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Abstract 

Artificial intelligence (AI) is undergoing a revolution thanks to the breakthroughs of machine learning algorithms 

in computer vision, speech recognition, natural language processing and generative modelling. Recent works on 

publicly available pharmaceutical data showed that AI methods are highly promising for Drug Target prediction. 

However, the quality of public data might be different than that of industry data due to different labs reporting 

measurements, different measurement techniques, fewer samples and less diverse and specialized assays. As part of a 

European funded project (ExCAPE), that brought together expertise from pharmaceutical industry, machine learning, 

and high-performance computing, we investigated how well machine learning models obtained from public data 

can be transferred to internal pharmaceutical industry data. Our results show that machine learning models trained 

on public data can indeed maintain their predictive power to a large degree when applied to industry data. Moreover, 

we observed that deep learning derived machine learning models outperformed comparable models, which were 

trained by other machine learning algorithms, when applied to internal pharmaceutical company datasets. To our 

knowledge, this is the first large-scale study evaluating the potential of machine learning and especially deep learning 

directly at the level of industry-scale settings and moreover investigating the transferability of publicly learned target 

prediction models towards industrial bioactivity prediction pipelines.
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Introduction
Artificial intelligence (AI) is evolving fast through algo-

rithmic advances in various application fields, including 

drug discovery [1–3]. Quantitative structure activity rela-

tionship (QSAR) studies constitute one of the key ele-

ments of early drug development. �e aim is to quantify 

the biological activities of small molecules as a function 

of their molecular structures. To this end, typical drug 

development programs adopt a trial and error strategy in 

which vast numbers of molecules are tested to measure 

their biological activity in the presence of a target protein. 

Over the years, large quantities of QSAR data have been 

generated. �e ChEMBL and PubChem databases [4, 5] 
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are regarded as the major resources for publicly available 

small molecule bioactivity data, containing more than 

15 and 239 million bioactivity data points, respectively. 

Despite the wealth of data, these databases remain dif-

ficult to use due to the heterogeneity of their data. It is 

important to mention that much of the existing QSAR 

data remains in-house in pharmaceutical companies.

�ere has been a long tradition in using such datasets 

to build predictive QSAR classification and regression 

models with the help of machine learning algorithms 

[6]. QSAR models typically either heavily rely on the 

molecular similarity principle assuming that molecules 

with similar structures have similar biological activities 

[7], or they are more feature-based, as e.g. the ChEMBL 

target prediction tool [8–10]. Based on this assumption, 

machine learning algorithms fit functions that are capa-

ble of mapping small molecule structures to their biologi-

cal activities, which in turn allows to make predictions on 

new molecules and to prioritize them. In the most basic 

form, QSAR models are built on a per-project basis with 

the objective of predicting the activity of new molecules 

for one single target protein, thus can also be considered 

as target prediction methods. �erefore, the modelling 

task consists of compiling one dataset of molecules with 

activities on one protein and of utilizing one or several 

so-called single-task algorithms to build predictive mod-

els. Some of the most popular methods are random forest 

[11] (RF) and support vector machine [12] (SVM) mod-

els. A comprehensive overview and review of drug target 

prediction methods is given by Sydow et al. [13].

With the rise of AI in the era of cheap computation, 

many novel machine learning algorithms have been 

applied to various application domains such as online 

customer recommendation [14], speech recognition 

[15], computer vision [16–19], natural language pro-

cessing [20] and generative modelling [21]. Drug target 

prediction also benefits from these newly developed 

deep learning techniques [22]. One attractive aspect of 

deep learning in drug discovery is its versatility. Deep 

learning algorithms offer the possibility of creating 

multitask models which particularly suit drug target 

prediction for a panel of target proteins [23–26]. �is 

technique has been notably successful in two machine 

learning challenges. Dahl et  al. (2014) [27] won the 

Merck Kaggle challenge by applying a multitask fully 

connected deep neural network and Mayr et  al. [28] 

won the Tox21 challenge by using a similar approach. 

However, despite the recent successes of deep learn-

ing in competitions, and several studies claiming the 

superiority of multitask deep learning, there is still the 

question, how well deep learning models perform in 

industrial settings with much more data compared to 

competitions and different data distributions compared 

to publicly available databases and benchmark data-

sets. We considered this to be the main research ques-

tion here and in order to gain insights, we first trained 

predictive machine learning models using diverse dif-

ferent algorithms on public data and then transferred 

these models to industrial data and analyzed the per-

formances of these models there.

