
Industrial Experience with Design Patterns

Kent Beck, First Class Software * James O. Coplien, AT&T t

Ron Crocker, Motorola Inc. $ Lutz Dominick, Siemens AG $

Gerard Meszaros, Bell Northern Research ~ Frances Paulisch, Siemens AG II

John Vlissides, IBM Research **

Abstract

A design pattern is a particular prose form of record-

ing design information such that designs which have
worked well in the past can be applied again in similar

situations in the future. The availability of a collec-

tion of design patterns can help both the experienced

and the novice designer recognize situations in which

design reuse could or should occur.

We have found that design patterns: 1) provide an
eflective “shorthand” for communicating complex con-

cepts effectively between designers, 2) can be used to

record and encourage the reuse of “best practices”, 3)

capture the essential parts of a design in compact form,

e.g. for documentation of existing software architec-

tures.

Since the patterns community is one that shares in-
formation in an open forum and builds on the experi-
ences of others, we chose to submit a joint paper on

our industrial experiences with patterns. We focus on

the lessons learned in our respective industrial settings

as a jirst step towards answering the questions ‘patt-

erns sound very promising, but how are they actually

used m the industry and what benefits, if any, do they

bring in practice ?“
We proceed by briefly describing each of our respec-

tive experiences with patterns. This is followed by a

joint “lessons learned” section and conclusion.

*First Class Software, P.O. Box 226, Boulder Creek, CA

95006, USA; E-mail: kentb@ix.netcom. com

t AT&T Bell Laboratories, 1000 E. Vhrrenville Rd.,

Naperville, IL 60566, USA; Email: cope@research.att .com

t Motorola Inc., 1501 W. Shure Dr., Arlington Heights, IL

60004, USA; E-mail: crockerfllcig.mot.com

! Siemens AG, ZFE T SE 2, D-81730 Miinchen, Gmrnany;

E-mail: Lutz. Dominick@ zfe.siemens.de

$ Current address: Object Systems Group, 250 Sixth Ave.

SW Suite 1200, Calgary, Alberta, Canada T2P 3H7; E-mail:

gerard@osgcorp .com

IISiemens AG, ZFE T SE 2, D-81730 Miinchen, Germany;

Email: Frances. Paulisch@zfe.siemens.de

**IBM T.J. Watson Research Center, P.O. Box 704, Yorktown

Heights, NY 10598, USA; E-mail: vlis@watson.ibm. com

1 Introduction

Software developers have a strong tendency to reuse

designs that have worked well for them in the past
and, as they gain more experience, their repertoire of

design experience grows and they become more profi-
cient. Unfortunately, this design reuse is usually re-

stricted to personal experience and there is usually
little sharing of design knowledge among developers.

A design pattern is a particular form of recording de-

sign information such that designs which have worked

well in particular situations can be applied again in
similar situations in the future by others. The avail-

ability of a catalog of design patterns can help both

the experienced and the novice designer recognize sit-

uations in which design reuse could or should occur.

Such a collection is time-consuming to create, but it
is our experience that the invested effort pays off.

A pattern is said to be a “solution to a problem in

a context”. The basic structure consists of a name for

the pattern, a problem statement, a context in which

the problem occurs, and a description of the solution

together with additional information such as the asso-

ciated tradeoffs, a list of where this pattern has been

applied etc. The form consists of structured prose and

sketches (such as OMT diagrams and interaction dia-

i!

grams . There is general agreement that the pattern

identi es a set of “forces” or constraints which are

subsequently resolved in the solution.

Design patterns have received a lot of attention

lately, especially in the object-oriented community.
The reason for the recent interest in design patterns is

not the novelty of the designs themselves, but rather

the vision that a diverse community of experienced

software practitioners, communicating mostly via the

internet, can share and collectively grow a set of design

repertoires in the form of patterns. The patterns com-

munity is sufficiently enthused about the prospective

advantages to be gained by making this design knowl-

edge explicit in the form of patterns, that hundreds of

patterns have been written, discussed and distributed.

1.1 A brief history of design patterns

Software design patterns had their origin in the late

1980’s when Ward Cunningham and Kent Beck devel-
oped a set of patterns for developing elegant user inter-

faces in Smalltalk [5]. At around the same time, Jim

0270-5257/96 $5.00 @ 1996 IEEE 103

Proceedings of ICSE-18

Coplien was developing a catalo of language-specific

fC++ patterns called idioms [9 . Meanwhile, Erich

Gamma recognized the value of explicitly recording
recurring design structures while working on his doc-

toral dissertation on object-oriented software develop-
ment [16]. These people and others met and intensified

their discussions on patterns at a series of OOPSLA

workshops starting in 1991 organized by Bruce Ander-

son [4, 3] and by 1993 the first version of a catalog of

patterns was in draft form (summarized in [17]) which

eventually formed the basis for the first book on design

patterns [18]. All of these activities were influenced by

the works of Christopher Alexander, a building archi-
tect and urban planner [2, 1] who coined the term

“pattern” to refer to recurring designs in building)
\architecture. In the summer of 1993? a smal group of

pattern enthusiasts formed the “Hdlside Generative
Patterns Group” and subsequently organized the first

conference on patterns called the “Pattern Languages
of Programming” (PLoP) in 1994 [11].

1.2 The patterns community

The success of the PLoP conference in August ’94

and the unveiling of the so-called “Gang-of-Four” [18]

book at October ’94 OOPSLA created a surge of in-

terest in the topic of design patterns. Due to their

basically simple nature, patterns are subject to “over-

hype”, particularly by those who do not fully under-
stand what the real capabilities are or how hard it

is to write good patterns. Several mailing lists have

been set up by Ralph Johnson at the University of

Illinois and this has led to the development of an

internet-based community of software developers in-

terested in patterns. A World-Wide-Web sitel is also

maintained at the University of Illinois which serves as
a central location for information on patterns. Most of

the active members of this online patterns community
are practically-oriented experienced software develop-

ers and, ss such, they are quick to correct any overly-
high expectations placed on patterns by newcomers.

