
ar
X

iv
:s

ol
v-

in
t/9

70
30

08
v2

  3
0 

Ju
n 

19
97

Inelastic Collision and Switching of

Coupled Bright Solitons in Optical Fibers

R. Radhakrishnan1, M. Lakshmanan1,

and

J. Hietarinta2

1Centre for Nonlinear Dynamics, Department of Physics,

Bharathidasan University, Tiruchirapalli - 620 024, India

2Department of Physics, University of Turku

FIN-20014, Turku, Finland (email: hietarin@utu.fi)

February 9, 2008

Abstract

By constructing the general six-parameter bright two-soliton solution of

the integrable coupled nonlinear Schrödinger equation (Manakov model) us-

ing the Hirota method, we find that the solitons exhibit certain novel inelastic

collision properties, which have not been observed in any other (1+1) dimen-

sional soliton system so far. In particular, we identify the exciting possibility

of switching solitons between modes by changing the phase. However, the

standard elastic collision property of solitons is regained with specific choices

of parameters.
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Recent developments in the field of optical solitons in fibers have already revealed

the possibility of overcoming the limitations on the speed and distance of linear-

wave transmission systems [1, 2]. However, the interaction between optical solitons

influences directly the capacity and quality of communication [2, 3]. Since the

nonlinear Schrödinger (NLS) equation is used as a mathematical model for such

studies, considerable attention has been devoted to analyze the nature of collision

between NLS solitons [1, 2, 3, 4]. In more general physical situations [5], coupled NLS

equations are often used to describe the interaction among the modes in nonlinear

optics, as for example, in the case of birefringent [6] and other two-mode [7] fibers.

Here we consider the integrable coupled NLS equation of Manakov type [8],

iq1x + q1tt + 2µ
(

|q1|2 + |q2|2
)

q1 = 0,

iq2x + q2tt + 2µ
(

|q1|2 + |q2|2
)

q2 = 0,
(1)

where q1 and q2 are slowly varying envelopes of the two interacting optical modes,

the variables x and t are the normalized distance and time, and µ is a positive

parameter.

Exact soliton solutions have been derived [8, 9, 10, 11] for the system (1) with dif-

ferent procedures. In [9], using bright one-soliton solutions of the system (1), many

physical phenomena such as birefringence property, soliton trapping and daughter

wave (’shadow’) formation are studied. Further, as noted in [12], the Manakov model

(1) is important in describing the effects of averaged random birefringence on an or-

thogonally polarized pulse in a real fiber. In addition, by considering the analytic

solution of the system (1), conditions have been established for soliton switching and

energy coupling among the two modes in a nonlinear fiber [13]. Recently in [10], two

of the present authors (R.R and M.L) have derived bright and dark multi-soliton

solutions of the system (1). The interaction between bright and dark solitary waves

is studied in [14].

In this paper, we focus our attention on the system (1) to derive a more general

bright two-soliton solution than the ones that have been presented in the literature

[10] by using the Hirota method [15, 16]. The asymptotic behavior of this solution
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is studied further in order to explain the collision properties of coupled solitons in

the anomalous dispersion region.

It is often stated in the literature [8, 17] that the two-soliton solution is very

difficult to derive and too complicated to analyze. [Nevertheless Manakov [8] was

able to make an asymptotic analysis of the solitons.] In this paper we present for

the first time the completely general two-soliton solution to (1) in explicit form,

which can be readily used asymptotic analysis, numerical computations, etc. Our

explicit solution not only clarifies Manakov’s observation on the asymptotic behavior

but also helps to realize the exciting possibility of a novel type of inelastic collision

allowing switching between components via phase change; this in contrast to the

standard elastic collision usually observed in (1+1)-dimensional soliton systems.

[However, the standard elastic collision property of the solution is recovered when

restrictions are imposed on some of the free parameters.] The situation is reminiscent

of the dromion solutions in (2+1)-dimensional systems such as the Davey-Stewartson

equation [18, 19] where inelasticity has been observed [19, 20] in the scattering

process. The details of the present study are as follows.

Recently, a special form of the bright two-soliton solution for Eq.(1) with five

arbitrary complex parameters has been derived in [10], using the Hirota method

[15, 16]. The first step in this method is to transform the system (1) into the Hirota

bilinear form. For this purpose we use the transformations [10], q1 = g/f and

q2 = h/f, with f real, to obtain the bilinear form of (1) as

(

iDx + D2
t

)

g · f = 0,
(

iDx + D2
t

)

h · f = 0, D2
t f · f = 2µ (gg∗ + hh∗) . (2)

Here the operator D is defined by Dn
x a · b = (∂x1

− ∂x2
)a(x1)b(x2)|x=x1=x2

. The

one-soliton solution to (2) is given by f = αeη1 , h = βeη1 , g = 1 + eη1+η∗

1
+R, that is,

q1 =
αeη1

1 + eη1+η∗

1
+R

, q2 =
βeη1

1 + eη1+η∗

1
+R

, eR =
µ(|α|2 + |β|2)

(k1 + k∗
1)

2
(3)

where

ηj = kj (t + ikjx) + η
(0)
j . (4)
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The arbitrary complex parameters in (3) are k1 and any two of the set α, β, η
(0)
1 .