Typically, the dataset used to train a target predic-

tion model represents its underlying chemical appli-

cability domain. It is therefore highly desirable to use a 

large-scale public dataset for the study following the idea 

that “the more data the better”. Fortunately, a few large-

scale datasets [29–32] have already been created and 

used to benchmark target prediction algorithms. Mayr 

et  al. [29] created a large-scale benchmark dataset for 

drug discovery (the LSC dataset), which they provided 

to the community for model development and method 

comparisons. �e LSC dataset is based on data from 

ChEMBL and considered each individual assay as a sep-

arate prediction task, which should allow a fair method 

comparison for predicting experimental measurements. 

Another larger dataset, that follows similar goals as the 

LSC dataset, is the ExCAPE-DB dataset [30], also created 

as part of the ExCAPE project. �e data of ExCAPE-DB 

contains information extracted from both the ChEMBL 

and the PubChem database, whereas the LSC dataset 

is based purely on ChEMBL. Another main difference 

of ExCAPE-DB to the LSC dataset is that in ExCAPE-

DB different assays were merged together if they were 

annotated to measure the effect on the same target. �is 

merging of different assays to the same targets may lead 

to increased noise (see e.g. [33]), but it allows to directly 

transfer models learned on public data to company inter-

nal pharma data by means of a commonly shared target. 

For the LSC dataset on the other hand, transferring the 

model would require an accurate mapping from public 

to private assays, which would demand overwhelming 

manual inspection, if it would be possible at all. A further 

aspect of merging different assays, is, that more training 

data is available per target and that some measurement 

noise might be averaged out.

For this study, we decided to use ExCAPE-DB, as it is 

one of the largest open source benchmark target predic-

tion datasets, and allows to evaluate target prediction 

models trained on public data on their ability to predict 

industrial QSAR and thus their potential usability in 

industrial drug discovery projects. To this end, we evalu-

ate the classification performance of the learned models 

on two industry-size datasets stemming from two dif-

ferent pharmaceutical companies. To be able to draw 

comparisons of the obtained prediction performances 

between public and private databases, we also compute 

prediction performances on ExCAPE-DB itself.
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Regarding the machine learning algorithms, we decided 

to compare deep learning with gradient boosting, which 

serves as a representative of ensemble learning based 

approaches such as RFs. We also compare to a Bayesian 

matrix factorization approach, that considers the prob-

lem of target prediction more from the point of view of 

a regression problem. We do not include a similarity-

based approach such as SVMs or k-nearest-neighbors, 

since this would have resulted in a high additional com-

putational effort due to the large numbers of compounds 

of many targets being in the range of tens and hundreds 

of thousands. It should be noted, that ensemble-based 

approaches as well as the matrix factorization approach 

are established machine learning methods in pharmaceu-

tical industry [34, 35].

Methods
Used public dataset: ExCAPE-ML

QSAR data from ExCAPE-DB was used to construct the 

ExCAPE machine learning dataset, which will be referred 

to as the ExCAPE-ML dataset. ExCAPE-DB is a collec-

tion of protein–ligand activity entries compiled from 

ChEMBL and PubChem containing around 70.8 mil-

lion data points covering about one million compounds 

and 1667 targets. �e collection includes entries from 

PubChem screens labeled as inactive. Data points from 

ChEMBL and PubChem were aggregated together with 

standardized compound structures, official target gene 

symbols and standardized, log-transformed activity val-

ues (pXC50 values). For classification tasks, we assigned 

the data points to two classes (i.e. inactive, active) accord-

ing to their pXC50 values. A compound-target record 

was defined to be active if it fulfilled the criterion that 

pXC50 ≥ 6 (activity ≤ 1  µM). �e dataset was trimmed 

down by only keeping targets with at least 300 QSAR 

data points, including at least 75 active compounds and 

75 inactive compounds. �is resulted in the ExCAPE-ML 

dataset, being composed of 955,386 compounds, cover-

ing 526 distinct target proteins for a total of 49,316,517 

QSAR data points (about 90% sparse) with an overall 

active to inactive ratio close to 1:100.