The practical nature of patterns themselves and
the people writing and using patterns should not be

underestimated. As Ralph Johnson once wrote [20]:

“One of the distinguishing characteristics of computer

people is the tendency to go “meta” at the slightest

provocation. Instead of writing programs, we want to

invent programming languages. Instead of inventing

programming languages, we want to create systems for

specifying programming languages. There are many

good reasons for this tendency, since a good theory

makes it a lot easier to solve particular instances of

the problem. But if you try to build a theory with-

out having enough experience in the problem, you are

unlikely to find a good solution. Moreover, much of
the information in a design is not derived from first

principles, but obtained by experience.”

Presumably due to the nature of patterns being

used to record and reuse existing design knowledge,
the patterns commumty has been said to have an “ag-

I

gressive disregard for originality” [15 . As a concrete
example of this, all design patterns in 18] are based on

lhttp://~t-www.cs. tiuc.edu/mers/pattems/Patte~.htd

designs which occur in two or more existing, real appli-

cations. Perhaps because no one feels like they “own”

a particular design, there is a distinct feeling that the

members of the patterns community are working to-

wards a common goal in developing a broad collection
of patterns aa opposed to the competitive nature com-

mon to other disciplines (e.g. which person publishes

a certain theorem first).

Since the patterns community is one that shares
information in an open forum and builds on the ex-

periences of others, it seemed natural to us to sub-

mit a joint paper on our experiences with patterns.

We focus, in particular, on the lessons learned in our
respective industrial settings as a first step towards

answering the questions “Patterns sound very promis-
ing, but how are they actually used in the industry

and what benefits, if any, do they bring in practice?”

2 Industrial experience with patterns

2.1 Smalltalk Best Pratt ice Patterns –

Kent Beck (First Class Software)

I have been writing what I intend to grow into a

comprehensive system of patterns for Smalltalk pro-

gramming, called the Smalltalk Best Practice Patterns

(SBPP). I’ll report here on the status of these pat-
terns and my experience teaching them to and watch-

ing them used by two clients developing commercial

software in Smalltalk.

The SBPP are intended to accelerate the pace at

which teams of Smalltalk developers begin realizing

the benefits of objects and Smalltalk by communicat-

ing the techniques used by expert Smallt alkers. Al-

though many patterns are still under development, a

core set of patterns are finished that cover most of the

import ant design and coding problems.

The best developed section contains 90 patterns for

coding. It presents successful tactics for Smallt alk –
naming convent ions, reuse of the collection classes,

common control flow patterns, and code format-
ting. The emphasis throughout is on communicating

through code. The patterns are intended to generate

code that meets the simple style rule “say everything

once and only once”. The section on design has 15 pat-

terns, most of which exist only in outline form. When

finished, they are intended to cover similar material
to Deszgn Patterns [18]. I teach these patterns using

presentations similar to “Patterns Generate Architec-

tures” [6]. The section on user interface design has 25

patterns for designing user interfaces and 15 patterns
for implementing them in Smalltalk. These patterns

are not yet ready to be taught. The final section cov-

ers project management. These 30 patterns focus on
the non-programming tasks of programmers – testing,

documentation, and scheduling.

2.1.1 Hewitt Associates

Hewitt Associates has a group of five Smalltalk pro-

grammers working on the next generation of a system

implemented originally on large, mainframe comput-

ers. They have extensive experience with objects, al-

though the team members have varying levels of fa-

miliarity y with objects and all are new to Smalltalk.

104

Initially, the team met once a week for several
months. As the coding patterns became available,

they discussed a few patterns a week. Now that pro-

duction coding has begun, discussing and learning

about programming style is done primarily as part of

group code reviews. I spent two days with the team
when they started coding seriously. We alternated

working on projects with presentation and discussion

of the most important patterns.

The resulting code is remarkably good. The most

experienced members are making excellent design de-

cisions that I only appreciate after having them ex-

plained carefully to me. Even the junior members of
the team, new to Smalltalk and objects, are writing

idiomatic Smalltalk code. I have noticed the pattern

titles becoming part of the spoken vocabulary of the

team – “Oh, that’s a Parameters Object”, “IVe need a

Guard Clause here”.

2.1.2 Orient Overseas Container Limited

(OOCL)

OOCL has a much more ambitious effort, with 25-
30 developers working to replace centralized applica-
tions with a worldwide distributed architecture. The

project grew very quickly, which haa resulted in some
chaos as the team tries to find a common identity and

culture.

David Ornstein and I introduced patterns two ways.

First, we held two “Smalltalk Bootcamps”, where

teams of 10-12 develop a simple application from re-

quirements to tested, documented, shipping code in

three days. We interspersed discussion of important

patterns and software engineering issues with frantic

development. The lessons learned here seem to stick

very well. In contrast, patterns presented in lecture

style were not learned as readily.

An activity we held with some success was a Pat-

tern Bowl. We chose a piece of code to review. We
divided the audience (25 developers) into two teams.

Each team got points for recognizing the presence or

absence of patterns in the review code in a limited

amount of time. The winners received guardianship
of a token trophy until the next Pattern Bowl. We

were happy with the results for two reasons. First,

the code in question got a very thorough review. Ev-

eryone in the room had a pretty good grasp of what

it did and how it did it. You could use a Pattern

Bowl to communicate critical shared code. Second,
the teams were forced to discuss the meaning of pat-

terns, because there were penalties for mis-identifying
a pattern.

Overall, patterns have had a big impact mostly

on the early members of the team, five or six bright

new Smalltalkers we spent a lot of individual time

with. Their designs are sophisticated, their code id-

iomatic. Later additions, including some experienced

Smalltalk programmers, showed reluctance to simply

follow the dictates of the patterns, preferring their own

style. The unfinished state of the patterns has def-

initely made teaching them to experienced program-

mers more difficult.
I have always tried to write my patterns with a

substantial section in the middle that presented the

motivation for the pattern, why possible alternatives

don’t work, and led up to the conclusion. OOCL asked

me early on to strip all that out, leaving patterns with

a name, a problem statement, and a solution. I put

together such an abridged version. It has been widely

used as a reference and development guide, often being

posted on cubicle walls within sight of the workstation.

