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INELASTIC BEHAVIOUR OF REINFORCED

CONCRETE MEMBERS WITH CYCLIC LOADING

D. C. Kent* and R, Park**

Summary

The results of an investigation into the
behaviour of reinforced concrete members sub-
Jected to cyclic loading in the inelastic
range are summarized. The investigation comm-
ences with studies of the Bauschinger effect
for cyclically stressed mild steel reinforce-
ment and the influence of rectangular steel
hooping on the stress-strain behaviour of
concrete, Using these derived Stress-strain
curves the moment.curvature relationships for
reinforced concrete members under cyclic load-
ing are studied theoretically and compared with
the results of a series of tests on reinforced
concrete beams under cyclic loading,

1. Introduction

The growing use of digital computers as a
design tool has resulted in very rapid advances
in the dynamic analyses of structures, However,
the study of the factors on which such analyses
are based; namely the behaviour of structural
components, has fallen behind. This is well
illustrated by the inaccurate elasto-plastic
idealization for moment-rotation behaviour under
cyclic loading which is generally used to pre-
dict the inelastic response of reinforced
concrete structures subjected to seismic ground
motions.

Most of the existing evidence concerning
the post~elastic behaviour of reinforced con-
crete members has been obtained from theoretical
work or fests in which the loads have been
applied monotonically until failure., Few
investigations have been conducted to determine
the behaviour of reinforced concrete members
under high intensity cyclic loading typical
of seismic motions. Examples of investigations
into the behaviour of reinforced concrete
member§ under cyclic loading are those of
,434(,;3-ramiﬁiy Agrawal, Tulin and Gerstle®, Burns and
Seiss”, Hanson and Conner” and Betero and
Bresler®., Theoretical mament—curvat%re plots
have been obtained by Agrawal, et al®, on the
basis of simplified stress-strain curves for
the steel {(including the Bauschinger effect)
and the ceoncrete, but many other investigators
have ignored the Bauschinger effect and the
ma jority of the work has been experimental.

This paper summarizes an investigation
which extends existing work. The investigation
commences with studies of the Bauschinger effect
for mild steel reinforcement and the stress-
strain behaviour of concrete confined by steel
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hoops. On the basis of the derived stress-
strain curves the moment-curvature relation-
ships for reinforced concrete members under
cyclic loading are studied theoretically and
compared with test results.

2. Stress-Strain Properties of Mild Steel

2.1 Stress of the Same Sign

The stress-strain relationship for mild
steel subjected to wmonotonic loading is well
known and easily defined. Fig. ! shows this
behaviour. Under repeated loading of the same
sign the unloading and reloading stress~strain
paths follow the initial elastic slope and when
the strain regains the value at which unloading
commenced the stress-strain curve continues as
if unloading had not occurred. Hence the
monotonic stress-strain curve forms an
envelope for repeated loading regardless of
whether unloading is initiated in the elasticy
plastic or strain-hardening regilon. However
this is not the case when the sign of the stress
is reversed.

2.2 Reversal of Stress

Little information is available regarding
the behaviour of reinforcing steel when sub-
jected to alternating tensile and compressive
stress. Under cyclic loading the stresse.strain
properties of steel become quite different from
those associated with purely tensile or com=
pressive stress. This is known as the
Bauschinger effect and results in a lowering of
the reversed yield stress. Once this phenomenon
has been initiated by a yield excursion,
linearity between stress and strain is lost over
much of the loading range. This steel behaviour
is strongly influenced by previous strain
history; time and temperature alsc have an
effect. Fig. 2 illustrates the properties of
the Bauschinger effect. It should be noted that
the unloading path of both signs follows the
initial elastic slopey; as dces the relcading
paths after which the stress-strain curve
resumes as if unloading had not occurred. This
is of importance because it means that in a
structure after an earthquake there will not be
incremental failure in the steel due to wrepeat-
ed live loading. The reversed stress at which
the Bauschinger effect commences; but below
which the Bauschinger effect does not occur,
is known as the transition stress.