Roughly, there are two blocks of targets in ExCAPE-

ML: 338 targets are annotated with less than 10,000 com-

pounds and 188 targets are annotated with more than 

10,000 compounds out of which 155 targets are anno-

tated with between 100,000 and 468,789 compounds 

(Additional file  1: Fig.  S1). �e ratio of active to inac-

tive compounds is much higher for smaller targets (less 

than 100,000 compounds) than for larger targets. �e 

high imbalance level in those large datasets very likely 

reflects the presence of high-throughput screening data 

deposited into PubChem, where hit rates are typically 

low, whereas the low imbalance level in smaller datasets 

presumably corresponds to data obtained from lead opti-

mization projects in which the aim is often to optimize 

chemical series of active compounds and where many of 

the analogues would also be active. Overall, the full com-

pound-target matrix, i.e. the matrix relating compounds 

and targets by their activities, is very sparse with about 

90% of its elements missing.

�e 526 target proteins are associated with diverse 

target families. We further characterized the targets of 

ExCAPE-ML using information from ChEMBL, EC num-

bers [36] and UniProt [37]. Details on the dataset compo-

sition are available in Additional file 1: Notes S1.

Used external industrial test sets

We built external test sets by querying AstraZeneca and 

Janssen in-house dose–response screening databases 

with the 526 targets of ExCAPE-ML. AstraZeneca and 

Janssen dose–response repositories were queried for 

assays associated to targets of ExCAPE-ML (official gene 

symbols) and to the species present in ExCAPE-DB (i.e. 

rat, mouse and human). Duplicated compound-target 

pairs were aggregated using median pXC50 activity. We 

retrieved 3 million AstraZeneca data points documenting 

854,171 compounds and 20.6 million Janssen data points 

annotating 2,134,870 compounds. All compounds were 

standardized according to ExCAPE-DB’s standardization 

protocol. Compounds present in the ExCAPE-ML data-

set were discarded from the AstraZeneca and Janssen 

datasets. �is filtering step resulted in an AstraZeneca 

dataset of 808,699 molecules covering 352 targets out of 

the 526 targets of ExCAPE-ML. �e same step resulted in 

a Janssen dataset of 1,794,089 compounds covering 465 

targets with a total of 19 million data points. An overview 

about the compound distributions across the targets for 

the AstraZeneca dataset and the Janssen dataset is visual-

ized by Fig. 1.

For the discarded compounds from the AstraZeneca 

and the Janssen datasets (that overlap with ExCAPE-ML) 

we computed a contingency table (see Table  1) between 

ExCAPE-ML and the respective company target-com-

pound labels. �e correlation between these labels is high, 

with a Matthew’s correlation coefficient of 0.74 and 0.91 for 

AstraZeneca and Janssen datasets, respectively. About 90% 

of the target-compound labels are identical underpinning 

the idea that models trained on public data can indeed be 

used to inform drug discovery efforts in companies.

Descriptors

In this study, we used ECFP [38] descriptors (radius = 3, 

count values, unfolded) to represent compounds. In total, 

the molecular descriptor vectors contained 1,459,681 fea-

tures to describe the complete ExCAPE-ML dataset. �e 

descriptors were generated from isomeric SMILES by 
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using AMBIT toolkit [39] which was developed based on 

the CDK toolkit [40].

Prospective and retrospective model evaluation

As mentioned above, the main goal of this study was to 

evaluate the predictive classification performance of 

machine learning models, which were learned on pub-

licly available data, on industrial data. �is is referred 

to as prospective [41] model evaluation. Additionally, 

we evaluated the classification performance of machine 

learning models also on public data itself, which we refer 

to as retrospective model evaluation.

In contrast to prospective model evaluation, retro-

spective model evaluation requires a cross validation 

procedure. Since we also needed to determine hyperpa-

rameters for the considered machine learning algorithms 

and we wanted to avoid a hyperparameter selection bias 

(consider that the best hyperparameter combination 

might be dataset dependent [42]), which would arise 

when test set data leak into the hyperparameter choice, 

an additional cross validation step for hyperparameter 

selection as explained in Mayr et  al. [29] was needed. 

�is led to a nested cross validation procedure for retro-

spective model evaluation.