2.1.3 Conclusion

I have seen the SBPP, even in their half-finished

state, have dramatic effects on the quality and quan-

tity of code produced by teams. I am pleased at how

the patterns often encourage good code not by admon-
ishing against mist akes, but by presenting a positive

set of habits. The effects on communication of adding
the names of patterns to the team’s shared vocabulary

is emerging as a powerful positive force.

Experienced programmers often resist adopting

patterns. I suspect the best way to engage developers

with strong notions of how things ought to be done is

to encourage them to modify and extend the patterns
with their own favorite tricks.

Patterns make good projects better. They do not

resurrect bad projects. Most of the many things
that can go wrong with a project can still go wrong,

whether or not patterns are used. Patterns solve a
limited (but critically important) set of communica-

tion problems with team development, and make in-
dividuals more productive. They cannot substitute for

effective project management.

2.2 Pattern in AT&T – James Coplien

2.2.1 AT&T patterns programs

There are many independent patterns efforts afoot

across AT&T; we touch on just a few of them here.

Fault-tolerant architectures: Patterns capture
proven, mature practices in a domain such as build-

ing architecture or software design. AT&T has sev-
eral core competencies that are fundamental to our

history of quality customer service. High-availability
system design and fault-tolerant software are among

these core competencies. Many of these core compe-

tencies can be captured as patternsl since they solve

a wide variety of reliability and avadability problems

that arise during architecture and design.

We approached two development communities and
asked management to point us to their experts on

operations, administration, maintenance and provi-

sioning. This program of “pattern mining” collected
dozens of patterns from a handful of experts. We

refined these patterns and captured them on-line in

HTML2 where they were made available to the gen-

eral AT&T research and development community.

Process patterns: We have used patterns in the

domain of process and organization, as well as in the

domain of software architecture. Patterns are a lit-

erary form that conveys a solution to a problem in a

2HyperText Markup Language, the publishing language of

the World Wide Web.

105

context: though most practitioners are exploring ar-
chitectural patterns, there is no reason to limit them

to software design. VVe have found the recurring pat-

terns of outstanding software development organiza-

tions through an extensive research program [10 . We
Jcan use those patterns to solve organizational an pro-

cess problems.

Object patterns: Little of our patterns work re-

lates to the object paradigm. Objects are just one way

of partitioning systems, and they are not always the

best way to organize high-availability or fault-tolerant

architect ures. Besides, there are many more proven,

mature patterns in the architectures of legacy systems
than there are in the young, rapidly changing object-

oriented systems.
Early work in AT&T to gather proven C++ pro-

gramming idioms has culminated in a collection of
widely used programming techniques [9]. One can

think of these as proto-patterns; they were in fact one

of the foundations from which contemporary patterns

practice grew. The seminal Design Patterns book [18]
built on these and other patterns to provide a general,

language-independent collection of patterns by which

object-oriented programming competency might be

judged. These patterns are seeing wide use in ma-

ture AT&T projects. We have steered some young

object-oriented projects away from patterns, however.

Most new object-oriented projects must learn a design

method and a new programming language, in addition
to building a new architecture. We have noticed that

incorporating more than three significantly new prac-
tices in a project increases risk, so patterns are put off

until the project masters the initial changes.

2.2.2 How patterns have helped us

Training: We have just started to use the fault-
tolerance and high-availability patterns in architec-

tural training. There are two aspects to this training:

pattern training per se, and pattern supplements to

architectural training. Pattern training is largely for
organizations that are “pattern consumers”. These

organizations are building new projects, using pat-
terns as audits and drivers for design. We have found

this training to be effective on many levels. Not
only do attendees deepen their understanding of pat-

terns in general and of specific core competency pat-
terns, but they deepen their appreciation for archi-

tecture and telecommunications foundations. Most

of these courses are conducted aa workshops that

are highly participatory, with design exercises and

pattern-writing exercises. We believe that it is dif-

ficult for designers to appreciate patterns fully, unless

they have written one.
Some architecture courses are slowly adopting pat-

terns as an adjunct to materials presented in a tra-

ditional format. So far, we haven’t found this use of
pat terns to be a significant aid to the learning process.

Patterns are probably perceived as a distraction to the

traditional educational structures, and we conjecture

that pattern-based architecture education might work

better if the whole course were pattern-based. We

plan further work in this area.

Architecture documentation: In our pattern

mining exercise, a new development project was

the client for patterns. extracted from contemporary

projects. When architects from the contemporary

project saw the patterns, they saw a solution to a

problem that had been plaguing them for some time.

Earlier attempts to capture the project architecture
had failed to resolve the tradeoffs between a good de-

scription of the vertical architecture and architectural

layering; patterns provided a way to unify those two

perspectives. The original “source” organization is

now one of the most active pattern organizations in

AT&T, mining its own patterns as architecture docu-

mentation.

Shaping New Architectures: By “mining” the
fault-tolerant patterns of contemporary AT&T soft-
ware systems, we can lay the groundwork for emerg-
ing and future project architectures. Much support

for the emerging patterns work in AT&T came from a

new project for which high availability is of paramount

importance. The new project is evaluating the fault-

tolerance and high-availability patterns gleaned from

contemporary systems to see which ones are well-

-suited to the new system’s market and technology.

Requirements Acclimation: Requirements docu-

ments draw on market foresight and experience. Most

analysts focus on the market foresight of the sales and

marketing force, but draw on their personal anecdotes

or on review input for the experience component. Pat-

terns provide a written experience base that can feed

the requirements process in the following way. As for-

mative projects acquire patterns from their peers and
predecessors, they go through them to select those

that address problems in the project requirements.

Once in a while, a pattern will solve a problem that

seems like it shouki be in requirements, but the re-

quirement is found to be missing. Such requirements

are added to subsequent editions of the requirements
document. We did not foresee this benefit of patterns

at the outset, but it has proven to be a valuable use
of patterns in new projects.