In a preliminary study of the Bauschinger
effect Singh, Gerstle and Tulin? found that
the history of previous loading had an effect on
the slope of the curved part of the reversed
stress-strain curve. Nevertheless, from their
experiments they arrived at a simple expression
representing an average of the Tamily of



reversed loading curves. Their expression
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represents a curve which 1is extended backwards
to meetl an initial clastic slope at the trans-
ition stress as i1s shown in Fig. 3. Thie test

specimens on which equation (1) was based all

came from the same batch and hence variations

in the virgin properties of the steel were not
considered in their investigation.

2.3 Cyclic Loading Tests on Steel Specimens

To check the validity of eguation {1} for
a variety of mild steel bars and to examine
other possible mathematical representations for
the Bauschinger effect a number of New Zealand
rolled deformed bar Specimens of 2%, 3w, 2w 5nd
I diameter were tested®, The variables
studied were the virgin properties of the
material and the previous strain history. The
loading was applied statically but Singh, et
317, have reported that the effect of rate of
straining is not noticeable over the usual
range of test speeds, Hence the results should
be applicable to the strain rates associated
with seismic loading.

The test specimens were 5i% long between
the end plates. The central 25" length was
machined to 1% diameter for the 3% and %“
diameter bars and to % diameter for the " and
g™ diameter bars. The specimens were screwed
into the end plates and bolted into a specially
constructed test rig. The load was applied by
means of screw jacks as their use allowed strain
control when loading in the plastic range. The
strain was measured over a 2% gauge leungth.
Considerable care was taken to ensure that
eccentric loading did not become significant
during the Ilocading runs. However slight
eccentricity of loading may have been present
because the yield stresses measured were
consistently 3000 - 5000 p.s.i. lower than
those obtained from machined specimens of the
same bar tested in an Avery testing machine,
and the yield point was not so distinct. The
ultimate stresses by comparison were almost
identical. A variety of loading cycles was
applied to study a range of initial strains
and unlcading and reloading sequences from
tension and compression after the Bauschinger
effect had been initiated.

;

2.4 Further Expression for Bauschinger Effect

To determine a general formula for the
Loading {curved) part of the stress-strain
curve,; each cycle c¢f eleven test specimens was
isolated and subjected to a least squares
analvsis for a variety of possible mathematical
expressicons . Firstly, the Singh, et al,
eguation {1} was generalized by putting the
vield and ultimate siresses in the numeral
constants in general terms. However, unsatis-
factory correlation was obtained with previous
strain history; in particular the calculated
transition stress was too high, A variety of
octher mathematical formulations were also
tried and found to be unsati;factory.

Finally the Ramberg-0sgood function was
chosen. This function can be written in terms
of stress and strain as follows :
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wheregch and fC are the Ycharacteristic® strain
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and stress, respectively, and r is the Ramberg-
Osgood parameter. Fig. 4 shows a plot of
equation (2). The shape of the curve changes
with the value of r. Inspection shows f,p and

€., are related such that

ch s ch s o o (3)

Hence given Eg4 the function simplifies to an
equation involving two unknowns, r and f . A
disadvantage of equation (2), however, is that
an increase 1in strain will always result in an
increase in stress and the desirable boundary
conditions of dfg/de, = o and fg = fg, when

€Es = &g, cannot be complied with. Hence the
expression can only be expected to apply
accurately when €5 ¢ Egy-

The values for fon and r for each of the
loading cycles of the eleven test specimens
were determined using a least squares analysis.
It was found that the ratio f /f, was depend-
ent on the amount of plastic strain produced
in the previous cycle €;p51, the ratio fch/fy
becoming lower with increasing prior plastic
strain. With the help of a least squares
analysis the following equation for fgp was
fitted:

fch/fy
0,744 0.071
Tog( 1710006, ) 1000E T 0.241
A ipl {e ipl .}
-1 e e e (W)
Equation {4) gives fch/fy ¢ 1 when €351> 0.0015,
reducing to 0.45 whengipl = 0,022,

When the values for r given by equation
(4) were plotted against the various factors
only the cycle number N showed any correlation
with r. The cycles were numbered N = 0, 1,
2, ¢... where first yield occurs at a cycle
number N = 0 and N = 1 is the first post-yield
stress reversal. There was a gocod deal of
scatter in the plotted results but the odd-
numbered cycles showed lower values of r than
the even-numbered cycles, and r became smaller
as N increased. A least squares analysis gave
the following expressions for r:

For odd-numbered cycles:

_ L.b49 6.03
r = Tos( 14Ny ~ % + 0,297 e
e e -1
For even-numbered cycles:
r o= 2.20 0,469 + 3.0k C .. (6)

- -
10541 N} N
In the first eight cycles, the value for v
given by equations {5) and (6) was between 4
and 5 for N even and between 2% and 3% for N
odd.