�e whole process of hyperparameter selection as 

well as training and testing of machine learning mod-

els for prospective and retrospective evaluation is sum-

marized in Fig. 2: �e first two stages (Stage 1, Stage 2a) 

Fig. 1 Compound distributions across the targets for the AstraZeneca and the Janssen dataset, respectively. In the lower panel, the y-axis shows 

the number of compounds for targets represented by the x-axis, where the targets are sorted according to the number of compounds. The 

horizontal dashed line represents the maximum number of compounds per target observed in the datasets. In the upper panel, a point represents 

the activity ratio of a target; targets are sorted the same way as in the lower panel. The curve in the upper panel is a smooth average

Table 1 Contingency tables ExCAPE-ML vs. company datasets

Contingency tables for labels of ExCAPE-ML compounds being available also in the company datasets. The values are relative frequencies of the number of target-

compound labels being characterized as active/inactive by ExCAPE-ML and the respective company dataset

AstraZeneca Janssen

Active Inactive Sum Active Inactive Sum

ExCAPE-ML Active 0.598 0.043 0.64 0.422 0.030 0.45

Inactive 0.077 0.283 0.36 0.013 0.535 0.55

Sum 0.67 0.33 1.00 0.44 0.56 1.00
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are the inner and outer loop components of a three-fold 

nested cross validation loop and are used to perform a 

retrospective performance evaluation [29, 43]. �e third 

stage (Stage 2b) is prospective model evaluation, which is 

done with respect to ground truth from the two industry 

datasets.

Evaluation of model performance

Our main prediction performance measure was the area 

under the receiver operating characteristic curve (ROC-

AUC) metrics, which reflects the model’s ability to rank 

correctly active compounds higher than inactive com-

pounds and which is an established performance measure 

for classification tasks. Additionally, we provide classifi-

cation performance estimates by the Cohen-kappa score 

[44, 45] (Kappa) and the F1 score [46] (harmonic mean of 

precision and recall). Since we did not optimize thresh-

olds for the respective models with respect to Kappa or 

F1, it is important to mention that our results should not 

be interpreted to provide a direct comparison of Kappa 

or F1 for the different methods. �e results serve more as 

side-information to have a baseline for classification per-

formance with respect to the native usage of the predic-

tion methods.

Hyperparameter selection

Our selection criterion for preferring one hyperparam-

eter setting over another was based on the ROC-AUC 

scores of the individual models trained with a certain 

hyperparameter.

In the inner loop of the previously mentioned three-

fold nested cross validation procedure, we trained a 

model on one data fold and finally estimated its ROC-

AUC value on a second fold while skipping the remaining 

third fold (see Fig.  2). �is process yielded in two per-

formance estimates per skipped fold, i.e. we obtained six 

performance estimates per hyperparameter (Perf X.Y in 

Fig. 2) in Stage 1. From there on, we followed two sepa-

rate scenarios: retrospective evaluation (Stage 2a) and 

prospective evaluation (Stage 2b).

For retrospective evaluation, we averaged each pair of 

performance estimates per skipped fold, hence resulting 

Fig. 2 Prospective and Retrospective Model Evaluation with three folds (A, B, C). White and colored circles in the Figure represent clusters of 

compounds, where the size of the circles indicates the cluster sizes (nr. of compounds in the clusters). Colors indicate folds, to which clusters are 

assigned to, where white circles indicate folds, which are not used for building or evaluating a particular model. In stage 1, the inner loop, one 

of the three folds serves as the training set, one serves as a test set and the third one is kept aside as a test set for Stage 2a, the outer loop. The 

respective inner folds used in Stage 1 are merged to training sets for Stage 2a, the retrospective model testing stage. All folds together are merged 

to the training set for obtaining full-scale models in Stage 2b, the prospective model testing stage. Stage 1 is used for hyperparameter selection of 

Stage 2a and hyperparameter selection of Stage 2b. For retrospective model testing (Stage 2a) the two respective performance values (Perf X.Y) 

are averaged in each outer loop iteration step and the hyperparameter setting with the best ROC-AUC value is used for training models in Stage 

2a, which finally gives performance values (Perf X) for retrospective model testing. For prospective model testing (Stage 2b) all six performance 

values (Perf X.Y) of the inner loop are averaged for hyperparameter selection. A final trained model on all data is then evaluated on AstraZeneca and 

Janssen industrial datasets
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in three estimates. �ese estimates were then used to 

select the hyperparameter settings employed in each of 

the three outer cross validation steps respectively (Stage 

2a). For prospective evaluation, we used the average per-

formance estimate obtained over all the six estimates 

to select the hyperparameter setting for training a final 

model to be applied on the industrial datasets (Stage 2b).

