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Abstract. We study two standard multi-unit auction formats for allo-
cating multiple units of a single good to multi-demand bidders. The first
one is the Discriminatory Auction, which charges every winner his win-
ning bids. The second is the Uniform Price Auction, which determines a
uniform price to be paid per unit. Variants of both formats find appli-
cations ranging from the allocation of state bonds to investors, to online
sales over the internet. For these formats, we consider two bidding inter-
faces: (i) standard bidding, which is most prevalent in the scientific liter-
ature, and (ii) uniform bidding, which is more popular in practice. In this
work, we evaluate the economic inefficiency of both multi-unit auction
formats for both bidding interfaces, by means of upper and lower bounds
on the Price of Anarchy for pure Nash equilibria and mixed Bayes-Nash
equilibria. Our developments improve significantly upon bounds that
have been obtained recently for submodular valuation functions. Also, for
the first time, we consider bidders with subadditive valuation functions
under these auction formats. Our results signify near-efficiency of these
auctions, which provides further justification for their use in practice.

1 Introduction

We study standard multi-unit auction formats for allocating multiple units of a
single good to multi-demand bidders. Multi-unit auctions are one of the most
widespread and popular tools for selling identical units of a good with a single
auction process. In practice, they have been in use for a long time, one of their
most prominent applications being the auctions offered by the U.S. and U.K.
Treasuries for selling bonds to investors, see e.g., the U.S. treasury report [21].
In more recent years, they are also implemented by various online brokers [17].
In the literature, multi-unit auctions have been a subject of study ever since the
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Valuation Functions
Auction Format

(bidding: standard | uniform)
Discriminatory Auction Uniform Price Auction

Submodular e/(e− 1) 3.1462
Subadditive 2 | 2e/(e− 1) 4 | 6.2924

Table 1. Upper bounds on the (Bayesian) economic inefficiency of multi-unit auctions.

seminal work of Vickrey [22] (although the need for such a market enabler was
conceived even earlier, by Friedman, in [8]) and the success of these formats has
led to a resurgence of interest in auction design.

There are three simple Standard Multi-Unit Auction formats that have pre-
vailed and are being implemented; these are the Discriminatory Auction, the
Uniform Price Auction and the Vickrey Multi-Unit Auction. All three formats
share a common allocation rule and bidding interface and have seen extensive
study in auction theory [12, 15]. Each bidder under these formats is asked to issue
a sequence of non-increasing marginal bids, one for each additional unit. For an
auction of k units, the k highest marginal bids win, and each grants its issuing
bidder a single unit. The formats differ in the way that payments are determined
for the winning bidders. The Discriminatory Auction prescribes that each bid-
der pays the sum of his winning bids. The Uniform Price Auction charges the
lowest winning or highest losing marginal bid per allocated unit. The Vickrey
auction charges according to an instance of the Clarke payment rule (thus being
a generalization of the well known single-item Second-Price auction).

Except for the Vickrey auction, which is truthful and efficient, the others
suffer from a demand reduction effect [1], whereby bidders may have incentives
to understate their value, so as to receive less units at a better price. This effect
is amplified when bidders have non-submodular valuation functions, since the
bidding interface forces them to encode their value within a submodular bid vec-
tor. Even worse, in many practical occasions bidders are asked for a uniform bid
per unit together with an upper bound on the number of desired units. In such
a setting, each bidder is required to “compress” his valuation function into a
bid that scales linearly with the number of units. The mentioned allocation and
pricing rules apply also in this uniform bidding setting, thus yielding different
versions of Discriminatory and Uniform Price Auctions. Despite the volume of
research from the economics community [1, 16, 6, 3, 4] and the widespread popu-
larity of these auction formats, the first attempts of quantifying their economic
efficiency are only very recent [14, 19]. There has also been no study of these
auction formats for non-submodular valuations, as noted by Milgrom [15].

