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Abstract: Nanomaterials (NMs) that are created with zinc oxide are very valuable for a wide variety
of applications. There is a present interest in ZnO nanoparticles in a wide range of industries. This
interest may be attributed to the fact that ZnO NPs have many important features. It will be necessary
for ZnO NPs to possess certain qualities in order for them to rapidly find uses in industry and for
these applications to have an effect on the expansion of the economy. A large surface area, a large
bandgap, photocatalytic property, biosensing, bioimaging, and other qualities are included in this
list. In this article, the extraordinary characteristics of ZnO NPs, as well as their novel applications in
industrial settings and the challenges that come along with their utilization, will be discussed.
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1. Introduction

Nanomaterials have been employed in a wide range of applications, including medi-
cal, food processing, fuel engineering, cosmetic products, textile industries, agricultural,
electrical devices, automobile manufacturing, and aerospace engineering [1–4]. NPs are
utilized both in academics and in industry for their suitable characteristics, unique design
capabilities, ecofriendliness, ease of manufacturing, and low price [5]. NPs incorporated
into a matrix of specific materials (polymer, metal, or ceramics) introduce additional novel
characteristics, such as excellent mechanical stability (in terms of stability, toughness,
strength, dimension, flexibility, and so on), good flame retardancy, optical features, high
electro-thermal conductivity, and low water/gas permeability [6]. Due to their potential to
be employed in a number of downstream applications, ZnO nanoparticles are one of the
most investigated materials [7]. After iron, ZnO NPs are the second most common metal
oxide, and they are cheap, safe, and simple to produce [8]. Modifying the shape of ZnO NPs
and utilizing various synthesis methods, precursors, or materials to create NPs may readily
change their physical and chemical characteristics [9]. ZnO NPs are used in analytical
sensing because they are inorganic Group II–IV semiconductors [10]. ZnO NPs seem to
be white particles that are not water soluble. Their outstanding chemical, electrical, and
thermal stabilities are provided by the ZnO nanoparticle’s 3.37 eV energy band and 60 meV
bonding energy [11]. The optical and photocatalytic characteristics of ZnO NPs are also
promising [12]. ZnO NPs are used in solar cells [13,14], photocatalysis [15,16], and chemical
sensors [17]. ZnO NPs are also renowned for their low toxicity and strong UV-absorption,
making them an excellent option for biological applications [18]. The strong and stiff
structure of ZnO NPs makes them useful in the ceramic industry. When used as a surface
material, ZnO NPs have many beneficial applications in the biomedical sector. Microbes
naturally have a high resistance to ZnO NPs [19]. ZnO NPs are widely utilized in biological
sensing, biological labeling, gene delivery, drug delivery, and also in nanomedicine [9].
ZnO has been certified by the Food and Drug Administration as a safe compound. ZnO
may also solubilize in acidic medium, which opens up the possibility of using the material
as multipurpose nanocarriers to help in medication delivery and releasing [20].
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Biosynthesis of ZnO NPs reduces the production cost, whereas the conventional meth-
ods are expensive and use hazardous precursors [21]. Nonbiosynthetic methods can also
be cheap and facile, such as synthesis through solid-state reactions [22]. The biosynthesis
of ZnO NPs using leaf extraction from P. pinnata and rambutan peel extract is inexpen-
sive [23,24]. It can also be produced economically from the fungus A. potronii [25]. Rice is
one of the most widely consumed products worldwide [26], and its unconsumed biproduct
is rice bran. Therefore, production of ZnO NPs using rice bran extract can be cost effective
and easier [27]. The NPs of ZnO were predominantly rectangular, and their average size
was approximately 50 nm. This environmentally friendly approach to synthesis is more
promising than traditional chemical synthesis methods. A straightforward solvothermal
technique was used to cultivate nanostructures of ZnO with several distinct morphologies,
including nanopyramids, nanosheets, and NPs. Solution pretreatment has an effect on the
shape of ZnO nanostructures as well as their optical characteristics [26]. Nanoscale ZnO
may take on a number of different shapes and forms in natural settings. Needles, helices,
nanorods, belts, wires, ribbons, and combs are all examples of one-dimensional structures.
ZnO may exist in the form of two-dimensional structures, such as nanosheets/nanoplates,
and nanopellets. Further, ZnO may be used in the production of a wide variety of three-
dimensional formations, such as flowers, snowflakes, dandelion seeds, and other shapes [7].
The unusual blend of physiochemical properties that ZnO has is partly responsible for its
increasing popularity. These characteristics include resistance to chemical and mechanical
deterioration, broad radiation absorption, great catalytic activity, a high electrochemical cou-
pling coefficient, and a nontoxic composition. Other characteristics include wide radiation
absorption and a high electrochemical coupling coefficient. There is some degree of correla-
tion between ZnO structure and its activity and properties. For example, the ZnO quantum
dot’s photocatalytic activity is quite high when compared to that of the other morphologies.
Due to their high surface area, rapid adsorption rate, substantial charge separation, and
low rates of electron and hole recombination, dots are the preferred form of photocatalysis.
The photocatalytic potential, quantum confinement of photoinduced carriers, and specific
(active) surface area are all impacted by the shape of the material [27]. Photocatalysis results
indicated that disk-shaped hexagonal ZnO NPs displayed more photocatalytic activity
than rod-shaped ZnO NPs. There has been an interest in semiconductor-based photocat-
alysts because of the hope that they offer for resolving environmental problems. ZnO’s
exceptional electrical and optical properties have garnered it a lot of attention, making it
important because of its bandgap semiconductor properties [24]. The most frequent types
of gram-positive bacteria are Staphylococcus aureus and Escherichia coli, and it was shown
that ZnO NPs with a flower-like shape were more likely to be helpful in moderating the
impacts of these bacteria. ZnO nanoflowers were discovered to have more sites capable
of absorbing gas molecules than ZnO nanoplates, making them more suitable for use in
gas sensing applications [22]. This article discusses many striking and state-of-the-art
applications of ZnO NPs in a diversity of industrial settings.

2. Multi-Disciplinary Industrial Applications of ZnO NMs

Due to their unique properties, nanoparticles may be used for a variety of purposes.
ZnO nanoparticles are the most widely utilized kinds of metal NPs, and their uses span
a wide variety of fields, including medicine, food, agriculture, gas sensors, cosmetics,
and electronics.

3. Antibacterial and Anti-Fungal Applications of ZnO NPs

Industries use antimicrobial and antifungal agents to prevent contamination and
preserve their products by inhibiting micro-organisms [28]. It is, thus, crucial to develop
more effective antimicrobial and antifungal agents for their auspicious applications in
the industrial sectors. ZnO NPs exhibit promising antibacterial and antifungal properties
(Figure 1). It shows excellent effectiveness against both gram-negative and gram-positive
bacteria (Table 1). ZnO NPs have been demonstrated to be efficient against a broad
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spectrum of micro-organisms. The biocidal activity of Bacillus subtilis and Escherichia
coli rose from silicon dioxide to titanium dioxide to ZnO [29]. ZnO is more bactericidal
against B. subtilis than E. coli [29,30]. The MIC (minimum inhibitory concentration) ranged
from 2000 to 12,500 ppm for B. subtilis and from 50,000 to 100,000 ppm for E. coli. The
antimicrobial activity of Ta-doped ZnO NPs against Staphylococcus aureus, Pseudomonas
aeruginosa, E. coli, and B. subtilis has been studied, and the findings indicate that adding Ta5+

ions to ZnO improves the bacteriostasis impact of ZnO on bacteria in the dark [29]. ZnO
nanoparticle powders and suspensions demonstrated antibacterial efficacy against E. coli
and S. aureus. It is highly active against S. aureus [31]. ZnO NPs showed prevention against
P. aeruginosa, E. coli, S. aureus, B. cereus, Salmonella typhimurium, P. aeruginosa, Enterococcus
faecalis, B. subtilis, Staphylococcus epidermidis, P. aeruginosa, Klebsiella pneumoniae, Candida
albicans, and many other bacteria [32]. The concentration of ZnO NPs has an effect on the
antibacterial activity [33]. Another study showed that ZnO NPs have unique characteristics
and a long life compared to organic disinfectants, which prompted their usage as an
antibacterial agent. As a consequence of their high surface area-to-volume ratio, they may
be used as new antibacterial agents. ZnO NPs have a high toxicity to organisms, making
them a good option for antimicrobial chemistry and antimicrobio-anatomy [34].
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Figure 1. (a) An impact of key ZnO NPs parameters on the antibacterial response and (b) correlation
between the several potential mechanisms of ZnO NPs antibacterial activity, such as ROS production,
Zn2+ release, internalization of ZnO NPs into bacteria, and electrostatic interactions [34].