It is to be noted that eqguations (2} to
(6) apply to the loading parts of the stress=



imental points
mens compared
51 . culated from
*ied Ramberg-@sgo@d function; equations
by and the Singh, et al, expression,
equation {1}. In all but two of the sleven
specimens the modified Ramherg-Usgood function
was more accurate than the Singh, et al,
expression. For cycles oflarge strain range
the Singh, et al, expression tends to be less
inaccurate but in cycles of lower strain
range the modified Ramberg-0sgood function is
cilearly better

3. Stress-3train Properties of Concrete

The properties of the compressive stress
Dlock for a flexural member depend on the
shape of the stress~strain curve for the
concrete.

o

3.1 Unconfined Concrete With Monctonic Loading

Probably the most widely accspted idealw
ization for the stress<strain curve of concrete
compre ssed in one direction is that due to
Hognestad” which consists of a second degree
parabola up to maximum stress and then a
linear falling branch, More recent work by
Hognestad, Hanson and McHenry9 determined the
compressive stress block parameters directly
from tests on scecentrically loaded specimens
which simulated the compression zone of a
flexural member and found a striking similarity
betwesn the stress-strain curves detsrmined
from their eccentrically ioaded specimens and
concentrically loaded cylinders. This is in
contrast with the tests of Sturman, Shah and
Winter!® which indicated that a strain gradient
caused an increase in maximum stress and an
increase in the strain at maximum stress, An
important property of concrete which has been
ocbserved in all tests is that at loads approcach-
ing the maximuw the concrete actually increases
in volume as it undergces progressive internal
Fracturing.

3.2 fonfined Concrete With Monotonic Loading

In practice concrste may be confined by
transverse reinforcement in the form of closely
spaced steel hoops or spirals. The concrate
becomes confined when at siresses approaching
the uniax? strength it commences to increase
in volume and bears out against the transverse
reinforcement which then applies a confining
reaction to the concrete. Rectangular hoops
de not confine the concrete as effectively as
circular spirals because the confining reaction
can only be applied to the covner regions of
the section since the bending resistance of the
transverse sta2el beiwsen the corners 1s
insufficient Lo restrain the sxpansion of the
concrete aleong the sides,as is illustrated in

Fig. 7. Hoy and Sozentl did not observe any
increase in concrete strength due to the
pressnce of sguare hoops, but other investi-
gators, for example 5t8ckl 1% and Betero and
Felippa 3 have observed a swmall increase.

Nevermhbl essy there 18 general agrsement that
rectangular hcops do produce a sxgnlflaan@
increase in the ductility of the concrzste core
as a whole.

On the basis of existing expsrimental

g a good repvre
stress-sirain curve for concrste in
The various regions are:

ending portion of

by a sscond degre
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stress ignores any small increase in
strength that wmay occur due to strain
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with a maximum st
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gradient
cr confinement and any small reduction thatl may
sccur in beams without any confinement. It is
commonly accepted that the strain at maximum
stress is 0,002, Hence for regicn 0A

g, 2 R
k e {E’“’} e e A7)
o G

where 50 = (5,002

Region AB: The falling branch of the curve
will be assumed to be linear and 1ts slope will
be specified by determining the sirain when the
stress is O_J_G& Examination of the test
results of a number of investigators shows that
for unconfined concrete the strain at Gané on
the falling branch for short-term loading rates
can be represented reasonably well by the
expression {with £° in pes.ic] 5=

3+ 0,002f]
Esou T T7 - 1000 .o . (8}

This relationship shows that high strength
conncretes havs considerably *OWGEE:QJ values,
i.e. thev are more brittle. -

For concrete confined by rectangular hoops
the slope of the falling branch 1s reduced.
One wvariable effecting the slope is the
volumetic ratis of confining steel

g(bﬂ 4 }AR
5

L o e e e (9]
P SRAR G

Another is the ratio of hoop spacing to minimum
core dimenslon, s/h“ because clearly the con-
finement of the concrete between the hoops
depends cn the arching action between the hoops

and if the SfDW ratioc is large a considerable
volume of concrets will spall away as is
illustrated in Fig. §. BSince the cores area of
confined concrete will be considered as that
area within the outside dimensions of the hoops
it is clear that a large /b“ ratio will lead
to a smaller mean Stress over the core area for
the same p® value. The hoop yield stress will
not be taken as a variable because there is no
guarantee that ithe hoops will reach that stress.