Our Contributions. We study the inefficiency of the Discriminatory Auction
and Uniform Price Auction under the standard and uniform bidding interfaces.
Our main results are improved inefficiency bounds for bidders with submodu-
lar valuation functions and new bounds for bidders with subadditive valuation



functions.4 The results are summarized in Table 1. Our bounds indicate that
these auctions are nearly efficient, which, paired with their simplicity, provides
further justification for their use in practice.

Our focus is on the inefficiency of Bayes-Nash equilibria; we refer the reader to
the full version of the paper [11] for a discussion of pure Nash equilibria. For sub-
modular valuation functions, we derive upper bounds of e

e−1 and 3.1462 < 2e
e−1

for the Discriminatory and the Uniform Price Auctions, respectively. These im-
prove upon the previously best known bounds of 2e

e−1 and 4e
e−1 [19]. For the

Uniform Price Auction, our bound is less than a factor 2 away from the known
lower bound of e

e−1 [14]. We also prove lower bounds of e
e−1 and 2 for the Dis-

criminatory Auction and Uniform Price Auction, with respect to the currently
known proof techniques [19, 7, 5, 2, 10]. As a consequence, unless the upper bound
of e

e−1 for the Discriminatory Auction is tight, its improvement requires the de-
velopment of novel tools; the same holds for reducing the Uniform Price Auction
upper bound below 2 (if e

e−1 from [14] is indeed worst-case). For subadditive

valuations, we obtain bounds of 2e
e−1 and 6.2924 < 4e

e−1 for Discriminatory and
Uniform Price Auctions respectively, independent of the bidding interface. Fur-
ther, for the standard bidding interface we are able to derive improved bounds
of 2 and 4, respectively, by adapting a recent technique from [7]. We also give
a lower bound of almost 2 for uniform pricing and subadditive valuations. In
Section 4 we discuss further applications of our results in connection with the
smoothness framework of [19]. In particular, some of our bounds carry over to
simultaneous and sequential compositions of such auctions (Table 2).

Related Work. The multi-unit auction formats that we examine here present
technical and conceptual resemblance to the Simultaneous Auctions format that
has received significant attention recently [7, 5, 2, 10, 19]. However, upper bounds
in this setting do not carry over to our format. Simultaneous auctions were first
studied by Christodoulou, Kovacs and Schapira [5]. The authors proposed that
each of a collection of distinct goods, with one unit available for each of them,
is sold in a distinct Second Price Auction, simultaneously and independently
of the other goods. Bidders in this setting may have combinatorial valuation
functions over the subsets of goods, but they are forced to bid separately for
each good. For bidders with fractionally subadditive valuation functions, they
proved a tight upper bound of 2 on the mixed Bayesian Price of Anarchy of the
Simultaneous Second Price Auction. Bhawalkar and Roughgarden [2] extended
the study of inefficiency for subadditive bidders and showed an upper bound of
O(logm) which was recently reduced to 4 by Feldman et al. [7]. For arbitrary
valuation functions, Fu, Kleinberg and Lavi [9] proved an upper bound of 2 on
the inefficiency of pure Nash equilibria, when they exist.

Hassidim et al. [10] studied Simultaneous First Price Auctions. They showed
that pure Nash equilibria in this format are always efficient, when they exist.
They proved constant upper bounds on the inefficiency of mixed Nash equilibria
for (fractionally) subadditive valuation functions and O(logm) and O(m) for

4 To the best of our knowledge, for subadditive valuation functions our bounds provide
the first quantification of the inefficiency of these auction formats.



the inefficiency of mixed Bayes-Nash equilibria for subadditive and arbitrary
valuation functions. Syrgkanis showed in [20] that this format has Bayesian Price
of Anarchy e

e−1 for fractionally subadditive valuation functions. Feldman et al. [7]
proved an upper bound of 2 for subadditive ones.

