factors. This is the so-called Robust Parameter Design (RPD) problem and was first

formulated by Genichi Taguchi (see [66, 67, 68]). The traditional Taguchi experimental

design involves varying both the control and the noise factors in a crossed array, with the

control factors in the inner array and the noise factors in the outer array. More recently,

the analysis of RPD problems is performed using the Dual Response approach [7, 49]. In

this approach the mean and the variance of the response are modelled independently as

functions of the control factors from a replicated experiment. Alternatively, the data from

an unreplicated experiment may be used to fit a model of the form

ŷ(xc,xn) = bo + x′
cb + x′

cBxc + x′
nc + x′

c∆xn, (4.9)

to the response as a function of both the controllable and noise factors. In equation (4.9),

xc is the vector of control factors, xn is the vector of noise factors, and bo, b, B, c and

∆ are the estimated parameters. This model is then used to get the mean and variance

models (response surfaces) from assuming that the noise factors vary according to some

known distribution, e.g., xn ∼ N(0,Vn). Here, the mean model is given by Exn
[ŷ(xc,xn)],

and the variance model is given by V arxn
[ŷ(xc,xn)] + V ar[ǫ], where ǫ is the error term.
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The mean and variance models are used to formulate an optimization problem such as

finding a solution that minimizes the variance model subject to given bounds on the mean

of the response [15]. However, this approach does not allow us to predict what fraction of

future responses (e.g., proportion of products in a manufacturing process) will fall within

the specifications at the optimal setting x∗
c as the dual response surfaces give only the

“mean models” (i.e., they give only point-estimate values for the mean and the variance of

the response at the optimal setting). In other words, there can be no inference made about

the reliability or conformance of the process.

Miro-Quesada, Del Castillo and Peterson [46] present a Bayesian predictive approach

for process optimization in the presence of noise factors for a multiple response process

assuming a known Standard Multivariate Regression model. Their approach addresses

the uncertainty in the parameter estimates of a given model, but does not address the

uncertainty in the true model of the process. Here, the Bayesian predictive approach is

extended to also account for uncertainty in the true process model using the MAP approach

reviewed in section 4.2.

Consider a process with a single response variable y which is dependent on a vector of

regressors x that are in turn functions of k factors. It is assumed that kc out of the k factors

are control factors, and the rest are noise factors. It is assumed that a suitable experiment

with n runs has been designed and carried out and the data from the experiment is available.

The (n × k) design matrix used is denoted by X, that includes treatment combinations of

both the control and the noise factors. The (n×1) vector of responses from the experiment
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is denoted by y. Each of the potential process models is assumed to be of the form

y = x′β + ǫ, (4.10)

where ǫ is the normally distributed error term, and β is the vector of process parameters.

Let ri be the number of terms in model Mi and ti be the number of terms in the model

excluding the constant term. Let Xi be the (n × ri) design matrix corresponding to Mi.

Here, it is noted that the terms in the models could contain functions of both the control

and the noise factors, and Xi contains a column for each of these terms. Given the data,

the posterior probability of the competing models in the presence of noise factors is also

given by equation (4.3).

For each model Mi it is necessary to compute the cumulative posterior predictive density

of the future value of the response y∗ at some future level of the factors x∗. In order to do

this, we partition the vector x∗ as [x∗
c,x

∗
n], where x∗

c is the future level of the control factors,

and x∗
n is the future level of the noise factors. The cumulative posterior predictive density

P (Y ∗ < y|Mi,x
∗,y) is given by equation (3.19). However, because of the presence of noise

factors whose future value at the “customer” level cannot be controlled, it is of interest to

compute the expected posterior probability at a given level of the control factors x∗
c with

respect to all possible values of the noise factors x∗
n. Just as in the Dual Response approach,

it will be assumed that the noise factors at the “customer” level are distributed with known

p.d.f. fxn
according to xn ∼ N(0,Vn). Then, the cumulative posterior predictive density

is given by,

P (L ≤ Y ∗ ≤ U |Mi,x
∗,y) =

∫

x∗
n

P (L ≤ Y ∗ ≤ U |Mi,x
∗
c,x

∗
n,y)fxn

(x∗
n) dx∗

n (4.11)

= Ex∗
n

[P (L ≤ Y ∗ ≤ U |Mi,x
∗
c,x

∗
n,y)] . (4.12)
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The optimization problem in the presence of noise factors is then formulated as

max
x∗
c

Ex∗
n

[P (L ≤ Y ∗ ≤ U)] = Ex∗
n

[∑

i

(∫ U

L

P (y∗|Mi,x
∗,y)dy∗

)
P (Mi|y)

]
(4.13)

=
∑

i

Ex∗
n

[(∫ U

L

P (y∗|Mi,x
∗,y)dy∗

)]
P (Mi|y) .(4.14)

The objective function above can be computed using equations (4.3) and (3.18). The

expected value with respect to the noise factors can be computed by simulation, using the

steps below:

1. Set count = 1

2. Generate a sample xn(count) from its assumed distribution N(0,Vn)

3. Compute P (L ≤ Y ∗ ≤ U |Mi,x
∗
c,x

∗
n(count),y) for the sample using equation (3.18).

4. Set count = count + 1. Repeat steps 2 and 3 until count > N .

5. Estimate the expected value using the Weak Law of Large Numbers (WLLN),

lim
N→∞

1

N

N∑

i=1

[P (L ≤ Y ∗ ≤ U |Mi,x
∗
c,x

∗
n(i)y)] = Ex∗

n

[P (L ≤ Y ∗ ≤ U |Mi,x
∗
c,x

∗
ny)] .

(4.15)

The example below illustrates the proposed method.

4.3.1 Example

The data for this example is taken from Derringer and Suich [17], and is given in table 4.1.

There are three factors, x1(hydrated silica level), x2 (silane coupling agent level) and x3

(sulfur level), and four responses, y1 (PICO Abrasion index), y2 (200% modulus), y3 (Elon-

gation at break), and y4 (Hardness). Here, only consider response y3 is considered. It is
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assumed that it is desired to obtain y3 within the specification limits [400, 600]. It is further

assumed that factor x1 is a noise factor. Using the data in table 4.1, and the priors men-

tioned earlier, the model posteriors for all subsets belonging to the model class shown in

equation (4.9) are computed. Here, the hyper-parameters are set at π = 0.5, and γ = 0.6.

The choice of these hyper-parameters is as discussed in the previous chapter. In the mod-

els considered, higher order effects are included only if the corresponding main effect is

present. The model posterior probabilities and Ordinary Least Square (OLS) statistics for

the 20 models with the highest posteriors are shown in table 4.2. In the table, each row

represents a competing model and under the columns containing the model terms (effects),

a ‘1’ indicates that the term is present in the model and a ‘0’ indicates otherwise. The OLS

statistics shown in the table are the R-square, the Adjusted R-square, and the standard

error (S.E.). It can be seen based on both the model posteriors and the OLS statistics that

there are multiple competing models for the process. For simplicity when averaging over

the models, only model numbers 1-7 from table 4.2 are considered as theyt account for over

95% of the total probability (see appendix A).

For the optimization, it is assumed that the coded control factors are constrained to

lie in the interval [−1, 1]. It is also assumed that the coded noise factor has a N(0, 1/32)

distribution so that its corner points in the design in table 4.1 are set at a value equal to

3 times the standard deviation and its center point is at the mean. If all the factors are

assumed to be controllable, then the cumulative model averaged posterior predictive density

for the given specification limits computed using equations (4.3) and (3.18) is maximized

at the setting x1 = −0.7490, x2 = −0.5294 and x3 = −0.2568 giving a probability of

conformance of 0.7968.
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If instead x1 is considered to be a noise factor and the optimization is performed only

with respect to x2 and x3 using equation (4.14), then the optimal settings are x2 = −0.9876

and x3 = −1.0000 giving a probability of conformance of 0.7275. The presence of the noise

factor affects not only the variance of the posterior predictive distribution of the response

at a given x, but also the mean because of the presence of potential models containing

interaction terms between the control and the noise factors. Thus, when x1 is considered as

a noise factor in the optimization, there is not only a decrease in the posterior probability

of conformance but also a shift in the optimal set point of the control factors.

In this example, the expected value in equation (4.12) was computed within the opti-

mization routine by simulating over a total of 2000 runs. Ten such replicates at the optimal

setting of the control factors give an estimated posterior probability of conformance with

mean 0.7275 and standard error 0.0021.
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Run x1 x2 x3 y1 y2 y3 y4

1 -1 -1 -1 102 900 470 67.5

2 1 -1 -1 120 860 410 65

3 -1 1 -1 117 800 570 77.5

4 1 1 -1 198 2294 240 74.5

5 -1 -1 1 103 490 640 62.5

6 1 -1 1 132 1289 270 67

7 -1 1 1 132 1270 410 78

8 1 1 1 139 1090 380 70

9 -1.63 0 0 102 770 590 76

10 1.63 0 0 154 1690 260 70

11 0 -1.63 0 96 700 520 63

12 0 1.63 0 163 1540 380 75

13 0 0 -1.63 116 2184 520 65

14 0 0 1.63 153 1784 290 71

15 0 0 0 133 1300 380 70

16 0 0 0 133 1300 380 68.5

17 0 0 0 140 1145 430 68

18 0 0 0 142 1090 430 68

19 0 0 0 145 1260 390 69

20 0 0 0 142 1344 390 70

Table 4.1: Data for example in section 4.3.1 from Derringer and Suich [17]
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4.4 Extension to Non-normal Error Terms

Traditional model-fitting approaches in regression analysis use ordinary least square (OLS)

estimates for the parameters β in a model of the form given by equation (4.1). However,

when the standardized residuals from the fitted model have large magnitudes (large out-

liers), the estimates using OLS are poor. This can happen when the noise term ǫ deviates

from the assumed normal distribution (i.e., thicker tails in the distribution). In such cases,

a robust regression approach is used, where the parameter estimates are obtained using

methods such as Least Absolute Deviations (norm), M-Estimators, Least Median Squares,

or Ranked Residuals [61, 19], which are less sensitive to non-normal errors than OLS.

However, these are non-Bayesian and cannot be incorporated in our approach. Robust re-

gression techniques do not consider uncertainties in the model or in the model parameters.

Here, the idea of Bayesian model-averaged process optimization is extended to obtain a

solution that is also robust to tν-distributed error terms. Here also, the objective is to

maximize the posterior predictive probability that the response lies within the specification

limits.

Consider here a process with a single response variable y which is dependent on regres-

sors x given by a (p × 1) column vector which are functions of k controllable factors. It

is assumed that there are no noise factors present for simplicity, although the results from

the previous section can be applied here. It is assumed that a suitable experiment with n

runs has been designed and carried out and the data from the experiment is available. The

(n × k) design matrix used is denoted by X, and the (n × 1) vector of responses from the
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experiment is denoted by y. Each of the potential models is assumed to be of the form

y = x′β + ǫ, (4.16)

where ǫ is the error term that is assumed in this section to follow a t-distribution with ν

degrees of freedom. As is well known, if e ∼ N(0, 1), and u ∼ χ2(ν), then e/
√

w has a

t-distribution with ν degrees of freedom, where w = u/ν. Thus, conditional on w, equation

(4.16) can be considered as a weighted regression model,

y = x′β + e/
√

w. (4.17)

The transformations ỹ =
√

wy and x̃ =
√

wx conditional on w, give the non-weighted

regression model,

ỹ = x̃′β + e. (4.18)

Since the error term in equation (4.18) has a standard normal distribution, the model

posteriors in this case can be obtained from equation (4.3). If Xi is the design matrix

corresponding to model Mi, then using the notations and the priors in equations (3.4),

(3.8), (3.9), and (3.10), the model posteriors conditional on Wi are given by,

P (Mi|y, w1, ...wn) ∝ πfi(1 − π)k−fiγ−ti|Σ−1
i + X̃′

iX̃i|−
1
2 S̃

−
(n−1)

2
i (4.19)

= πfi(1 − π)k−fiγ−ti|Σ−1
i + X′

iWiXi|−
1
2 S̃

−
(n−1)

2
i , (4.20)

where, X̃i =




√
w1 · · · 0

...
. . .

...

0 · · · √
wn




Xi, diagonal matrix Wi =




w1 · · · 0

...
. . .

...

0 · · · wn




,

S̃i = (ỹ − X̃iβ̂i)
′(ỹ − X̃iβ̂i) + β̂i

′
Σ−1

i β̂i (4.21)

= (y − Xiβ̂i)
′W(y − Xiβ̂i) + β̂i

′
Σ−1

i β̂i, (4.22)
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and,

β̂i = (Σ−1
i + X̃′

iX̃i)
−1X̃′

iỹ (4.23)

= (Σ−1
i + X′

iWiXi)
−1X′

iWiy. (4.24)

The model posteriors, P (Mi|y) are then obtained by taking the expected value in equation

(4.20) with respect to (w1, ..., wn), that is

P (Mi|y) = Ew1,...,wn
[P (Mi|y, w1, ..., wn)] . (4.25)

The expected value with respect to (w1, ..., wn) in the above equation is computed by

sampling from a chi-square distribution according to the following numerical procedure:

1. Set count = 1

2. Generate samples w1(count), ...wn(count) from their assumed distribution ∼ χ2(ν)

3. Compute P (Mi|y, w1, ...wn) for the sample using equation (4.20).

4. Set count = count + 1. Repeat steps 2 and 3 until count > N .

5. Estimate the desired expected value using the Weak Law of Large Numbers (WLLN),

lim
N→∞

1

N

N∑

i=1

[P (Mi|y, w1, ...wn)] = Ew1,...wn
[P (Mi|y, w1, ...wn)] . (4.26)

Given a future setting of the control factors x∗ and w∗ = u∗/ν, where u∗ ∼ χ2
ν , and using

the transformation x̃∗ =
√

w∗x∗, we get the posterior predictive density of ỹ∗ =
√

w∗y∗

from equation (4.8) as,

ỹ∗|Mi,x
∗, w∗, w1, ..., wn,y ∝ tν

(
x̃∗β̂i, σ̂

2
i

[
1 + x̃∗′(Σ−1

i + X̃′
iX̃i)

−1x̃∗
])

, (4.27)
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where ν = n − 1 and σ̂2
i = S̃i/(n − 1) for models that include a constant term, and ν = n

and σ̂2
i = S̃i/n otherwise. Thus,

y∗|Mi,x
∗, w∗, w1, ..., wn,y ∝ tν

(√
w∗x̃∗β̂i, w

∗σ̂2
i

[
1 + x̃∗′(Σ−1

i + X̃′
iX̃i)

−1x̃∗
])

. (4.28)

The cumulative posterior predictive density, P (L < y∗ < U |Mi,x
∗,Y), is thus calculated

from the c.d.f. of the t-distribution taking the expected value with respect to w∗ and

(w1, ..., wn):

P (L < y∗ < U |Mi,x
∗,Y) = Ew∗ [Ew1,...,wn

{P (L < Y ∗ < U |Mi,x
∗, w∗, w1, ..., wn,Y)}] .

(4.29)

The expected values in equation (4.29) can also be computed using simulation. The ob-

jective function in equation (4.2) can be computed using equations (4.25) and (4.29). The

examples below illustrate the method. The first example illustrates the interplay of the

different models under consideration and the effect of a thick-tail distribution. The second

example is an application to a real experiment.

4.4.1 Example 1

To illustrate the methodology, consider the simulated data given in table 4.3, where there

is a single response y and a single controllable factor x. Assuming normally distributed

errors, the parameters for the linear and quadratic model can be estimated using equation

(4.7). The fitted models are plotted in figure 4.1, using a value of π = 0.5 and γ = 2.4.

The choice of these hyper-parameters is as discussed in the previous chapter. The posterior

probabilities for the models under consideration are computed by using equation (4.8) for

the case of normal errors and by using equation (4.25) for the case of t-distributed errors
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x y

-1.0 0.8551

-0.5 -1.8702

0.0 1.3421

0.5 3.7778

1.0 8.2322

Table 4.3: Sample data for example in section 4.4.1

model form P (Mi|y)

normal errors t-distributed errors (5 d.o.f.)

y = β0 0.108 0.127

y = β0 + β1x 0.263 0.298

y = β0 + β1x + β2x
2 0.629 0.575

Table 4.4: Model posteriors for example in section 4.4.1

with 5 degrees of freedom. These are shown in table 4.4. From table 4.4, it can be seen

that the ratio of the posterior probability of the quadratic model to that of the linear model

is higher when we assume normal errors as opposed to t-distributed errors. Figure 4.2

shows the cumulative model averaged posterior predictive density P (L < y∗ < U |x∗) over

values of x∗ in the range [−1, 1], under both normal and t-distributed errors, for different

choices of the specification limits. In this example, the optimal x∗ in all the cases in

the figure does not change much between normal errors and t-distributed errors with 5

degrees of freedom. However, it can be seen that depending on the specification limits,
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−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−2

0

2

4

6

8

10

x*

E
[y

*]

0.848 + 3.8154 x* + 3.238 x*2 

2.467 + 3.815 x* 

Normally distributed errors 

Figure 4.1: Parameter estimates for linear and quadratic model under normal errors as-

sumption

the probability P (L < y∗ < U |x∗) can be much different depending on the the distribution

of the error term. It is also seen that large differences occur at those values of x∗ where

the linear and quadratic models shown in figure 4.1 are wider apart. As the assumption of

normally distributed errors relatively favors the quadratic model more as compared to the

assumption of t-distributed errors, it can be seen that P (L < y∗ < U |x∗) at the optimal

x∗ is higher for the normally distributed errors in the cases where L = 5, U = ∞ and

L = 1, U = 3, and higher for the t-distributed errors in the case where L = −∞, U = 2.