A measure of the additional strain at
.5¢¢ on the falling branch due to confinement
is given by

fson T Fsoc T Esou e . . {10}

Values for €, were found from equation {10}
using values For & scaled off previously
published expﬂrleﬂga stress.strain curves for
conaned concrete’ 13¢ 1% and the values for
€20, calculated from equation {8}. The

rélationship between the wvalues for £5pn SO
found and the corrvesponding p% and p#7s ratios
were next examined by a least sguares analysis.



There was considerable scatter of the test
results. The relationship finally chosen was:

- 3 _w/Db"
ES(}h F Pt = ooe o {11}

Equation {11} and Fig. 8 indicate that there is
a great improvement in the falling branch
behaviour for small contents of hoops, but that
the improvement becomes progressively less
significant as more hoops are added. Examin-
ation of the coordinates of line AB of Figs 8
shows Lhat the equation for AB may be written
as

r = N - - ® ° v

£ £ { z (e EO)} {12}

where Z = = 0;55 = Ce e s (13)
50h 50u o

Eo = 0.002 and ESOh and E50u are given by

equations {11} and (8}, respectively. It is to
be noted that Z decreases as the volumetric
ratio p® increases.

Region BC: It will be assumed that the concrete
can sustain a stress of 0.2f! at strains

grecater ithan €34.. This assumption has _been
made previously by Yamashiro and Seiss’-.

3.3 Modulus of Rupture for Monotonic Loading

A linear stress-strain curve for concrete
in tension {region 0D of Fig. 8} is assumed
with the same slope as the curve for compre-
ssion at zZero stress. The maximum tensile
stress will be taken as that proposed by
warwarukl® (with f& in p.s.i.)s

10001
C

fé:mm- p.S.i. « e & (1“/)
C

3.4 Cyclic and Repeated Loading of Concrete

Fig. 10 shows the effect of repeated load-
ing on concrete. The idealized repeated and
cyclic loading response illustrated in the
figure will be assumed, On unloading from
point A it is assumed that 75% of the previous
stress is lost without decrease in strain and
then a linear path of slope 0.25E; is followed
to point C. If the concrete has not cracked
it is5 capable of carrying tensile stress fto
point Gy, but if the concrete has previously
cracked or cracks form during this loading
stage the tensile strains increase without
any tensile stress developing. On reloading
the strain must regain the value at C before
compressive stress can be sustained again. If
reloading commences before unloading produces
zero compressive stress then reloading follows
one of the paths EF. It is to be noted that
the average slope of the assumed loop between
A and C is parallel to the initial tangent
modulus of the stress-~straln curve, It is
thought that more complicated idealization of
the locop would be unwarranted.

4. Theoretical Moment—Curvature Response for Cyclically
Loaded Reinforced Cencrete Sections

L.1 Basic Assumptions

To determine the moment-curvature charact-
eristics of reinforced concrete sections with

N

cyclic loading the following assumptions will
be made:

(i) The longitudinal strain in the steel and
concrete at the various levels is directly
proportional to distance from the neutral
axis.

(ii) The stress-strain curve for the steel
reinforcement under cyclic loading is as
given by the equations of Section 2.4.

{iii) The stress-strain characteristics for the
concrete under cyclic loading is as
assumed in Section 3.4 and by the
equations of Sections 3.2 and 3.3, but
that unconfined compressed concrote
carries no stress at strains greater than
0.004,

The first assumption is normally made in
reinforced concrete theory. The second
assumption means that the Bauschinger effect
will be taken into account, It should be noted
however that the possibility of buckling of the
compression steel is ignored. The third
assumption means that the cover concrete has the
same stress-strain curve as the confined core
at compressive strains of less than 0.004 but
at greater strains the cover concrete spalls
and does not carry stress. It is difficult to
determine accurately the spalling strain of the
cover concrete. The assumption may appear to
be conservative but it has been observed that
the presence of a high quantity of steel hoop-
ing tends to precipitate Spalling17. Also, it
is felt that the cover concrete would soon
become ineffective after several reversals of
high intensity loading. It should also be
noted that it is assumed that the proposed
stress-strain curve for confined concrete
applies regardless of the position of the
neutral axis within the hoops although this
curve was derived from tests in which all the
concrete was compressed. This is considered
reasonable because of the helpful confining
effect of the higher strain gradient and the
presence of the lowly stressed concrete
beneath the neutral axis.