Recently, Syrgkanis and Tardos [19] and Roughgarden [18] independently
developed extensions of the smoothness technique for games of incomplete infor-
mation. In [19], these ideas are further developed for analyzing the inefficiency of
simultaneous and sequential compositions of simple auction mechanisms. They
demonstrate applications of their techniques on welfare analysis of standard
multi-unit auction formats and their compositions. For submodular valuation
functions, they prove inefficiency upper bounds of 2e

e−1 and 4e
e−1 for the Discrimi-

natory Auction and Uniform Price Auction, respectively. Here, we improve upon
these results, also regarding simultaneous and sequential compositions.

2 Definitions and Preliminaries

We consider auctioning k units of a single good to a set [n] = {1, ..., n} of n
bidders, indexed by i = 1, . . . , n. Every bidder i ∈ [n] has a non-negative non-
decreasing private valuation function vi : ({0} ∪ [k]) 7→ <+ over quantities of
units, where vi(0) = 0. We denote by v = (v1, . . . , vn) the valuation function
profile of bidders. We consider in particular (symmetric) submodular and subad-
ditive functions:

Definition 1. A valuation function f : ({0} ∪ [k]) 7→ <+ is called:
– submodular iff for every x < y, f(x)− f(x− 1) ≥ f(y)− f(y − 1).
– subadditive iff for every x, y, f(x+ y) ≤ f(x) + f(y).

The class of submodular functions is strictly contained in the class of subadditive
ones [13]. For any non-negative non-decreasing function f : ({0}∪ [k]) 7→ <+ and
any integers x, y ∈ [k], x < y, the following are known to hold: If f is submodular,
then f(x)/x ≥ f(y)/y. If f is subadditive, then f(x)/x ≥ f(y)/(x+ y).

Standard multi-unit auctions. The standard format, as described in auction
theory [12, 15], prescribes that each bidder i ∈ [n] submits a vector of k non-
negative non-increasing marginal bids bi = (bi(1), . . . , bi(k)) with bi(1) ≥ · · · ≥
bi(k). We will often refer to these simply as bids. In the uniform bidding format,
each bidder i submits only a single bid b̄i along with a quantity qi ≤ k, the
interpretation being that i is willing to pay at most b̄i per unit for up to qi units.

The allocation rule of standard multi-unit auctions grants the issuer of each
of the k highest (marginal) bids a distinct unit per winning bid. The pricing
rule differentiates the formats. Let xi(b) be the number of units won by bidder
i under profile b = (b1, . . . ,bn). We study the following two pricing rules:

(i) Discriminatory Pricing. Every bid-
der i pays for every unit a price equal
to his corresponding winning bid, i.e.,
the utility of i is

uvii (b) = vi (xi(b))−
∑xi(b)
j=1 bi(j).

(ii) Uniform Pricing. Every bid-
der i pays for every unit a price equal
to the highest losing bid p(b), i.e., the
utility of i is
uvii (b) = vi (xi(b))− xi(b)p(b).



For a bidding profile b, the produced allocation x(b) = (x1(b), x2(b), . . . , xn(b))
has a social welfare equal to the bidders’ total value: SW (v,b) =

∑n
i=1 vi(xi(b)).

The (pure) Price of Anarchy is the worst case ratio, over all pure Nash equilib-
rium profiles b, of the optimal social welfare over SW (v,b).

Incomplete Information. Under the incomplete information model of Harsa-
nyi, the valuation function vi of bidder i is drawn from a finite set Vi according
to a discrete probability distribution πi : Vi → [0, 1] (independently of the other
bidders); we will write vi ∼ πi. The actual drawn valuation function of every
bidder is private. A valuation profile v = (v1, . . . ,vn) ∈ V = ×i∈[n]Vi is drawn
from a publicly known distribution π : V → [0, 1], where π is the product distri-
bution of π1, . . . , πn, i.e., π(v) 7→

∏
i∈[n] πi(vi). Every bidder i knows his own

valuation function but does not know the valuation function vi′ drawn by any
other bidder i′ 6= i. Bidder i may only use his knowledge of π to estimate v−i.
Given the publicly known distribution π, the (possibly mixed) strategy of ev-
ery bidder is a function of his own valuation vi, denoted by Bi(vi). Bi maps a
valuation function vi ∈ Vi to a distribution Bi(vi) = Bvii , over all possible bid
vectors for i. In this case we will write bi ∼ Bvii , for any particular bid vector
bi drawn from this distribution. We also use the notation B

v−i

−i , to refer to the
vector of randomized strategies of bidders other than i, under profile v−i.