It is worthwhile to note that for gradient boosting, 

which works in a single task scenario, hyperparam-

eter settings were selected for each target individually, 

whereas this was not the case in the multitask scenario, 

i.e. deep learning and matrix factorization, for simplicity. 

�erefore, for the multitask case, we computed averages 

over the targets for hyperparameter selection.

De�nition of folds for retrospective model evaluation

In order to avoid overoptimistic performance estimation, 

i.e. avoid the compound series bias as described in Mayr 

et  al. [29], ExCAPE-ML was split into three folds based 

on a chemical structure clustering [47] which should 

help assigning molecules from the same chemical series 

either to the training or to the test set, but not to both 

sets (Additional file 1: Notes S2).

Used machine learning method implementations and their 

hyperparameters

For deep learning, we considered (standard) feed-for-

ward fully connected deep neural networks (DNNs). We 

did not take into account neural graph convolution-based 

or neural sequence-based deep learning approaches, 

since the necessary network architecture design (hyper-

parameter) searches may have become very costly from a 

computational point of view and the question which deep 

learning architectures work best was not the main focus 

of this study. �e hyperparameter search for our consid-

ered DNNs included up to 4 layers and up to 4096 hid-

den units per layer. We also applied the hyperparameter 

search on the overall architecture (ReLU [48, 49] archi-

tecture, SELU/SNN [50] architecture). �e whole list of 

searched hyperparameters is listed in Additional file  1: 

Table  S1. �e number of input features was reduced by 

an upstream feature selection process, such that only 

features that exceeded a minimum occurrence thresh-

old (more than 0.25% none-sparse entries) across the 

compounds in the respective training sets were kept. 

�is resulted in between about 2300 and 2600 features 

(dependent on the respective training set from which a 

model is obtained). We applied dropout for regulariza-

tion at the hidden units and used a sigmoid output layer 

matching the number of targets to predict (526 output 

nodes). �e objective for training the networks was the 

minimization of the summed cross-entropies across the 

different targets, where targets, for which no training 

data were available, have been excluded from the sum-

mation (for details see Additional file  1: Notes S3). �e 

networks were trained by a stochastic gradient descent 

(SGD) optimizer. For measuring classification perfor-

mance by Kappa and F1, we used a threshold of 0.5 on 

the sigmoid output layer.

For matrix factorization (MF) the algorithm Macau 

[51] was used. Macau was implemented by the SMURFF 

[52] software package. Hyperparameters were tuned via 

grid-search, by varying the values of the dimension of the 

latent space systematically, the precision of the observa-

tions, the precision of the compound features and the 

number of samples collected from Gibbs sampling (see 

Additional file 1: Table S1). In practice, the total number 

of Gibbs samples was always set to 2000 but we varied 

the number of burn-in iterations by steps of 100 between 

200 and 1800, thus effectively resulting in 17 different 

number-of-sample values ranging from 200 to 1800. For 

classification predictions, the predicted continuous activ-

ity values were considered as active if the predicted activ-

ity value was higher than or equal to 6 and inactive if it 

was lower; the final activity prediction was calculated by 

averaging across per-sample predictions.

Gradient Boosting models were built using XGBoost 

[53] (XGB). Hyperparameter tuning was performed by 

hyperparameter grid search exploring the value list in 

Additional file  1: Table  S1. For computing Kappa and 

F1, we used the classification thresholds provided by the 

used python package.

It should be mentioned, that for XGB the classifiers for 

compound activity were trained independently for each 

target, which is in contrast to the training of target classi-

fiers obtained by DNNs and MF.

For XGB and MF, the number of input features was 

trimmed down to a fixed set of 29,413 features by remov-

ing any feature with low variance (threshold variance is 

0.05, which was applied to non-zero entries only). �is set 

of features was used for all experiments with XGB and MF. 

It should be noted, that the number of input features for 

DNNs was smaller (although being selected from the same 

original set of features as the selected 29,413 features) in 

order to allow training more DNNs in parallel for hyperpa-

rameter search on a GPU, which would otherwise not have 

been possible because of GPU memory restrictions.

Results and discussion
Retrospective validation performance

In the retrospective part of this study, we estimated the 

predictive classification performance of machine learn-

ing methods on ExCAPE-ML itself by cross validation. 