Process Assessment: We use the process patterns
to assess the health of development organizations. Our

process research effort receives many requests for pro-
cess improvement assist ante; we use the process pat-

terns aa one set of tools to identify and remedy prob-

lems. These patterns, which have been published [10],

are being similarly used in many companies outside

AT&T.

2.2.3 Yet to be done

Designers find individual patterns illuminating and
inspirational. We have patterns at all levels, from ar-

chitectural frameworks down to design patterns and
idioms [7]. The number of total patterns numbers in

the hundreds. Scale is a major obstacle to systematic
and effect ive patterns usage.

We are currently evaluating pattern organizing

schemes, indexing schemes, and other attacks on the

106

scale of the pattern knowledge base. Bob Hanmer hss

instituted an indexing scheme where the Intent ap-

pears as part of the index entry, but not as part of

the pattern itself. We are also planning to work with

knowledge engineers to help organize patterns accord-

ing to expected search criteria.

2.3 Design patterns at Motorola – Ron

Crocker

Much like AT&T, Motorola has several independent

efforts investigating the use of design patterns for sys-

tem development. Unfortunately, I can only discuss

with any subst ante the effort that I’m involved with3.

2.3.1 Design patterns vs. software architec-
t ures

At Motorola Cellular Infrastructure Group (CIG),

recent efforts in applying design patterns to the de-
velopment process have centered on the relationship

between software architecture and design patterns.
For some time now, the focus of the systematic im-

provement efforts at CIG have centered around find-

ing an approach for system development that allows

for “large-grained” reuse [13]. Initially, this program

focused on the use of object-oriented approaches early

in the life cycle, primarily to provide a foundation for

this reuse. These attempts were not totally success-

ful. Analyzing these projects indicated some common
characteristics that effectively limited any large-grain

reuse, including:

● Strong coupling of 00 artifacts within a single
product

● Short-term needs superseded longer-term needs,

even when the benefits were clear.

These findings are not particularly surprising given

the strong product-oriented culture of Motorola. How-

ever, reaching corporate goals of a factor of 10 im-
provement in time-to-market requires substantially

less work in development – you simply can’t do the
same amount of work in l/10th the time.

Enter the centralized software architecture organi-

zation, lead by the Strategic Software Technologies or-

ganization within CIG [14, 12]. As an organization,

CIG haa accumulated considerable domain expertise
and has some very seasoned software architects. In

evaluating several purported software architectures,

again we found some common symptoms:

●

●

●

A lack of preciseness in the specification made

them ambiguous.

The architects developed their own terminology

to talk about concepts that we would have imme-

diately recognized had they used “our” vocabu-

lary.

We did not have direct/immediate access to the

architects.

3Another effort is documented elsewhere [24].

Each of these problems led directly to communica-

tion problems, which lessens the effectiveness of the

architecture. Because the architectures are ambigu-

ous, they can be interpreted in ways other than in-

tended. Because the language was “foreign”, the am-

biguities tend to be amplified and the architectures
become product-centric. Finally, questions about the
architecture have nowhere to be directed and are hence

left unanswered.

Our search for technology solutions turned to de-

sign patterns. From previous readings, we knew that

design patterns offered an approach for describing ar-

chitectural entities independent from their implemen-

tation. We were concerned about the roots of de-

sign patterns coming from the object-oriented com-
munity, since our organization has little 00 experi-

ence. Our approach was to simply not use design
patterns in an 00 form. We would use design pat-
terns to capture problem-domain-specific entities in
an implementation-independent way for sharing across

projects (and products).

2.3.2 Current status

So far, we have a small catalog of design patterns

focused on (in telephony terms) fault management.

There is already an implicit design pattern being used

in many of our products for handling faults in the
equipment. It’s robust and understood by the senior

technical staff. The problem with this pattern is that

it’s only implicit. It exists in the heads of the senior
people and in the code. In the cases where we reuse

this pattern, the pattern is “rediscoverer from the
code and re-implemented, often with minor improve-

ments. None of these improvements, however, affect

the basic “higher-order” pattern. These are the sort

of patterns that we will be cataloging. Based on some

near-term results using the fault management pattern,

other problem areas are being identified for “patterni-

fication”. Our expectation is that these patterns will

interact to form a fabric of patterns for telephony.

2.3.3 Pattern applicability spaces

We have a model of the world depicted roughly in
Figure 1. We separate the development process into
three large “buckets”: Products, Problem-Space (en-

tities), and Solution-Space (entities). The Products
are implementations of solutlons for specific customer

use. CIG examples of products would include base
stations, cellular telephone switches, and customer
database products. Each of these products is rooted

in its problem-space entities. Base stations require

mobility management capabilities and radio manage-

ment capabilities, These capabilities tend to be largely

independent of both the product itself and implemen-
tations of the product. The issues identified above

(product-specific nature of 00 artifacts and special-
ized architectural language) have the effect of mask-
ing the inherent problem-space nature of these capa-

bilities. The solution-space is where we implement

both problem-independent capabilities and product-

specific instances of the problem-space capabilities.

For example, for the majority of the patterns de-
scribed in [18] we would consider solely solution-space

architectures (“Implementation Architectures”) that

107

Products

ml

Reference
Architectures

Probfem-
S~ce

=)’

Implementation
Architectures

So/utlon-
Space

Product Y
Product 2

•1A’

>/AB’

‘8c’

w 8 Architecture Spec. ● ObjectFrameworks
Languages ● Mets-Ob#?ct Protocols

● “Ad-Hoc” Methods ● Domain-Specific Languages

Figure 1: Architectural Spaces

are problem-space independent; other problem-spaces

may see those as both problem-space and solution-

space patterns.

Each of the spaces has an architectural basis. The
Problem-Space architecture we call “Reference Archi-

tecture” to indicate that it is not a concrete imple-
mentation but rather a guide to developing products

incorporating these problem-space entities. We view
the critical aspects of these architectures being the

definition of the (behavioral aspects of the) entities

and their interactions, and therefore focus less on the

particular implementation issues. The Solution-Space

architectures we call “Implementation Architectures”

since their primary focus is on particular instances of

products,

This brings us to consider technologies that can aid
in describing the architectures in the given spaces. We

consider design patterns a technology that spans the
spaces, and believe that design patterns represent a

technology that can be used to smooth the transition

between spaces and final products. Other technologies

we have investigated (object frameworks, meta-object

protocols, and application-specific languages) tend to

reside in the solution-space, ~ they apply more di-
rectly to the issues relating to Implementing designs.