4,2 Method of Solution

Computer programs were developed6 to
compute the bending moment and curvature for
cyclically loaded reinforced concrete T or
rectangular sections with or without constant
axial compression. The programs operate
within stipulated curvature cycles. The
approach adopted was to divide the concrete
section into a number of discrete elements.
Each element has the width of the section at
that level; if there are n elements each will
have depth h/n. Fig. 11 shows the arrangement
for a T section. The top and bottom steel

-reside in elements nd‘/h and nd/h, respect-

ively. If the strain in the top fibre is €.y
and the neutral axis depth is kd then the
average strain in element i is given as

kd .
ng— - 1 +0.35
e, = e - « o o {15)
imemom=

h

The stress in each concrete element or steel
bar is taken as that corresponding to the
average strain in the element. From the
stresses and the areas of the elements or bars
the forces on the section may be determined.



112

An iterative technigue is used to calcu-
late points on the moment-curvature curves,
The strain £, in the top concrete fibre is
adjusted by a fixed amount. For each value of
Ecms the neutral axis depth kd is estimated and
stresses in the elements computed for this
strain profile. The forces acting on the
elements are then calculated and the eguilib-
rium of Lthe forces checked using the reguire-
ment that

EC . T = P . e s [ 16)

where C and T are the compressive and tensile
forces acting on the elements,; respectively,
and P 13 the compressive load acting on the
section {zerc in the case of a beam). If the
equilibrium eqguation {16} is not satisfied the
estimated neutral axis position is incorrect
and is adjusted until equilibrium of forces is
achieved. Having obtained equilibrium the
bending moment and curvature are calculated
for the particular €cm value.

The discrete slement fechnique has the
advantage of copling with unusual sitress dis-
tributions and 1t is a simple matiter to alter
the element force for area reductions due to
spalling and to record which elements have
cracked. The technigue has the disadvantage
of being relatively sliow in that it is
necessary to store for each element the para-=
meters that record the progress along the
stress-strain path in order to calculate the
stress corresponding to a2 given strain.

Using the analysis ocutlined above,
approximately 60 minutes of IBM 360/LL computer
time was necessary to produce the moment-
curvature responses for 14 or 15 cycles using
an €4y increment of 0.0001 for ecach of the beam
sections described in Section 5.

5. Experimental Moment—Curvature Response

To assess the accuracy of the thecretical
approach of Secticn 4% a series of reinforced
concrete beams were tested under cyclic load-
ing. Each beam was supported over a span of
9 ft. between pins which allowed free rotation
and horizontal transiation at the supports.
A1l beams had a rectangular section p15% wide
x B" deep and were c¢ast with a 209 :
high x. 8% long x | wide column stub at mid-
span. Deformed steél bars with a yield stress
in the range 45,700 to 49,200 p.s.i. were used
as longitudinal reinforcement. Eachi beam COn=
tained two bars of %% diameter in the top {1.1%
of steel} and two bars of either 3" or £% or
En or 4% diameter in the bottom {(1.1% or 1.8%
or 2.5% or 3.5% of steel}); the cover to this
steel was 1%. he stirrups were of 2% diameter
plain mild steel bar at either 2% or L4® or 6%
spacing, £iving p* as either 2.3% or 1.2% or
0.77%. At the time of testing the concrete
cylinder sirength was in the rangs L6350 to

7490 pos.i.

caded statically at mid
ew jacks applied to the top

Each beam was 1
r
olumn stub., Screw jacks
i
1
n

span by wmeans of sc
and bottom of the o

rather than hydraulic jacks were used Lo obtain
deflection control in the plastic range.
Generally the lcocading consisted of severa
cycles to design load, several cycles in the
inelastic range, several cycles to design load
and then a cycle to failure. To allow strain
measuremsnts on the longitudinal bars, ¢

diameter by i% long steel lugs were welded on to
the longitudinal bars and protruded sideways out
through enlarged noles in the cover concrete.
This allowed longitudinal steel strain readings
to be taken by placing a Demec strain gauge
bstween the ends ¢f the lugs. TFig. 12 shows a
beam after testing.