A Bayes-Nash equilibrium (BNE) is a strategy profile B = (B1, . . . , Bn) such
that for every bidder i and for every valuation vi, Bi(vi) maximizes the utility
of i in expectation, over the distribution of the other bidders’ valuations w−i
given vi and over the distribution of i’s own and the other bidders’ strategies,
B(vi,w−i), i.e., for every pure strategy ci of i:

Ew−i|vi, b∼B(vi,w−i) [uvii (b)] ≥ Ew−i|vi, b−i∼Bw−i [uvii (ci,b−i)]

where Ev and Ew−i|vi
denote expectation over the distributions π and π(·|vi).

Fix a valuation profile v ∈ V and consider a (mixed) bidding configuration
Bv under v. The Social Welfare SW (v,Bv) under Bv when the valuations are
v is defined as the expectation over the bidding profiles chosen by the bidders
from their randomized strategies, i.e., SW (v,Bv) = Eb∼Bv [

∑
i vi(xi(b))]. The

expected Social Welfare in Bayes-Nash equilibrium Bv is then Ev∼π[SW (v,Bv)].
The socially optimum assignment under valuation profile v ∈ V will be denoted
by xv. The expected optimum social welfare is then Ev[SW (v,xv)]. Under these
definitions, we will study the Bayesian Price of Anarchy, i.e., the worst case
ratio Ev[SW (v,xv)]/Ev[SW (v,Bv)] over all possible product distributions π
and Bayes-Nash equilibria B for π.5 Similarly to previous works, when analyzing
the Uniform Price Auction we assume no-overbidding, i.e., each bidder never
bids more than his value for every number of units; formally, for every s ∈ [k],∑
j∈[s] bi(j) ≤ vi(s). In our analysis, we will use βj(b) to refer to the j-th lowest

winning bid under profile b; thus β1(b) ≤ · · · ≤ βk(b).

5 As in previous works [5, 7], we ensure existence of Bayes-Nash equilibria in our auc-
tion formats by assuming that bidders have bounded and finite strategy spaces, e.g.,
derived through discretization. Our bounds on the auctions’ Bayesian inefficiency
hold for sufficiently fine discretizations (see also Appendix D of [7]).



Due to space limitations, we omit several proofs from this extended abstract;
all missing proofs can be found in the full version of the paper [11].

3 Bayes-Nash Inefficiency

Our main results concern the inefficiency of Bayes-Nash equilibria (we defer a
discussion of pure Nash equilibria to the full version [11]). We derive bounds on
the (mixed) Bayesian Price of Anarchy for the Discriminatory and the Uniform
Price Auctions with submodular and subadditive valuation functions. For the
latter class our bounds are the first results to appear in the literature of standard
multi-unit auctions (see also the commentary in [15, Chapter 7]).

Theorem 1. The Bayesian Price of Anarchy (under the standard or uniform
bidding format) is at most

(i) e
e−1 and 2e

e−1 for the Discriminatory Auction with submodular and subad-
ditive valuation functions, respectively,

(ii) |W−1(−1/e2)| ≈ 3.1462 < 2e
e−1 and 2|W−1(−1/e2)| ≈ 6.2924 < 4e

e−1 for the
Uniform Price Auction with submodular and subadditive valuation func-
tions, respectively, W−1 being the lower branch of the Lambert W function.

This theorem improves on the currently best known upper bounds of 2e
e−1 and

4e
e−1 for the Discriminatory Auction and the Uniform Price Auction, respectively,
with submodular valuation functions due to Syrgkanis and Tardos [19]. For the
Uniform Price Auction, this further reduces the gap from the known lower bound
of e

e−1 [14].