The antibacterial activity of ZnO NPs may be related to their small size, which makes
them easily adhere to the cell wall and break down the bacterial membrane, killing the
cell. It has also been suggested that NPs exert their effects by releasing various levels of
H2O2 and reactive oxygen species (ROS) (Figure 1). Results showed that ZnO NPs were
more toxic to gram-positive bacteria than to gram-negative bacteria. This could be because
gram-positive bacteria have a lower antioxidant cellular capacity, rendering them more
susceptible to ROS. However, it has been suggested that the Zn2+ ions released from the
dissolution of ZnO NPs can cling to the bacterial membrane and prolong the growth phase
of the bacteria [34].

Antibacterial activity of ZnO quantum dots (practically spherical and 3–7 nm) against
E. coli was shown to be dependent on the surface-adsorbed anionic species. The antimicro-
bial potential of the acetate-adsorbed ZnO QDs was greater than that of the nitrate-adsorbed
ZnO quantum dots under light. ZnO QDs that were nitrate-adsorbed were less effective
in killing bacteria than those that were acetate-adsorbed. ZnO QDs may be able to trap
electrons through the adsorption of anions on their surface. The semiconductor nature of
ZnO QDs causes electron-hole pairs to form when they are exposed to light. They produce
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superoxide, H2O2, and hydroxyl radicals (by reactions I and II) that hinder the growth of
bacteria.

O2 +e− → O2
−; H+ + O2

− → •HO2; •HO2 + H+ +e− → H2O2 (1)

H+ + OH− → •OH; •OH+ •OH→ H2O2 (2)

Weaker nucleophile acetate can impact the functional groups of the cell membrane of
the bacteria in low light conditions, and this allows the stored electron to be released and
create superoxide or other ROS to kill the bacteria. As nitrate is not a strong nucleophile, it is
able to strongly trap the electron at the lattice defect sites because of its low nucleophilicity.
ZnO NPs were functionalized with 0, 1.5, 3, and 6% of polymeric fibers constructed
of recycled polyethylene terephthalate (r-PET) from postconsumer water bottles. These
fibers were created in order to test their effectiveness against germs and fungi [35]. In
both the light and the dark, ZnO-Ac QDs exerted a stronger inhibitory effect [36]. In
recent years, researchers have explored the impact of ZnO NPs in borosiloxane on E. coli
bacteria development and growth. E. coli’s growth and development were unaffected by
the presence of NPs in borosiloxane. The density of bacterial cultures cultivated on the
composite was lowered by 58, 90, and 96% when ZnO NPs were added to the polymer
at concentrations of 0.001, 0.010, and 0.10%, respectively. Bacteriostatic characteristics of
aqueous colloidal solution of ZnO NPs were tested in another set of tests. Each of the
concentrations investigated was 0.0001, 0.001, 0.01, and 0.10%. Nanoparticle doses of 0.001,
0.011, and 1.0% protected bacterial growth and development. The intensity of the bacterial
culture is decreased by 93%, with a concentration of 0.0001% [37,38]. The ZnO NPs’ ability
to inhibit bacterial growth is proportional to their average particle size. ZnO NPs are
proven to be more effective against bacterial activities at higher concentrations when their
size is reduced [39].

Table 1. Antimicrobial properties of ZnO NPs.

Product Size
(Nanometer) Species of Bacteria Mechanism Ref.

ZnO NPs

30 E. coli Damage the membrane’s integrity
and the production of ROS. [40]

8 S. aureus, E. coli, and B. subtilis

Due to the release of free
Zn2+ ions formed in the ZnO

suspension for significant growth
inhibition of bacteria.

[39]

10 L. Plantarum
By reaction between the surface of

ZnO and cell surface enzymes
of bacteria

[41]

12, 45 E. coli ZnO involves disrupting the
membrane of bacteria [42]

∼20
E. coli 11,634 H2O2 generation [43]

S. aureus, E. coli Release of Zn2+ ion [44]

∼80 V. cholera

Depolarization of the membrane
structure, enhanced

permeabilization, DNA damage,
and ROS production

[45]

40

S. pyogenes (MTCC1926),
S. mutans (MTCC497),

S. flexneri
(MTCC1457), V. cholerae

(MTCC3906), S. typhi
(MTCC1252)

Zn2+ release and ROS production [46]

90–100 enterotoxin E. coli (ETEC),
V. cholerae

adenylyl cyclase function inhibition,
cAMP levels are reduction [47]
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Table 1. Cont.

Product Size
(Nanometer) Species of Bacteria Mechanism Ref.

Ag-ZnO
nanocomposite 64 GFP E. coli, S. aureus Release of Ag+ and Zn2+ and

ROS production
[48]

Phβ-GBP-coated
ZnO NPs

(Phβ-GBP-
ZnO NPs)

20–50 P. vulgaris, S. aureus

Changes in the permeability of
bacterial cell membranes and a high

quantity of reactive oxygen
species (ROS)

[49]

ZnO nanocatalyst ∼18 E. coli, B. subtilis, S. typhimurium,
K. pneumonia

OH−, H2O2 generation,
ROS generation [50]

ZnO-CdO
nanocomposite 27 P. aeruginosa, E. coli, K. pneumonia,

P. vulgaris, S. aureus, B. spp.
Release Cd2+ and Zn2+ and generate

ROS (H2O2, OH−, and O2
2−)

[51]

ZnO QDs 4 C. metallidurans CH34, E. coli
MG1655 Released Zn2+ ion generated toxicity [52]

Kaoline-ZnO
nanocomposites

E. coli, S. aureus, P. aeruginosa,
E. faecalis

Zn2+ release, subsequent diffusion
of ions into cytoplasm

[53]

ZnO
nanostructures

(ZnO NSs)
70–80 S. aureus, P. vulgaris, K. pneumoniae,

S. typhimurium
Damage to cell membranes by
reactive oxygen species (ROS) [54]

ZnO-Ge NPs 20 E. faecalis, P. aeruginosa Bacterial cell death triggered by
cell penetration [55]

ZnO-SA
composites S. aureus, E. coli Reactive Oxygen Species production [56]

ZnO@GA
NPs 11.5 ± 4.4 S. aureus, E. coli

Due to GA’s strong affinity for the
bacterial cell membrane and the

increased lipophilicity that results
from its addition.

[57]

Due to the small particle size and the large surface area, ZnO NPs show enhanced
antimicrobial and antifungal activities [58]. ZnO NPs inhibited the growth of the plant
pathogen F. graminearum [59]. Antifungal activity that has been found for ZnO NPs was ef-
fectively evaluated against A. niger, P. expansum, A. alternata, B. cinerea, and F. oxysporum [60].
It also showed great effectiveness against E. salmonicolor, which is a coffee fungus [61],
B. cinerea [62] and P. expansum [63], and phytopathogenic fungi species; Fusarium oxysporum
f.sp. lycopersici is a fungal plant pathogen. It is a big pathogen in the tomato plant. It has a
violet-to-white color on most media but does not produce a pigment on King’s B medium.
It has been spread to tomato seeds by the hands of contaminated workers, such as F. solani,
and C. gloeosporioids [64]. Thus, the ZnO QDs have promising antifungal activities (Table 2).
Therefore, ZnO-based NPs are crucial for their applications as disinfectants and sterilizing
agents in the biomedical and healthcare industries. Moreover, ZnO NPs may be promising
for inhibiting fungi and pathogens in agriculture- and food-based industries.
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Table 2. Applications of ZnO QDs against Fungi.