4.4.2 Example 2: A mixture experiment

This example applies the methodology to real data. The data for this example is a mixture

experiment taken from Frisbee et al. [22], and is given in table 4.5. The response is glass
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0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x*

P
(L

<
Y

*<
U

)

normal errors
t−errors (5 dof)

L = 5, U = ∞ 

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x*

P
(L

<
Y

*<
U

)

normal errors
t−errors (5 dof)

L = −∞, U = 0 
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0.3

0.35

0.4

x*

P
(L

<
Y

*<
U

)

normal errors
t−errors (5 dof)

L = 1, U = 3  

Figure 4.2: Cumulative model-averaged posterior probabilities for different specifications

L, U
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x1 x2 x3 y

1.000 0.000 0.000 18.90

0.000 1.000 0.000 15.20

0.000 0.000 1.000 35.00

0.500 0.500 0.000 16.10

0.500 0.000 0.500 18.90

0.000 0.500 0.500 31.20

0.333 0.333 0.333 19.30

0.666 0.167 0.167 18.20

0.167 0.666 0.167 17.70

0.167 0.167 0.666 30.10

0.333 0.333 0.333 19.00

Table 4.5: Mixture data from [22] where the response is Glass Transition temperature

transition temperature of films cast from poly(DL-lactide) (PLA), and the controllable

variables are amounts of non-ionic surfactants, namely, Polaxamer 188 NF (Pluronic r©

F68), Ployoxyethylene 40 monostearate (Myrj r© 52-S) and Polyoxyethylene sorbitan fatty

acid ester NF (Tween r© 60). The authors are interested in finding the composition of the

controllable factors that minimizes the glass transition temperature. Models belonging to

the following two classes of models are considered:

y = b1x1 + b2x2 + b3x3 + b4(x1x2) + b5(x1x3) + b6(x2x3), (4.30)

y = b1x1 + b2x2 + b3x3 + b4 min(x1, x2) + b5 min(x1, x3) + b6 min(x2, x3). (4.31)



80

The results for model-robust process optimization for these classes of models under normal

errors were seen in the previous chapter. However, as there are only 11 runs, it is difficult to

verify the distribution of the error terms. Tables 4.6, 4.7 and 4.8 give the model posteriors

for the cases where the error distribution is assumed to be normal, t-distributed with

100 degrees of freedom (d.o.f.) and t-distributed with 10 d.o.f., respectively. These are

obtained using hyper-parameters π = 0.5 and γ = 10 as discussed in the previous chapter.

The tables also show the OLS statistics for the models that are based on the sum of squares

of the residuals (SSE), the total sum of squares (SST ), and the standard error (S.E.).

As seen in the previous example, the posterior probabilities of the competing models for

the t-distributed errors is different from those obtained using normally distributed errors,

especially at lower degrees of freedom. It is also noted that the ordering of models according

to the model posteriors is different depending on the error distribution. Thus, it is expected

that the optimal solution will differ depending on the error distribution.

Table 4.9 shows the results of the optimization under the different error distributions.

For each type of distribution, the MAP is used to maximize the posterior probability of

obtaining a glass transition temperature lesser than 18, i.e., P (Y ∗ < 18). The table shows

the optimal setting of the controllable factors (x∗
1, x

∗
2, x

∗
3) obtained for each case of the

noise distribution. As observed in the previous example, although there is a difference

in the probability of conformance of the response for t-distributed errors as compared to

normally distributed errors, especially as the degrees of freedom is lesser, there is no drastic

shift in the optimal setting of the control factors. A possible explanation is that although

the model posteriors differ depending on the chosen error distribution, the shape of the

surface of the model-averaged posterior probability of conformance as a function of the
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control factors is very close for all the error distributions considered, as can be seen in

figure 4.2 for the first example. In other words, model averaging under normal errors will

“robustify” the optimal solution if models that better explain abnormal observations with

respect to some other model are included in the analysis. Because of this, the differences

between normal MAP and t-MAP optimization will not be much if a “rich enough” set of

models is included.
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Error Distribution Optimal Setting P (Y ∗ < 18)

x1 x2 x3

normal 0.1330 0.8670 0.0000 0.9388

t-100 0.0000 1.0000 0.0000 0.9189

t-10 0.0000 1.0000 0.0000 0.8792

Table 4.9: Optimization results for example 3.2

4.5 Discussion

An extension to the Bayesian method for model-robust optimization was presented which

includes robustness to the presence of noise factors and to the case of non-normal error dis-

tribution. In the presence of noise factors, the model-averaged posterior predictive density

was used to maximize the probability of conformance by optimizing over possible values of

the controllable factors, while simulating the noise factors from their assumed distribution.

The resulting optimal solution thus provided a setting of the controllable factors that is

not only robust to the form of the true model, but also to the variation in the noise factors.

When t-distributed error terms are assumed instead of normal errors, it was observed that

the posterior probabilities of the models changed, as demonstrated using two examples.

The posterior predictive density of the response given a model naturally decreases as the

tail of the assumed error distribution gets thicker. The optimization thus gives a different

solution, both in terms of the settings of the controllable factors as well as the probability

of conformance, although there is no drastic shift in the former. It is recommended that

the optimization be carried out under different assumptions of the error distribution, espe-
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cially when the number of runs in the original design is small, so that the resulting solution

is robust to the assumed distribution. One way to ensure robustness is to evaluate the

probability of conformance at the optimal setting given by normally distributed errors, by

assuming t-distributed errors with varying degrees of freedom. If the probability of confor-

mance at this setting does not vary much, then the solution is robust to the distribution

of the error terms.

The results in this and in the previous chapter were restricted to single response systems.

The next chapter extends the Bayesian methodology for model-robust process optimization

to multiple responses systems.



Chapter 5

Model-Robust Process Optimization

- Extension to Multiple Responses

5.1 Introduction

In practice, most processes have multiple responses, and it is of interest to obtain each of

these responses within their individual specification limits. As two or more responses may

depend on the same control factors, it is not sufficient to consider the responses individually

for optimization. Since it is very unlikely that the optimal setting of the control factor for

one response is also the optimal for the other responses that depend on the same control

factor, the methodology must consider all the responses simultaneously. In this chapter, the

Bayesian method for model-robust process optimization is extended to multiple response

systems.

Here, it is assumed that there are q > 1 responses. The joint model-averaged posterior

predictive density for the q responses is calculated and is then used to find the setting of

87
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the control factors that maximizes the joint posterior probability of conformance of the

responses to their respective specification limits.

5.2 Bayesian Model Averaging

For multiple responses, each of the q responses is modelled as

yj = x′
jβj + ǫj, j = {1...q}. (5.1)

In the case of multiple responses, the methodology depends on:

1. The correlation between the ǫj for the different responses, and

2. The regressors xj in the model for each of the response.

We denote the (q×q) variance-covariance matrix of the error terms by Σe, or sometimes for

convenience by Λ−1. Note that if all the responses have identical regressors, then xj = x

for all j, and if the error terms ǫj are uncorrelated between the responses, then Σe is a

diagonal matrix. Thus there are four different cases of multiple response systems based

on the regressors present in the models for the individual responses and the correlation

of the error terms between the responses as shown in table 5.1. The case when there are

identical regressors for all the responses and correlated errors is the Standard Multivariate

Regression (SMR) case. The case when there are unrelated regressors for the responses

and correlated errors is called Seemingly Unrelated Regression (SUR) because though the

regressors may be completely different for different responses, they cannot be modelled

independently of each other because of the correlated error terms [74].
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identical regressors unrelated regressors

uncorrelated errors All the yj have the same set of

regressors, xj = x, and the er-

ror terms ǫj are uncorrelated be-

tween the responses

Different yj may have a different

set of regressors, i.e., xj is dif-

ferent for different j, and the er-

ror terms ǫj are uncorrelated be-

tween the responses

correlated errors All the yj have the same set of

regressors, xj = x, and the error

terms ǫj are correlated between

the responses

Different yj may have a different

set of regressors, i.e., xj is differ-

ent for different j, and the error

terms ǫj are correlated between

the responses

Table 5.1: Categories of models for multiple response systems

In this chapter, the Bayesian methodology for model-robust process optimization is

extended to three of the four above mentioned cases. The methodology is extended for the

two cases where the error terms are correlated, and for the SMR case. Recommendations

for extending the method to the SUR case are provided in the summary in chapter 8.

In the single response case, the number of models considered for averaging is relatively

small, although it depends on the number of control factors in any particular application.

For example, if all the models with just the first-order terms are considered, then are a

total of 2k − 1 models that could potentially be considered, where k is the number of

control factors. Thus, as seen in chapter 3, given m models Mi, i = 1...m, the posterior

probability for each individual model could be calculated. For multiple response systems

each Mi, i = 1...m, refers to a set of q models, one for each response. However, in the
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cases where the responses have identical regressors, the number of models that could be

potentially considered is the same as that of the single-response case, since all the q models

in the set Mi must have the same regressors. However, when we assume that the responses

can have different regressors, the number of potential models can be extremely large, even

for cases with very few control factors. This is because the q models in the set Mi need

not have the same regressors. Hence, multiple combinations of the vector of regressors are

possible in each of the q models. Therefore, in this case, it is important to choose a small

number of subsets of models (for e.g., one plausible model per response in the subset) for

averaging rather than using an exhaustive list of models.

As in the single response case, it is assumed that there is data from an experiment with

n runs. We denote the (n×p) design matrix by X, and the (n×q) matrix of responses from

the experiment by Y. The model-averaged posterior predictive density (MAP) is calculated

by taking the weighted average of the posterior predictive density P (y∗|x∗
1...x

∗
k,Y,Mi) of

a future vector of responses y∗ at a future setting of the control factors (x∗
1...x

∗
k) over each

model set Mi, using the posterior probabilities of the model set P (Mi|Y) as the weights.

The optimization problem is formulated as:

max
x∗
1,...,x∗

k

P (y∗ ∈ R) =
∑

i

[∫

R

P (y∗|Mi, x
∗
1...x

∗
k,Y)dy∗

]
P (Mi|Y), (5.2)

where R denotes the region of interest formed by the specification limits [lj, uj] on each

individual response yj. The optimization thus requires two parts, namely, the posterior

probability of Mi and the posterior predictive density of the response given Mi. The

results for model-robust process optimization for the different cases are derived below.
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Uncorrelated Errors:

In this case, since there is no correlation between the error terms of the responses, the

joint posterior density for the vector of responses is equal to the product of the marginal

posterior densities of the individual responses under the normality assumption. This is

true no matter if the responses have identical regressors or not. So, in this case, the model

posteriors and the posterior predictive density can be obtained directly from the results for

the single response case.

Thus, if model set Mi contains models Mi1...Miq corresponding to responses y1...yq

respectively, the posterior probability is given by

P (Mi|Y) =

q∏

j=1

P (Mij|Y), (5.3)

where each of the P (Mij|Y) is the model posterior probability for the single response yj

that can be computed using equation (3.13). Note that the priors used are the same as

in chapter 3. Using equations (3.13) and (5.3), the posterior probability P (Mi|Y) can be

computed for all i = {1...m} candidate sets of models.

Now for a given model set Mi, we also need the joint posterior probability of conformance

of the responses given by P (y∗ ∈ R|x∗
1...x

∗
k,Y,Mi). Since the errors are uncorrelated, this

is simply the product of the marginal posterior probability of conformance of the individual

responses, i.e.,

P (y∗ ∈ R|x∗
1...x

∗
k,Y,Mi) =

q∏

j=1

P (yj
∗ ∈ [lj, uj]|x∗

1...x
∗
k,Y,Mij), (5.4)

where each of the P (yj
∗ ∈ [lj, uj]|x∗

1...x
∗
k,Y,Mij) is the posterior probability of conformance

of a single response yj to its specification limits and can be evaluated using equation (3.19).
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From equations (3.13), (3.19), (5.3) and (5.4), the objective function in equation (5.2) can

be computed for multiple response systems with uncorrelated errors.

Correlated Errors and Identical Regressors:

In this case, the process follows a Standard Multivariate Regression (SMR) model. To

distinguish between the variables for the multiple competing models, the subscript i will

be used for variables that are specific to model set Mi. The model set Mi is given by

y = β′
ixi + ǫ, (5.5)

where y is the (q × 1) vector of responses, βi is the (pi × q) matrix of model parameters,

xi is the (pi × 1) vector of regressors and ǫ is the correlated error term with distribution

N(0,Σe). Assuming Λ = Σ−1
e , we have ǫ ∼ N(0,Λ−1). As in the single response case it

is assumed that there is data from an experiment with n runs. Denote the (n × pi) design

matrix by Xi, and the (n × q) matrix of responses from the experiment by Y.

The priors used on the parameters are similar to those used in the single response case.

Vague priors are assumed for Λ and for the βi for the constant term, and the Zellner’s

g-prior [74] is assumed for the remaining βi. Therefore, the prior probabilities are given by

P (Λ) ∝ 1

|Λ|(q+1)/2
, (5.6)

P (βi) ∝ γ−qti|Λ|ti/2exp

[
−1

2
tr Λ(β′

iΣ
−1
i βi)

]
, (5.7)

and

P (βi,Λ) ∝ P (βi)P (Λ), (5.8)
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where ti is the number of terms in the model excluding the constant term (i.e., if the model

includes a constant term, then (ti = pi − 1) and if the model excludes a constant term then

(ti = pi), Σ−1
i = (X′

iXi)Vi, where Vi = 1
g




0 0

0 I ti


, and γ is such that

g

γ2
Vi = Σ−1

i . (5.9)

Since, the responses have identical regressors, the prior on Mi is the same as that in the

single response case given by

P (Mi) = πfi(1 − π)k−fi , (5.10)

where fi out of the k control factors are present in Mi, and π is the prior probability of an

active factor, assumed equal for all factors. The posterior probability of Mi is given by the

Bayes’ theorem:

P (Mi|Y) =
P (Y|Mi)P (Mi)∑
i P (Y|Mi)P (Mi)

, (5.11)

where P (Y|Mi) is the marginal likelihood, defined as

P (Y|Mi) =

∫

Λ

∫

β
i

P (Y|Mi,Λ, βi)P (Λ,βi|Mi) dβi dΛ. (5.12)

P (Y|Mi,Λ,βi) is the likelihood function, given by:

P (Y|Mi,Λ,βi) ∝ |Λ|n/2exp

[
−1

2
tr Λ(Y − Xiβi)

′(Y − Xiβi)

]
. (5.13)

Based on the assumed priors given in equations (5.6), (5.7),(5.8) and (5.10), the integral in

equation (5.12) can be computed (see [45], [58]) and is given by,

P (Y|Mi) ∝ γ−qti|Σ−1
i + X′

iXi|−
1
2 |Si|−

(n−1)
2 . (5.14)



94

From equations (5.11) and (5.14), the model posterior probability is given by,

P (Mi|Y) ∝ πfi(1 − π)k−fiγ−qti|Σ−1
i + X′

iXi|−
1
2 |Si|−

(n−1)
2 , (5.15)

where

Si = (Y − Xiβ̂i)
′(Y − Xiβ̂i) + (β̂

′

iΣ
−1
i β̂i), (5.16)

and

β̂i = (Σ−1
i + X′

iXi)
−1X′

iY. (5.17)

The posterior predictive density for the new vector of responses y∗ at a new set of

regressors x∗ for a given model Mi under the priors on the parameters given by equations

(5.6), (5.7) and (5.8) is derived in appendix C and is given by:

y∗|x∗,Y,Mi ∝ Tq(β̂
′

ix
∗,H−1

i ) (5.18)

where,

Hi =
νiSi

−1

1 + x∗′(Σ−1
i + X′

iXi)
−1

x∗
,

and

νi = n + ti + 1 − pi − q.

As ti is the number of terms in model Mi excluding the constant term and pi is the number

of regressors in model Mi, the degrees of freedom for models having a constant term is

νi = n − q, and for models without constant terms is νi = n + 1 − q.