Syrgkanis and Tardos [19] obtained their bounds through an adaptation of
the smoothness framework for games with incomplete information ([18, 20]). The
bounds of Theorem 1 and some additional results can also be obtained through
this framework. We comment on this in more detail in Section 4.

For subadditive valuation functions and the standard bidding format, how-
ever, better bounds can be obtained by adapting a technique recently introduced
by Feldman et al. [7], which does not fall within the smoothness framework. We
were unable to derive these bounds via a smoothness argument and believe that
this is due to the additional flexibility provided by this technique.

Theorem 2. The Bayesian Price of Anarchy is at most 2 and 4 for the Discrim-
inatory Auction and the Uniform Price Auction, respectively, with subadditive
valuation functions under the standard bidding format.

3.1 Proof Template for Bayesian Price of Anarchy

In order to present all our bounds from Theorem 1 and Theorem 2 in a self-
contained and unified manner, we make use of a proof template, formalized in
Theorem 3, below. Adaptations of it have been used in previous works [14, 5, 2].



Theorem 3. Let V be a class of valuation functions. Suppose that for every
valuation profile v ∈ V n, for every bidder i ∈ [n], and for every distribution
P−i over non-overbidding profiles b−i, there is a bidding profile b′i such that the
following inequality holds for some λ > 0 and µ ≥ 0:

Eb−i∼P−i

[
uvi
i (b′i,b−i)

]
≥ λ · vi(xvi )− µ · Eb−i∼P−i

[ xv
i∑

j=1

βj(b−i)

]
. (1)

Then the Bayesian Price of Anarchy is at most
(i) max{1, µ}/λ for the Discriminatory Auction,

(ii) (µ+ 1)/λ for the Uniform Price Auction.

In this theorem we make no assumptions regarding the bidding interface;
proving a bound for the uniform bidding interface only requires that we exhibit
a uniform bidding strategy b′i for each bidder i and for any distribution P−i over
uniform non-overbidding profiles b−i. In Section 3.3 we show that our bound of
e
e−1 for the Discriminatory Auction is best possible, for the proof template of
Theorem 3; this rules out achievement of better bounds via the techniques in [19,
7].

3.2 Key Lemma and Proofs of Theorem 1 and Theorem 2

The following is our key lemma to prove Theorem 1. We point out that it ap-
plies to arbitrary valuation functions and to any multi-unit auction which is
discriminatory price dominated, i.e., the total payment Pi(b) of bidder i under
profile b satisfies Pi(b) ≤

∑
j∈[xi(b)]

bi(j). Note that every multi-unit auction
guaranteeing individual rationality must satisfy this condition.

Lemma 1 (Key Lemma). Let v be a valuation profile and suppose that the
pricing rule is discriminatory price dominated. Define τi = arg minj∈[xv

i ]
vi(j)/j

for every i ∈ [n]. Then for every bidder i ∈ [n] and every bidding profile b−i
there exists a randomized uniform bidding profile b′i such that for every α > 0

E[uvi
i (b′i,b−i)] ≥ α

(
1− 1

e1/α

)
xvi
vi(τi)

τi
− α

xv
i∑

j=1

βj(b−i). (2)

Proof. Define B = (1 − e−1/α) and let ci be the vector that is vi(τi)/τi on the
first xvi entries, and is 0 everywhere else. Let t be a random variable drawn from
[0, B] with probability density function f(t) = α/(1 − t). Define the random
deviation of bidder i as b′i = tci. Note that b′i is always a uniform bid vector.

Let k∗ be the number of items that bidder i would win in profile (Bci,b−i),
i.e., the number of items won by i, when i would deviate to bid vector Bci. For
j = 0, . . . , k∗, let γj refer to the infimum value in [0, B] such that bidder i would
win j items if he would deviate to bid vector γjci. Note that this definition is
equivalent to defining γj as the least value in [0, B] that satisfies γjvi(τi)/τi =
βj(b−i). For notational convenience, we define γk∗+1 = B.