Type of Device Type of Fungi Inhibited Reference

ZnO QDs

B. cinerea, P. expansum [64]

A. saloni, S. rolfii [65]

R. stolonifera, A. nidulans, A. flavus, T. harzianum [66]

E. salmonicolor [61]

A. fumigatus, C. albicans [67]

R. stolonifera, P. expansum [68]

C. krusei [69]

Zn/Mg Oxide QDs A. niger, Paraconiothyrium sp., P. oxalicum, P. maculans [70]

CS-LiA ZnO QDs C. albicans [71]

4. Photocatalytic Applications

Major contaminants in textile dyeing wastewater include unfixed dyes and inorganic
salts. Existing treatment techniques are ineffective and have limitations. Wastewater from
textile dyeing processes is poorly treated and immediately released into the environment.
Long-term dumping endangers the ecosystem [72]. The high photocatalytic activities of
ZnO NPs for various azo dyes were likewise extremely high, indicating a promising use
in organic pollution remediation [73]. Since they are non-toxic, low-cost, and much more
effective at absorbing over a wide portion of the solar spectrum, ZnO nanostructures
have been demonstrated to be promising photocatalyst candidates for application in pho-
todegradation. The bandgap energy of ZnO is also a significant element in influencing its
photocatalytic activity in use [74]. ZnO NPs degraded reactive orange (RO) and methy-
lene blue (MB) (Figure 2) dyes under blacklight irradiation [75]. It also degraded methyl
orange, methyl red, reactive blue 21 (RB-21) [76], and rhodamine B dye [77]. Moreover,
modified ZnO NPs showed outstanding photocatalytic effects in the decomposition of
methylene blue [78]. Manganese-doped ZnO NPs also exhibited excellent performance in
the decomposition of methylene blue in the presence of UV and visible light [79]. Ce-doped
ZnO NPs showed effective photocatalytic decomposition of harmful dyes, such as direct
red-23(DR-23) under UV irradiation [80], direct blue-86 (DB-86), methyl orange (MO), and
food black-2 (FB-2) dyes under ultraviolet and visible light irradiation [81]. ZnO-based
MOF photocatalyst, ZnO@MOF-46(Zn), has been investigated for methylene blue (MB)
degradation, which showed promising results in degrading more than 90% of the dyes
(Figure 2) [82]. In a photocatalytic system, the catalyst’s surface is where the photoinduced
atomic or molecular change or reaction occurs. When a photocatalyst is excited by photons
with energies that are equivalent to a level that is equal to or higher than its bandgap energy,
electrons absorb the energy from the photons. Hole formation in the valance band (VB),
which has the ability to produce hydroxide radicals, occurs when the energy level exceeds
the bandgap energy level. It is possible for a hole to start a dye molecule’s disintegration
process by reacting with the target molecule, which causes the loss of one of the molecule’s
electrons. ZnO granules are only occasionally used in applications that offer UV protection
due to the material’s photocatalytic characteristics. A photocatalyst ZnO produces reactive
free radicals when it is exposed to UV light. UV radiation energies, electrons in ZnO are
ultimately responsible for producing electron-hole pairs (e-h) [73]. The photocatalytic prop-
erties of ZnO produced by thermal evaporation and chemical deposition, in UV-induced
degradation of dyes, such as methyl orange, depended on the particle size, shape, and
production method of ZnO. Modifying the ZnO photocatalysts’ particle size, shape, and as
well as the manufacturing conditions and methodologies, may result in an improvement
in the overall effectiveness of the photocatalytic process [75]. Therefore, ZnO-based pho-
tocatalysts are highly efficient in the degradation of dyes in industrial effluent to protect
the environment.
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5. Biosensing Applications

Several ZnO NPs were used for sensing different biomolecules (Table 3). In elec-
trochemical biosensor development, nanostructures of ZnO were used. Analytes, such
as uric acid, cholesterol, dopamine, and DNA can all be distinguished using ZnO-based
electrochemical biosensors [83–86]. With a high isoelectric point, ZnO can be used in
electrochemical biosensors because it has high biocompatibility, a fast charge transfer prop-
erty, and an easy and more grounded attachment of diverse proteins on its surface. The
fluorescence and piezoelectric characteristics of ZnO make it a delicate optical and piezo-
electric biosensor. A consistent and repeatable method of developing ZnO nanostructures
directly on electrode surfaces is vital for biosensor innovation. To develop electrochemical
biosensors for the sensing of biologically relevant analytes, such as DNA, metabolites,
and cancer indicators, ZnO-based platforms can be employed as an immobilization ma-
trix [87]. Acetylcholinesterase [88], glucose [89], xanthine [90], DNA [91], lactate [92],
cholesterol [93–95], N-acyl homoserine lactone [96], uric acid [97], epinephrine [98], and
urea [99] have all been shown to be successfully sensed by ZnO NPs. ZnO NPs-modified
carbon paste electrode [100], ZnO NPs film [101], ZnO/chitosan-graft-poly(vinyl alcohol)
core-shell nanocomposite [102] etc. are utilized to detect glucose. When constructing a
hemoglobin biosensor, ZnO NPs–polypyrrole film has been used [103]. For the detec-
tion of acetylcholinesterase, ZnO nanocomposite ZnO NRs/NWs were produced and
utilized [104].
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Table 3. Applications of ZnO NPs in biosensing.

ZnO NPs Biological Compound
Sensing Ref.

ZnO NRs/TNs Acetylcholinesterase [104]

ZnO/chitosan-graft-poly(vinyl alcohol)core-shell nanocomposite Glucose [102]

ZnO/chitosan/MCNT/polyaniline composite film Xanthine [90]

Ionic liquid/ZnO/chitosan/gold electrode DNA [91]

ZnO NPs decorated multi-walled carbon nanotubes (MWCNT) Lactate [92]

MWCNT–ZnO NPs Cholesterol [93]

Cysteamine functionalized ZnO NPs N-Acyl Homoserine Lactone [96]

Enzyme electrode modified by ZnO NPs Uric Acid [97]

ZnO nanoparticle/1, 3-dipropylimidazolium bromide ionic
liquid-modified carbon paste electrode Epinephrine [98]

Nanostructured ZnO film for urea sensor. Urea [99]

In the development of enzymatic biosensors, ZnO NPs are employed. A new L-
lactate sensor has been created using an enzyme electrode customized with ZnO NPs and
MWCNT [105]. Through electrostatic interaction, ZnO can immobilize elements with low
isoelectric points [106,107]. As an example, MWCNT/ZnO nanofiber-based biosensors
can be used to detect malarial parasites [93]. ZnO thin films are also ideal for biosensing
systems that require extreme sensitivity while maintaining a low cost. These films were
manufactured using a flexographic printing process, which resulted in a nanotextured
surface. These surface nanostructures have excellent execution for increasing surface
functionalization [108]. ZnO nanorods were grown hydrothermally, and ZnO thin films
were deposited electrochemically. Furthermore, ZnO nanorods and thin films were also
investigated for their potential use in chemical and biological sensing applications. In
addition, a ZnO nanorod-based strontium ion sensor was created. ZnO nanorods showed
better response than ZnO thin films. ZnO nanorods are advantageous because their surface
area-to-volume ratio is much higher than that of ZnO thin films [109]. ZnO and nanowires
(NWs) have been studied for use as sensors. Interest in III-nitride nanowires, such as
GaN and AlN, increased their prospective applications. NWs’ high surface-to-volume
ratio should increase sensor sensitivity and selectivity. High-performance NW transis-
tors can be used to build a generic sensing device. Attaching a recognition group to the
nanowire’s surface enables specialized sensing. An amide link between the amine group
of APTES (3-Aminopropyl)triethoxysilane) and the carboxylic group in mercapto propi-
onic acid (MPA) allows MPA to be immobilized on ZnO surfaces. APTES and ODTMS
(octadecyltrimethoxysilane) monolayers can covalently functionalize hydroxylated GaN
and AlN surfaces. Schiff-base selectively immobilizes label-free oligonucleotides. Fluores-
cence microscopy allowed base synthesis of APTES-functionalized III-nitride films and
hybridization with a fluorescently tagged oligonucleotide [110]. cTnT (cardiac troponin
T)-spiked human serum was detected by a ZnO nanostructured biosensor. ZnO electrodes
and serum buffer charge distribution helped achieve excellent detection. Electrochem-
ical imbalances from cTnT binding and polarization were revealed by electrochemical
impedance spectroscopy and Mott–Schottky. Binding creates ZnO’s space charge layer
(SCL) and the electrolyte’s Helmholtz layer. Label-free and sensitive methods can detect
cTnT at 0.1 pg/mL. Multiplexed ZnO sensors detected cTnT and cTnI. Nonspecific and
cross-reactive antibodies reacted with BSA and cardiac isoforms (-cTnT and -cTnI) [111].