Using equations (5.15) and (5.18), the objective function in equation (5.2) can be eval-

uated for the SMR case. The example below demonstrates the proposed methodology for

the SMR case.
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5.3 Example

This example uses data from a high performance liquid chromatography (HPLC) process

[54] and is given in table 5.2. There are four responses, namely, y1: the critical resolution

(Rs), y2: total run time, y3: signal-to-noise ratio of the last peak and y4: the tailing factor

of the major peak. There are three controllable factors, x1: %IPA, x2: temperature and

x3: pH. It is assumed that the model is of the SMR form, i.e., all the responses have the

same regressors and the error terms are correlated between the responses. Therefore, the

joint posterior distribution of the responses for a given model is given by a multivariate

T-distribution as shown in equation (5.18).

All models from the class of models including main effects, two-way interactions and

quadratic effects are taken into consideration for model averaging. Models with higher

order terms are considered only if the corresponding main effects are also present. There

are 95 such models including the null model (model with only the constant term). The

hyperparameters π and γ are chosen as described in chapter 3, i.e., the value of π is

set at 0.5 and the value of γ is chosen such that the posterior probability of the null

model is minimized. Here, a value of 5.6 is obtained for γ. Table 5.3 shows the posterior

probabilities for 20 of these models sorted in the descending order of the model posteriors.

In the table, each row represents a competing model and under the columns containing

the model terms (effects), a ‘1’ indicates that the term is present in the model and a ‘0’

indicates otherwise. The table also gives the corresponding ordinary least square statistics.

The columns
∏

R2 and
∏

R2
Adj give the product of the R2 and R2

Adj for the individual

responses, respectively. As in the case of single response systems, models that account for
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over 95% of the total probability are taken into consideration for computing the model-

averaged posterior predictive density.

The specification limits for optimization are chosen as {R : 2.0 ≤ y1, y2 ≤ 15, 300 ≤

y3, 0.75 ≤ y4 ≤ 0.85}. For these specifications, the model-averaged posterior probability

was maximized at a value of 0.8588 at the setting of the control factors given by x∗ =

(0.9951, 0.6091,−0.3485) in coded units. In order to compute the posterior probability of

conformance for a given model, the following steps were used:

1. Set count = 1 and iter = 1.

2. Generate sample y∗(iter) from the T-distribution shown in equation (5.18).

3. If y∗(iter) ∈ R, where R is the specification region, then increment count = count+1.

4. Set iter = iter + 1. Repeat steps 2-4 until iter > N .

5. An estimate of the posterior probability is given by count/N .

In this optimization, the posterior probabilities were estimated with a value of N = 10, 000.

Figure 5.1 shows the scatter plot of the model-averaged posterior probability of conformance

P (y∗ ∈ R|x∗) for this example. The legend shows the color code that corresponds to the

value of P (y∗ ∈ R|x∗). In addition, the size of the dots in the figure is proportional to the

value of P (y∗ ∈ R|x∗).
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Figure 5.1: Scatter plot of P (y∗ ∈ R|x∗) for HPLC example

5.4 Discussion

In this chapter the results of the model-robust process optimization using Bayesian model

averaging were extended to multiple response systems. It was seen that for cases where there

is no correlation in the error terms between the responses, the joint posterior probability

of conformance for a given model set Mi as well as the joint model posteriors for all

Mi could be obtained simply by taking the product of the marginal probabilities for the

individual responses, where each of the marginal probabilities is obtained from the results

for single response systems presented in chapter 3. For the SMR case, where the error terms
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between the responses are correlated and the responses have identical regressors within a

given model set Mi, the model posteriors are given by equation (5.15) and the posterior

predictive distribution for a given Mi is given by a multivariate T-distribution as shown

in equation (5.18). For the SUR case, suggestions are given in chapter 8 to implement the

model-averaged process optimization.

In the last three chapters on process optimization, it was assumed that the specification

limits for the response(s) are given, and the setting of the control factors that maximizes

the posterior probability of conformance of the response(s) to these specification limits is

obtained. In the next chapter, we solve the inverse problem, one of tolerance control, where

a desired minimum posterior probability of conformance for each of the responses is given,

and the optimization is formulated to find the setting of the control factors that gives the

smallest tolerance or specification region while meeting the minimum posterior probability

of conformance for the responses.



Chapter 6

A Bayesian Method for Robust

Tolerance Control and Parameter

Design

6.1 Introduction: Tolerance Control

In engineering design, the limits defining the acceptable quality of a product are called

tolerance or specification limits. The problem of setting these limits based on different cri-

teria is known as tolerance control. This chapter addresses the problem of setting tolerance

limits on one or more quality characteristics that depend on controllable factors, (x1...xk).

The approach presented is Bayesian. Bayesian methods have been used in the literature

[56, 46] to identify the settings of (x1...xk) that maximize the probability of conformance

of the responses or quality characteristics to a pre-defined given tolerance region. However,

in this chapter we address the inverse problem: that of identifying a tolerance region such

101



102

that the probability of conformance of the response(s) to the region is at least equal to a

user-defined value φ.

In tolerance control problems, it is also of interest to identify the setting of the control

factors that gives the smallest such tolerance region. For example, suppose the design

engineers in a company design a part that should be machined with thickness between

3mm and 5mm, and suppose that there are two controllable factors in the machine, cutting

speed and pressure, that the operator can adjust to get the required thickness. Using the

Bayesian optimization approaches in the literature, it is possible to find the settings of

these two controllable factors that maximize the posterior probability that the part will

have a thickness that is within the specification (tolerance) limits [56]. However, it is

possible that at these settings the value of the posterior probability is quite low, say 0.6,

which means that even at the best operating setting only 60% of the manufactured parts

will meet the tolerances that have been set. This is a common problem in tolerancing

and can be overcome if the designer transfers tolerance requirements to the manufacturing

plant, while keeping in mind the limitations of the machinery and making the most of the

design flexibility [32]. Thus in the previous example, the designer could prefer to adjust the

design such that it is possible to set a different tolerance limit on the part that gives a higher

posterior probability of obtaining conforming parts. It may be of interest, for example, to

determine if there is another setting of the controllable factors where there is a high posterior

probability of conformance to thickness between 5mm and 6mm, say a 90% probability. If

this is true, at this new setting not only is the probability of conformance higher, but the

tolerance region is also smaller, thus giving a lower variation in the conforming parts.

In the standard approaches to statistical tolerancing [26], if Y is a quality characteristic
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with probability distribution P θ
Y , where θ are the parameters, and if a sample (y1...yn) of n

independent observations is available, two common statistical methods have been used for

constructing a tolerance region A. These are defined as,

1. the α-expectation tolerance region, given by:

E[C(A)] = α, (6.1)

2. the α-content tolerance region at confidence level γ, given by:

p[C(A) ≥ α] = γ, (6.2)

where C(A) is the coverage of the region A. These definitions are applicable for both clas-

sical or frequentist and Bayesian approaches. Both approaches are discussed in Guttman

[25, 26]. However, they do not consider the problem of tolerance control in conjunction

with regression, where the response depends on the settings of control factors. Also, the

methods in the literature do not address the problem of finding the smallest tolerance

region that satisfies one of the two criteria shown in equations (6.1) and (6.2).

The idea of a robust tolerance design was originally proposed by Taguchi [67]. Taguchi

recommended tolerance design as the stage in quality control that follows parameter de-

sign. Parameter design is used to fit regression models to data and identify levels of the

controllable factors that give the required mean and variation of the fitted response mod-

els. Singpurwalla [64] provides a Bayesian framework to approaching Taguchi’s idea of

parameter and tolerance design. Taguchi’s robust tolerance design is used to adjust the

tolerances of the controllable factors that have a large influence on the response(s). How-

ever, this does not address the problem of setting tolerance or specification limits on the
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responses themselves. Taguchi’s idea is related to what is called “transmission of errors”,

where variation in the controllable factors causes additional variation in the responses. In

this chapter, we first address the problem of setting tolerances on the responses assuming

that the controllable factors can be set to fixed desired settings. The effect of transmission

of errors because of variation in the controllable factors is addressed in the discussion in

section 6.4

The remainder of this chapter is organized as follows. The next section describes the

proposed method for constructing tolerance limits for systems with a single response or

quality characteristic. Section 6.3 discusses the multiple response case. A summary of the

approach is given in the discussion section.

6.2 Single Response Systems

This section focusses on processes with a single response or quality characteristic of interest,

y. It is assumed that this response depends on k controllable factors, x1...xk. It is also

assumed that we have data from an experiment with n runs from which we can fit a model

to the response of the form

y = x′β + ǫ, (6.3)

where x is the (p × 1) vector of regressors that are functions of the k controllable factors,

β is the (p × 1) vector of model parameters and ǫ is the error term which is assumed to

be normally distributed, N(0, σ2). Denote the design matrix from the experiment by an

(n × p) matrix X and the vector of observed responses from the experiment by an (n × 1)

vector y.
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6.2.1 Bayesian Predictive Density

The posterior predictive density of a future response vector y∗ at a given setting of the

model regressors x∗ for the given data y is defined as [57]:

p(y∗|x∗,y) =

∫

σ2

∫

β
p(y∗|x∗,y,β, σ2)p(β, σ2|y) dβ dσ2, (6.4)

where p(y∗|x∗,y, β, σ2) is the likelihood function, and p(β, σ2|y) is the posterior distribution

of the model parameters. It is noted that the uncertainty in the model parameters is

naturally accounted for by considering β and σ2 to be random variables and evaluating

their posterior distributions using Bayes’ theorem:

p(β, σ2|y) ∝ p(y|β, σ2)p(β, σ2), (6.5)

where p(y|β, σ2) is the likelihood function, and p(β, σ2) is the joint prior distribution of

the model parameters. For the system described earlier, under a diffuse prior given by,

p(β) ∝ constant, (6.6)

p(σ2) ∝ 1

σ2
, (6.7)

and

p(β, σ2) = p(β)p(σ2), (6.8)

the posterior predictive density is given by a t-distribution (see Press [57]). That is,

y∗|x∗,y ∼ tν(x
∗′β̂, σ̂2(1 + x∗′(X′X)−1x∗)), (6.9)

where ν = n − p,

β̂ = (X′X)−1X′y, (6.10)
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and

σ̂2 =
(y − Xβ)′(y − Xβ)

n − p
. (6.11)

As the posterior distribution of the response is a t-distribution, the posterior mean of the

response given x∗ is

E[y∗|x∗,y] = x∗′β̂, (6.12)

and the posterior variance of the response given x∗ is

V ar[y∗|x∗,y] =
ν

ν − 2
σ̂2(1 + x∗′(X′X)−1x∗). (6.13)

6.2.2 Optimization for Tolerance Control

The objective of the tolerance control problem is to find the setting of the controllable

factors, x∗
1...x

∗
k, that gives the smallest interval [l, u] such that the posterior probability of

conformance, p(y∗ ∈ [l, u]|x∗,y), is at least φ, where φ is decided by the process engineer

or the designer. In addition, there may be constraints imposed on the ranges of x∗, l, and

u. In mathematical notation, the problem is formulated as:

min
x∗
1...x∗

k

u − l

s.t.,

p(l ≤ y∗ ≤ u|x∗,y) ≥ φ

l ≥ Bl

u ≤ Bu

x∗
1...x

∗
k ∈ ℜ,
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where Bl and Bu are, respectively, a lower bound on l and an upper bound on u, determined

by the user. For a given x∗, we have from equation (6.9) that y∗|x∗,y ∼ tν(µy∗ , σ2
y∗), where

µy∗ = x∗′β̂, and σ2
y∗ = σ̂2(1 + x∗′(X′X)−1x∗). Let Ft and ft be, respectively, the c.d.f. and

the p.d.f. of this posterior t-distribution (note that Ft and ft depend on x∗). Based on the

constraints on the bounds, Bl and Bu, a given setting x∗ is infeasible if

Ft(Bu) < φ, (6.14)

or if

Ft(Bl) > 1 − φ. (6.15)

If the above inequalities are not true, then P (l ≤ y∗ ≤ u|x∗,y) ≥ φ can be satisfied, and

from figure 6.1, it is evident that the smallest interval [l, u] that encloses an area at least

equal to φ should be centered about the mean µy∗ and can be computed by

l = F−1
t

(
1 − φ

2

)
, (6.16)

u = 2µy∗ − l. (6.17)

However, the values of l and u computed using equations (6.16) and (6.17) need to satisfy

also the constraints l ≥ Bl and u ≤ Bu. Thus, when using equations (6.16) and (6.17) to

obtain l and u, there are four cases as shown in figure 6.2. These are:

1. l ≥ Bl, u ≤ Bu: This case satisfies all the constraints. Here, the values of l and U

from equations (6.16) and (6.17) give the smallest interval [l, u] for the given x∗.

2. l ≥ Bl, u > Bu: Here, the value of u from (6.17) does not satisfy the constraint u ≤

Bu. So to find the smallest interval, we set u = Bu and l = F−1
t [Ft(Bu) − φ]. Note
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that because of the feasibility check in equation (6.14), Ft(Bu)− φ is never less than

zero. Now if the new value of l ≥ Bl, then [l = F−1
t (F (Bu) − φ), u = Bu] is the

smallest interval satisfying all constraints. Otherwise, if the new l < Bl, then the

problem for the given x∗ is infeasible.

3. l < Bl, u ≤ Bu: Here, the value of l from (6.16) does not satisfy the constraint l ≥ Bl.

So, to get the smallest interval, we set l = Bl and u = F−1
t [Ft(Bl)+φ]. Here, because

of the feasibility check in equation (6.15), Ft(Bl) + φ is never greater than one. Now

if the new value of u ≤ Bu, then [l = Bl, u = F−1
t (Ft(Bl)+φ)] is the smallest interval

satisfying all constraints. Otherwise, if the new u > Bu, then the problem for the

given x∗ is infeasible.

4. l < Bl, u > Bu: In this case, the problem for the given x∗ is infeasible, as no interval

[l, u] that satisfies the constraints l ≥ Bl and u ≤ Bu will contain an area under the

p.d.f. curve at least equal to φ.

The analysis of these cases provides a solution algorithm for the tolerance control problem.

This is summarized in the algorithm in figure 6.3 to compute the values of l and u that

give the minimum bound, u − l, for a given x∗. The algorithm is used within a nonlinear

optimization program that searches in the space of (x∗
1...x

∗
k) to find the setting that gives

the smallest (u − l) under the given constraints. Note that if there are no constraints on

l and u, then the optimization problem reduces to finding the value of x∗ that gives the

minimum posterior variance. The optimization problem then can be reformulated as:

min
x∗
1...x∗

k

σ2
y∗ s.t., x∗

1...x
∗
k ∈ ℜ.
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Given x*, data: y

Is Ft(Bu) < Φ?
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Return (u-l) as the 
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Figure 6.3: Algorithm to determine smallest interval [l, u] for a given x∗ under given con-

straints
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In this case, the smallest interval [l, u] can be found at any x∗ using equations (6.16)

and (6.17). Note that it is frequently the case where several settings (x∗
1...x

∗
k) satisfy the

constraints of the tolerance problem, and this set of feasible solutions need not be convex

or even connected. As the feasible regions maybe non-convex and even disconnected, it is

recommended to run the nonlinear search algorithm in the space of (x∗
1...x

∗
k) using multiple

starting points to avoid local optimums.

The examples below illustrate the method. The first example illustrates how the set of

feasible solutions (x∗
1...x

∗
k) may be formed by disconnected subsets. The second example in

section 6.2.4 presents a real manufacturing experiment.

6.2.3 Example 1: Two controllable factors

In this example, the data used is taken from Khuri and Cornell [38], and is shown in

table 6.1. The goal of the experiment was to investigate the effect of two controllable

factors on a single response. As the response in this example is yield, a higher value of the

response is desired. In the table, the factors are given in coded variables determined by

a rotatable central composite design (CCD). The data shows observed responses for two

replicates of each treatment combination. Based on the two replicates of the experiment,

the model fitted to the data using the parameter estimates shown in equation (6.10) is

given by,

ŷ = 16.3647 + 1.6753x1 + 2.7651x2 − 0.3337x1x2 − 2.4637x2
1 − 1.9310x2

2. (6.18)
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Control Factors Response

x1 x2 Replicate 1 Replicate 2

-1 -1 7.52 8.12

1 -1 12.37 11.84

-1 1 13.55 12.35

1 1 16.48 15.32

-1.414 0 8.63 9.44

1.414 0 14.22 12.57

0 -1.414 7.90 7.33

0 1.414 16.49 17.40

0 0 15.73 17.00

Table 6.1: Design and experimental data [38] for example in section 6.2.3
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Note that the models are different when only one of the replicates is used. The model using

only the first replicate is given by

ŷ = 15.7296 + 1.9608x1 + 2.7862x2 − 0.4800x1x2 − 1.9851x2
1 − 1.6000x2

2, (6.19)

while the model using only the second replicate is given by

ŷ = 16.9999 + 1.3897x1 + 2.7440x2 − 0.1875x1x2 − 2.9423x2
1 − 2.2621x2

2. (6.20)

As the treatment combinations for both the replicates are identical, it is noted that the

coefficients in equation (6.18) are the average of the respective coefficients in equations

(6.19) and (6.20). It is assumed that the goal of the experiment is to find the value of

the controllable factors in the interval [−1, 1], while at the same time setting tolerance or

specification limits [l, u] on the response with the desired probability of conformance. As

higher values of the response are desirable in this example, it is important to set a lower

bound Bl on the value of l. In addition, since the optimization finds the smallest interval

u − l, operating at the optimal set point (x∗
1...x

∗
k) not only gives the desired probability of

conformance, but also the least variation in the response under the given constraints.