Let xi(b
′
i,b−i) be the random variable that denotes the number of units

allocated to bidder i under (b′i,b−i). It always holds that xi(b
′
i,b−i) ≤ k∗ ≤ xvi ,

because bidder i bids b′i(j) = 0 for all j = xvi + 1, . . . , k. More precisely, we have
xi(b

′
i,b−i) = j if t ∈ (γj , γj+1] for j = 0, . . . , k∗. By assumption, the payment of

bidder i under profile (b′i,b−i) is at most txi(b
′
i,b−i)vi(τi)/τi. Also note that,

by definition of τi, it holds that vi(j) ≥ jvi(τi)/τi for j ≤ xvi . Using these two
facts, we can bound the expected utility of bidder i as follows:

E[uvi
i (b′i,b−i)] ≥

k∗∑
j=1

∫ γj+1

γj

(
vi(j)− tj

vi(τi)

τi

)
f(t)dt

≥
k∗∑
j=1

∫ γj+1

γj

j
vi(τi)

τi
(1− t)f(t)dt = α

k∗∑
j=1

j
vi(τi)

τi

∫ γj+1

γj

1dt

= α

k∗∑
j=1

j
vi(τi)

τi
(γj+1 − γj) = αBk∗

vi(τi)

τi
− α

k∗∑
j=1

γj
vi(τi)

τi

= αBk∗
vi(τi)

τi
− α

k∗∑
j=1

βj(b−i) ≥ αBxvi
vi(τi)

τi
− α

xv
i∑

j=1

βj(b−i).

The last inequality holds because Bvi(τi)/τi ≤ βj(b−i), for k∗ + 1 ≤ j ≤ xvi , by
the definition of k∗. The above derivation implies (2). ut

The deviation b′i defined in Lemma 1 is a distribution on uniform bidding
strategies. That is, the lemma applies to both the standard and the uniform
bidding format. Observe also that b′i satisfies the no-overbidding assumption.

Proof (of Theorem 1). First consider the case of submodular valuation functions.
In this case, τi = xvi for every i ∈ [n], as explained in Section 2. Using our Key
Lemma, we conclude that Theorem 3 holds for (λ, µ) = (α

(
1− e−1/α

)
, α). The

stated bounds are obtained by choosing α = 1 for the Discriminatory Auction
and α = −1/(W−1(−1/e2) + 2) ≈ 0.87 for the Uniform Price Auction.

Next consider the case of subadditive valuation functions. The following
lemma shows that subadditive valuation functions can be approximated by uni-
form ones, thereby losing at most a factor 2.

Lemma 2. If vi is subadditive, τi = arg minj∈[xv
i ]
vi(j)
j yields vi(τi)

τi
≥ 1

2
vi(x

v
i )

xv
i

.

By combining Lemma 2 with our Key Lemma, it follows that Theorem 3 holds
for (λ, µ) = (α2

(
1− e−1/α

)
, α). The bounds stated in Theorem 1 are obtained

by the same choices of α as for the submodular valuation functions. ut

Next, consider subadditive valuations under the standard bidding format. We
derive improved bounds of 2 and 4 for the Discriminatory and Uniform Price
Auction, respectively. To this end, we adapt an approach recently developed by
Feldman et al. [7] to establish an analog of our Key Lemma. The main idea is to
construct the bid b′i by using the distribution P−i on the profiles b−i. Theorem 2
then follows from Theorem 3 in combination with Lemma 3 below.



Lemma 3. Let V be the class of subadditive valuation functions. Then Theo-
rem 3 holds true with (λ, µ) = ( 1

2 , 1) for the Discriminatory and (λ, µ) = ( 1
2 , 1)

for the Uniform Price Auction (under the standard bidding format).