Further, copper-doped ZnO NPs, CuxZn1−xO (where x is 0, 0.01, 0.02, 0.03, or 0.04),
were utilized as a nonenzymatic electrochemical sensor to detect glucose [112]. Glucose
sensing may be performed using pure ZnO and Zn1−xCoxO (where x is 0.05, 0.10, or 0.15)
NPs. With other interfering chemicals, such as uric acid, ascorbic acid, l-dopa, and hydrogen
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peroxide, the sensor preferentially oxidizes glucose [113]. An electrode constructed of
glassy carbon (GC) that has been doped with Fe-doped ZnO nanoparticles (Fe@ZnO
NPs) exhibited good glucose sensing capability electrochemically [114]. ZnO NPs may
boost acetylcholinesterase activity and so increase the efficacy of enzyme electrodes [115].
ZnO NPs were evenly distributed in a chitosan matrix and utilized to build a hybrid
nanocomposite coating over indium tin oxide to quantify cholesterol in blood samples [95].
Cholesterol oxidase (ChOx) mounted on ZnO nanoporous thin films developed on gold
surfaces are sensitive to cholesterol detection [116]. Due to its high surface area, large
excitation binding energy, wide band, nontoxicity, chemical stability, good biocompatibility,
and high electron communication property, a nano-ZnO film was fabricated on indium tin
oxide ITO using the sol-gel technique. This film was used to immobilize cholesterol oxidase
(ChOx) [117]. Biosensors that are capable of identifying l-lactate and other biological
and chemical species could be developed by using gold nanoparticles coated on ZnO
nanorods as a suitable matrix. These biosensors well recognized the l-lactate [118]. The
MnAl2O4 ZnAl2O4 NM/GCE/Nafion combination is a potential sensor probe for the
specific diagnosis of 3-CP on a wide scale in healthcare domains [119]. Therefore, ZnO
NP-based biosensors are attractive for their promising applications.

6. Bioimaging Applications

ZnO NPs have demonstrated remarkable promise in bioimaging owing to their su-
perior biocompatibility and inexpensive cost. The UV-blue light emitted by ZnO NPs
fabricated using the gas evaporation process is intense. Therefore, it is compatible for
bio-conjugation and can be used for bioimaging [120]. The ZnO surface was capped with
covalently bound SiO2 and TiO2 layers with a 0.5 nm capping thickness, resulting in strong
PL emission in the visible region. There were strong bioimaging capabilities in plant cells.
Due to their greater quantum yields than the fluorescein standard material, uncapped ZnO
and ZnO with a TiO2 cap were suitable for bioimaging applications [121]. Enhanced yellow
emissive Gd-doped ZnO quantum dots, had less cytotoxicity and held promise for magnetic
resonance imaging (MRI) [122]. ZnO@Gd2O3 multimodal hybrid nanostructures might be
useful as contrast agents in T2-weighted MRI [123]. Doped ZnO exhibited improved CT
(computerized tomography) imaging and MRI in vitro for great tissue penetration depth
with high-resolution three-dimensional visual reconstruction due to its minimal toxicity
in vivo [124]. Electrochemical investigation of ZnO NPs revealed it to be a safe alterna-
tive contrast medium for use in CT scanning [125]. Cu-doped ZnO NPs have the ability
to be employed in positron emission tomography (PET) imaging studies of cancer [126].
Using silica-coated Ga(III)-doped ZnO: Yb3+, Tm3+ for near-infrared optical imaging is
possible due to its low in vivo toxicity and ability to induce photon avalanche processes
(OI) [127]. ZnO NPs are an innovative form of a viable material for fluorescence-based
imaging. In order for ZnO fluorescence to take place, the ZnO bandgap has to be activated
by UV light. Since ultraviolet light can only penetrate the skin a few millimeters deep,
it cannot be used for the majority of in vivo research. It was proposed that ZnO NPs
should be doped with magnetic elements in order to generate unique binary probes that
are capable of fluorescence; magnetism would make it possible for MRI to detect tagged
tissues even when they are located deep inside the body. Recent research has resulted
in the development of Fe3O4@ZnO core-shell nanoparticles with the goal of transferring
carcinoembryonic antigen (CEA) into dendritic cells (DCs) for the treatment of cancer
in mice via immunotherapy. These Fe3O4@ZnO core-shell nanoparticles were efficient
nanocarriers for antigen distribution, and they were also able to be identified by confocal
laser scanning microscopy (CLSM) in vitro and MRI in vivo [111]. The ZnO.Fe3O4@ZnO
Chitosan (CS) NPs have important biological applications. Fe3O4@ZnO CS NPs have been
the subject of significant research for their possible utility in drug delivery, photocatalysis,
magnetic separation, and other domains.

The anti-hepatocellular carcinoma effects of transferrin receptor-functionalized and
DOX-loaded Fe3O4@ZnO nanocomposites were investigated. After X-ray irradiation,
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Fe3O4@ZnO nanocomposites showed improved chemotherapeutic efficacy and radiosen-
sitizer characteristics [124]. Two-photon emission from ZnO NPs can be distinguished
from SHG (second harmonic generation) emission by linewidth, emission frequency rel-
ative to input light, and emission duration. Two-photon emission lasts longer than SHG
emission. If the SHG signal emits light above the ZnO bandgap, weak autofluorescence
may result. At 745 nm, when the pump laser’s two-photon energy doubles and exceeds
ZnO’s bandgap, two-photon fluorescence can be observed alongside SHG. Two-photon
fluorescence begins at 385 nm, near the ZnO band edge, and SHG at 372.5 nm. SHG was
studied using zebrafish blood and a Ti:Sapphire laser. The author performed all tests at
laser excitation wavelengths above 750 nm to rule out two-photon absorption. Blood from
ZnO-injected zebrafish demonstrated enhanced thrombocyte uptake [125]. ZnO quantum
dots (QDs) and nanocrystals are safer alternatives to other substances in this class. ZnO
quantum dots have a high efficiency of UV-blue emission. As a direct consequence of this,
ZnO nanocrystals represent an intriguing possibility for use in the area of bioimaging [126].
Thus, imaging modalities utilizing ZnO-based NPs are crucial for their promise in medicine
and healthcare.

