Industrial IoT Smartbox for the Shop Floor

Sérgio Malhdo
Instituto Politécnico de Castelo Branco
Castelo Branco, Portugal
smalhao@ipcbcampus.pt

Abstract— Constant search for efficiency and productivity
has led to innovation on the factory shop floor, representing an
evolution of the current production systems combined with
new technologies of industrial automation and information
technology. This work presents an experimental demo of a
smartbox for Industry 4.0 scenarios, allowing sensing,
monitoring and data acquisition. We have tested two different
approaches, depending on the communication protocol used
for real time applications: OPC UA or MQTT. Raspberry Pi’s
platform act as an OPC UA server or MQTT broker,
respectively. From the measurements, data stored in a cloud
server can be accessed remotely with improved security and
visualized from a computer dashboard. One of the conclusions
that can be drawn is that both protocols allow data from the
smartbox to be stored and easily monitored from a smartphone
application or a computer web interface. MQTT is a good
option in communications requiring very low bandwidth.
However, there is a lack of suitable libraries to program alarm
features for OPC UA Servers.

Keywords— Industrial IoT, OPC UA, MQTT, Raspberry PI,
Node-RED

I. INTRODUCTION

Recent years witnessed the forthcoming of Machine-to-
Machine (M2M) networks as an efficient means to provide
automated communications between distributed devices. The
idea of Smart Industry is gaining increasing importance in
the current context because of its ability to automate
industrial environments with great effectiveness using Smart
systems. These systems incorporate detection, actuation and
control functionalities.

The Portuguese industrial sector follows this trend and
searches to technologically re-adapt its production processes
to include sensing, monitoring and control functionalities,
allowing efficient communication with the equipment on the
shop floor with Industrial Internet of Things (IIOT)
platforms [1].

This paper focuses on the development and testing of a
Smartbox demonstrator, which allows sensing, monitoring
and storage of equipment parameter’s data from industrial
environments through Wireless and Ethernet networks, using
OPC UA (OPC Unified Automation), Message Queuing
Telemetry Transport (MQTT) protocols.

II. PrROTOCOLS

A. MOTT

MQTT, Created by IBM and by Eurotech, is a standard
detailed by the MQTT v3.1 specification [2].

This work is funded by the Portuguese programme PORTUGAL 2020,
under grant agreement n.° 024541 (PRODUTECH SIF - Solugdes para a
Industria do Futuro).

Rogério Dionisio
Instituto Politécnico de Castelo Branco
Castelo Branco, Portugal
rdionisio@jipcb.pt

Pedro Torres
Instituto Politécnico de Castelo Branco
Castelo Branco, Portugal
pedro.torres@ipcb.pt

Raspbery Pi with
BMP 180 sensor and
OPCUA Server

#

Hardware Connections.

Router Wirekess/Ethermnet

BMP180  Raspberry Pi with DHCP Service

oA Pin 2~ SDA
o Pin 3 -3C1
Pin GND

Pin 1~ 3.3V

Internal Network

IR Access Point P:192168 1.1
Wireless/ Extermal Network
% Raspherry Pi with Ethermnet 1P Public
BMP180 sensor 1P:192 168.1.100
~ | Internet}
Hardware Connections Extermal Network
’ with ADSL Cable
BMP1B0  Raspberry Pi 7 ey S

DA Pin2-SDA

c Pin 3-SCL
Pin GND

. Pin1-33v

T .!_
i the intemet
21

P 192168111

Fig. 1 Communication with OPC UA protocol in a local network.

This communication standard follows a Publisher /
Subscriber model, where a Publisher publish information to
the Broker (Middleware). The Broker is responsible for
receiving and centralizing messages from one or more
Publishers, and to dispatch information to any authorized
Subscriber requesting access to it, using applications for both
PC and Smartphones.

B. OPCUA

OPC UA is a standard for communication and
information modeling in industrial automation [3]. The
specifications are standardized by IEC 62541. This standard
allows the implementation of servers in embedded systems.
This communication standard can use two communication
models, the Request / Reply model and the Publisher /
Subscriber model. Messages can be sent in binary format +
TCP or Extensible Markup Language (XML) + HTTP /
Simple Object Access Protocol (SOAP).

III. PROTOTYPE DEVELOPMENT

A. Implementation with OPC UA

The OPC UA demonstrator’s architecture is built upon
Ethernet and Wi-Fi networks, as can be seen in Fig. 1. For
the Raspberry Pi’s to act as OPC UA servers, several
required libraries were previously installed [4].

Smartphone with OPGUA -
Cient Prosys App and Wi-Fi Zone
Database Access in
Ubunitu Server 1604 LTS —
through Vivaldi Browser -

1”192 168 1.3

Windows with OPC-
— UA Clitent Ua -~ m
Expert and
“ Database Access in Ml_—l [

\
Ubuntu Server = l ﬂp;&,{_n}!m

16.04 LTS through
Vivakii Browser P 192 168 1 16

Fig. 2 Software and Hardware to subscribe and store OPC UA data through

a WiFi network.