2.3.4 Summary

There are two thrusts in our use of design patterns.

The first is in using the technology to encapsulate

problem-space entities for larger-grained reuse across

product families aa described above. The other is in

using object frameworks and application-specific lan-

guages to implement these patterns for easier imple-

mentation. Those investigations are on-going and not

at a point to report progress. Nevertheless, we have

seen some effects of using design patterns in our efforts
so far:

●

●

●

Design patterns have little to do with object-
oriented technology. This technology is indepen-

dent of object-oriented technology. The software
systems from which we are extracting design pat-

terns are not object-oriented, and the resulting

design patterns are not object-oriented. These

design patterns can be implemented using object-

oriented designs, but it is not required to be this

way.

Design patterns represent a mechanism for eas-

ily sharing design information among groups of
architects. We have found that with the design

patterns we have written, they have been quickly
understood by both the senior architects and the

product developers.. Other approaches have been

less successful in bridging this gap.

Writing good design patterns is difficult and time-

consuming. In our efforts so far, we have spent

much time on understanding how to write good

design patterns so that they provide enough infor-

mation to the reader to be useful. Our initial de-

sign patterns have gone through many iterations

to ensure quality. This implies that only high-

value I)roblems should be caMured using desire

patter~s,

problems

and therefore choo~ing the app~opria~e

becomes an issue.

108

● It is hard to quantify the impact of design pat-

terns on our development effort. Currently, there

are no metrics capable of distinguishing the im-

pact of design patterns from other changes in our

development process. Without further efforts on

such metrics, we will never know the true benefit

of this technology.

2.4 Experiences using patterns at BNR –

Gerard Meszaros

At BNR, the research and development subsidiary

of NorTel (formerly known as Northern Telecom), we

first became aware of the term “patterns” at OOPSLA

1993. We instantly recognized that we had been doing

something very similar for quite some time as part of a
major re-engineerin effort of our DMS- 100 family of

ftelephone switches 23]. We have used the “pattern”

and similar forms to capture project knowledge in a

number of areas. While many of these patterns are

specific to our problem domain and form the basis
of our competitive advantage, we freely publish the
more generic ones in the recognition that we get far

more in return for a relatively small investment. The
patterns we write and use can be roughly categorized

as process/method patterns and technical patterns.

2.4.1 Process/Method patterns

Capturing a design methodology as patterns:

As part of developing a new architecture to allow rapid

development and delivery of telecommunications ser-

vices (a.k.a. “Features”), we realized that service de-

velopers would require guidance in using the architec-

ture. We began to develop a “service design” method-

ology. As the “pattern form” was as yet undeveloped,
we captured the methodology as a series of %.eman-

tic models” starting with requirements and domain

model, leading to the architecture model, the design

model and finally the implement ation model. Specific

aspects of each model were identified and the heuris-

tics for transforming them to the related aspect of the

next model were captured.

Many of these patterns were “prescriptive” in that

they described how to get from one model to another.

As an example, a number of the patterns describe how

to find and identify similar concepts in different re-

quirements documents and capture the common con-
cepts in the domain model of a service. These patterns

effectively are a “recipe” for doing abstraction for peo-

ple to whom this does not come naturally.

Architecting Method: In the process of re-

architecting our call processing system, we have come

to recognize a number of key patterns of behavior of

architects that lead to good architecture. Many of

these patterns are technical in nature. We have cap-

tured a number of these in [19] for review and publi-
cation at PLoP-95.

The non-technical patterns include ones such aa
“Just say NO to Politics” (let the project managers

solve the question of how the work is divided; archi-

tects should concentrate on ensuring that the design
decisions are made for technical reasons.)

2.4.2 Technical patterns

We had discovered a number of recurring patterns

in the design of telephone services. We had coined

terms for many of these, such as modifier service (a

service which observes another service and adds addi-

tional behavior at appropriate points.)

The patterns mailing list on the internet gave us
early access to the patterns that were to be published

in [18]. We also invited Richard Helm to come teach
an introductory course on these patterns. We recog-

nized many of the patterns in our systemj often to the
point of being able to list our own specializations of

the general patterns being described.

We quickly found ourselves expressing our designs

in terms of these patterns. They gave us a precise yet

concise way of synchronizing our thoughts which saved

a lot of effort. No longer did we have to describe a key

portion of the design since we had a common under-

standing of what was meant by “this object is using

the Observer Pattern to monitor this other object.”

Patterns in Software Architecture: We have
found patterns to be particularly useful for defining

and describing software architectures. Many patterns

(Observer, Strategy, Composite, Half-Object Plus Pro-

t ocol to name a few) are particularly useful when defin-

ing the the architecture of a system because they en-

capsulate potential changes to the system. The ac-

tual mechanisms used to implement these patterns

can vary widely based on cost-space tradeoffs but can

be hidden from the core objects (business objects) in-

volved.

2.4.3 Reflections on the BNR experience

Personality Types: Using patterns written by oth-

ers only takes an open mind; writing patterns takes a

special mind! Most people whom we have exposed

to the concept of patterns can quickly become profi-

cient at using the common ones. But we have found

that only a small percentage of people can write pat-
terns. With respect to patterns, there are three kinds

of people: those who see patterns everywhere and can
describe them, those who can recognize patterns but

can not describe them easily, and those who are obliv-
ious to the pattern surrounding them. This difference

seems to stem from a basic orientation of people to

focus on similarities as opposed to differences between

things.

Impact of Patterns: We have not attempted to

measure the impact of patterns on productivity but

we have noticed that communication between people

with a “shared space” of patterns is quicker, more
complete, and less likely to be misunderstood. At the

programming level, we have had people design what
might be rather complex designs much more quickly
than expected by using one or more design patterns.