The dots in figure 6.4 represent all feasible x∗ computed at points on a grid spaced 0.05

apart in the region {x∗
1 ∈ [−1, 1], x∗

2 ∈ [−1, 1]} using the algorithm shown in figure 6.3.

Figure 6.4 shows four cases based on different values of Bl, Bu and φ. The figure is

plotted using the data from both replicates and the corresponding model in equation (6.18).

Figure 6.5 shows the feasible x∗ for two of those cases using just the data from replicate 1

and the corresponding model in equation (6.19), and figure 6.6 shows the feasible x∗ for the

same two cases as in figure 6.5 using just the data from replicate 2 and the corresponding

model in equation (6.20). It can be seen from these figures that:
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1. The feasible region need not be convex as shown in figure 6.4 for the case where

Bl = 13, Bu = 20 and φ = 0.99. It is noted that depending on the data and the

constraints, the feasible region may even be disconnected.

2. For the case where Bl = 13, Bu = 20 and φ = 0.99, the feasible set is empty when

only replicate 1 (figure 6.5) is used or when only replicate 2 (figure 6.6) is used.

However, when both replicates are used, although the posterior mean of y∗ at a given

x∗ is the average of the posterior means of the two replicates, the posterior standard

deviation of y∗ is less than that of either of the replicates. Therefore, the feasible

region in figure 6.4 is not empty when both replicates are used for Bl = 13, Bu = 20

and φ = 0.99.

3. As expected in all cases, for the same values of Bl and Bu the feasible region is larger

as the constraint on the value of the probability of conformance φ decreases.

The optimization is performed using both replicates of the data and is presented in

table 6.2 for different combinations of Bl, Bu and φ. Note that the value of x∗ that gives

the minimum posterior variance for the response is obtained by solving the optimization

problem without any constraints on l and u, i.e., by setting Bl = −∞ and Bu = ∞. In this

example, when the posterior variance of the response is minimized, the smallest interval

(u− l) obtained is 6.8967 for φ = 0.99, 4.9194 for φ = 0.95, and 4.0241 for φ = 0.90. It can

be seen from table 6.2 that the smallest interval obtained in all the cases is equal to or very

close to the smallest possible interval without any constraints on l and u, for the respective

values of φ. This is because the region with the desired high posterior mean also has the

lowest posterior variance for the response, as can be seen in the plots shown in figure 6.7.
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Figure 6.4: Feasible region for different constraints using both replicates

However, this need not always be the case as demonstrated in the next example.

6.2.4 Example 2: Three controllable factors

This example uses machining data from Taraman [69] and is presented in table 6.3. There

are 3 controllable factors - cutting speed (x1), feed (x2) and depth of cut (x3), and three

responses - surface roughness (R), tool life (T ) and cutting force (F ). Table 6.3 gives the

values of the controllable factors in [−1, 1] coded form based on a central composite design.

The table also shows the logarithm of the observed responses, which are used for modelling
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Figure 6.5: Feasible region under different constraints using replicate 1
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Figure 6.6: Feasible region under different constraints using replicate 2
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Bl Bu φ optimal x∗
1 optimal x∗

2 optimal (u − l) l u

13 20 0.99 0.9365 0.6291 6.8967 13.1032 19.9999

12 ∞ 0.99 0.7661 0.8281 6.8967 13.5077 20.4044

14 22 0.99 0.3596 0.9878 6.9218 14.0000 20.9218

13 20 0.95 0.7722 0.8224 4.9194 14.4857 19.4051

12 ∞ 0.95 -0.8022 0.7931 4.9194 12.1663 17.0857

14 22 0.95 0.8308 0.7631 4.9194 14.3702 19.2896

13 20 0.90 0.8269 0.7674 4.0241 14.8264 18.8505

12 ∞ 0.90 -0.8048 0.7904 4.0241 12.6002 16.6243

14 22 0.90 0.6204 0.9422 4.0241 15.1397 19.1639

Table 6.2: Optimization results for constructing tolerances for example in section 6.2.3
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tion 6.2.3
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because it is expected, based on prior knowledge of the process [69], that the log scaled

response is better suited to fit a linear statistical model of the form shown in equation

(6.3). In this section the proposed approach for tolerance control is demonstrated for the

response, tool life (T). Based on the given data, the model fit to the log of the response,

y = log(T ), is

ŷ = 3.5009 − 0.3031x1 − 0.0922x2 − 0.0915x3 + 0.0483x2
1 + 0.0416x2

2 + 0.0682x2
3. (6.21)

Based on the above model, the optimal tolerance interval can be computed for any given

value of Bl , Bu and φ. In this example, when the posterior variance of the response

is minimized, the smallest interval (u − l) obtained is 0.8297 for φ = 0.99, 0.6040 for

φ = 0.95, and 0.4980 for φ = 0.90. The optimization results for a few combinations of

these constraints are given in table 6.4. As the optimization is performed using the log

of the tool life as the response, the table also shows the results transformed back into

the original variable. Thus, for example, with a constraint on l of Bl = 40 and on u of

Bu = 100, the smallest tolerance interval that can be set is a tool life of [40, 73.46] minutes

with a 95% conformance. It can also be seen from table 6.4 that not all combinations are

feasible. For example, with a value of Bl = 45 and no constraint on u for tool life, there is

no feasible solution at 99% conformance, but there are feasible solutions at 95% or lower

conformance. It is noted that unlike in the previous example the smallest interval (u − l)

here is different for different values of Bl and Bu, for the same value of φ. This is because

the region with the desired high posterior mean does not provide low posterior variance.

Hence, as the constraints on l and u get tighter, the optimal interval (u− l) is larger. This

can be seen in the scatter plots of the posterior mean and variance shown in figure 6.8.
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Figure 6.8: Posterior mean and standard deviation of the response for example in sec-

tion 6.2.4

In the figure, the darker circles show regions with high magnitudes for both the posterior

mean and standard deviation. In the plot the posterior mean is high at the corner point

(−1,−1,−1), but the posterior standard deviation is also high in this region. Thus as

the constraint Bl on the lower bound is increased, the optimal solution moves closer to

the corner point, causing an increase in the posterior standard deviation and consequently

resulting in a wider tolerance interval. Using the results from this example, it is possible

to choose a setting (x∗
1, x

∗
2, x

∗
3) where the tool life is obtained within the optimal tolerance

intervals at the required probability of conformance. However, the performance of the other

two responses, surface finish (R) and cutting force (F ), at this setting is not known. The

next section extends the Bayesian method for constructing simultaneous tolerance intervals

to multiple response systems.
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x1 x2 x3 R(CLA µ in.) T (min) F (lbs) log(R) log(T ) log(F )

-1 -1 -1 88 70 53 4.4773 4.2485 3.9703

1 -1 -1 76 29 48 4.3307 3.3673 3.8712

-1 1 -1 259 60 100 5.5568 4.0943 4.6052

1 1 -1 194 28 92 5.2679 3.3322 4.5218

-1 -1 1 105 64 76 4.6540 4.1589 4.3307

1 -1 1 82 32 74 4.4067 3.4657 4.3041

-1 1 1 270 44 155 5.5984 3.7842 5.0434

1 1 1 250 24 150 5.5215 3.1781 5.0106

0 0 0 123 35 82 4.8122 3.5553 4.4067

0 0 0 136 31 85 4.9127 3.4340 4.4427

0 0 0 130 38 83 4.8675 3.6376 4.4188

0 0 0 121 35 85 4.7958 3.5553 4.4427

-1.414 0 0 159 52 88 5.0689 3.9512 4.4773

1.414 0 0 115 23 80 4.7449 3.1355 4.3820

0 -1.414 0 77 40 50 4.3438 3.6889 3.9120

0 1.414 0 324 28 129 5.7807 3.3322 4.8598

0 0 -1.414 114 46 68 4.7362 3.8286 4.2195

0 0 1.414 215 33 124 5.3706 3.4965 4.8203

-1.414 0 0 139 46 87 4.9345 3.8286 4.4659

1.414 0 0 111 27 78 4.7095 3.2958 4.3567

0 -1.414 0 61 37 49 4.1109 3.6109 3.8918

0 1.414 0 340 34 130 5.8289 3.5264 4.8675

0 0 -1.414 128 41 71 4.8520 3.7136 4.2627

0 0 1.414 232 28 123 5.4467 3.3322 4.8122

Table 6.3: Design and experimental data for machining example in section 6.2.4 [69]
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Bl Bu φ optimal x∗
1

optimal x∗
2

optimal x∗
3

optimal (u − l) l u

Transformed Response: log (Tool Life in min.)

log(45) ∞ 0.99 Infeasible

log(40) log(100) 0.99 -1.0000 -0.8471 -0.9385 0.8598 3.6889 4.5486

log(45) ∞ 0.95 -1.0000 -0.8533 -0.9465 0.6264 3.8067 4.4331

log(40) log(100) 0.95 -0.8687 -0.6983 -0.7361 0.6079 3.6889 4.2968

log(45) ∞ 0.90 -0.9845 -0.7429 -0.8020 0.5071 3.8067 4.3138

log(40) log(100) 0.90 -0.7669 -0.6668 -0.6874 0.4988 3.6889 4.1876

Original Response: Tool Life in min.

45 ∞ 0.99 Infeasible

40 100 0.99 -1.0000 -0.8471 -0.9385 54.4992 40.0008 94.5000

45 ∞ 0.95 -1.0000 -0.8533 -0.9465 39.1903 45.0017 84.1920

40 100 0.95 -0.8687 -0.6983 -0.7361 33.4635 40.0008 73.4643

45 ∞ 0.90 -0.9845 -0.7429 -0.8020 29.7222 45.0017 74.7239

40 100 0.90 -0.7669 -0.6668 -0.6874 25.8637 40.0008 65.8645

Table 6.4: Optimization results for constructing tolerances for example in section 6.2.4
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6.3 Multiple Response Systems

Here, it is assumed that there are q responses or quality characteristics of interest that

depend on one or more of k controllable factors. It is assumed that each of the q responses

is of the form

yj = x′
jβj + ǫj, (6.22)

where xj is a (pj × 1) vector of regressors, βj is a (pj × 1) vector of model parameters and

ǫj is the error term for response yj. Denote by Σ the (q × q) variance-covariance matrix

of the error terms. Note that if all the responses have identical regressors, then xj = x

for all j, and if the error terms ǫj are uncorrelated between the responses, then Σ is a

diagonal matrix. There are four different ways to model multiple response systems based

on the regressors present in the models for the individual responses and the correlation of

the error terms between the responses, as summarized in table 5.1. The Bayesian posterior

predictive density depends on how the multiple responses are modelled and is discussed

below.

6.3.1 Bayesian Predictive Density

For the cases where the error term ǫj is uncorrelated between the responses, i.e., Σ is

diagonal, each of the q responses can be modelled independently from the data, regardless

of whether the responses have identical regressors or not. As in the single response case, it

is assumed that there is data from an experiment with n runs. The observed responses from

the experiment are denoted by (n×1) vectors yj, where j = {1...q}, and the corresponding

design matrices are denoted by Xj. It is noted that Xj = X for all j if the responses
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are modelled with identical regressors. When Σ is diagonal, the joint posterior probability

of conformance at a new setting {x∗
1...x

∗
k} for the q responses y∗ = (y∗

1...y
∗
q ) is simply the

product of the marginal posterior probabilities of conformance of the individual responses.

Thus, given the data Y = (y1...yq),

p(y∗ ∈ V |x∗
j∀j,Y) ≡ p(y∗

1 ∈ [l1, u1], y
∗
2 ∈ [l2, u2]...y

∗
q ∈ [lq, uq]|x∗

j∀j,Y) (6.23)

=

q∏

j=1

p(y∗
j ∈ [lj, uj]|x∗

j ,yj), (6.24)

where V is the region enclosed by [li, ui]∀ i. Therefore, for the diffuse priors described by

equations (6.6), (6.7) and (6.8), each of the p(yj ∈ [lj, uj]|x∗
j ,yj) is obtained from the c.d.f.

of the t-distribution shown in equation (6.9).

Equations (6.23) and (6.24) do not hold if the error terms are correlated, i.e., Σ is non-

diagonal. In such cases, the responses can be modelled as either Standard Multivariate

Regression (SMR) or Seemingly Unrelated Regression (SUR), where the former assumes

that all the response models have the same set of regressors, i.e., Xj = X ∀j and the

latter assumes that each response model may have different regressors. For the SMR case,

the joint posterior probability distribution under a diffuse prior is given by a multivariate

T-distribution [57]. That is, given the (n × p) design matrix X, and the (n × q) response

data matrix Y, the posterior density at a future set of observations given by (p× 1) vector

x∗ is

y∗|x∗,Y ∼ T q
ν (B′x∗,H−1), (6.25)

where ν = n − p − q + 1,

B = (X′X)−1X′Y, (6.26)
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H =
νS−1

1 + x∗′(X′X)−1x∗
, (6.27)

and

S = (Y − XB)′(Y − XB). (6.28)

For the SUR case, the posterior predictive density has to be computed by Gibbs sampling.

Percy [53] shows how a sample of the posterior observation y∗ can be obtained from its

posterior distribution using Gibbs sampling.

6.3.2 Optimization

It is assumed that the objective is to find the setting (x∗
1...x

∗
k) that minimizes some given

function, A, such that the posterior probability of conformance of each response, p(y∗
i ∈

[li, ui]|x∗
i ,yi) is at least φi, where the φi’s are decided by the plant engineer or designer.

Here also, each of the li’s and ui’s may be constrained to lie within given bounds. For

example, the objective function A =
∏

i(ui − li) finds the smallest (in terms of volume)

q-dimensional cuboid that satisfies the given constraints. The function A could also be

chosen such that different weights are given to the bounds on different responses. The
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objective function in this case is formulated as,

min
x∗
1...x∗

k

A =

q∏

i=1

(ui − li)

s.t.,

p(l1 ≤ y∗
1 ≤ u1|x∗

1,y1) ≥ φ1

p(l2 ≤ y∗
2 ≤ u2|x∗

2,y2) ≥ φ2

... ≥ ...

p(lq ≤ y∗
q ≤ uq|x∗

q,yq) ≥ φq

li ≥ Bli , ∀i = {1...q}

ui ≤ Bui
, ∀i = {1...q}

x∗
1...x

∗
k ∈ ℜ.

For a given x∗
i , if the error terms are uncorrelated, the smallest interval [li, ui] for each

response yi can be found using the marginal posterior distribution p(y∗
i |x∗

i ,yi) and the

algorithm previously shown in figure 6.3. As all the (ui− li) > 0, this also gives the smallest

value of A =
∏

i(ui − li) for that x∗. This is true for any A that is an increasing function

of each (ui − li). The algorithm for finding the smallest A for a given x∗
i is used within a

nonlinear optimization program that searches within the space of the feasible (x∗
1...x

∗
k) to

find the setting that gives the smallest value of A. The methodology is illustrated by an

example in the next section.

If the error terms are correlated, then a nonlinear optimization program that searches

in the feasible space of both (x∗
1...x

∗
k) and [l, u] must be used to solve the optimization

problem for both the SMR and the SUR models. It is noted that depending on the size of
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the problem, the optimization could be tedious especially in the SUR case.

6.3.3 Multiple response example

This example uses the machining data [69] shown in table 6.3 to simultaneously set toler-

ances on all the three responses. Once again, the log of the responses are used for modelling,

where y1 = log(R), y2 = log(T ), and y3 = log(F ). The response models obtained are,

ŷ1 = 4.8773 − 0.0960x1 + 0.5336x2 + 0.1429x3 − 0.0216x2
1 + 0.0543x2

2 + 0.0969x2
3, (6.29)

ŷ2 = 3.5009 − 0.3031x1 − 0.0922x2 − 0.0915x3 + 0.0483x2
1 + 0.0416x2

2 + 0.0682x2
3, (6.30)

ŷ3 = 4.4260 − 0.0332x1 + 0.3391x2 + 0.2092x3 − 0.0019x2
1 − 0.0208x2

2 + 0.0522x2
3. (6.31)

Figure 6.9 shows the feasible x∗ plotted on a grid spaced 0.1 apart in the region {x∗
1 ∈

[−1, 1], x∗
2 ∈ [−1, 1], x∗

3 ∈ [−1, 1]}, assuming a desired probability of conformance φi =

0.80∀ i for four different cases:

1. All the three responses have constraints on l and u. Here, surface roughness has

a constraint Bu = 120, tool life has a constraint Bl = 35, and cutting force has a

constraint Bu = 60. Note that all the constraints are one-sided as it is desired that

the surface roughness be as low as possible, tool life be as high as possible and cutting

force be as low as possible.