7. Gas Sensing Using ZnO

When it comes to biosensors and chemical sensors, ZnO is a fascinating substance
because it can simultaneously detect changes in mass, field effect, and surface resistivity.
This semiconducting metal oxide has the potential to be a multisensing sensor platform.
ZnO NPs may be utilized as sensing systems for gas sensors because of their increased
sensitivity and long-term durability [128]. ZnO NPs produced by annealing zinc carbonate
hydroxide at 400 ◦C displayed outstanding NO2 sensing properties. It takes 30 s to react
to NO2 and another 120 s for it to make a recovery [129]. At ambient temperatures, ZnO
NPs produced from zinc hydroxide utilizing a trisodium citrate-assisted hydrothermal
method showed a response to 5 ppm NO2 gas. At 400 ◦C, it also demonstrated a strong
response to CO, ethanol, and acetaldehyde [130]. It has been demonstrated that ZnO is
a potential material for application in sensors. This semiconducting metal oxide offers
application as a substrate for integrated multisensing sensors since it can simultaneously
detect changes in field effect, surface resistivity, and mass. When ZnO NPs were exposed
to oxygen, they reacted significantly more strongly than the films did. Additionally, se-
lectivity tests were carried out against additional gases that can be found in the exhaust
of vehicles or chimneys [128]. ZnO nanostructures having a porous network structure
with oxygen vacancies, synthesized by electrospinning technique, resulted in a greater
and faster sensitivity to acetone vapor, as well as superior selectivity. The sensitivity and
selectivity of polyvinylpyrrolidone (PVP)-modified ZnO nanoparticle-based gas sensors
for trimethylamine (TMA) are quite remarkable. The sensor has a reaction time of 10 s and
a recovery time of 150 s [131]. Nanosized ZnO powder created using the sol-spray combus-
tion process has highly sensitive gas sensing characteristics to ethanol, and it responds and
recovers in 10 s and 40 s, respectively, for different concentrations [132]. Ag-doped ZnO
NPs and MoS2 nanosheets coated with ZnO NPs also display sensitivity to C2H5OH [133].
At the optimal operation temperature of 150 ◦C, In2O3 hollow microtubes decorated with
ZnO NPs produced from metal-organic frameworks (MOFs) demonstrated a significant
gain in ozone gas sensing ability [134]. The detection features of doped ZnO NPs for
n-butanol gas demonstrate a high-performance gas detecting capability at an operating
temperature of 300 ◦C, including strong gas response, excellent response/recovery time,
selectivity, stability, and repeatability [135]. RF magnetron sputtering has a low cost, can
generate uniform films across a large surface area, and is easy to manage. The sputtering
method can adjust the base pressure, substrate temperature, RF power, deposition duration,
and target-to-substrate distance. These parameters optimize gas sensing sensitivity. Low
sputtering power (100 W) and high substrate temperatures (300–400 ◦C) yield accurate
ZnO growth outcomes. Recent studies have focused on determining the room-temperature
gas reaction. So far, this operation cannot be performed at room temperature. This study
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investigated deposited films’ gas sensing characteristics at 205 ◦C, managed parameters to
speed up reaction and recovery. Researchers increased annealing temperature, adjusted
deposition time and substrate, added doping materials, and executed synthesis to improve
gas sensing characteristics [136]. The bandgaps and work functions of ZnO and Fe2O3 are
quite different from one another, despite the fact that both of these materials are n-type semi-
conductors. At the point where the Fe2O3 core and the ZnO shell meet, a heterojunction can
develop, which results in the formation of potential barriers. Since ZnO has a larger work
function, the electrons in its Fermi level flow into the lower Fermi level of Fe2O3, and this
process continues until the Fermi levels of both materials are equal. This process is repeated
multiple times until the work functions of ZnO and Fe2O3 are equivalent to one another.
After the requirement of equilibrium has been satisfied, an electron depletion layer begins
to form at the interface of the heterojunction. The transmission of electrons is extremely
important for the surface [137]. ZnO NPs demonstrate the potential for applications in gas
sensors. Furthermore, the ZnO NPs-based semiconducting metal oxide offers a platform
for integrated multisensing sensors.

8. Medicinal Applications of ZnO NPs

Lipid-coated ZnO NPs have potential and can be a novel photosensitizer for cancer
detection. The photogeneration of short-chain carbon-centered free radicals is induced by
lipid bilayer coating, indicating that surface chemistry is important for different kinds of
photogenerated free radicals. ZnO semiconductors convert UV energy into visible light.
This suggests bioimaging or a LED reporter. When ZnO creates ROS within cells, it can
destroy tumor cells. Too many ROS disturb the cell cycle and increase the risk of apoptosis
or autophagy. ROS can damage membranes, proteins, and DNA through lipid peroxida-
tion [138]. ZnO QDs nanoprobes in vitro may be utilized as a fluoroprobe alternative for
cancer cell targeting. An innovative nanoprobe based on ZnO for in vitro imaging as a
sensitive bioassay is promising. ZnO is a versatile material that may be used in a wide
variety of medicinal contexts thanks to the fact that it is nontoxic and biocompatible. ZnO
is an environmentally friendly compound that has potential use in cancer diagnostics and
live cell imaging. In this particular research endeavor, transferrin served as the tumor-
targeting ligand, and a ZnO nanocrystal bioconjugate that was coated in silane and had
an amino functional group was used for the ligand conjugation process. The capability of
the nanoprobes to specifically target breast cancer cells was tested [139]. Due to their bio-
compatibility, excellent selectivity, increased cytotoxicity, and ease of production, ZnO NPs
may be utilized as an anticancer therapy [140]. ZnO nanocomposites are likewise applied
in theranostics and drug delivery systems (Figure 3). Various ZnO NPs, for example, ZnO-
quercetin [141], Fe3O4@ZnO:Er3+,Yb3+@(β-CD) nanoparticles [142], ZnO@PNIPAM hybrid
NPs [143], ZnO-gated porMOF-AS1411 [144], biopolymer K-carrageenan wrapped ZnO
NPs [145], ZnO quantum dots-conjugated Au nanoparticle [146], ZnO-GO (graphene oxide)
nanocomposites [147], chitosan/ZnO bionanocomposite [148], chitosan-encapsulated ZnO
quantum dots [149], Fe3O4@ZnO@mSiO2 nanocarrier [150], ZnO-gated hollow mesoporous
silica [151], ZnO Quantum Dots-Doxorubicin NPs [152,153], ZnO-DOX@ZIF-8 Core-Shell
NPs [154] etc. are utilized for effective drug delivery for different ailments. For example,
β-CD-modified Fe3O4@ ZnO: Er3+ and Yb3+ nanocarriers are effective for antitumor drug
delivery and microwave-triggered drug release; a ZnO-gated porphyrinic metal organic
framework-based drug delivery system is efficient for targeted bimodal cancer therapy,
and biopolymer K-carrageenan-wrapped ZnO NPs are excellent drug delivery vehicles
for anti-MRSA (Methicillin-resistant Staphylococcus aureus) therapy [142,144,145]. Fur-
thermore, ZnO quantum dots have shown promise as a multifunctional anticancer agent,
and DOX-FA-ZnO NPs have been implicated in the effective treatment of breast cancer
(Figure 3) [155–157]. As a result, ZnO-based NPs are efficient as anticancer and antibacterial
drugs, as well as therapeutics for other diseases.



Nanomanufacturing 2022, 2 276Nanomanufacturing 2022, 2, FOR PEER REVIEW 12 
 

 

 
Figure 3. (a) Numerous antitumor effects of ZnO quantum dots as a multifunctional anticancer 
agent [156]. (b) Mechanism of action of DOX-FA-ZnO NPs in the treatment of breast cancer [157]. 
(Re-printed/adapted with permission from refs [156,157]). 

9. ZnO in Food Industry 
ZnO NPs have many prospective applications in food-based industries. ZnO NPs are 

potentially used in active packaging. Prior to the broad industrial use of nanoparticles in 
food packaging, it was essential to perform research on the regulatory concerns that must 
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durable, and more practical may also substantially reduce shipping costs and environ-
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Antimicrobial properties of a variety of metal and metal oxide NPs have been promising. 
Nanocomposite films composed of polystyrene, polyvinyl chloride, and polyvinylpyrrol-
idone have also been shown to bind to ZnO NPs and inactivate food pathogens [159]. 
Lactate in foods could be detected using an Au/NanoZnO/lactate dehydrogenase (LDH) 
bioelectrode biosensor [161]. The electrochemical biosensor based on ZnO nanowires has 
a lot of promise for detecting L-lactic acid in real samples [162]. ZnO NP has investigated 
several bacteria, the majority of which were foodborne pathogens. ZnO NP has been 
shown to be more effective than powder as an antibacterial agent in the food sector. The 
findings suggested that it might be employed as a food preservation agent. Salmonella spe-
cies are widely suspected to be the primary pathogens responsible for many different 
types of food poisoning. The presence of Salmonella species has been confirmed, causing 
widespread alarm in the food service industry. Staphylococcus bacteria are another major 
cause of food poisoning. In immunocompromised people, it is most often connected with 
nosocomial infections but can also spread from person to person in the community. 
Within the genus Staphylococcus, the species S. aureus is regarded as the most significant. 
They live on the skins of people and other animals, but they rarely spread to other organs 
and cause diseases there. The potential of ZnO NP as an antibacterial agent, the majority 
of which are foodborne pathogens, has been perspective. Further, micrographs of S. typhi-
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9. ZnO in Food Industry