—

IP-192168.12



Conmections e Herdware Connections
Adafruit Feather | 255 ey Adafruit HUZZAH

- HUZZAM ESP8266 =

ESPB266
vee Pin 3V * e i toraen mmm.h\
Resistor QUT PinADC  WSBME ResistorOUT  Pin#2and PnVEC  'oypano®
N — | " Ll [RUPRT RO Eihemet Cabie
47K ressor -
st o o

~d

Acoess Ponl Csoo
ARAP1121GAKS
W 182 16 1100

Adafrut Feather

Adsalruit Huzzah ESP 52066
with DHTL1 Sensor
W 192 168 1 70

Hhuzzudh | SP 85266
with | MISDZ Sensor  Bilabali:
w192 168 169

Raspbiorry P B wilh pon wickss
PuLIShaL TLWN725N and Sofware (IS
Moscuatio rokor
1P 192 168 1253

Fig. 3 Communication with MQTT protocol in a local network.

A PYTHON script was written to enable the acquisition
of three environmental parameters (temperature, altitude and
pressure) available in each BMP180 sensor, through the OPC
UA Servers. It was also necessary to set up a set_endpoint
consisting of an IP address, communication port, library and
class, and also to define the object parameters, such as
temperature, altitude and pressure, as well as access and
permission rules of the OPC UA Clients.

To subscribe and store all data sent from the OPC UA
server, we install a MySQL database on UBUNTU Server
16.04 LTS together with Unified Automation UA Expert
software [5] on a WINDOWS 10 virtual machine, as shown
in Fig. 2. On the Client side, we use a PROSYS Smartphone
application [6] to subscribe to the sensor data parameters.

B. Implementation with MOTT

The network architecture presented in Fig. 3,
demonstrates data acquisition using MQTT protocol [2].
Two ESP8266 modules were configured as Publishers and
connected to a temperature sensor (LM35DZ) and a
humidity/temperature sensor (DHT11). Topics (data) are sent
from Publishers to a Broker (MOSQUITO) [7] installed on a
Raspberry Pi platform. All authorized Subscribers can
subscribe to the Broker platform for Topics; for the
LM35DZ module the topics is “esp8266” and for the DHT11
module, the topics are  “dhtllhumidity” and
“dht1 Itemperature”.

Each Publisher module has received a script in C/C++
with network SSID and authentication credentials to access
the wireless network and export the measured values from
the sensors to the Broker. All Subscribers are been set up
with Authentication to avoid unwanted access to the network
and to the Broker. Several applications with graphical user
interfaces (GUI) are available to interact with the parameters
of the sensors. We use MyMQTT app for smartphone [8],
MQTT.fx for laptop [9] with BODHI LINUX operating
system and finally Node-RED [10] on WINDOWS 10
operating system in another Laptop, as shown in Fig. 4.

L
EEn =

. PCwith 5.0. Windows 10

-7 Simasrtphone witth “ and extension Googke
/ Appmymaqrt My Chrome MQTTiens and
Subscribe ! 192168168 . “ NODERED with Deshoard
1P 192.168.1.72
[ PC with S.0. Bodh \.\< | 4
Lintax and software My
P 19“30124‘1 a7 phoip I
I+ 192168171

Fig. 4 Software and Hardware to subscribe and store MQTT data through a
WiFi network.

Dashboard de Contiolo dos Sensores

L) -

Fig. 5 Sensor monitoring dashboard with Node-RED UL

Node-RED flow is accessible through a localhost with IP
address 127.0.0.1:1880 and the corresponding dashboard is
accessible through IP address 127.0.0.1:1880/ui/#0 as can be
seen in Fig. 5. With Node-RED, we can observe the sensor
data and simultaneously send it to a MySQL database
configured on UBUNTU Server 16.04 LTS, and then export
it to PDF, Excel or CSV files.

IV. CONCLUSIONS

The development of this demonstrator has created a
affordable solution of a smartbox for industrial applications,
based on the Raspberry Pi platform. It can monitor critical
parameters of the shop-floor factory through open-source
software, both for smartphone and Desktop / Laptop
computers, as well as storing data for remote analysis. Some
limitations remain to find libraries suitable to program alarm
features in the OPC UA Servers. MQTT protocol is a
lightweight an easy to implement M2M solution in shop-
floor with limited or inexistent FEthernet network
infrastructure. Future work will include additional sensors
for industrial environment (vibration and angular rotation
speed), alternative hardware platforms with more
computational capabilities, and the implementation of
Machine Learning algorithms for predictive maintenance
based on the collected sensor data.

REFERENCES

[1] M. Schleipen, "OPC UA supporting the automated engineering of
production monitoring and control systems", Emerging Technologies
and Factory Automation 2008. ETFA 2008. IEEE International
Conference, pp. 640-647, 2008.

[2] MQTT Version 3.1.1. Edited by Andrew Banks and Rahul Gupta. 29
October 2014. OASIS Standard. Retrieved from: http://docs.oasis-
open.org

[3] W. Mahnke, S. H. Leitner, and M. Damm. 2009. OPC Unified
Architecture (1st ed.). Springer Publishing Company, Incorporated.

[4] FreeOPCUA [Computer Software]. (2018).
https://github.com/FreeOpcUa/python-opcua

[5] Unified Automation [Computer Software]. (2018). Retreived from:
https://www.unified-automation.com/

Retreived from:

[6] PROSYS [Computer software]. (2018). Retrieved from:
https://www.prosysis.com

[71 MOSQUITTO [Computer software]. (2018). Retrieved from:
https://mosquitto.org

[8] MyMQTT [Computer software]. (2018). Retrieved from:
https://play.google.com

[91 MQTT.fx [Computer software]. (2018). Retrieved from:
https://mqttfx.jensd.de

[10] Node-RED Programming Guide [Online]. Retrieved from:

http://noderedguide.com