109

2.5 Patterns in industrial automation at

Siemens – Frances Paulisch/Lutz Do-

minick

Various operating divisions at Siemens are investi-

gating the effectiveness of using patterns to improve
their software production and these activities are co-

ordinated through our department. Many of the soft-
ware design pat terns that are not subject to non-

disclosure are being published by our colleagues in

[8]. In this section, we focus on our particular project

where we are investigating the effectiveness of apply-

ing patterns to technologically-oriented applications

like the process control of steel mills.

2.5.1 Identifying an initial set of patterns

Our project team, the “pattern mentors”, consists
of two (software) pattern specialists and two (indus-

trial automation) domain specialists. The first step

was to identify potential patterns in interviews with

domain experts and then to iteratively refine them

(again in consultation with domain experts). In each

round we focused on a specific knowledge area. WJe

invited the experts to give a short introductory talk

about the solutions they used in their projects and
we introduced the notion of patterns. Then we had a

discussion to discover the patterns that the projects

teams had been using intuitively. Roughly three in-
terviews were required to finish a set of patterns. In
their final form, the domain experts agreed that the

pattern met our two major criteria of

Q correctly representing the problem-/solution-pair

and

● being a useful representation of knowledge de-

manded by their projects.

In one case two experts initially claimed that their

solutions to a similar problem were incompatible with

each other, but after seeing the probIem-/solution-p air
posed as a pattern, agreed that their solutions were

indeed very similar.

As an additional “sanity check” we also presented

several patterns to experts of a different but related

area who had not taken part in the discussion. The

level of detail used in the pattern-form was found to

be appropriate for providing an understanding of the

related areas.

The current state of our project is such that the

final proof, the evaluation of the effectiveness of these

patterns in concrete steel mill projects, has not yet

been achieved, but we are working towards this goal.

Our work demonstrates that a small team of people
with knowledge of both patterns and of the domain

can build up a set of domain-specific patterns which

serve as a basis for demonstrating the effectiveness of

patterns to the domain experts. Once such a set of

essential patterns has been identified and the domain

experts have agreed to the effectiveness of their rep-

resentation in pattern-form, how should one go about

extending the set of patterns?

2.5.2 Identifying additional patterns

Ideally, a domain expert should be the pattern au-
thor because they have the best knowledge of the do-
main, but there are several hindrances which must be

overcome to accomplish this. The domain experts

●

●

●

need time to learn what patterns are and how to

identify and use them,

need practice at abstracting away detail and writ-

ing patterns, and

are so tied up in their daily projects that they

find it hard to take the first hurdle and actually
write patterns.

Although necessary during the introduction of pat-
terns into an organization, it is exceedingly difficult

to write patterns, as we did, based on second-hand
experience. Doug Lea of SUNY Oswego, who was in

a similar situation consulting with avionics engineers

developing a set of online design patterns for avionics

control systems as part of the Adage project [21], re-

ports that he wrote many of the patterns himself after

consultation with domain experts for reasons similar

to what we experienced [22].

2.5.3 Making patterns available online

To make the patterns more accessible and attractive
to the domain experts, we recorded all of our patterns
in HTML in a platform-independent online catalog of

patterns. This catalog was organized as a set of three

axes which relate to the application domain (in our

case the level of automation, the physical structure of

the milling machine, and the product-quality features

of the milled steel).

The online catalog allows the use of multiple entry
points, navigation among the patterns, and a hierar-

chical structure. The navigation aspect is especially
important when the pattern collection grows larger

than about 50 patterns which can no longer be lin-

early organized in book-form. We used links to hide

information which is not immediately relevant to the

user so that they can see that the information is there

if they want it, but are not distracted by it. Further-

more, many terms are connected to an online glossary

which resulted from a partial domain analysis of the

application area. It is too early to tell how useful this

online collection of patterns is to the domain experts,

but initial indications are positive.

2.5.4 Initial experience in using patterns

Our initial experience in using patterns indicates
that patterns are more likely to be accepted and ap-
plied if a significant portion of the design is covered by

either a group of low-level patterns or a single higher-
level “architectural” pattern. Our users expect some

kind of tool support, especially when they are faced

with ca. 30 or more patterns. In cases where no appro-

priate technological design pattern is judged to be ide-

ally suited, the users tend to choose structure-oriented

patterns such as “pipe-and-filter” or “layered architec-

ture” over process-oriented patterns.

110

2.5.5 Future directions

Many of the realizations made within the software

reuse community, such as

● the importance of high-level mangement commit-

ment, and

c the effectiveness of making a strict distinction be-

tween the teams responsible for developing com-

ponents and those responsible for identifying and

maintaining them

apply equally well to the industrial use of patterns.

We have noticed a strong relationship between the
technological design patterns and software design pat-

terns. The technological design patterns we have dis-

covered thus far are planned to serve as the basis

for a software application framework for the process-
automation of steel mills. Here, we are particularly

interested in investigating the interplay between the
technological and the software design patterns (e.g.

representing the process-control of a conveyor belt as

a pipe-and-filter architecture).

2.6 Design patterns in design reviews –

John Vlissides

Having served as a consultant to a half-dozen com-

panies, I’m struck by the similarities in what they

all try to do. Each project has its unique sspects,

certainly, but they are mere variables in a recurring
formula. Every project has included a user interface

component communicating with some sort of compu-

tation component, usually backed by a database. Ev-

ery project sought to decouple these components to

one degree or another. Everyone wanted to use ob-

ject technology, though not everyone understood why,

And while the average experience level varied, ev-

ery development team struggled with the design pro-

cess: false starts, iteration, and delays were the norm.

These recurrences are mostly beneficial; they let one
know what to expect and how to impart the most ben-

efit. But two recurring problems proved troublesome.

The following sections describe these problems and
how design patterns have helped me deal with them.

2.6.1 Unearthing the design and its rationale

The first of these irritants was the quasi-courtroom

tactics I had to adopt to get to the truth of a design.