2. Only the surface roughness response is constrained with a value of Bu = 120.

3. Only the tool life response is constrained with a value of Bl = 35.

4. Only the cutting force response is constrained with a value of Bu = 60.
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As expected, from figure 6.9, it is seen that the feasible region itself is much smaller when

constraints are imposed on all the three responses simultaneously. Table 6.5 shows the

results of the optimization to set simultaneous tolerance limits on all the responses for

different combinations of the constraints. Here the objective function used is A =
∏

i(ui −

li), where [li, ui] is the tolerance limit on response i in the logarithmic scale. Thus for

example, in the table, at a desired value of probability of conformance φi = 0.9 ∀i, and

with constraints Bu = 110 on surface roughness, Bl = 45 on tool life and Bu = 90 on cutting

force, the optimal setting of the controllable factors obtained is [−0.9309,−0.8317,−0.8001]

where the tolerance limit on surface roughness is [71.8, 110.0], on tool life is [45.0, 74.8], and

on cutting force is [53.7, 58.4]. Thus, using the methodology proposed it is possible to set

simultaneous tolerances on multiple responses with a desired probability of conformance.

For the multiple response case, the solution to the optimization problem also depends on

the choice of the user-defined function A. For example, suppose there are two responses.

Suppose response 1 gives the smallest interval (ua
1 − la1) = 1 at the setting x∗

a and the

smallest interval (ub
1 − lb1) = 2 at the setting x∗

b , and response 2 gives the smallest interval

(ua
2 − la2) = 1.2 at the setting x∗

a and the smallest interval (ub
2 − lb2) = 0.5 at the setting

x∗
b . Assuming A =

∏
i(ui − li), the value of A at x∗

a is 1.2 and at x∗
b is 1.0. In other

words the solution at x∗
a is sub-optimal to the solution at x∗

b . If instead, it is assumed that

A =
∑

i(ui − li), then the value of A at x∗
a is 2.2 and at x∗

b is 2.5. Therefore, the solution

at x∗
b is now sub-optimal to the solution at x∗

a.
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6.4 Discussion

A Bayesian method was proposed to set tolerance limits on one or more responses to

provide a given desired probability of conformance, and to determine at the same time the

optimal settings of the control factors that the response(s) depend on. The method not only

gives the tolerance interval that satisfies the constraints on the mean and the probability of

conformance, but also finds the smallest such interval in case of single response systems, and

the smallest value of a given function of the intervals for multiple response systems. This

ensures that the quality characteristics or responses that adhere to the specification also

have the smallest variation between themselves. The proposed method was illustrated by

two examples for single responses systems and an example for a multiple response system.

Some additional comments on the method are given below:

1. As the posterior predictive distribution of the response depends on the observed data,

the solution to the tolerance control problem is also dependant on it. As seen in the

example in section 6.2.3, the optimization problem had a non-empty feasible region

when data from both the replicates was used, but had empty feasible regions when

only one of the replicates was used. Thus, when additional experimental data are

used in any of the examples presented, it is possible to get smaller tolerance regions

that satisfy the given constraints.

2. In the previous sections, it was assumed that the controllable factors can be set to

desired values by the user. However, in practice, there are errors associated with

these settings. This error is also transmitted to the response which could result in a

lower probability of conformance of the response φr to the calculated tolerance region,
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than what was originally constrained by φ. The reduced probability of conformance

φr can be estimated if the distribution of the errors in the control factors is known.

Suppose lo and uo are the calculated tolerance limits at the desired setting of the

controllable factors xo = (xo
1...x

o
k) as a result of the optimization, then assuming

that the jth controllable factor is normally distributed with a variance of σ2
j about

the setting xo
j , it is possible to represent the actual value of the controllable factor

as x̃j = xo
j + zj, where zj ∼ N(0, σ2

j ). Thus, the actual settings of the controllable

factors can be written as x̃ = xo + z, where x̃ = (x̃1...x̃k) and z = (z1...zk). The

posterior distribution of the response for a single response system given the actual

setting of the controllable factors p(y∗|x̃,y) is given by equation (6.9). If x̃ is known

then the reduced probability of conformance φr is given by p(y∗ ∈ [lo, uo]|x̃,y), and

can be computed from the c.d.f. of the t-distribution. However, as the actual value

of x̃ is not known because of the random component z, the value of φr is computed

by taking the expected value with respect to z:

φr = Ez [p(y∗ ∈ [lo, uo]|x̃,y)] . (6.32)

In the above equation, the expected value can be estimated by simulation using the

steps below:

(a) Choose sufficiently large N. Set count = 1.

(b) Generate z(count) by sampling from the distribution zj ∼ N(0, σ2
j ) ∀j.

(c) Set x̃(count) = xo + z(count).

(d) Compute p(y∗ ∈ [lo, uo]|x̃(count),y).
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(e) Set count = count + 1. Repeat steps a, b and c until count > N .

(f) Estimate the expected value using the Weak Law of Large Numbers (WLLN):

lim
N→∞

1

N

N∑

i=1

[p(y∗ ∈ [lo, uo]|x̃(i),y)] = Ez [p(y∗ ∈ [lo, uo]|x̃,y)] . (6.33)

It is noted that if large variations in the controllable factors are expected, then the

reduced probability of conformance φr may be considerably less than φ. In such cases,

it is recommended that the user is conservative in choosing φ during the optimization

to obtain the tolerance limits. For multiple response systems, the reduced probability

of conformance can similarly be obtained for each response by taking the expected

value of the marginal posterior probability of conformance p(y∗
i ∈ [loi , u

o
i ]|x̃i,yi) with

respect to the corresponding zi.

In all the chapters thus far in this dissertation, the setting of the control factors was

obtained either by maximizing the posterior probability of conformance of the responses

to their specification (or tolerance) limits or by minimizing some function of the tolerance

intervals where the responses meet a given posterior probability of conformance. In the next

chapter, a Bayesian method is presented where the setting of the control factors depends

not only on the posterior distribution of the responses, but also on the posterior distribution

of the utility function or satisfaction of the customer or decision maker, where the latter

distribution depends on the outcome of the responses.



Chapter 7

A Bayesian Approach for Multiple

Criteria Decision Making with

application in “Design for Six Sigma”

7.1 Introduction

In practice, decision-making problems typically involve the consideration of two or more cri-

teria that are often conflicting. These are referred to as Multiple Criteria Decision Making

(MCDM) problems, where one has to take into account trade-offs between the conflicting

criteria. An example from the manufacturing industry is in automobile design. For in-

stance, the suspension in a sports car has to be designed considering trade-offs between a

“sporty” feel for the driver and a ride that may be too bumpy. In the MCDM problem

that is considered here, it is of interest to maximize the utility of the customer, which is

an unknown function u of the future outcomes or responses, y = (y1...yq). It is assumed

133
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that these responses are in turn functions of variables x = (x1...xp) that are under the

control of the decision-maker and can be set by him/her to desired values subject to given

constraints.

This chapter proposes a new algorithm to solve MCDM problems based on a Bayesian

methodology that adopts a probabilistic approach to solving the MCDM problem. Sec-

tion 7.3 presents MCDM methodology for the case of a single decision maker. This section

discusses the application of the methodology to “design for six sigma” problems. Sec-

tion 7.4 then extends the methodology to the case of multiple decision makers. Examples

are provided in both section 7.3 and 7.4. A summary of the approach is discussed in

section 7.5.

7.2 Bayesian Predictive Density

Single Response System

Consider a single response of interest y that depends on k controllable factors, x1...xk.

Assume that we have data from an experiment with n runs from which the following model

can be fitted to the response:

y = x′β + ǫ, (7.1)

where x is the (p × 1) vector of regressors that are functions of the k controllable factors

(i.e., x is in model form), β is the (p × 1) vector of model parameters and ǫ is the error

term which is assumed to be normally distributed, N(0, σ2). Denote the design matrix

from the experiment by the (n × p) matrix X and the vector of observed responses from

the experiment by the (n × 1) vector y.
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The posterior predictive density of a future response vector, y∗, at a given setting of the

model regressors, x∗, for the given data, y, is defined as (see [57]) given in equation (6.4).

It is noted that the uncertainty in the model parameters is naturally accounted for in the

expression by considering β and σ2 to be random variables and evaluating their posterior

distributions using Bayes’ theorem. Under a diffuse prior given by equations (6.6), (6.7)

and (6.8), the posterior predictive density is given by a t-distribution (see [57]). That is,

y∗|x∗,y ∼ tν(x
∗′β̂, σ̂

√
1 + x∗′(X′X)−1x∗), (7.2)

where ν = n − p,

β̂ = (X′X)−1X′y, (7.3)

and,

σ̂2 =
(y − Xβ)′(y − Xβ)

n − p
. (7.4)

From equation (7.2), if [l, u] is the desired specification for the response it is possible to

compute the posterior probability of conformance, p(y∗ ∈ [l, u]|x∗), by using the c.d.f. of

the t-distribution. The posterior mean and the posterior variance of the response at x∗ are

given by equations (6.12) and (6.13), respectively.

Multiple Response Systems

For multiple responses, each of the q responses is modelled as

yi = x′
iβi + ǫi. (7.5)

If the error term, ǫi is uncorrelated between the responses, then the responses can be

modelled independently. In this case, the joint posterior probability of conformance for the
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q responses is simply the product of the marginal posterior probabilities of conformance of

the individual responses, as shown in equation (6.24), where each of the marginal posteriors

is given by the t-distribution shown in equation (7.2). If the error terms are correlated,

then the responses can be modelled as either a Standard Multivariate Regression (SMR)

or a Seemingly Unrelated Regression (SUR) model, where the former assumes that all the

response models have the same set of regressors and the latter assumes that each response

model may have different regressors. For the SMR case, the joint posterior probability

distribution under a diffuse prior is given by a multivariate T-distribution [57], as shown in

equation (6.25). For the SUR case, the posterior predictive density has no closed form but

can be computed numerically. In particular, Percy [53] shows how a the posterior predictive

distribution of a new observation y∗ can be approximated using Gibbs sampling.

7.3 Bayesian Method for MCDM

Suppose that there are q responses (y1...yq), that depend on k controllable factors, x1...xk.

It is assumed that data from an experiment with n runs is available from which a model

can be fit to the responses of the form,

yj = x′
jβj + ǫj, ∀j ∈ {1, ..., q} (7.6)

where for each response yj, xj is the (pj ×1) vector of regressors that are functions of the k

controllable factors, βj is the (p × 1) vector of model parameters and ǫj is the error term.

Depending on the model used for the multiple responses, it is possible to sample from the

posterior distribution of the response as discussed in the previous section.

Suppose initially that there is a single customer whose utility function u depends on the
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q responses (y1...yq). It is assumed that data from a survey with m questions is available,

where each question is a different combination of values of the q responses, and each answer

is a score given by the customer on a numerical scale (e.g. 0 to 10) that indicates his/her

preference to that combination. Based on the survey, it is now possible to fit a model:

u = y′
fγ + ǫ, (7.7)

where u is the customer’s score or utility, yf is the (pf × 1) vector of regressors where each

regressor is a function of the q responses (y1...yq) (i.e., yf is written in model form, thus

its subscript is used to distinguish this from the data vector y of section 7.2), γ is the

(pf × 1) vector of model parameters, and ǫ is the error term, assumed N(0, σ2
f ). Note that

the responses (y1...yq) are treated as regressors in (7.7). The combinations of the responses

in the survey can be chosen based on DOE (design of experiments) techniques in order to

get a good fit for the statistical model shown in equation (7.7). If Yf is the (m×pf ) design

matrix of the survey, and u is the vector of answers from the survey, then for a diffuse prior

on the model parameters in equation (7.7) given by,

p(γ) ∝ constant, (7.8)

p(σ2
f ) ∝

1

σ2
f

, (7.9)

and,

p(γ, σ2
f ) = p(γ)p(σ2

f ), (7.10)

the posterior distribution of the customer’s utility u∗ at a given value of the responses

(y∗
1...y

∗
q ) can be obtained from equation (7.2) and is given by:

u∗|y∗
f ,u ∼ tνf

(µu∗ , σ2
u∗), (7.11)
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where νf = m − pf , µu∗ = y∗
f
′γ̂, and σ2

u∗ = σ̂2
f (1 + y∗

f
′(Y′

fYf )
−1y∗

f ). Here,

γ̂ = (Y′
fYf )

−1Y′
fu, (7.12)

and,

σ̂2
f =

(u − Yfγ)′(u − Yfγ)

m − pf

. (7.13)

Note that the posterior mean of u∗ at y∗
f is given by,

E(u∗|y∗
f ,u) = µu∗ = y∗

f
′γ̂, (7.14)

and the posterior variance of u∗ at y∗
f is given by

V ar(u∗|y∗
f ,u) =

νf

νf − 2
σ2

u∗ =
νf

νf − 2
σ̂f

2
(
1 + y∗

f
′(Y′

fYf )
−1y∗

f

)
. (7.15)

Thus, as it can be seen, the proposed Bayesian MCDM approach consists of linking two

levels or stages, with each stage modelled via Bayesian regression (see figure 7.1).

7.3.1 Optimization

It is assumed that the objective of the MCDM problem is to find the values of the control-

lable factors (x∗
1...x

∗
k) that maximizes the probability that the customer’s utility is at least

lu. In mathematical notations, the objective function is written as

max
x∗
1...x∗

k

p(u∗ ≥ lu|x∗
1...x

∗
k,u,Y)

=

∫

y∗=(y∗
1 ...y∗

q )

[p(u∗ ≥ lu|y∗,u)p(y∗|x∗
1...x

∗
k,Y)] dy∗

= Ey∗ [p(u∗ ≥ lu|y∗,u)] .

It is noted that for any given setting (x∗
1...x

∗
k), the outcome of the responses (y∗

1...y
∗
q ) fol-

lows one of the distributions discussed earlier, based on the model used for the multiple
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Manufacturing 
Variables 
(x1…xk) 

Responses 
(y1…yq) 

Utility 
(u1…um) 

U1=g1(y) 
: 
: 

Um=gm(y) 

y1=f1(x) 
: 
: 

yq=fq(x) 

Optimization 

SURVEY 
DATA 

PROCESS 
DATA 

CUSTOMER 
MODELS 

PROCESS 
MODELS 

OPTIMAL 
(x1

opt…xk
opt) 

Utility lower bound 

Figure 7.1: Block diagram of the proposed Bayesian MCDM method



140

responses. For each possible outcome of the responses, the distribution of the customer’s

utility u follows the distribution shown in equation (7.11). Thus given (x∗
1...x

∗
k), the prob-

ability that u∗ > lu at this setting is determined by taking the expected value over the

distribution of (y∗
1...y

∗
q ) at that setting. The expected value in the objective function can

be found by Monte Carlo simulation as shown in the steps below:

1. Set count = 1

2. Generate y∗(count) = {y∗
1(count)...y∗

q (count)} by sampling from the posterior distri-

bution of the responses.

3. Compute p(u∗ ≥ lu|y∗(count),u) for the sample using the c.d.f. (cumulative distri-

bution function) of the distribution given in equation (7.11).

4. Set count = count + 1. Repeat from step 2 until count > N .

5. Estimate the expected value using the Weak Law of Large Numbers (WLLN), that

is

lim
N→∞

1

N

N∑

i=1

[p(u∗ ≥ lu|y∗(count),u)] = Ey∗ [p(u∗ ≥ lu|y∗,u)] . (7.16)

The optimization problem can be solved with any constraints imposed on the feasible region

of (x∗
1...x

∗
k) using nonlinear search algorithms. The example in section 7.3.3 illustrates the

proposed methodology.

7.3.2 Application to Six Sigma Manufacturing

Six Sigma methodologies for managing quality are rapidly gaining popularity in industry

[9]. A six sigma quality level performance corresponds to about 3.4 defects per million for
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a normally distributed process that is off-target by 1.5σ, where σ is the standard deviation

of the process. The Design for Six Sigma (DFSS) approach is used to achieve six sigma

quality levels for the customer from the ground up by adjusting the manufacturing variables

or control variables in the process. For example, in the manufacturing of light bulbs, the

DFSS approach would be to adjust the manufacturing variables, say melting point of the

filament and refractive index of the glass, so that the distribution of the lifetime of the

bulb meets customer satisfaction at the six sigma quality level. These measures are often

termed “CTQ’s” in industry, that is Critical-To-Quality metrics. Thus in the light bulb

example, the DFSS approach is to adjust the manufacturing variables (melting point of

the filament and refractive index of the glass) so that the distribution of the system CTQ’s

(lifetime of the bulb) meets the customer CTQ (customer satisfaction or utility) at the six

sigma quality level.