3.3 Lower Bounds

A lower bound of approximately e
e−1 for Uniform Price Auctions with submod-

ular bidders was given in [14]; our upper bound is less than a factor 2 away. For
subadditive valuation functions, we prove a lower bound of almost 2:

Theorem 4. The Price of Anarchy is at least 2k
k+1 for the Uniform Price Auc-

tion with subadditive valuations (under the uniform bidding interface).

No lower bound is known for the Discriminatory Auction, although Demand
Reduction (which is responsible for welfare loss in this format) has been observed
previously [12, 1]. In light of this, we prove here an impossibility result showing
that for the Discriminatory Auction no bound better than e

e−1 on the Price of
Anarchy can be achieved via the proof template given in Theorem 3. Similarly,
for the Uniform Price Auction we rule out that a bound better than 2 on the
Price of Anarchy can be derived through this template.

Theorem 5. There is a lower bound of e
e−1 and 2 on the Bayesian Price of

Anarchy for the Discriminatory Auction and the Uniform Price Auction, re-
spectively, with submodular valuation functions that can be derived through the
proof template given in Theorem 3.

Theorem 5 rules out the possibility of obtaining better bounds by means of
the smoothness framework of [19], or by means of any approach aiming at identi-
fying the b′i required by Theorem 3, including [7]. These are essentially the only
known techniques for obtaining upper bounds on the Bayesian Price of Anar-
chy. Thus, any improvement on our upper bound for the Discriminatory Auction
must use either specific properties of the (Bayes-Nash equilibrium) distribution
D, or a completely new approach altogether. The same holds for improvements
of the upper bound for the Uniform Price Auction below 2 – and towards the
only known lower bound of e

e−1 from [14] (should it be worst-case).

4 Smoothness and its Implications

We elaborate on the connections of our results to the smoothness framework
for auction mechanisms, which has very recently been developed by Syrgkanis
and Tardos [19]. We first review the smoothness definitions introduced in [19]
(adapted to our multi-unit auction setting). As introduced earlier, let Pi(b) refer
to the payment of bidder i under bidding profile b.



Valuation Functions
Discriminatory Auction Uniform Price Auction
Simultaneous Sequential Simultaneous/Sequential

Submodular e/(e− 1) 2e/(e− 1) 3.1462
Subadditive 2e/(e− 1) 4e/(e− 1) 6.2924

Table 2. Upper bounds on the Bayesian Price of Anarchy for compositions.

Definition 2 ([19]). A mechanism M is (λ, µ)-smooth for λ > 0 and µ ≥ 0 if
for any valuation profile v and for any bidding profile b there exists a randomized
bidding profile b′i = b′i(v,bi) for each i such that∑

i∈[n]

E[uvi
i (b′i,b−i)] ≥ λSW (v,xv)− µ

∑
i∈[n]

Pi(b).

In [19] it is shown that if a mechanism is (λ, µ)-smooth, then several re-
sults follow automatically. One such result concerns upper bounds on the Price
of Anarchy. Another result is that the smoothness property is retained under
simultaneous and sequential compositions. In these compositions there are m
mechanisms with separate allocation and payment rules. Every bidder specifies
for each mechanism a bidding profile. In the simultaneous composition, these
profiles are submitted simultaneously, while in the sequential composition, they
are submitted sequentially. A bidder expresses his valuation for the m-tuples
of outcomes of the mechanisms in a restricted way.6 We summarize the main
composition results of Syrgkanis and Tardos [19] in the theorem below.

Theorem 6 (Theorems 4.2, 4.3, 5.1, and 5.2 in [19]).
(i) If M is (λ, µ)-smooth, then the correlated (or mixed Bayesian) Price of

Anarchy of M is at most max{1, µ}/λ.
(ii) If M is a simultaneous (respectively, sequential) composition of m (λ, µ)-

smooth mechanisms, then M is (λ, µ)-smooth (resp., (λ, µ+ 1)-smooth).

By exploiting our Key Lemma, we can show that the Discriminatory Auction
is smooth. Theorem 7 in combination with Theorem 6 leads to the composition
results stated in Table 2 (these bounds are achieved for α = 1).