Developers usually had trouble explaining the gist of
what they had done, either because they had no means

to express it or because they honestly didn’t know. I
wss confronted with one spaghetti class diagram after

another. The unstated hope was that I would come

to understand the design by sheer osmosis. In reality,

there was never time for that.

My only recourse was relentless interrogation. I

would ask question after question until I had built up

a consistent mental model of the system. Inevitably

that would involve backtracking—someone would con-

tradict what was said earlier, causing a partial collapse

of my mental model. Sometimes the collapse would
come only after we had gone down a series of blind

alleys. The more successful attempts along these lines

tended to raise more questions than they answered:

Why did you design it that way? Is what seems to be
gratuitous complexity really worthwhile? What are
your assumptions, and why are they realistic? What

happens six months from now when I need new capa-
bility X?

Which leads me to the second irritant: shallow de-

sign rationale. Often the developers simply didn’t
know why a design was the way it was. No one both-

ered writing down the reasons for each major change
to the design, let alone the incremental ones. As a

result, we had to reverse-engineer the design choices

time and again—an uncomfortable process for all con-

cerned.

2.6.2 Enter design patterns

After four years of this, things finally began to

change when in early 1993 I started incorporating

early drafts of material that eventually became Deszgn

Patterns [18] into my consulting engagements. Rough

as that material was, it gave me something concrete

to offer in the way of exemplary designs. It also fo-

cused my thinking so that I could more readily identify

designs based on what the developers were trying to
do. No longer did I have to assume that they had

developed something entirely new for me to fathom.

Instead, I considered the flexibility they were pursu-

ing as a way to isolate a design pattern. Then I could
concentrate on mapping the classes they had defined

to those in the pattern. If there was some semblance

of correspondence, I could feel good about their de-

sign and offer constructive criticism immediately. If I
could see no correspondence, then I would int reduce

the pattern to them, Sometimes the flexibility they

sought was ill-defined or spurious; the pattern would

elude me in those cases. Thus the cat slog of design

patterns became a kind of sounding board, a test suite

for valid design. Of course, this experience helped us

refine the patterns themselves.

2.6.3 Sharing design pat terns

For all these benefits, though, the burden of pat-

tern application fell largely on my shoulders. The

patterns weren’t complete or polished enough to give

to the development teams ahead of time. I trotted
them out as needed, but because they were hard to

share with others, they tended to stay confined to my

head. Their consummate benefits didn’t emerge until

the team members could internalize them as well.

That couldn’t happen until Design Patterns ap-

peared on bookshelves in late 1994. For my first major

engagement thereafter, I insisted that each developer

read and understand the book prior to our meeting.

I had no delusions about this request; I thought few

would read it all, let alone understand it. But that

was their responsibility, and I expected most people

to have at least looked at it.

As it turned out, not only had everyone read it,

but a core group (5 out of 12) had a remarkably good

grasp of the patterns we discussed. There was also

enthusiasm, not just for design patterns but for the
developers’ own design aa well, because they found

that they had used some design patterns unwittingly.

111

Table 1: Sources for Summary Observations

Seeing the design patterns was a vindication of sorts—
it legitimized approaches they had been unsure of.

2.6.4 The biggest payoff: communication

But the best part of the encounter was the high

level of communication we achieved. We discussed de-

signs not in terms of classes and objects and methods

but to a great extent in terms of design pattern con-

cepts: participants, applicability, consequences, trade-

offs. Discussion remained at the design pattern level

unless and until there was a controversy, at which

point we might drop down to the nuts and bolts. But

that was infrequent. I’m happy to report that pattern

concepts dominated our discussions.

In fact, I came away from this engagement feeling

a satisfaction I hadn’t felt after any other, and I at-

tribute it unreservedly to the use of design patterns by

all concerned, not just myself. Another engagement

along these lines has been scheduled for this fall. The

project under review will be a different one, with an-

other, somewhat larger development team at its helm.
As a further twist, several of the team members from

the earlier engagement will participate. They will act

as I did, but to small subgroups of the overall team.

That wdl help spread the burden and hopefully permit

even more incisive discussions.

3 Lessons learned

Despite our diverse backgrounds and experiences,

several common lessons can be drawn from our own ex-
periences with patterns as well as from our colleagues

in the patterns community. Table 1 shows the sources
of the summary observations listed below. Although

in some cases it is difficult to give a binary answer,

checkmarks indicate that this company has made this

experience. Unfortunately, we do not have any mea-
surable data on the impact of patterns available yet,

at least not in a form we could currently publish. But

the consistency among our experiences with patterns,

leads us to believe in the value of lessons listed here.

Patterns serve as a good team communica-

tions medium. Typically, when several pattern-

aware software developers are discussing various po-

tential solutions to a problem, they use the pattern

names as a precise and concise way to communicate

complex concepts effectively.

Patterns are extracted from working designs.

Each design pattern discussed above was extracted

from existing, working designs (and in the case of the

organizational patterns of AT&T, from existing orga-

nization) and not created without experience. The de-

sign patterns capture the essence of working designs in

a form that makes them usable in future work, includ-

ing specifics about the context that makes the patterns

applicable or not.

Patterns capture the essential parts of a de-

sign in a compact form. This compact represen-
tation helps developers and maintainers understand

and therefore not contort the architecture of a sys-

tem. Making this often only implicitly understood

knowledge explicit allows for more effective software
development.

Patterns can be used to record and encourage

the reuse of “best practices”. This is especially

important for helping less-experienced developers pro-

duce good designs faster. A collection of design pat-

terns in handbook-form is useful for teaching software

engineering. However, note that, in partial contrast to
handbooks from other engineering disciplines, a design
pattern is not a rule to be followed blindly, but rather
it should serve as a guide to the designer and/or pro-
vide alternatives when being applied to a particular

situation.

Patterns are not necessarily object-oriented.

Although the design patterns as we describe them

come from the object-oriented community, there is

nothing inherent in design patterns that makes them

112

object-oriented. Not coincident ally, there is nothing

inherent in object-oriented programs that make them

candidate sources for design pat terns. Our experiences

have shown that design patterns can be found in a va-

riety of software systems, independent of the methods

used in developing those systems.