ZnO NPs have many prospective applications in food-based industries. ZnO NPs are
potentially used in active packaging. Prior to the broad industrial use of nanoparticles in
food packaging, it was essential to perform research on the regulatory concerns that must
be addressed in light of the efficacy of NMs in protecting the chemical, physical, sensory,
and microbiological quality of food. Modern packaging solutions that are lighter, more
durable, and more practical may also substantially reduce shipping costs and environ-
mental impacts [158]. ZnO nanoparticles included in polystyrene film or other suitable
matrixes are suitable for several food packages and related uses [159]. ZnO NPs coated
on PVC (polyvinyl chloride) films are examples of metal or metal oxide nanoparticles
integrated in polymer nanocomposites, used as disinfectants, for food packaging, etc. [160].
Antimicrobial properties of a variety of metal and metal oxide NPs have been promising.
Nanocomposite films composed of polystyrene, polyvinyl chloride, and polyvinylpyrroli-
done have also been shown to bind to ZnO NPs and inactivate food pathogens [159].
Lactate in foods could be detected using an Au/NanoZnO/lactate dehydrogenase (LDH)
bioelectrode biosensor [161]. The electrochemical biosensor based on ZnO nanowires has a
lot of promise for detecting L-lactic acid in real samples [162]. ZnO NP has investigated
several bacteria, the majority of which were foodborne pathogens. ZnO NP has been
shown to be more effective than powder as an antibacterial agent in the food sector. The
findings suggested that it might be employed as a food preservation agent. Salmonella
species are widely suspected to be the primary pathogens responsible for many different
types of food poisoning. The presence of Salmonella species has been confirmed, causing
widespread alarm in the food service industry. Staphylococcus bacteria are another major
cause of food poisoning. In immunocompromised people, it is most often connected with
nosocomial infections but can also spread from person to person in the community. Within
the genus Staphylococcus, the species S. aureus is regarded as the most significant. They
live on the skins of people and other animals, but they rarely spread to other organs and
cause diseases there. The potential of ZnO NP as an antibacterial agent, the majority
of which are foodborne pathogens, has been perspective. Further, micrographs of S. ty-
phimurium and S. aureus cells treated with ZnO NP were used to examine the effect at the
cellular level [163]. Chitosan with ZnO NP-infused gallic acid films (CS-ZnO@gal) showed
extraordinary antibacterial capability and great antioxidant activity when compared to
pure chitosan, which may be explored for active food packaging applications [164]. ZnO
NPs loaded on starch-coated polyethylene film were efficiently examined for their biocidal
activity against model bacteria using killing kinetics and zone inhibition of bacterial growth.
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Nano ZnO could disinfect food dyes and water-grown bacterial cultures. Thus, nano ZnO
may be utilized to remove rapid green dye and bacterial toxins, such as E. coli and B. subtilis.
Histology and cytology laboratories utilize quick green dye despite accusations that it may
promote cancer, mutagenesis, and irritation. Furthermore, fast green dye is immunotoxic.
Multiple efforts have been undertaken to remove this dangerous watercolor.

B. subtilis can cause allergic reactions, is prevalent everywhere, is conveyed by wa-
ter, and can spread quickly. E. coli causes urethritis, gastroenteritis, and meningitis in
infants [165]. As a consequence, the nano ZnO material has the opportunities to be utilized
as a food packaging material to avoid food contamination due to micro-organisms. ZnO
nanorods produced using the hydrothermal method also showed antibacterial activity.
ZnO’s performance against E. coli and B. atrophaeus was effective. Both species were found
to have damaged cell membranes. Polyethylene-based films feature exceptional mechanical
strength, hydrophobicity, and moisture barrier characteristics, which are some of the most
crucial features of a high-quality packaging film and may be further improved by incorpo-
rating ZnO NPs [166]. Nanofiltration is a good technology for clarifying and concentrating
raw juices, in which the elements are separated depending on their molecular size. ZnO
NPs are often utilized in the construction of nanofibrous membranes or as filtration aids in
food processing. ZnO NPs have been observed to significantly enhance the quality of pear
juice by reducing cloudiness [167]. Thus, ZnO-based nano- and polymer composites have
shown promising applications in the food industry to improve food quality.

10. Applications of ZnO in Environmental Industry

Outstanding photocatalytic activity was demonstrated by ZnO NPs generated from
the microalgae chlorella in the destruction of the pollutant known as dibenzothiophene
(DBT) [168]. The degradation of the organic pollutants, methyl orange and methyl blue, by
ZnFe2O4/ZnO NPs has shown outstanding performance [169]. Metal oxide-based photocat-
alysts created from ZnO@In2O3 core-shell hollow tubes have the potential to speed up the
degradation of organic dyes as well as antibiotics in wastewater [170]. ZnO NPs are among
the semiconductor nanostructures that are investigated most frequently for environmental
uses. This is because they have high photocatalytic activity. They have the potential to break
down antimicrobial agents as well as organic contaminants found in water and air [171].
The ZnO nanocomposites have a high rate of textile effluent degradation. Nanocompos-
ites of ZnO/CdO [172], ZnO/Ag [173], CuO-ZnO [174], CuAu–ZnO–graphene [175], and
ZnO/zinc tin oxide nanocomposites (ZnO/ZTO) have demonstrated 50% photocatalytic
degradation efficiency and 77% COD removal from textile wastewater when exposed to
sunlight [176]. Photodegradation of rhodamine B (Figure 4), methylene blue, and neutral
red may be utilized to clean wastewater using artemia eggshell-ZnO nanocomposites [177].
Hybrid Au/ZnO nanostructures may be utilized in water treatment for heterogeneous
photocatalytic applications [178]. ZnO/Fe3O4-sepiolite nanostructured materials work
well as a photocatalyst in water for pollutant removal [179]. The application of nano-ZnO
as a remedy for water tainted with fast green dye has been shown to be effective [165]. ZnO
NPs were able to inhibit the growth of waterborne pathogens, such as E. coli, S. epidermidis,
Proteus, and K. pneumoniae, in municipal wastewater, demonstrating their enhanced an-
tibacterial activity [180]. Inorganic UV blockers are semiconductor oxides, such as ZnO,
TiO2, Al2O3, and SiO2. It has been established that nanosized titanium dioxide and ZnO
are superior to larger sizes in both their capacity to absorb and scatter ultraviolet light as
well as their efficacy in blocking UV radiation [181]. Coating a fabric with a nanoparticulate
layer or covering the surface of the fabric with three-dimensional surface structures are
important methods for making a fabric water-resistant. It has been demonstrated that
ZnO NPs are capable of achieving antistatic characteristics [182]. The employment of
NMs, particularly ZnO, displays higher photocatalytic activity in comparison to their bulk
counterparts [183]. Therefore, ZnO-based NPs are suitable candidates for their significant
applications in environmental industries.
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11. ZnO in Cosmetics and Toiletries Industry