The conventional non-Bayesian approach to this problem is to fit a customer-utility

model to the customer CTQ’s as functions of the system CTQ’s and to fit a process model

to the system CTQ’s as functions of the manufacturing variables. Using the customer-

utility model, the desired values of the system CTQ’s that maximize the expected value of

the the customer CTQ are identified. The process model is then used to identify the values

of the manufacturing variables such that the expected value of the system CTQ’s from the

model is equal to the desired value of the system CTQ’s obtained using the customer-utility

model. The reliability is measured using process capability indices that, however, do not

give a probability of conformance and do not account for the uncertainty in the parameters

of the models. In other words, the distribution of the products meeting the customer’s

utility score is not known.
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Yq Y2 Y1 

System CTQ’s (Responses) 

yq y2 y1 

…

x1 x2  … xk 

 
Engineering CTQ’s 
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y1 y2  … yq 

 

Outcome of the System CTQ’s 
(Responses) 

Customer CTQ’s (Utility) 

Process 
Model 

Customer-utility 
Model 

Figure 7.2: Block diagram of the Design for Six Sigma approach

In the proposed Bayesian approach, it is also true that customer-utility models are fit

to the customer CTQ’s as functions of the system CTQ’s, and process models are fit to

the system CTQ’s as functions of the manufacturing variables (see figure 7.1). However,

here the reliability is measured in terms of the probability that the customer’s satisfaction

or utility is above a given lower bound. Figure 7.2 shows the Bayesian approach to DFSS,

where the posterior distribution of the responses are a function of the the setting of the

manufacturing variables and the posterior distribution of the utility is a function of realized

values of the responses. The values of the manufacturing variables are identified by finding

those settings that result in the distribution (as opposed to the expected value) of the

responses such that the probability that the customer’s satisfaction or utility score is above a

given lower bound. This posterior predictive distribution implicitly models the uncertainty

of the parameters.

The examples below illustrate the proposed Bayesian methodology for MCDM.
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7.3.3 Example: CVD Process

This example uses data from Czitrom and Spagon [14] for a chemical vapor deposition

(CVD) process, an important step in the manufacture of semiconductors. The goal of the

experiment was to model the deposition layer uniformity and deposition layer stress re-

sponses. The central composite inscribed (CCI) design that was used and the experimental

data are shown in Table 7.1. There are two controllable factors: Pressure measured in

torr, and ratio of the gaseous reactants H2 and WF6 (denoted by H2/WF6). The response

“Uniformity” indicates the variation in the layer being deposited on a wafer. Therefore,

smaller Uniformity values are preferred. A smaller value of the second response “Stress” is

also desirable. Note that the controllable factors are provided in the [−1, 1] coded variable

range which is preferable for modelling. Based on the coded data, the model obtained for

the responses using the ordinary least square estimates shown in equation (7.3) are given

by:

ŷ1 = 5.8661 − 1.9097x1 − 0.2241x2 + 1.6862x1x2 + 0.1337x2
1 + 0.0337x2

2, (7.17)

ŷ2 = 7.7900 + 0.7359x1 + 0.4969x2 + 0.0694x1x2 − 0.5287x2
1 − 0.1187x2

2. (7.18)

Table 7.2 gives the results from the survey based on different combinations of the responses.

Each combination of the responses, y1 and y2, in the survey is based on runs from a central

composite design as can be seen in the coded variables. The coding is based on setting the

smallest observed value of the response in table 7.1 as -1, and the largest observed value as

1. Table 7.2 shows sample results from 4 different surveys, which would typically be filled

out by the plant engineer. More desirable responses correspond to higher ui values. It is

of interest to observe how the optimization results vary according to the answers to the
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Run Pressure, x1 H2/WF6, x2 coded x1 coded x2 Uniformity, y1 Stress, y2

1 80 6 1 0 4.6 8.04

2 42 6 0 0 6.2 7.78

3 68.87 3.17 0.71 -0.71 3.4 7.58

4 15.13 8.83 -0.71 0.71 6.9 7.27

5 4 6 -1 0 7.3 6.49

6 42 6 0 0 6.4 7.69

7 15.13 3.17 -0.71 -0.71 8.6 6.66

8 42 2 0 -1 6.3 7.16

9 68.87 8.83 0.71 0.71 5.1 8.33

10 42 10 0 1 5.4 8.19

11 42 6 0 0 5 7.9

Table 7.1: Data for CVD process example [14]

survey by comparing the results between the different surveys.
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For each survey, i, a quadratic model of the form shown in equation (7.7) is fitted to the

utility ui from the data:

û1 = 6.00 − 2.61y1 − 1.58y2 + 0.25y1y2 − 0.25y2
1 − 0.50y2

2, (7.19)

û2 = 4.00 − 2.36y1 − 0.72y2 + 0.25y1y2 + 0.37y2
1 + 0.12y2

2, (7.20)

û3 = 2.00 − 0.85y1 − 2.81y2 + 0.87y2
1 + 1.87y2

2, (7.21)

û4 = 2.00 − 0.42y1 − 3.51y2 + 1.06y2
1 + 1.31y2

2. (7.22)

where the yj are in coded form. For the optimization, suppose that it is desired to find the

settings of Pressure and H2/WF6, that maximize the probability that the customer’s (in

this case, the plant engineer’s) utility is at least 8 on a 0 − 10 scale. Figure 7.3 shows the

value of the probability p(u∗ ≥ 8|x∗
1, x

∗
2,u,Y) over all the values of Pressure and H2/WF6

shown in coded variables for each survey. Note that the profile of the surface is different

based on each survey. The optimization results are shown in table 7.3. Thus, if the plant

engineer had filled out the survey as given in survey 1 or 2, then the best setting of the

controllable factors is a pressure of 80 torr and H2/WF6 ratio of 2. If instead the plant

engineer had filled out the survey as given in survey 3 or 4, then the best setting of the

controllable factors is pressure of 4 torr and H2/WF6 ratio of 2. Note that the maximum

value of the probability p(u∗ ≥ 8|x∗
1, x

∗
2,u,Y) is also different for each survey.

7.3.4 Example: HPLC Process

The data for this example is taken from [54] and is presented in table 7.4. There are

four responses in the high performance liquid chromatography (HPLC) system namely, the
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Figure 7.3: Surface plot of p(u∗ ≥ 8) for different values of x∗ for CVD example

Optimization Results

p(u∗ > 8) coded x∗
1 coded x∗

2 Pressure H2/WF6

Survey 1 0.7102 1 -1 80 2

Survey 2 0.4436 1 -1 80 2

Survey 3 0.7271 -1 -1 4 2

Survey 4 0.8828 -1 -1 4 2

Table 7.3: Optimization results for the 4 surveys
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critical resolution (Rs), total run time, signal-to-noise ratio of the last peak and the tailing

factor of the major peak. There are three controllable factors: %IPA, temperature and

pH. Here, it is assumed that the model is of the SMR form, i.e., all the responses have

the same regressors and the error terms are correlated between the responses. The vector

of regressors used for the process model is (1, x1, x2, x3, x
2
1, x

2
2, x

2
3, x1x2)

′. The parameter

estimates are obtained using equations (6.26 - 6.28). As the model is SMR, the joint

posterior distribution of the responses is given by a multivariate T-distribution as shown in

equation (6.25), from which the responses are sampled in step 3 of the optimization process

described in section 7.3.1.

Table 7.5 gives data from a single sample survey based on different combinations of the

responses. Each combination of the responses (y1, y2, y3, y4) in the survey is based on runs

from a small composite design as can be seen in the coded variables. As in the previous

example, the coding is based on setting the smallest observed value of the response in

table 7.4 as -1, and the largest observed value as 1. It is noted here that the utility in

the survey is a score in the range 0-20. Based on the survey data, the model fitted to the

utility is given by,

û = 14 + y1 − 4.25y2 + 6.50y3 + 0.75y4 − y2y3 − 2.75y2
1 + 1.25y2

2 − 0.25y2
3 − 6.25y2

4. (7.23)

Figure 7.4 shows the scatter plot of the posterior probability p(u∗ ≥ 15|x∗
1, x

∗
2, x

∗
3,u,Y)

over all combinations of the control factors x∗, plotted on a grid 0.4 apart in the space

{x∗
1 ∈ [−1, 1], x∗

2 ∈ [−1, 1], x∗
3 ∈ [−1, 1]}. In the plot, the larger and darker circles in-

dicate a higher value of this posterior probability. In this example, the posterior prob-

ability p(u∗ ≥ 15|x∗
1, x

∗
2, x

∗
3,u,Y) is maximized at a value of 0.787 at the setting x∗ =
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[−0.015, 0.653,−0.366]. In the original (uncoded) units, this corresponds to setting %IPA

at 69.9, temperature at 46.5 and pH at 0.129.
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Figure 7.4: Scatter plot of p(u∗ ≥ 15) for different values of x∗ for HPLC example

7.4 Extension to Multiple Decision Makers

In the previous sections, the discussion of the proposed methodology was restricted to

the case of a single customer or decision maker (DM). In this section, the methodology is

extended to cases where there are two or more DM’s. Here, each of the d DM’s fills out a

survey, and the optimization is carried out in order to maximize the probability that the

utility of the ith DM is at least equal to lui
.

Once again, it is assumed that there are k controllable factors, which can be set to

desired values, and that there are q responses that depend on these controllable factors. It

is assumed that data from an experiment with n runs is available and the responses can

be modelled independently using linear regression as functions of the controllable factors

if the error terms are correlated, or using SMR or SUR if the error terms are correlated.

Based on the chosen model, it is possible to obtain a sample y∗ from the corresponding
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combination y1 y2 y3 y4 coded y1 coded y2 coded y3 coded y4 Survey, u

1 1.73 16 291 0.805 -1 0 0 0 8

2 2.61 16 291 0.805 1 0 0 0 12

3 2.17 10 291 0.805 0 -1 0 0 17

4 2.17 22 291 0.805 0 1 0 0 11

5 2.17 16 172 0.805 0 0 -1 0 7

6 2.17 16 410 0.805 0 0 1 0 18

7 2.17 16 291 0.73 0 0 0 -1 5

8 2.17 16 291 0.88 0 0 0 1 8

9 2.17 16 291 0.805 0 0 0 0 14

10 1.95 13 231.5 0.7675 -0.5 -0.5 -0.5 -0.5 12

11 2.39 13 231.5 0.8425 0.5 -0.5 -0.5 0.5 12

12 1.95 19 231.5 0.8425 -0.5 0.5 -0.5 0.5 7

13 2.39 19 231.5 0.7675 0.5 0.5 -0.5 -0.5 7

14 1.95 13 350.5 0.8425 -0.5 -0.5 0.5 0.5 20

15 2.39 13 350.5 0.7675 0.5 -0.5 0.5 -0.5 20

16 1.95 19 350.5 0.7675 -0.5 0.5 0.5 -0.5 14

17 2.39 19 350.5 0.8425 0.5 0.5 0.5 0.5 14

Table 7.5: Data for 4 different surveys for HPLC example
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posterior predictive density of the responses, as described in section 7.3. As in the case

with a single DM, it is assumed that data from a survey with m questions is available,

where each question presents a different combination of values of the q responses to the

DM’s who give a score on a numerical scale (e.g. 0-10) giving his/her preferences to that

combination. Assuming that the error terms in the models of the utility function are

uncorrelated between the DM’s, it is now possible to model the utility of each of the DM’s

based on the survey as functions of the q responses as shown in equation (7.7). The model

for the utility function of the ith DM is given by:

ui = y′
fi
γi + ǫi, (7.24)

where ui is the customer’s score or utility, yfi
is the (pfi

× 1) vector of regressors where

each regressor is a function of the q responses (y1...yq), γi is the (pfi
× 1) vector of model

parameters, and ǫi is the error term, assumed N(0, σ2
fi
). Suppose Yfi

is the (m×pfi
) design

matrix of the survey for the ith DM, and ui is the corresponding vector of answers from

the survey. Following the assumption that the error terms ǫi are uncorrelated for all i, for

a diffuse prior on the model parameters in equation (7.7) for all i ∈ {1...d} as shown in

equations (7.8-7.10), the posterior predictive density of the ith DM follows a t-distribution,

i.e.,

u∗
i |y∗

fi
,ui ∼ tνfi

(µu∗
i
, σ2

u∗
i
), (7.25)

where νfi
= m − pfi

, µu∗
i

= y∗
fi

′γ̂i, and σ2
u∗

i
= σ̂2

fi
(1 + y∗

fi

′(Y′
fi
Yfi

)−1y∗
fi
). Here,

γ̂i = (Y′
fi
Yfi

)−1Y′
fi
ui, (7.26)

and,

σ̂2
fi

=
(ui − Yfi

γi)
′(ui − Yfi

γi)

m − pfi

. (7.27)
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Therefore, the joint posterior probability that the utility of the ith DM is at least lui
is

simply the product of the marginals, i.e.,

p(u∗
1 ≥ lu1 , u

∗
2 ≥ lu2 ...u

∗
d ≥ lud

|y∗
f1...y

∗
fd,u1...ud) =

d∏

i=1

p(u∗
i ≥ lui

|y∗
fi
,ui). (7.28)

7.4.1 Optimization

In the case of multiple DM’s, a reasonable objective in the MCDM problem is to find the

values of the controllable factors (x∗
1...x

∗
k) that maximize the probability that the utility of

the ith DM is at least lui
for all i = {1...d}. The objective function is written as

max
x∗
1...x∗

k

d∏

i=1

p(u∗
i ≥ lui

|x∗
1...x

∗
k,y

∗
fi
,ui)

=

∫

y∗=(y∗
1 ...y∗

q )

[
d∏

i=1

p(u∗
i ≥ lui

|y∗
fi
,ui)p(y∗|x∗

1...x
∗
k,Y)

]
dy∗

= Ey∗

[
d∏

i=1

p(u∗
i ≥ lui

|y∗
fi
,ui)

]
.

Here, for each possible outcome of the responses, the distribution of the ith DM’s utility ui

follows the distribution shown in equation (7.25). Thus given (x∗
1...x

∗
k), the probability that

u∗
i > lui

∀ i at this setting is determined by taking the expected value over the distribution

of (y∗
1...y

∗
q ) at that setting. The expected value in the objective function can be found by

Montecarlo simulation as shown in the steps below:

1. Set count = 1

2. Generate y∗(count) = {y∗
1(count)...y∗

q (count)} by sampling from the posterior distri-

bution of the responses. Note that regressors y∗
fi
(count) can be obtained from the

sample for all i.
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3. Compute
∏d

i=1 p(u∗
i ≥ lui

|y∗(count),ui) for the sample using the c.d.f. (cumulative

distribution function) of the distribution given in equation (7.25).

4. Set count = count + 1. Repeat from step 2 until count > N .

5. Estimate the expected value using the Weak Law of Large Numbers (WLLN),

lim
N→∞

1

N

N∑

i=1

[
d∏

i=1

p(u∗
i ≥ lui

|y∗(count),ui)

]
= Ey∗

[
d∏

i=1

p(u∗
i ≥ lui

|y∗,ui)

]
. (7.29)

The optimization problem can be solved with any constraints imposed on the feasible region

of (x∗
1...x

∗
k) using a nonlinear search algorithm. The example below illustrates the proposed

methodology.

7.4.2 Example: Multiple DM’s

To illustrate the method for multiple DM’s, consider the data from the example in sec-

tion 7.3.3. In that section, the MCDM problem was solved for each DM individually.

Therefore, for each survey shown in table 7.2, the optimization problem gives a different

solution as shown in table 7.3. Here also, the same data as shown in tables 7.1 and 7.2 is

used. However, now all the 4 surveys are considered simultaneously. The models for the

responses and the utility are the same as in section 7.3.3 as given by equations (7.17-7.18)

and (7.19-7.22).

Figure 7.5 shows the surface plot of the joint posterior predictive density of the 4 DM’s

utility as functions of the manufacturing variables. The figure shows two cases, the first one

where p(u∗
i ≥ 8|x∗

1, x
∗
2,ui,Y) ∀ i and the second where p(u∗

i ≥ 5|x∗
1, x

∗
2,ui,Y)∀ i. In both

cases the posterior probability is maximized at the setting x∗ = [1,−1], where the value of
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Figure 7.5: Surface plot of p(u∗
i ≥ 8|x∗

1, x
∗
2,ui,Y) and p(u∗

i ≥ 5|x∗
1, x

∗
2,ui,Y) for all i, for

different values of coded Pressure and H2/WF6

p(u∗
i ≥ 8|x∗

1, x
∗
2,ui,Y) ∀ i = 0.07, and the value of p(u∗

i ≥ 5|x∗
1, x

∗
2,ui,Y)∀ i = 0.28.

7.5 Discussion

A new algorithm to solve the MCDM problem was presented. The methodology maximizes

the probability that the DM’s utility function is greater than some user-defined value.

As opposed to traditional methods that use expected value models for optimization, the

Bayesian methodology takes into account the uncertainties in the model parameters. The

examples provided demonstrate how the solution to the MCDM varies with differences in

the preferences of the decision maker. The methodology was also extended to the case of

multiple decision makers.