Table 2 shows mean cross validation model performance 

values (ROC-AUC, Kappa, F1) together with their stand-

ard deviations for test folds of the outer loop from the 
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retrospective evaluation procedure over the individual 

targets. For the errors, thereby, first cross validation per-

formances per target are computed, and then standard 

deviations over the individual targets. Additionally, Fig. 3 

shows violin plots of the cross validation performances. 

Especially, ROC-AUC statistics suggests, that DNNs 

outperform XGB and MF with p-values of 8.01e-48 and 

1.80e-71 for the alternative hypothesis that DNNs have 

a better mean ROC-AUC than XGB or MF, respectively 

(paired Wilcoxon test).

�e retrospective analysis on ExCAPE-ML is in con-

cordance with other comparative studies [29], which 

indicate that deep learning is a proficient method for 

drug target prediction

Furthermore, all three considered methods have been 

shown to work on to a certain extent on previously 

unseen compound series. �is suggests the capability 

of the three methods to learn predictive models for the 

activities of compound series not present in the train-

ing set and in turn highlights that the knowledge learnt 

from ExCAPE-ML has the potential to be transferred 

to external datasets. In order to investigate this further, 

and to understand better how well models trained with 

ExCAPE-ML data can predict external data, we per-

formed a prospective evaluation by applying ExCAPE-

ML models, trained on all ExCAPE-ML data, to two 

external industrial datasets.

Table 2 Retrospective evaluation performance

Retrospective evaluation performance values (mean and standard deviation 

across targets) for the considered machine learning algorithms together with 

p-values of tests comparing the ROC-AUC of the respective algorithm in the 

table row with that of DNNs

Metric Null Hyp.:  
DNN AUC < row AUC 

Algorithm ROC-AUC Kappa F1 Wilcoxon 
test

Sign  
test

DNN 0.83 ± 0.11 0.39 ± 0.23 0.58 ± 0.30

XGB 0.81 ± 0.11 0.36 ± 0.21 0.56 ± 0.30 8.01e−48 7.90e−50

MF 0.78 ± 0.11 0.15 ± 0.20 0.45 ± 0.34 1.80e−71 1.14e−84

Fig. 3 ROC-AUC, Kappa and F1-score performances of DNN, XGB and MF models on the ExCAPE-ML dataset. Violin plots illustrate the distribution 

of individual target performances, boxplots represent the interquartile range, with median value in transparent and average as the horizontal black 

segment

Table 3 Prospective evaluation performance

Prospective evaluation performance values (mean and standard deviation 

across targets) for the considered machine learning algorithms

Algorithm Metric AstraZeneca Janssen

DNN ROC-AUC 0.70 ± 0.14 0.66 ± 0.16

Kappa 0.20 ± 0.19 0.15 ± 0.19

F1 0.42 ± 0.26 0.43 ± 0.24

XGB ROC-AUC 0.67 ± 0.15 0.64 ± 0.15

Kappa 0.13 ± 0.17 0.10 ± 0.17

F1 0.35 ± 0.25 0.39 ± 0.27

MF ROC-AUC 0.68 ± 0.15 0.64 ± 0.15

Kappa 0.12 ± 0.15 0.09 ± 0.14

F1 0.35 ± 0.29 0.38 ± 0.30
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Prospective validation performance

In the prospective part of this study, we assessed how 

well machine learning models trained on public data can 

be transferred to internal pharmaceutical industry data 

by applying them to two industrial, in-house datasets. 

�e classification performance statistics (ROC-AUC, 

Kappa, F1) for prospective validation of our three predic-

tion models on the AstraZeneca and Janssen datasets is 

given by Table 3 and further visualized by Fig. 4.

In general, ROC-AUC prediction performance on 

industrial datasets is moderate compared to the estima-

tions made in the retrospective analysis (13 to 17% lower 

for the AstraZeneca dataset and 18 to 21% lower for the 

Janssen dataset). Nevertheless, despite predicting unseen 

molecules, the predictions for at least 25% of the tar-

gets reached a ROC-AUC ≥ 0.7 with all three methods 

simultaneously (99 out of 352 targets for the AstraZen-

eca dataset and 116 out of 465 targets for the Janssen 

Fig. 4 ROC-AUC, Kappa and F1-score performances of DNN, XGB and MF models on AstraZeneca and Janssen datasets. Violin plots illustrate the 

distribution of individual target performances, boxplots represent the interquartile range, with median value in transparent and average as the 

horizontal black segment
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dataset), hence demonstrating that the public models are 

still valuable for prospective predictions.