The experimental curvature was calculated
from the measursd strains in the compression
and tension steel over a 2in. gauge length in
the beam adjacent to the column stub., Tigs, 13,
i and 15 show the experimental moment-curvature
characteristics measured at the critical section
of some of the test beams, Lines rather than
points illustrate the experimental curvatures in
the figures, reflecting the creep which cccurred
during each incremaent, In the figures positive
bending moment arises from downward load on the
beams and positive curvature corresponds to
tension on the bottom of the beam,

6. Discussion of Moment—Curvature Response

The theoretical moment-curvature responses
for the sections calculated between the experi-
mental curvature points at which moment
reversal took place are shown plotted in Figs,
13, 14 and 15,

Notable features of these curves are as
follows

{1} Over a large proportion of the theo-
retical curves the moment is carried by a
steel couple alone., This phenomenon is due to
yielding of the steel in tension causing cracks
in the tension zone which, because of plastic
elongation of the steel, do not close when the
moment is returned to zero. When the direction
of moment 13 changed that steel is put into
compression and must carry all the compressive
force because cracks now exist in the com-
pression zone. The steel must yield in com=
pression before these cracks close and enable
some of the compressive force to be carried by
the concrete. hus the concrete wmay not carry
compression over large portions of the moment-
curvature response to cyclic loading. This is
well i1llustrated in Figs. 13, 14 and 15.

{ii} The flexural stiffness of the section
is reduced when the moment is being carried by
steel couple alone but increases when the con-
crete cowmmences to carry compression. The
increase in stiffness due to closing of the
cracks in the compression zone is more sudden
in the theoretical curves than in the tests,
as is shown in Figs. 14 and 15. This is
probably because in practice clean cracks do
not occur. Particles of concrete which flake
of f during cracking and small relative shear
displacements along the cracks cause compre-
ssion to be transferred across the cracks
gradually as high spots come into contact rather
than suddenly as is implied in the theory.

{1ii} The curved nature c¢f the moment-Ccurv-
ature curves after the first yield excursion is
due to the Bauschinger effect of the steel.

The beam of Fig. 13 had equal top and bottom
steel and after the first yield excursion the
load is carried very largely by the steel
couple and therefore the shaps of the moment-
curvature loop 1s very much governed by the
shape of the stress.strain loop for the steel.

{iv} For the beam of Fig. 13 with equal



top and bhottom steel ©
carryving capacity in the
is due to the Ramberg.isgo
a hiigh thecretical steel
strains., For the bDeam of Fig.
relatively small top steel area and large hoop
spacing the theoretical moment is low in ths
final cycle to failure. One reason for ithis 1
that the lcad carried by the cover concrete is
ignored at compressive strains greater than
0.004 and evidently not all of this cor
last. I these beams the ratio of core wi
total width had the low value of 0.70. Fo
higher and more realistic values for this
the discrepancy in moment would become much
smaller.

(v} It is evident that both the theoretical
and experimental curves are far removed from the
classical slasto-.plastic shape. A better ideal-
ization for their shape would be a Ramberg-
Osgood shaped response illustrated inm Fig. 16 or
the degrading stiffness response suggested by
Clough'® shown in Fig. 17. The idealization of
Fig. 16 would bes especially applicable to beams
with approximately equal top and botiom steel
areas,and that of Fig. 17V would be more applic-

able to beams with different top and bottom
steel areas,
{vi} There are stages in the loading cyvcles