In the examples shown, the survey was designed by coding the maximum observed

value of the responses at 1 and the minimum at -1, and using a central composite design.

It should be noted that other designs such as space-filling or D-optimal designs could also be

used depending on the type of the customer utility model. In the examples, the regressors



157

for both the process and the customer models essentially included main effects, two-way

interactions and quadratic effects. For a general case, it is recommended to choose the

regressors based on any prior knowledge of the response surface, especially for the customer

utility model. It should be pointed out that diffuse or non-informative priors were used

throughout, thus the resulting approach can be classified as “objective-Bayesian”.



Chapter 8

Summary of Contributions and

Directions of Future research

The ideas presented in this dissertation addressed three main applications in manufactur-

ing, namely, process optimization, tolerance control and multiple criteria decision making.

For each of these applications, new methodologies were presented based on the Bayesian

framework of inference in order to obtain solutions that are robust with respect to different

sources of uncertainty. Examples were provided that use real application data to demon-

strate the proposed methodologies. In this chapter, we summarize the contributions made

on each of the three main topics and discuss some directions for future research.

8.1 Contributions in Process optimization

In process optimization, the proposed methodology finds the optimal setting of the control

factors that maximizes the posterior probability that the response lies within given specifica-

158
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tion limits. The posterior probability is calculated by averaging across multiple competing

models that may be used to represent the process, using the Bayesian model-averaged pos-

terior predictive density (MAP). The MAP is calculated by taking the weighted average of

the posterior predictive density for each individual model, using the posterior probability

of the models as the weights. The solution to the optimization problem is therefore robust

to the uncertainty in the true model form. In addition, the posterior predictive density

for each individual model is obtained by integrating over the posterior distribution of the

parameters in the model. The solution is thus not only robust with respect to the model

form, but also with respect to the uncertainty in the value of the parameters for each com-

peting model. The significant results of the model-robust optimization method proposed

are listed below:

1. The calculation of the MAP requires the computation of the posterior probability of

all the competing models, as well as the posterior predictive density of the response

for each of these models. The computation of the model posteriors is a Bayesian hy-

pothesis testing problem while that of the posterior predictive density is a Bayesian

estimation problem. Although an objective-Bayesian approach using the uninfor-

mative prior can be used for Bayesian estimation, it is not suitable for Bayesian

hypothesis testing. Hence, the prior chosen here is a combination of the uninfor-

mative prior and the Zellner’s g-prior [74] as shown in equations (3.4), (3.8), (3.9)

and (3.10). However, this introduces hyperparameters π and γ that have to be esti-

mated. We use a value of π chosen by the user, and estimate γ using an empirical

Bayesian approach proposed by [43]. The sensitivity analysis on the choice of these
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hyperparameters performed for the examples in chapter 3 revealed that the solution

is relatively less sensitive to the choice of π at the value of γ chosen using the above

method.

2. For the priors chosen, the posterior predictive density of the response for a given

model, Mi, at a given setting of the control factors, x∗ was derived to follow the

t-distribution.

3. The advantage of using the MAP for robust process optimization was demonstrated

in the examples in chapter 3. It was seen that the optimal solution obtained using the

MAP provided a response with the highest mean probability of conformance (with

lowest standard deviation) across different cases of the true model, in comparison to

using any single model.

4. The Bayesian method for model-robust process optimization was extended in chapter

4 to the case where there are noise factors present. In case of processes with noise

factors, the method computes the posterior predictive density of the response for a

given model at a given setting of the control factors by taking the expected value over

the distribution of the noise factors. This density is then used to calculate the MAP

used in the optimization. The example provided showed that the presence of noise

factors can not only decrease the probability of conformance of the response to the

specification limits, but can also cause a shift in the optimal setting of the control

factors because of the models containing interaction terms between the control and

the noise factors.
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5. In chapter 4, the Bayesian method for model-robust process optimization was also

extended to the case where the error terms in the model do not follow a normal

distribution. Instead it was assumed that the errors follow the t-distribution that

has thicker tails than the normal distribution. The method proposed uses the fact

that a t-distributed random variable can be expressed as a function of a standard

normal random variable and a chi-square distributed random variable. The results

for the normally distributed case as derived in chapter 3 are then used by taking the

expected value with respect to the chi-square distributed variables.

6. In chapter 5, the results for model-robust process optimization were extended to

systems with multiple responses. Different cases are analyzed based on the correlation

between the error terms of the responses and the regressors present in the models for

the multiple responses.

8.1.1 Application to Process Control

Although the results presented in this dissertation for robustness with respect to the model

form focussed on application in process optimization, the results can be directly applied

to process control, specifically, to what is called “single-period control” [57]. Consider

the single-period control of a response y which can be controlled by adjusting the inputs

x = (x1...xk). As in process optimization, the process model is assumed to be of the form

yt = β′xt + ǫt, (8.1)

where the subscript t here refers to the time. In the process control problem, the objective

is to find the optimal setting xT+1 for time (T + 1), in order to obtain a desirable response
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yT+1. Observations of xt and yt from time t = 1 to t = T are used as the data to fit the

process model. As seen in chapter 3, the data can be used to fit multiple competing models

of the form shown in equation (8.1). The optimization problem is then formulated to find

the value of xT+1 that maximizes the model-averaged posterior probability that the future

response yT+1 lies within the desired specification limits. The proposed methodology for

non-normal error terms and for multiple response systems can also be applied similarly to

single-period control.

8.2 Contributions in Tolerance Control

A Bayesian method was proposed to set tolerance or specification limits on responses. The

methodology uses a Bayesian approach for robust parameter design and tolerance control.

The predictive density of the response is used to find the limits defining the tolerance

interval that contains a given value of probability of conformance of the response. Some of

the significant results in tolerance control from the dissertation are listed below:

1. The optimization problem is formulated to also find the smallest tolerance interval

where the probability of conformance of the response is at least equal to some given

value. Therefore, there is also minimum variance among the conforming responses. In

addition, constraints are set on the bounds for the lower and upper tolerance limits.

Therefore, the mean of the conforming responses are constrained to lie within a given

region of interest.

2. The methodology was also extended to multiple response systems in order to simul-

taneously set tolerance limits on all responses. In this case, the objective in the
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optimization is formulated as a function of the tolerance limits on the individual

responses.

3. Uninformative priors are used in this approach. Hence, the proposed method is

objective-Bayesian.

4. The analysis also included an approach to account for the reduction in the proba-

bility of conformance of the response to the calculated tolerance interval due to any

variation in the setting of the control factors. It is assumed that the control factors

vary with a known distribution about the calculated optimal setting. The reduced

probability of conformance is calculated by taking the expected value of the prob-

ability of conformance with respect to the distribution of the control factors about

the optimal setting. This is the Bayesian analogy to account for the “transmission of

errors” from the control factors to the responses.

8.3 Contributions in Multiple Criteria Decision Mak-

ing

A Bayesian approach was presented in chapter 7 for the MCDM problem. The dependence

of the responses on the control factors and that of the decision maker’s utility on the

responses are modelled using Bayesian regression. Therefore, the methodology naturally

takes into account uncertainty in the model parameters. The optimization problem is

formulated to find the setting of the control factors that maximizes the posterior probability

that the utility of the decision maker is greater than a given lower bound. Some of the
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significant results on the proposed method are listed below:

1. Uninformative priors are used in the Bayesian regression. Hence, the proposed

method is objective-Bayesian.

2. Application of the proposed method to the popular “Design for Six Sigma” quality

technique was demonstrated.

3. Using the Bayesian approach, the distribution of the future responses (y∗
1...y

∗
q ) is

obtained for a given setting of the control factors (x∗
1...x

∗
k). In addition, for given

values of the future responses, the posterior distribution of the customer’s utility u∗

is also obtained. The probability that u∗ is greater than a given lower bound at a

given setting of the control factors is thus determined by taking the expected value

over the distribution of (y∗
1...y

∗
q ) at that setting. The method uses a nonlinear program

to find the setting of the control factors that maximizes this posterior probability.

4. The method was presented for the case where there is a single decision maker as well

for the case where there are multiple decision makers.

8.4 Robustness with respect to Optimal Setting of the

Control Factors

Control factors, by definition, are factors that can be set to desired values by the user.

However, in practice, there are rarely any factors that do not have any variation about

their setting. In some cases, this variation may be very small to cause any significant effect
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on the response. But in general, it is of interest to ensure that the optimal solution is

robust to the variation in the setting of the control factors for all the applications discussed

in this dissertation, namely, process optimization, tolerance control and multiple criteria

decision making.

In optimization problems, it is a common practice to study the sensitivity of the value

of the objective function with respect to the optimal value of the control or decision vari-

ables, typically by computing the gradient of the objective function with respect to each

control variable at the optimal point. However, this does not use any information on the

distribution of the control factors about the optimal setting.

The Bayesian approach used here lends a convenient way of addressing robustness with

respect to the optimal setting of the control factors. Consider an objective function Z,

for example, the posterior probability of conformance of the response to its specification

limits, whose optimal value Zo is obtained at the setting xo. If the actual value of the

control factors is x̃ = xo + δ, where the distribution of δ is assumed to be known, then

the expected value of the objective function due to the variation in the control factors can

be calculated with respect to this distribution. The expected change ∆ in the value of the

objective function due to the variation in the control factors can be quantified and is given

by

∆ = Zo − Eδ[Z]. (8.2)

8.5 Recommendations for Future Research

Some recommendations for future research are listed below:
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1. In the results for Bayesian model-robust process optimization for multiple responses,

the case of seemingly unrelated regression (SUR) was not considered in this disserta-

tion. In case of SUR, both the model posterior probabilities as well as the posterior

predictive density of the responses for the given model are not available in closed form.

Percy [53] proposes a Gibbs’ sampling procedure to generate a sample of responses y

from the posterior distribution using the conditional distributions of y, the parame-

ters β and the precision matrix φ. However, the method assumes a vague prior for

all the parameters which is not suitable for model-averaging. In addition, the compu-

tation time for calculating the probability of conformance is higher in the SUR case

even for a single model because the computation involves a Monte Carlo simulation

where each iteration within the simulation requires a sample y generated by Gibbs

sampling. Considering all the limitations, a recommendation for future study is to use

the method proposed by Percy to sample from the posterior distribution of y assum-

ing vague priors for the parameters in the candidate list of models, and approximate

the model posteriors P (Mi|Y) using criteria such as Akaike or Bayesian information

criteria (AIC and BIC, respectively) in order to approximate the model-averaged

posterior probability of conformance as suggested in the review in section 2.3.

2. In this dissertation, the uncertainty in the model was taken into account during

the model-fitting and process optimization stage. It was assumed here that data

from an experiment already exists. However, usually optimal designs such as those

based on D-optimality and G-optimality depend on the model form or the columns

of the design matrix X. Thus, given the parameters to be included in the model,
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these optimality criteria choose a subset of runs (or rows of the X matrix) from all

possible combinations of levels of the factors based on some condition to maximize

the information about the model parameters, such as minimizing the determinant of

the covariance matrix. DuMouchel and Jones [20] present a Bayesian D-optimality

approach that is less dependent on the assumed model by splitting the model terms

into “primary” terms, which are present in the model, and “potential” terms, which

are typically the higher order terms. Here, the determinant of the posterior covariance

matrix of the parameters is minimized. Neff [50] provides a Bayesian two-stage design

for designing experiments under model uncertainty. A genetic algorithm approach to

model-robust optimal designs is presented in [29]. A problem for future study is to

combine these model-robust Bayesian approaches for experimental design and that

of process optimization presented here.

3. In the Bayesian methods for robust tolerance control and for multiple criteria deci-

sion making, the approach used was objective-Bayesian. In both these methods, it

was possible to use vague priors because a single model was assumed in the Bayesian

regression. Thus, the results obtained are for the given model form. An interesting

extension to these methods would be to use the idea of model-averaging in com-

bination with robust tolerancing and MCDM. Thus, instead of using the posterior

predictive density based on a single model as in chapters 6 and 7, one could poten-

tially consider multiple competing models to calculate the model averaged posterior

predictive density (MAP). The MAP could be used in the optimization formulations

for tolerance control and MCDM.
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4. In the Bayesian method for MCDM presented in chapter 7, there are two stages of

Bayesian regression. In the first stage the responses are modelled as functions of the

control factors and in the second the decision makers’(DM’s) utilities are modelled

as functions of the responses. Some potential problems of investigation here are:

• In the second stage of the regression, the data used for modelling comes from

a survey. In the examples provided, the survey was designed by coding the

maximum observed value of the responses at 1 and the minimum at -1, and

using a central composite design. However, in case the consistency of the DM is

high, then the model will be deterministic. In such cases, a space filling design

might be more suitable. A potential problem that can be investigated is the

effect of the survey design on the results of the optimization.

• Another potential problem here is the effect of the size of the survey (i.e., total

number of combinations presented to the DM) on the optimization results. In

this study, the cost of asking too many combinations to the DM should be

compared to the cost of not getting adequate information from the DM.

• In chapter 7, the utility models essentially included main effects, two-way in-

teractions and quadratic effects. A possible extension is to study the effect of

choosing different kinds of regressors for the utility model.
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Appendix A

Choosing Model Subset for

Averaging

In the method presented in section 3.2, it is usually not necessary to average over all m

models considered originally. There are different methods proposed in literature to choose a

subset of these, either based on the marginal likelihood P (y|Mi), or on the model posterior

probabilities P (Mi|y). Madigan et al. [41] propose an algorithm based on what they

termed “Occam’s window” (that comes from the well known concept of Occam’s razor) to

choose the subset of models. A simple criteria is to choose the subset of models, Mj, such

that

maxiP (Mi|y)

P (Mj|y)
≤ c′ (A.1)

Here, c′ is a constant whose value remains to be chosen. The above criteria are useful when

the number of candidate models is very large. In the examples we discuss, there are fewer

candidate models. Also, as the focus of this paper is on process optimization, we use a
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simpler criteria to choose the subset of models from the original candidate list. Here, we

order the model posteriors in descending order and include only the top m models, the sum

of whose posteriors account for at least 95% of the total probability.



Appendix B

Derivation of Posterior Predictive

Density: Single Response Case

Theorem: For a single response process with k controllable factors, under the process

model of the form given in equation (3.1) with normally distributed error terms, and

under the priors on the parameters given by equations (3.8), (3.9) and (3.10) with Σ−1
i =

(X′
iXi)Vi, where Vi = 1

g




0 0

0 I ti


, the cumulative posterior predictive density for the

new response y∗ at a new set of regressors x∗ for a given model Mi, is given by:

P

(
y∗ − x∗′β̂i

σ̂i

√
1 + x∗′(Σ−1

i + X′
iXi)−1x∗

< t|Mi,x
∗,Y

)
=

1

2

[
1 + I t2

ν+t2

(
1

2
,
ν

2

)]
, (B.1)

where Iz(a, b) is the incomplete beta function, ν = n − 1, and σ̂2
i = Si/(n − 1).