A Wilcoxon test could reject the hypothesis that the 

mean ROC-AUC of DNNs is below 0.6 with a p-value 

of 7.4e−31 for the AstraZeneca dataset and a p-value of 

3.3e−17 for the Janssen dataset. For the other algorithms, 

we obtained also highly significant p-values, rejecting the 

hypothesis that prediction scores were random. Similarly, 

for targets in the AstraZeneca dataset and targets in the 

Janssen dataset, all methods exhibit Kappa scores, for 

which the null hypothesis, that Kappa is negative, could 

be rejected (e.g. for DNNs 7.2e−51 for the AstraZeneca 

dataset and 2.4e−51 for the Janssen dataset). �is is espe-

cially notable, since the classification thresholds were not 

explicitly optimized for obtaining good Kappa scores.

A reason for the performance decrease compared to 

ExCAPE-ML could be that ExCAPE-ML has a different 

compound activity distribution than the AstraZeneca and 

Janssen datasets, which can be seen, when Fig. 1 is com-

pared to Additional file 1: Fig. S1. On ExCAPE-ML there 

Table 4 Prospective Performance Comparison

p-values of comparing the respective algorithm prospective ROC-AUC 

evaluation performance in the table row with that of DNNs using two di�erent 

statistical tests

Null Hyp.: DNN AUC < row AUC 

Wilcoxon test Sign test

Algorithm AstraZeneca Janssen AstraZeneca Janssen

XGB 7.17e−15 2.62e−15 1.27e−14 6.84e−14

MF 4.01e−09 3.23e−11 2.98e−08 3.04e−11

Fig. 5 Target family breakdown for ExCAPE-ML, AstraZeneca and Janssen predictions. The numbers on the horizontal axis represent the number of 

targets corresponding to the target family and dataset. The vertical axis represents the AUC value
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is a large number of targets that presumably arise from 

high-throughput screening and where the activity ratio 

is close to zero. �is activity distribution property cannot 

be observed in the considered industrial datasets. Further, 

other, at least equally important, but harder quantifiable 

reasons for the performance decrease might be different 

assay technologies or a different chemical space of com-

pounds, which is not reflected by the public dataset and 

which makes accurate predictions difficult.

If we compare the considered machine learning meth-

ods to each other, a consistent result to the retrospec-

tive performance analysis is that DNNs outperform XGB 

and MF. �is is especially remarkable given the sizes of 

company-internal datasets and the differences in activity 

distributions. �e respective p-values of Wilcoxon signed 

rank tests and sign tests are given by Table  4. It should 

be mentioned that the method comparison was not the 

main focus here and since the absolute performance dif-

ferences were moderate, possibly further investigations 

will be needed, to better understand under which condi-

tions a method excels another one.

We further investigated whether there would be a 

dependency of the prediction performance on the indus-

trial datasets from the available training set size of the 

target in ExCAPE-ML. We found the Spearman correla-

tion between training set sizes and the DNN ROC-AUC 

values over the targets to be 0.18 and 0.09 for the Astra-

Zeneca and the Janssen dataset respectively. A corre-

lation test showed significance at a threshold of 0.01. 

Additional file 1: Fig. S3 underpins the result, that there 

might be a slight correlation, however it isn’t large.

Overall, we can conclude (1) that for a big number of 

targets successful model transfer is observed with a cer-

tain performance decrease and (2) Deep Learning out-

performs methods investigated in this classification study 

on industrial data in which aggregated ranking perfor-

mance metrics across several diverse targets were used as 

the main criterion.

Prediction performances of di�erent target families

In the final part of this study, we investigated perfor-

mances obtained for various types of biological activities. 

In order to do so, we analyzed the distribution of ROC-

AUC values across different protein target families (see 

Fig. 5). �e first main column of Fig. 5 shows the predic-

tion performances across target families for retrospective 

model evaluation. It can be observed, that machine learn-

ing algorithms seem to work well for predicting diverse 

types of biological activities. �is is a similar observation 

to that found for assays in the study of Mayr et al. [29]. 