when open cracks exist down the full depth of
the member. One implication of this is that
the abiliity of the concrete to carry shear force
could be severely impaired and splitting along
the longitudinal bars may occur due to the
dowel [orces., The nowinal shear stress in the
test beams at ultimate load varied between 120
p.S.1. for the bDeams with % diameter tension
steel and 350 p.sS.i. for the beams with 3%
diameter tension stesel. Based on a yvield stress
of 45,000 p.S.i., the stirrups were capable of
carrying 150 p.s.i. of this shear stress when
spaced at &% centres and 459 p.s.i. when spaced
at 2% centres. The ALT code value for the shear
stress carried by the concrete, 2{fl, varied
between (40 and 170 p.s.i. for the beams. Thus
it could be expected that after cyclic loading
the beams carrying the highest shear force and
with hoops spaced at 6 centres may have shown
gigns of distress in shear. This was not the
case however, since all beams reached the uli-
imate flexural strength. However it 1is to be
noted that the beams carrying the highest shear
force {with &% diameter tensiocn steel and L
diameter compression steel) did not have open
cracks in the cowpression zone near ultimate
moment The worst case for shear transfer by
the concrete would have been in the beams with
equal top and bottom steel (4" diameter bars},
since those beams had open cracks in the
compression zZone near ultimate moment, but
because they had a smaller moment capacity they
were not subjected to such a high shear force.
The effect of cyclic loading on the shear
capacity of beams rvequires furither examination,

L))

B

(

7. Conclusions

{i} The stress-.strain properties of siesl
reinforcement after the first yvield excursion
cannot be accurately represented by an 2lastos
plastic model because of the Bauschinger effect.
The Hamberg-0sgood function gives a good
representation of the actual behaviour except
at remely gh sitrains., The constants in the
wer und to depend on ths strain in
ious e and the numbsr of previous
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ent of compressed concrets by
38 leads to an improvement in the
chiaracteristics of the stress-
for concrete which can be written

f the volumetric ratioc of hoops
of hoop spacing to core width.
behaviour of concrete can be

2 series of straight lines.

{iii} The moment-curvature response of rein-
forced concrete beams with cyclic loading can
be derived using the proposed stress-strain
curves for steel and concrete. The theoretical
curves compare reasonably well with experiment
and illustrate the variation in stiffness due
to the cpening and closing of cracks in the
compression zone of thie concrete and the Bausch-
inger effect of the steesl. For large portions
of the momente-curvature curve after first yield
open cracks exist in the compression wzmone and
the moment of resistance 15 provided by the
steel couple. DBuring this part of the cyclic
loading the main role of the concrete is to
prevent the steel from buckling and the capac-
ity of the concrete for carrving shear force
may be reduced,

{iv} A great deal of computer time is involved
in obtaining the theoretical moment-curvature
responses for cyclic loading. It is suggested
that a reasonably accurate idealization such as
that illustrated in ¥igs, 16 or 17 could be
used for the dynamic analysis of reinforced
concrete structures rather than the inaccurate
elasto-plastic idealization.
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Notation

A®
S

b'l

area of one leg of steel hoop

width of confined core measured to outside
of hoops

compressive force acting on concrete
element or steel bar

distance to centroid of tension steel
from extreme compression fibre

distance to centroid of compression steel
from extreme compression fibre

depth of confined core measured to out-
side of hoops

modulus of elasticity of concrete
stress

tangent
at zero

modulus of elasticity of steel
concrete stress

strength of a 6% diameter x 12% concrete
cylinder

20c

50c¢

50h

50u

characteristic stress of steel in

Csgood function

Ramberg-

steel stress

ultimate steel stress

modulus of rupture of concrete
yleld stress of steel

overall depth of section
element number

distance from neutral axis to extreme
compression fibre/d

number of elements
cycle number

area of bottom steel/bd
area of top steel/bd

volume of steel hoops/volume of concrete

. core
axial load

Ramberg-0sgood parameter
spacing of hoops

tensile force acting on concrete element
or steel bar

defined by equation (13)

strain in concrete

characteristic strain in steel of Ramberg-
Osgood function

concrete strain at extreme compression
fibre

Average strain at element i

plastic strain in steel produced in
previous cycle

concrete strain at maximum stress (0.002)

steel strain

steel strain at commencement of strain
hardening

steel strain at ultimate steel stress

strain at 0.2 of maximum stress on fall-
ing branch of stress-strain curve for
confined concrete

strain at 0.5 of maximum stress on fall-
ing branch of stress-strain curve for
confined concrete

Es0c = ®s50u

strain at 0.5 of maximum stress on fall-
ing branch of stress-strain curve for
unconfined concrete
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