Proof: The posterior predictive density is given by,

P (y∗|Mi,x
∗,y) =

∫

σ2

∫

β
i

P (y∗|Mi,x
∗,y, σ2, βi)P (βi, σ

2|y,Mi)dβidσ2, (B.2)
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where P (y∗|Mi,x
∗,y, σ2,βi) is the likelihood function, and P (βi, σ

2|y,Mi) is the joint

posterior of the model parameters. Assuming normally distributed errors, the likelihood is:

P (y∗|Mi,x
∗,y, σ2, βi) ∝ σ−1exp

[−1

2σ2
(y∗ − x∗′βi)

′(y∗ − x∗′βi)

]
, (B.3)

and

P (βi, σ
2|y,Mi) ∝ P (y|Mi,βi, σ

2)P (βi|Mi, σ
2)P (σ2|Mi), (B.4)

where P (y|Mi,βi, σ
2) is the likelihood function given by equation (3.7). P (βi|Mi, σ

2) and

P (σ2|Mi) are the priors on the model parameters assumed to be of the form:

p(σ2|Mi) ∝
1

σ2
, (B.5)

and,

P (βi|Mi, σ
2) ∝ γ−tiσ−tiexp

[−1

2σ2
β′

iΣ
−1βi

]
, (B.6)

where,

g

γ2
Vi = Σ−1. (B.7)

Let k1,i = γ−ti . Then,

P (βi, σ
2|y,Mi) ∝ k1,i(σ

2)−
n+ti+2

2 exp

[−1

2σ2

{
(y − Xiβi)

′(y − Xiβi) + β′
iΣ

−1
i βi

}]
. (B.8)

Let Ωi = (y∗ − x∗′βi)
′(y∗ − x∗′βi) + (y − Xiβi)

′(y − Xiβi) + β′
iΣ

−1
i βi. This gives,

P (y∗|Mi,x
∗,y) ∝ k1,i

∫

σ2

∫

β
i

(σ2)−
n+ti+3

2 exp

[
− Ωi

2σ2

]
dβidσ2. (B.9)

By making a substitution u = Ωi

2σ2 , the above equation can be rewritten as,

P (y∗|Mi,x
∗,y) ∝ k1,i

∫

β
i

(
Ωi

2

)n+ti+1

2
[∫ ∞

0

u
n+ti−1

2 exp(−u)du

]
dβi. (B.10)
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The inner integral inside the square brackets is a constant given by the gamma function,

Γ
(

n+ti+1
2

)
. Let k2,i = k1,iΓ

(
n+ti+1

2

)
. Then,

P (y∗|Mi,x
∗,y) ∝ k2,i

∫

β
i

(
Ωi

2

)n+ti+1

2

dβi. (B.11)

It can be shown that,

(y − Xiβi)
′(y − Xiβi) + β′

iΣ
−1
i βi = Si + (βi − β̂i)

′(Σ−1
i + X′

iXi)(βi − β̂i), (B.12)

where Si is defined in equation (3.15), and β̂i is defined in equation (3.16). From the above

equation, we can rewrite Ωi as,

Ωi = (y∗ − x∗′βi)
′(y∗ − x∗′βi) + Si + (βi − β̂i)

′(Σ−1
i + X′

iXi)(βi − β̂i). (B.13)

Define the (ri × 1) vector Qi and the scalar wi as,

Qi = (Σ−1
i + X′

iXi + x∗x∗′)−1(β̂i

′
(Σ−1

i + X′
iXi) + y∗x∗′)′, (B.14)

and

wi = y∗′y∗ + β̂i

′
(Σ−1

i + X′
iXi + x∗x∗′)β̂i + Si

− (β̂i

′
(Σ−1

i + X′
iXi) + y∗x∗′)(Σ−1

i + X′
iXi + x∗x∗′)−1(β̂i

′
(Σ−1

i + X′
iXi) + y∗x∗′)′. (B.15)

Then by completing the squares, we get

Ωi = wi + (βi − Qi)
′(Σ−1

i + X′
iXi + x∗x∗′)(βi − Qi). (B.16)

Thus, we have that the posterior predictive density is of the form:

P (y∗|Mi,x
∗,y) ∝ k2,i

∫

β
i

dβi

[wi + (βi − Qi)′(Σ
−1
i + X′

iXi + x∗x∗′)(βi − Qi)]
n+ti+1

2

. (B.17)
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The integral in the above equation is a matrix T -distribution (see, e.g., [57]), and thus inte-

grates to a constant which is a function of y∗, x∗ and Mi. We include all the constant terms

that are independent of y∗ in constant k3,i, and rewrite the above equation by including

only the constant term that includes y∗ as,

P (y∗|Mi,x
∗,y) ∝ k3,i

w
n/2
i

. (B.18)

Using a well-known matrix identity (see [57]), we rewrite wi as

wi = Si +
(y∗ − x∗β̂i)

2

1 + x∗′(Σ−1
i + X′

iXi)−1x∗
. (B.19)

We can integrate the joint posterior, P (βi, σ
2|y,Mi), over σ2, to obtain the marginal pos-

terior distribution of βi. This gives

βi|σ2,y,Mi ∼ N
(
β̂i, σ

2(Σ−1
i + X′

iXi)
−1

)
. (B.20)

Thus, we have that

Zi =
y∗ − x∗β̂i

σ
√

1 + x∗′(Σ−1
i + X′

iXi)−1x∗
∼ N(0, 1). (B.21)

Similarly, by integrating the joint posterior P (βi, σ
2|y,Mi) over βi, it can be shown that

the marginal posterior distribution of σ2 is given by

σ2

Si

∼ inv−χ2
n−1, (B.22)

(an inverse chi-square distribution) or in other words,

Si

σ2
∼ χ2

n−1. (B.23)

If σ̂2
i = Si/(n − 1),

Wi =
(n − 1)σ̂2

i

σ2
∼ χ2

n−1. (B.24)
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Thus, if µ∗
y = x∗β̂i, and σ∗

y
2 = σ̂2

i

[
1 + x∗′(Σ−1

i + X′
iXi)

−1x∗
]
, then equation (B.19) can be

written as,

wi = Si

[
1 +

1

n − 1

(y∗ − µ∗
y)

2

σ∗
y
2

]
. (B.25)

Thus, from equation (B.18),

P (y∗|Mi,x
∗,y) ∝

[
1 +

1

n − 1

(y∗ − µ∗
y)

2

σ∗
y
2

]−n/2

(B.26)

The density above is a Student t with mean µ∗
y, and scale parameter σ∗

y
2, with (n − 1)

degrees of freedom. That is, the posterior predictive density is

y∗|Mi,x
∗,y ∝ tn−1

(
x∗β̂i, σ̂

2
i

[
1 + x∗′(Σ−1

i + X′
iXi)

−1x∗
])

. (B.27)

The cumulative posterior predictive density of the response, given the model and the data,

at a given level of control factors can be computed using the c.d.f. of a tν distribution with

ν = n − 1. This can easily be computed using the following identity (see [34]):

P

(
y∗ − µ∗

y

σ∗
y

< t|Mi,x
∗,y

)
=

1

2

[
1 + I t2

ν+t2

(
1

2
,
ν

2

)]
. (B.28)

Corollary: For mixture models (as in example 1 of section 3.3.1), or models without in-

tercept, the models are fitted without a constant term. In this case, we assume a Zellner’s

g-prior [74] on all the βi in the models. Thus, for a single response process with k control-

lable factors, under the process model of the form given in equation (3.1) with normally

distributed error terms, and under the priors on the factors and the parameters given by

equations (3.4), (3.8), (3.9) and (3.10) with Σ−1 = (X′
iXi)Vi, where Vi = 1

g
I ti :

1. The posterior predictive density is

y∗|Mi,x
∗,y ∝ tn

(
x∗β̂i, σ̂

2
i

[
1 + x∗′(Σ−1

i + X′
iXi)

−1x∗
])

, (B.29)
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where

σ̂2
i =

Si

n
, (B.30)

and

nσ̂2
i

σ2
=

Si

σ2
∼ χ2

n. (B.31)

2. The cumulative posterior predictive density for the new response y∗ at a new obser-

vation x∗ for a given model, Mi, is

P

(
y∗ − x∗′β̂i

σ̂i

√
1 + x∗′(Σ−1

i + X′
iXi)−1x∗

< t|Mi,x
∗,y

)
=

1

2

[
1 + I t2

ν+t2

(
1

2
,
ν

2

)]
, (B.32)

where Iz(a, b) is the incomplete beta function, ν = n, and σ̂2
i = Si/n.

Here the only difference in the computation of the cumulative posterior predictive density

is in the degrees of freedom of the t distribution.



Appendix C

Derivation of Posterior Predictive

Density: Multiple Response Case

Theorem: For a multiple response process with k controllable factors, under the stan-

dard multivariate regression (SMR)process model shown in equation (5.5) with normally

distributed error terms, and under the priors on the parameters given by equations (5.6),

(5.7) and (5.8), the posterior predictive density for the new vector of responses y∗ at a new

set of regressors x∗ for a given model Mi is given by:

y∗|x∗,Y,Mi ∝ Tq(β̂
′

ix
∗,H−1

i ) (C.1)

where,

Hi =
νiSi

−1

1 + x∗′(Σ−1
i + X′

iXi)
−1

x∗
,

and

νi = n + ti + 1 − pi − q.

where ti,pi,q,n,Si, Y, Xi, β̂i, Σ−1
i are as defined in chapter 5.
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Proof: The proof for the multiple response case follows very similar steps as in the single

response case. In this proof also, the results are for a given model form Mi. However, for the

sake of notational convenience the subscript i that was used in the proof for single response

systems has been omitted and it will be assumed that all the conditional probabilities are

for the given model.

It is assumed that the process follows a Standard Multivariate Regression (SMR) model

given by

y = β′x + ǫ, (C.2)

where y is the (q × 1) vector of responses, β is the (p × q) matrix of model parameters,

x is the (p × 1) vector of regressors and ǫ is the correlated error term with distribution

N(0,Σe). Assuming Λ = Σ−1
e , we have ǫ ∼ N(0,Λ−1). As in the single response case it

is assumed that there is data from an experiment with n runs. Denote the (n × p) design

matrix by X, and the (n × q) matrix of responses from the experiment by Y.

Here, for a future set of responses y∗ at a given future setting of the regressors x∗, the

posterior predictive density is defined as,

P (y∗|x∗,Y) =

∫

Λ

∫

β
P (y∗|x∗,Y,Λ,β)P (β,Λ|Y)dβdΛ, (C.3)

where P (β,Λ|Y) is the joint posterior of the model parameters, and P (y∗|x∗,Y,Λ,β) is

the likelihood function given by

P (y∗|x∗,Y,Λ,β) ∝ |Λ|1/2exp

[
−1

2
(y∗ − β′x∗)′Λ(y∗ − β′x∗)

]
. (C.4)

The priors used on the parameters are similar to those used in the single response case.

Vague priors are assumed for Λ and for the β for the constant term, and the Zellner’s
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g-prior [74] is assumed for the remaining β. Therefore, the prior probabilities are given by

P (Λ) ∝ 1

|Λ|(q+1)/2
, (C.5)

P (β) ∝ |Λ|t/2exp

[
−1

2
tr Λ(β′Σ−1β)

]
, (C.6)

and

P (β,Λ) ∝ P (β)P (Λ), (C.7)

where t is the number of terms in the model excluding the constant term (i.e., if the model

includes a constant term, then t = p − 1 and if the model excludes a constant term then

t = p) and Σ−1 = (X′X)V, where V = 1
g




0 0

0 I t


. The joint posterior of the model

parameters is given by the Bayes’ theorem:

P (β,Λ|Y) ∝ P (Y|β,Λ)P (β,Λ), (C.8)

where P (Y|β,Λ) is the likelihood given by

P (Y|β,Λ) ∝ |Λ|n/2exp

[
−1

2
tr Λ(Y − Xβ)′(Y − Xβ)

]
. (C.9)

The joint posterior of the model parameters can thus be written as

P (β,Λ|Y) ∝ |Λ|(n+t−q−1)/2exp

[
−1

2
tr ΛW

]
, (C.10)

where the (q × q) matrix W is given by

W = (Y − Xβ)′(Y − Xβ) + (β′Σ−1β).

Substituting equations (C.4) and (C.10) in equation (C.3), the posterior predictive density

can be written as

P (y∗|x∗,Y) =

∫

Λ

∫

β
|Λ|(n+t−q)/2exp

[
−1

2
tr ΛA

]
dβdΛ, (C.11)
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where (q × q) matrix A is given by

A = W + (y∗ − β′x∗)(y∗ − β′x∗)′

= (Y − Xβ)′(Y − Xβ) + (β′Σ−1β) + (y∗ − β′x∗)(y∗ − β′x∗)′.

In equation (C.11) the integral over Λ is in the form of the Wishart distribution (see [57]),

and thus

P (y∗|x∗,Y) ∝
∫

β

dβ

|A|(n+t+1)/2
. (C.12)

Substituting for A,

P (y∗|x∗,Y) ∝
∫

β

dβ

|W + (y∗ − β′x∗)(y∗ − β′x∗)′|(n+t+1)/2
. (C.13)

As in the proof of the single response systems, W can be rewritten as,

W = (Y − Xβ)′(Y − Xβ) + (β′Σ−1β),

= S + (β − β̂)′(Σ−1 + X′X)(β − β̂),

where

S = (Y − Xβ̂)′(Y − Xβ̂) + (β̂
′
Σ−1β̂), (C.14)

and

β̂ = (Σ−1 + X′X)−1X′Y. (C.15)

By completing the squares on β and using well-known matrix identities [57], equation

(C.13) can be written as

P (y∗|x∗,Y) ∝
∫

β

dβ

|C3 + (β′ − C1)C2(β
′ − C1)′|(n+t+1)/2

, (C.16)

where

C1 = (β̂
′
D + y∗x∗′)(D + x∗x∗′)−1,
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C2 = D + x∗x∗′,

C3 = S +
(y∗ − β̂

′
x∗)(y∗ − β̂

′
x∗)′

1 + x∗′D−1x∗
,

and

D = Σ−1 + X′X.

The integrand in equation (C.16) is in the form of a matrix-T distribution, and therefore

P (y∗|x∗,Y) ∝ 1

|C3|(n+t+1−p)/2
, (C.17)

which is the density of a multivariate student T-distribution of dimension q. Thus,

y∗|x∗,Y ∝ Tq(β̂
′
x∗,H−1) (C.18)

where,

H =
νS−1

1 + x∗′D−1x∗
, (C.19)

and

ν = n + t + 1 − p − q. (C.20)

Corollary 1: For models that include a constant term, the number of terms in the model

excluding the constant term denoted by t is one less than the total number of parameters

p. Thus t = p − 1. In this case, the posterior predictive density is given by equations

(C.18-C.20), where ν = n + t + 1 − p − q = n − q.

Corollary 2: For models that are fitted without a constant term such as mixture models,

we assume a Zellner’s g-prior [74] on all the parameters β. In this case, the number of terms

in the model excluding the constant term is the same as the total number of parameters,

i.e., t = p. In this case, the posterior predictive density is given by equations (C.18-C.20),

where ν = n + t + 1 − p − q = n + 1 − q.



Appendix D

Review of Non-linear Optimization

Techniques Used in this Thesis

The nonlinear optimization problems in the examples in this dissertation were solved us-

ing MATLAB’s fmincon routine, which can handle both linear and nonlinear constraints.

The routine uses a sequential quadratic programming (SQP) algorithm [42] for medium-

scale optimization. The basic idea of the algorithm is to approximate the Hessian of the

Lagrangian function at each iteration using a Quasi-Newton updating method. The sub-

routine also estimates the gradient of the function at each iteration when the gradient

information is not readily available such as in the examples in this dissertation. The gradi-

ent is typically estimated using a finite difference method [42]. This generates a quadratic

programming (QP) subproblem that is solved in order to find a search direction for a line

search procedure.
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The routine solves optimization problems that can be formulated as shown below:

min
x

f(x)

s.t.

gi(x) = 0 i = 1...me

gi(x) ≤ 0 i = me + 1...m

xl ≤ x ≤ xu

where gi may be linear or nonlinear, xl is the vector of lower bounds on x and xu is the

vector of upper bounds. The Lagrangian function is then given by

L(x,λ) = f(x) +
m∑

i=1

λigi(x). (D.1)

The algorithm starts with an initial solution x0 set by the user and then iteratively

converges to the optimum. It is important that this starting point is a feasible solution.

As mentioned in this dissertation, for the kind of problems that are solved here, it is

important that the optimization program is solved by using multiple starting points so

that the solution obtained is not local. Two methods were used in the examples in this

dissertation to choose these starting points. The first method was to generate the starting

points by choosing randomly from a uniform distribution in the space of x. The second

method was to select starting points that form an evenly-spaced grid in the space of x.

If the value of x at the kth iteration of the optimization algorithm is xk, then the new

iterate is given by

xk+1 = xk + dk, (D.2)

where, dk is the search direction. Here, dk is obtained at each iteration by solving the
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following quadratic programming subproblem:

min
d

1

2
d′Hkd + ∇f(xk)

′d

s.t.

∇gi(xk)
′d + gi(xk) = 0 i = 1...me

∇gi(xk)
′d + gi(xk) ≤ 0 i = me + 1...m,

where the Hessian Hk is updated at each iteration using the BFGS method [52]. The

BFGS method updates the Hessian using an estimate of the lagrangian multipliers λk at

each iteration. After each iteration k, the value of λk+1 is set to µk, where (dk,µk) is

the unique solution to the quadratic subproblem above. In other words, µk is the value of

the lagrange multiplier at the optimal solution of the quadratic programming subproblem.

Thus the solution of the quadratic programming subproblem provides the direction d for

the line search procedure used to update x. The quadratic programming subproblem is also

solved using an iterative method, where first a feasible point is calculated if the current

point from the SQP is not feasible, and then an iterative sequence of feasible points is

generated that converges to a solution [52, 42]. At each step in the QP subproblem, the

active set or the set of binding constraints at the current solution point is used to form a

basis for a search direction.



Vita

Ramkumar Rajagopal was born on September 23, 1976, in Madras, India. He received a

Bachelor’s degree in Chemical Engineering from the Indian Institute of Technology (I.I.T.)

at Bombay, India, in 1998. He received his Masters in Industrial Engineering and Op-

erations Research at The Pennsylvania State University, University Park PA, in the year

2000 under the guidance Dr. Enrique Del Castillo. His Masters thesis was titled “Analysis

and Multivariate Extensions of Double EWMA Feedback Adjustment Scheme for Qual-

ity Control”, resulting in two journal publications. After his Masters, he worked as an

Associate Product Manager for a marketing optimization software in Virginia. He then

resumed his graduate studies working towards a Ph.D. in Spring 2000. Four journal papers

have been submitted based on the research presented in this dissertation. After gradua-

tion, Ramkumar Rajagopal will be joining Intel Corporation where he will be working on

Process Control and Process Optimization problems.