Using excisions of human skin placed in diffusion cells, it was possible to explore the
skin absorption of ZnO NPs in a transparent sunscreen formulation. Only 0.03 percent of
the zinc given to the epidermis was able to permeate into the receptor fluid under the skin.
According to electron microscopy results, no ZnO NPs were discovered in the stratum
corneum or in the viable epidermis of the mice. In vivo testing with human volunteers
revealed that there was no substantial penetration of ZnO NPs into the skin. Skin surface
ZnO NPs were found after application to the skin for 4 h and after removal from the skin.
In skin folds and at the apex of hair follicle shafts, ZnO seemed to be restricted to a small
area and did not spread to surrounding cells. At 24 h, no NPs were seen on the skin’s
surface, which was most likely due to washing the object. There was no indication of
ZnO entering through the stratum corneum into the viable epidermis [184]. ZnO NPs are
used in sunscreen. Nanosized ZnO cleans polluted regions due to their photocatalytic
activity [185]. ZnO NPs/Zn2+ are employed in a variety of eye makeup/eye shadow
formulations [186]. ZnO NPs provide tremendous defense against sunburn caused by UV
radiation and are proved to be safe [187]. There are many ZnO NM-based cosmetic products
available in market, such as ‘Proctor and gamble’ manufacturers “Olay complete UV
protective moisture lotion”, ‘Boots’ manufacturers “Soltan facial sun defense cream”, ‘Image
skincare’ manufacturers “Solar defense organic moisturizer”, ‘Dermatone’ manufactures
“Moisturizing dermatone lips ‘n’ face protection crème”, ‘ColoreScience’ manufacturers
“Sunforgettable corrector colores SPF 20, sunforgettable SPF 30 brush range, wild to mild
skin bronzer” [185]. Studies showed that four cosmetic products (commercial sunscreens)
out of six contained ZnO NPs [188]. Senna alata methanol leaf extract ZnO NPs (SaZnO NPs)
showed promising antibacterial properties in cold cream [189]. Adhatoda vasica leaf extract
created with ZnO NPs showed promise in cold cream formulation. ZnO consumption is safe
for cosmetic production. This chemical inhibits the bacteria’s thiol peroxidases, glutathione
reductases, and dehydrogenases, which kills them. ZnO destroys fungal hyphae and
inhibits conidiophore growth. ZnO NPs are a cosmetic-friendly antioxidant. Its ability
to permeate the stratum corneum protects against free radicals and other skin-damaging
ROS. Particle size, degree of modification, and polydispersity of the mixture can further
affect efficiency in their use in the cosmetic industry. Encapsulating vitamins, unsaturated
fatty acids, and antioxidants in NPs makes them more stable and effective topically. ZnO
NPs could improve healthcare and beauty. Their flexibility and small size make them
promising cosmetic and dermatological tools. NPs will replace traditional preservatives
in many cutting-edge cosmetics. The ZnO NPs are long-lasting, prevent disease-causing
micro-organisms, and protect skin from UV rays [190]. In addition, ZnO NPs are also
used in mouthwash, toothpaste, and root canal flings [191]. Studies are also investigating
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their toxicity in humans. Another study found that mouthwash comprising Ag/ZnO,
10 milligrams of NPs, and 100 mL of base material has the best antibacterial activity against
S. mutans and is safe for cells; therefore, it may be used as an alternate mouthwash to
chlorhexidine 0.2 percent in plaque control following in vivo testing. Over-the-counter
mouthwashes can have cationic, anionic, or nonionic active components, all of which are
known to affect bacterial membrane function. Chlorhexidine, Cu2+, Zn2+, and Sn2+ are
some of the most commonly used cationic components. It is well established that metal ions
can affect bacterial membrane function and enzyme activity. It has been shown that zinc
chloride mouthwashes are antibacterially active against Streptococcus bacteria, and that
ZnO nanoparticles are active against E. coli. Therefore, it is clear that modified zinc salts
and their derivatives are effective at preventing plaque. ZnO NPs are commonly found
in sunscreen creams and act as both a nutritional supplement and a protective ingredient
against UVA and UVB rays. There is conclusive evidence that silver and zinc NPs kill
S. mutans bacteria while being almost entirely nontoxic to humans [192]. Therefore, ZnO
NPs could easily be employed in cosmetic fabrication, including soap, face wash, hand
wash, and many other cosmetic and toiletry industries. However, industries must evaluate
the toxicity profile of ZnO-based products implicated in various cosmetic products for daily
life use.

12. Applications of ZnO in Oil and Gas Industry

ZnO NPs with a high surface tension are able to lower the interfacial tension between
water and oil in the context of increased oil recovery. Nano-enhanced oil recovery has
attracted a lot of attention since modern NPs have substantial interfacial properties that can
be used to adjust capillary forces in favor of easily accessing oil. Since ZnO NPs can lower
interfacial tension, they have drawn attention as a possible tool for improving oil recovery.
Nanostructured ZnO has tremendous adsorption capacity, a low growth temperature,
excellent chemical stability, and high catalytic effectiveness, making it a promising material
for increased oil recovery (EOR). The increased surface area makes it suitable for use as
a catalytic agent. More specifically, this phenomenon would result in increased catalytic
activity. The material’s structure and synthesis process could be modified to alter its
chemical and physical properties [193]. ZnO NPs with sizes ranging from 14 to 25 nm are
effective scavengers for eliminating H2S and soluble sulfides from drilling fluids. Due to the
higher performance of NPs in the elimination of H2S, the usage of bulk ZnO will be reduced,
resulting in less pollution in the environment and less use of nature’s resources [194].
Microwave-synthesized ZnO NP claims to be a good candidate to be applied as an enhanced
oil recovery agent [195]. To improve the repeatability of the H2S gas sensor, thermal
evaporation and spray pyrolysis techniques were used to produce ZnO NPs coated with
chromium (III) oxide (Cr2O3). The ZnO nanoparticle improved the responsiveness at
high concentrations without altering the operating temperature, according to gas sensing
studies [196]. In-doped ZnO nanoparticles showed better gas sensitivity towards volatile
organic compounds (VOCs), acetone, benzene, ethyl alcohol, xylene, and toluene than
undoped ZnO NPs [197]. As sensing materials, reduced graphene oxide-ZnO NPs (ZnO-
rGO) hybrids were used to create an NO2 gas sensor. Most significantly, the sensor has
greater sensitivity, faster reaction time, and faster recovery time than a sensor based on rGO,
suggesting that adding ZnO NPs to the rGO matrix improved the sensing performance for
NO2 sensing at ambient temperatures [198]. Dopped ZnO NMs showed better sensitivity
towards VOCs, such as acetone, benzene, ethyl alcohol, xylene, and toluene, than undoped
ZnO NPs [199]. Oil and gas firms must understand their water consumption, the demands
and constraints of their operational sites, and the possibilities of investing in nanomaterial
research to preserve and boost future profitability. While using steam-assisted gravity
drainage (SAG), ZnO NPs may reduce viscosity and enhance heavy oil recovery while
lowering the ratio of water to oil (WCUT %). The catalytic chemical reaction of NPs
cracking carbon-sulfur bonds is assumed to be the root cause of lower viscosity. The lowest
nanoparticle concentration lowers viscosity the most (0.2–0.5 percent wt). The viscosity



Nanomanufacturing 2022, 2 280

reduction characteristics of ZnO NPs have a lower residual oil saturation (SOR) and WCUT
percent [200]. The gas hydrogen sulfide is very corrosive, poisonous, and hazardous.
During the drilling of gas and oil wells, it may seep into drilling fluid from rock formations.
To limit pollution, preserve drilling employees’ health, and avoid pipeline and equipment
corrosion, H2S should be eliminated from the mud. The following chemical process was
used to extract H2S from water-based drilling fluid using 14–25 nm ZnO with 44–56 m2 per
gram of specific surface area.

ZnO + H2S→ ZnS + H2O

In approximately 15 min, synthesized ZnO NPs can entirely remove H2S from water-
based drilling mud, but bulk ZnO may take up to 90 min to eliminate 2.5 percent H2S [194].
ZnO NPs have a lot of promise for reducing viscosity since they can change wettability
to water and wet through thick oil. However, after the addition of ZnO NPs, the surface
tension decreased, reducing capillary forces and raising the relative permeability of the
oil, which ultimately overpowered the gravitational forces to remove the oil. The initial
amount of oil in place, or OOIP, was zero because the carbonate core was oily and wet.
The results for sandstone core recovery ranged from 17.3 to 2 and 15% OOIP without NPs
then to 20.68, 17.57, and 36.2% OOIP with NPs, respectively [201]. Bacteria that degrade
petroleum are perhaps observed in Kuwait’s and Bahrain’s oil fields. Isolated bacteria
are a potential bioaugmentation of petroleum-contaminated Arabian Gulf soils as well
as biosurfactant manufacturing because of their numerous traits (crude oil breakdown
and biosurfactant production). The biodegradation process may be slowed down by
ZnO NPs. NPs have a significant influence on environmental micro-organisms’ ability to
develop and degrade. Some bacteria may be able to degrade crude oil without producing
biosurfactants [202]. Thus, ZnO NPs are highly promising due to their crucial applications
in the oil and gas industries, including viscosity reducers, inhibition of biodegradation,
removal of the poisonous gas H2S, and as gas sensors.