�e second and third main columns of Fig. 5 show target 

family performances for the AstraZeneca and the Janssen 

Table 5 Target Family Performance Comparison

Number of targets won (w.) by DNNs from a target family, size of target family (sz.) and p-values of binomial tests for each target family class, with the null hypothesis 

that the probability of being the best method for a certain target is less than 1/3 for DNNs when compared to XGB and MF

p-values below the signi�cance threshold of 0.01 are in italics

ExCAPE-ML AstraZeneca Janssen

Target family Targets w./sz. p-value Target w./sz. p-value Targets w./sz. p-value

Oxidoreductase 25/37 2.17e−05 7/18 3.91e−01 16/32 3.77e−02

Transferase 141/158 1.58e−48 77/143 3.64e−07 60/153 7.38e−02

Hydrolase 63/92 6.24e−12 21/47 6.96e−02 36/77 9.91e−03

Lyase 4/8 2.59e−01 0/0 4/8 2.59e−01

Isomerase 4/6 1.00e−01 0/1 1.00e + 00 4/6 1.00e−01

GPCR Fam. A 76/94 3.78e−21 34/70 5.87e−03 66/93 1.39e−13

GPCR Fam. B 3/5 2.10e−01 0/5 1.00e + 00 2/5 5.39e-01

GPCR Fam. C 3/5 2.10e−01 1/5 8.68e-01 5/5 4.12e-03

Nuclear Hormone Receptor 14/20 8.79e−04 9/17 7.55e−02 13/19 1.87e−03

Reader 2/7 7.37e−01 1/1 3.33e−01 2/2 1.11e−01

Eraser 7/9 8.28e−03 5/7 4.53e-02 4/7 1.73e-01

Writer 3/3 3.70e−02 1/1 3.33e−01 0/1 1.00e + 00

Ligand-gated 3/6 3.20e−01 1/4 8.02e−01 2/6 6.49e−01

Voltage-gated 6/12 1.78e−01 3/9 6.23e−01 6/12 1.78e−01

Primary active 3/4 1.11e−01 0/2 1.00e + 00 2/4 4.07e−01

Electrochem. 7/10 1.97e−02 2/8 8.05e−01 3/8 5.32e−01

Overall 364/476 1.26e−82 162/338 2.02e−08 225/438 5.95e−15
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datasets respectively. Although we observe that there 

is no perfect correlation between family performances 

found on ExCAPE-ML and the respective performances 

on the AstraZeneca and Janssen datasets, model trans-

fer works similarly well across such diverse targets as 

membrane receptors, ion channels or enzymes catalyzing 

metabolic reactions.

Further, we investigated for each target, which of 

the three machine learning methods worked best and 

checked for each target family whether the winning prob-

ability of DNNs is less than a third or greater. �e p-value 

results are given in Table  5 together with the numbers 

of targets won by DNNs and the overall numbers of tar-

gets for each target family. In general, we conclude, that 

for large enough target families, we can reject the null 

hypothesis that the winning probability of DNNs is only a 

third on the public dataset as well as on the two industrial 

datasets, indicating that Deep Learning is advantageous 

for most of the target families. Noticeable exceptions 

from this conclusion seem to be the Transferase family 

of the Janssen dataset, where MF wins 65 targets or the 

Oxidoreductase family of the AstraZeneca dataset, where 

XGB is the best method for 9 targets.

Conclusions
In this study, we utilized public bioactivity data to derive 

predictive machine learning models for classification, 

with the goal to transfer them to industrial data and eval-

uate their performances there. In a retrospective analy-

sis we assessed the performance of our machine learning 

models on public data. We confirmed previous observa-

tions that multitask Deep Learning outperforms other 

state-of-the-art target prediction methods. In a prospec-

tive study, we directly transferred our learned models to 

industrial datasets and evaluated the predictive quality 

on those molecules. �ere our most important observa-

tion was, that particular models can still preserve good 

predictive quality with ROC-AUC performances, which 

were on average between about 0.65 and 0.70. Although 

the performance decreased, there are nevertheless a lot 

of useful models for specific targets with an AUC of at 

least 0.70 on both industrial datasets. Furthermore, suc-

cessful model transfer works across different target fami-

lies. We could finally observe that Deep Learning derived 

target prediction models are in this study superior to 

models derived by other machine learning algorithms 

also on industrial datasets.

We think the results of our study are interesting for 

both, drug discovery and machine learning. As men-

tioned, data distributions between public databases and 

industry databases might be different; it is therefore 

notable, that prediction performances transfer well to 

in-house data of companies. From a machine learning 

point of view, this study might serve as a proof-of-con-

cept for successful model transfer.
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