The use of pattern mentors in an organization

can speed the acceptance of patterns. Pattern

mentors can help provide a balance between encourag-

ing good design practices based on patterns and dis-
couraging overly high expectations of designs based
on patterns. Initially, pattern mentors can help de-

velopers recognize the patterns that they already use

in their application domain and show how they could

be reused in subsequent projects. Pattern mentors
should also watch that the wrong patterns are not. ap-
plied to a problem (i.e. people tend to reuse things

that they know and the same temptation will apply
to patterns, regardless of whether the pattern actu-

ally fits the problem)4.

Good patterns are difficult and time-consu-

ming to write. Writing good patterns is a skill that
does not come easy. Furthermore: the writing of a pat-

tern typically involves an iterative process in which
the pattern is presented to others and/or applied in

projects, relevant comments are incorporated, and the

process repeated until the result is adequate. However,

we have found that, as one gains experience at writing

patterns, the effort for recognizing and writing them

is reduced.

Pattern practice is of utmost importance. Af-

ter the initial phase of learning about patterns by see-

ing many good examples, one comes to appreciate the

true value of patterns best from recognizing and writ-
ing them oneself.

4 Conclusions

In our joint experience, we have seen that the use

of patterns can have a dramatic impact on the way

a team develops software. The improved communica-

tion through patterns alone is a valuable asset. Giving

novices the opportunity to learn from positive exam-

ples which already form the basis of a shared team

vocabulary can help speed their contribution to the

team. On the other hand, good patterns are hard

to write, especially for those developers to whom ab-
straction does not come naturally. It is difficult to

find a balance between the advantages and disadvan-

tages, especially when measurable results are not yet

available. It is clear that many people in the soft-

ware engineering community recognize the emergence

of patterns, but only few have had any opportunity,

until now, to learn about their benefits and drawbacks

in practice.

4 q. someone with a hammer, everything looks like a nail.”

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

113

Christopher Alexander. The Timeless Way of
Building. Oxford University Press, New York,

1979.

Christopher Alexander et al. A Pattern Lan-

guage: Towns, Buildings, Construction. Oxford

University Press, New York, 1977.

B. Anderson and P. Coad. Patterns workshop.

In 00PSLA ’93 Addendum to the Proceedings,

Washington, D. C., January 1994. ACM Press.

Bruce Anderson. Towards an architecture hand-

book. In 00PSLA Addendum to the Proceedings.

ACM Press.

Kent Beck. Using a pattern language for pro-
gramming. In Addendum to the Proceedings of

00PSLA ’87, volume 23,5 of ACM SIGPLAN
Notices, page 16, May 1988.

Kent Beck and Ralph Johnson. Patterns Gen-

erate Architecture. In European Conference on

Object-Oriented Programming (ECOOP), 1994.

Frank Buschmann and Regine Meunier. A system

of patterns. In James O. Coplien and Douglas C.

Schmidt, editors, Pattern Languages of Program
Design. Addison-Wesley, 1995.

Frank Buschmann, Regine Meunier, Hans Rohn-
ert, Peter Sommerlad, and Michael Stal. Pattern-

Oriented Sofiware Architecture: A System of Pat-
terns. John Wiley and Sons, 1996. (in prepara-

tion).

James O. Coplien. Advanced C++: Programmmg

Styles and Idioms. Addison-Wesley, 1992.

James O. Coplien. A generative development-

process pattern language. In James O. Coplien
and Douglas C. Schmidt, editors, Pattern Lan-

guages of Program Design. Addison-Wesley, 1995.

~t~~ses 0 cOPlien and Douglas C. Schmidt, ed-
Pattern Languages of Program Design.

Addikon-Wesley, 1995.

R. Crocker and J. Engelsma. Continuing inves-

tigations into an organizational-wide software ar-

chitecture. In ICSE-I 7 Workshop on Software

Architecture, April 1995.

R. T. Crocker. Reaching for ‘10X’ improvements
- why 00 isn’t the answer! In Proc. of 10th In-

ternational Conference on Advanced Science and

Technology, pages 91-96, March 1994.

J. Engelsma and G. P. Saxena. Building com-

petence in software architecture at Motorola’s

Cellular Infrastructure Group. In 00PSLA ’94

Workshop on Software Architectures, Oct. 1994.

Brian Foote. quoted during the PLoP ’94 confer-

ence (see [CS95]), 1994.

[16] Erich Gamma. Object-Oriented Software Devel-

opment based on ET++. PhD thesis, Univer-

sity of Zurich, Institut fur Informatik, 1991. (in

German). Also available through Springer-Verlag,

Berlin, 1992.

[17] Erich Gamma! Richard Helm, Ralph Johnson,

and John Vlissldes. Design Patterns: Abstraction

and Reuse of Object-Oriented Design. In O. Nier-

strasz, editor, European Conf. on Object-Oriented
Programming (ECOOP), Kaiserslautern, Ger-

many, July 1993. Springer Verlag, LNCS 707.

[18] Erich Gamma, Richard Helm, Ralph Johnson,
and John Wissides. Design Patterns - Elements

of Reusable Object-Oriented Sojlware. Addison-

Wesley, 1995.

[19] Allen Hopley. Levels of abstraction. In Pattern

Languages of Programming Conference, 1995.

[20] Ralph E. Johnson. Why a conference on pat-
tern languages? Software Engineering Notes,
19(1):50-52, January 1994.

[21] Doug Lea. Design patterns for avionics control
systems. Available through W WW site http://st-

www.cs.uiuc.edu/users/patterns/patterns .html,

1994.

[22] Doug Lea. personal communication, 1995.

[23] Gerard Meszaros. Software architecture in BNR.

In David Garlan, editor, Proc. of 1st Intl. Work-
shop on Architectures for Sofiware Systems, 1995.

held in cooperation with ICSE17.

[24] D. Schmidt. Experience using design patterns to
develop reuseable object-oriented communication

software. Communications of the ACM, October

1995.

114