13. ZnO in Electronics Industry

Using ZnO NPs for light control, transparent and flexible C2H5OH gas sensors can
be created for wearable devices. The ability to detect dirty, toxic, and combustible gases is
a key characteristic of today’s wearable electronic devices. Semiconducting metal oxide
nanostructures, such as ZnO nanorods, are attractive possibilities for highly sensitive and
reliable gas sensors due to their high surface-to-volume ratio. Wearable electronics require
gas sensors that are flexible, transparent, and operable at room temperature, however,
conventional gas sensors do not meet these criteria. As a result, it is both an exciting
and hard task to create a new generation of gas sensors that are able to run at room tem-
perature while remaining flexible and transparent [203,204]. ZnO NPs can be utilized
in dye-sensitized solar cells [205]. Organic compounds incorporating ZnO NPs have a
significant potential for supercapacitors [206]. High-performance supercapacitor electrodes
created from graphene-ZnO (G-ZnO) nanocomposite hybrid materials are promising [207].
In comparison with the pure graphene electrode, the graphene/ZnO nanocomposite elec-
trodes showed enhanced electrochemical performance as a capacitor [208]. PVA/ZnO
nanocomposite exhibited a modification in the dielectric constant, thus, its capacitance is
widely used for device applications [209]. ZnO-loaded porous carbons (CMK-3 or CMK-8)
are produced as a new anode component for lithium-ion batteries (LIBs) and have superior
electrochemical characteristics than pure ZnO particles [210]. ZnO@NC@CNT showed
high potentiality as an anode in Li-ion batteries for its high specific capacity, excellent
rate capability, and cycling stability [211]. The capacity, rate performance, and cycling
behavior of ZnO nanorods/reduced graphene oxide (ZnO/RGO) composite as an anode for
sodium-ion batteries (SIBs) are significantly greater than those of pure ZnO substances [212].
Nanoparticle-based thin film transistors (TFT) display nonvolatile memory features, such
as a conductance ratio of more than 105, making them ideal for applications, such as data
storage. Due to the voltage-controlled trapping and release of positive charges at the rough
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semiconductor/dielectric interface, there is a memory effect. More than 6 months of shelf
life and useful endurance features are provided by the memory transistors operating in
ambient air [213]. ZnO ink has the potential to be used in flexible printed electronics,
which is a growing sector. Even at a relatively low processing temperature of 250 ◦C, the
ZnO TFTs (thin film transistors) created from the suggested ZnO mixture ink showed
considerably increased field effect mobility of 1.75 cm2 V−1 s−1 and an on/off ratio of
5.89 × 108. The impact of ZnO NPs’ incorporation into the thin film nanostructure on the
structural, chemical, and electrical features of ZnO TFTs was investigated using a variety
of structural studies [214]. ZnO NPs may also be applied to memory devices (Figure 5).
Memory devices developed employing ZnO NPs encapsulated in a polystyrene layer exhib-
ited promise for applications in write-once-read-many-times (WORM) memories [215,216].
ITO/PVP:ZnO/Al device constructed using ZnO has a higher on/off current ratio and
better memory performance than the ITO/PVP/Al device (Figure 5) [217]. Figure 5 dis-
plays a comparison between the energy level diagrams of the PVP-based device and that of
the ITO/PVP:ZnO/Al device and the mechanism of enhanced memory performance in
the ITO/PVP:ZnO/Al device. Additionally, Zn1−xCuxO particles exhibit great potential
to be employed in microwave semiconductor devices. Due to its remarkable ferroelectric,
photoelectric, piezoelectric, catalytic, and dielectric qualities, ZnO is a semiconductor mate-
rial that is both environmentally safe and highly desirable for usage in a wide variety of
microelectronics applications. Numerous studies have focused on ZnO NPs because of their
potential uses in the electronic field, such as luminescence, photodetection, gas sensors,
and metal oxide semiconductors (MOS). Scientists in the field of semiconductor-based
microelectronics have been interested in ZnO NPs due to their unique dielectric properties.
Efforts are currently being made to improve these characteristics so that the materials can be
used in microelectronics [218]. Accordingly, ZnO NPs are promising for the development
of next-generation smart wearables and memory devices.
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14. Conclusions

ZnO NMs have vast applications in various sectors. Industry uses ZnO NMs to ad-
vance the products that are delivered to customers. These ZnO NMs have great antibacterial
function, in degradation of organic pollutants and air pollutants, in gas sensing, and in
solar cells. Some of these NMs can purify both wastewater and groundwater. ZnO NPs
demonstrate free radical scavenging activity by efficiently donating electrons to highly
reactive free radicals, indicating their potential for application as antioxidants. Due to the
antioxidant and antibacterial properties of ZnO NPs, they are useful for tissue regeneration,
and as sterilizers and disinfectants. In the food industry, ZnO NPs are utilized profoundly
in packaging to avoid food contamination due to micro-organisms, inhibiting foodborne
pathogens, and may be used as food preservative agents. These NMs are also used in
biosensors, for glucose metabolism and homeostasis, accelerating insulin secretion, etc.
ZnO NPs are effective in biological fluorescent imaging and are efficient and safe contrast
agents in CT, PET, and MRI. ZnO-based NPs are prospective anticancer agents, novel an-
tibacterial drugs, drug delivery platforms, and theranostic agents. ZnO NPs are promising
for their applications in the cosmetic industry as skin care and UV-protectors, the oil and
gas industries as purifiers and antimicrobial agents, and the electronic industry as gas
sensors for wearable devices and memory devices. Finally, utilization of ZnO NPs has
shown great prospect and promise in a wide range of industrial applications.

15. Future Perspectives

Metal oxide NPs, such as ZnO, have gained popularity as a way to treat antibiotic-
resistant bacteria. ZnO NPs’ many features are helpful for treating fatal infections [219,220].
It has been suggested that the green method, which involves obtaining NPs from a plant
source rather than a chemical or physical one, is more cost-effective and less harmful to the
environment. Significant in vitro antioxidant and free radical scavenging capabilities were
also seen in ZnO NPs produced through the green technique employing plant extracts.
Furthermore, synthetic routes may be expanded to include ZnO NPs sourced from a
wide range of medicinal plants for biomedical applications [221–224]. As a result, more
innovative green synthetic approaches may be helpful for fabricating highly efficient ZnO
NPs for different industrial manufacturing applications.

The capacity of ZnO NPs to suppress microbial growth relies on their ability to form
reactive oxygen species, which can damage biomolecules, release cations, interact with
membranes, and deplete ATP. To enhance the effectiveness of novel ZnO-based NPs in
inhibiting microbial growth with a suitable toxicity profile and to prevent microbial resis-
tance, further studies are required [225,226]. ZnO NPs are involved in the production and
secretion of insulin, as well as glucose metabolism and homeostasis; further investigation
may be helpful in utilizing ZnO as a prospective insulin mimetic agent and enhanced me-
diator of glucose homeostasis. ZnO NPs are promising as anticancer agents, drug delivery
systems, and theranostic agents. Thus, the development of novel ZnO-based NPs will
further accelerate their use in medicine, tumor targeting, tumor imaging, and diagnosis.

Research on the use of nanostructures as agrochemicals (fertilizers or insecticides) to
foster plant growth and protect crops is ongoing using ZnO NPs, with good prospects
for ZnO NPs in agroeconomics. There has been a growing focus in recent funding and
planned research on creating environmentally friendly ZnO NMs for effective solutions.
Research on the use of ZnO in farming is quickly progressing. To ensure the safe use
of nanoscale agrochemicals, regulatory frameworks must be established, and for this to
happen, knowledge of how nanofertilizers function is crucial [227,228].

Applications of ZnO-based NPs are highly effective in electronic industries. Further
investigations may reveal more state-of-the-art electronic devices and high-performance
memory devices. Thus, the implications of ZnO NPs’ use in different industrial settings are
highly prospective and innovative as well.
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