Theorem 7. The Discriminatory Auction is (λ, µ)-smooth (both in the standard
and uniform bidding format) with

(i) (λ, µ) = (α
(
1− e−1/α

)
, α) for submodular valuation functions, and

(ii) (λ, µ) = (α2
(
1− e−1/α

)
, α) for subadditive valuation functions.

For auction mechanisms where one needs to impose a no-overbidding assump-
tion, a different smoothness notion is introduced in [19]. Given a mechanismM,

6 More precisely, in the simultaneous composition it is assumed that the valuation
function of each bidder is fractionally subadditive across the m mechanisms (see [19]
for formal definitions). In the sequential composition, the valuation function of each
bidder is defined as the maximum of his valuations over these mechanisms.



define bidder i’s willingness-to-pay as the maximum payment he could ever pay
conditional to being allocated x units, i.e., Bi(bi, x) = maxb−i:xi(b)=x Pi(b).

Definition 3 ([19]). A mechanism M is weakly (λ, µ1, µ2)-smooth for λ > 0
and µ1, µ2 ≥ 0 if for any valuation profile v and for any bidding profile b there
exists a randomized bidding profile b′i = b′i(v,bi) for each bidder i such that∑

i∈[n]

E[uvi
i (b′i,b−i)] ≥ λSW (v,xv)− µ1

∑
i∈[n]

Pi(b)− µ2

∑
i∈[n]

Bi(bi, xi(b)).

Syrgkanis and Tardos [19] establish the following results.

Theorem 8 (Theorems 7.4, C.4 and C.5 in [19]).
(i) If M is (λ, µ1, µ2)-weakly smooth, then the correlated (or mixed Bayesian)

Price of Anarchy of M is at most (µ2 + max{1, µ1})/λ.
(ii) If M is a simultaneous (resp., sequential) composition of m (λ, µ1, µ2)-

weakly smooth mechanisms, then M is (λ, µ1, µ2)-weakly smooth (resp.,
(λ, µ1 + 1, µ2)-weakly smooth).

Using our Key Lemma, we can show that the Uniform Price Auction is weakly
smooth. As a consequence, we obtain the composition results stated in Table 2
(these bounds are achieved for α = −1/(W−1(−1/e2) + 2) ≈ 0.87).

Theorem 9. The Uniform Price Auction is weakly (λ, µ1, µ2)-smooth (both in
the standard and uniform bidding format) with

(i) (λ, µ1, µ2) = (α
(
1− e−1/α

)
, 0, α) for submodular valuation functions, and

(ii) (λ, µ1, µ2) = (α2
(
1− e−1/α

)
, 0, α) for subadditive valuation functions.

Some additional results on mechanisms with budgets (see [19]) can be inferred
from Theorems 7 and 9. We defer further details to the full version of the paper.

5 Conclusions

We derived inefficiency upper bounds in the incomplete information model for
the widely popular Discriminatory and Uniform Price Auctions, when bidders
have submodular or subadditive valuation functions. Notably, our bounds for
subadditive valuation functions already improve upon the ones that were known
for submodular bidders [14, 19]. Moreover, for each of the two formats and valu-
ation function classes we considered both the standard bidding interface [12, 15]
and a practically motivated uniform bidding interface.

To derive our results, we elaborated on several techniques from the recent lit-
erature on Simultaneous Auctions [19, 7, 5, 2]. By the recent developments of [19],
our bounds for submodular bidders yield improved inefficiency bounds for simul-
taneous and sequential compositions of the considered formats. In absence of an
indicative lower bound in the incomplete information model, we showed that our
upper bound of e

e−1 for the Discriminatory Auction with submodular valuation
functions is best possible, w.r.t. the currently known proof techniques. Addition-
ally, for the Uniform Price Auction (with submodular bidders), we showed that,
proving an upper bound of less than 2, also requires novel techniques; this poses
a particularly challenging problem, given the lower bound of e

e−1 from [14].
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