This solution can also be written in the more conventional form

qi =
k1R Ai e

iη1I

cosh(η1R + φ)
, (5)

where

φ =
1

2
R, A1 =

α

∆
, A2 =

β

∆
, ∆ =

√

µ(|α|2 + |β|2).

and we have introduced the subscripts R and I for the real and imaginary parts of

the quantity in question. (A positive root has been used to define e
1

2
R and hence φ

is real.) From this form it is easy to identify the amplitude A and the phase φ. We

also note that k1R and k1I determine the amplitude and velocity of solitons, and in

Manakov’s notation [8] Ai corresponds to the unit polarization vector of the soliton.

The two-soliton solution can be obtained by substituting into (2) the expansion

g = χg1 + χ3g3, h = χh1 + χ3h3, and f = 1 + χ2f2 + χ4f4, where χ is the formal

expansion parameter. The main problem is to choose the proper ansatz for g1, h1.

In [10] a bright two-soliton solution was derived in this way assuming the input

expression g1 = eη1 + eη2 , h1 = eε (eη1 + eη2). The resulting two-soliton solution

shows the standard elastic collision with a phase-shift.

However, for any integrable equation it must be possible to combine any pair of

one-soliton solutions into a two-soliton solution [16], and therefore it should also be

possible to start with g1 and h1 given by

g1 = α1e
η1 + α2e

η2 , h1 = β1e
η1 + β2e

η2 , (6)

and this way generate a more general bright two-soliton solution with six arbitrary

complex parameters k1, k2, α1, α2, β1, and β2 (Note that the parameters η
(0)
j in

(4) have been absorbed into αj and βj). This is indeed possible. By following the

equations (10-28) in [10], we obtain the most general expressions for the two optical

modes q1 and q2 as

q1 =
α1e

η1 + α2e
η2 + eη1+η∗

1
+η2+δ1 + eη1+η2+η∗

2
+δ2

1 + eη1+η∗

1
+R1 + eη1+η∗

2
+δ0 + eη∗

1
+η2+δ∗

0 + eη2+η∗

2
+R2 + eη1+η∗

1
+η2+η∗

2
+R3

,

(7)
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q2 =
β1e

η1 + β2e
η2 + eη1+η∗

1
+η2+δ′

1 + eη1+η2+η∗

2
+δ′

2

1 + eη1+η∗

1
+R1 + eη1+η∗

2
+δ0 + eη∗

1
+η2+δ∗

0 + eη2+η∗

2
+R2 + eη1+η∗

1
+η2+η∗

2
+R3

,

where [note that Ri are real]

eδ0 =
κ12

k1 + k∗
2

, eR1 =
κ11

k1 + k∗
1

, eR2 =
κ22

k2 + k∗
2

, (8)

eδ1 =
k1 − k2

(k1 + k∗
1)(k

∗
1 + k2)

(α1κ21 − α2κ11), (9)

eδ2 =
k2 − k1

(k2 + k∗
2)(k1 + k∗

2)
(α2κ12 − α1κ22), (10)

eδ′
1 =

k1 − k2

(k1 + k∗
1)(k

∗
1 + k2)

(β1κ21 − β2κ11), (11)

eδ′
2 =

k2 − k1

(k2 + k∗
2)(k1 + k∗

2)
(β2κ12 − β1κ22), (12)

eR3 =
|k1 − k2|2

(k1 + k∗
1)(k2 + k∗

2)|k1 + k∗
2|2

(κ11κ22 − κ12κ21), (13)

and κij =
µ(αiα

∗

j + βiβ
∗

j )

ki + k∗
j

. (14)

Does the introduction of the additional parameters make any qualitative change

in the behavior of soliton? The answer is yes and we find the novel result that the

above general solution (7) corresponds to an inelastic collision of two bright solitons,

as long as α1 : α2 6= β1 : β2. In order to see this, we analyze the asymptotic form of

the solution (7).

One important advantage of Hirota’s method is that the solution allows easy

analysis of the asymptotic behavior by taking a given ηiR → ±∞ in (7) and com-

paring the result with the one-soliton solution (3). The interpretation of the result

in terms of the actual motion of the solitons depends on the signs of kiR and kiI .

In general ηiR = kiR(t− 2kiIx) so that soliton j is located in the vicinity of the line

t = 2kjIx. Let us change to the frame comoving with soliton j (coordinatized by ξ)

by putting x = (t − ξ)/(2kjI). Then ηjR = kjRξ, while for the other soliton m we

get ηmR = kmR(1 − kmI

kjI
)t + kmR

kmI

kjI
ξ. Thus if we have, for example, kiR > 0 and

k1Ik2I < 0, which corresponds to a head-on collision, we find that ηiR → ±∞ corre-

sponds to t → ±∞. [Correspondence between the signs of x → ±∞ and ηiR → ±∞
is obtained in a similar way and leads to a slightly different dependence on the signs

5



of the k’s.]

In each limit ηiR → ±∞ the resulting qi can be written as in (5) with different

amplitudes A and phases φ. Let us denote by Ak±
i the amplitude of the component

qi of the soliton k as the other soliton goes to ±∞, and similarly for the phase φ.

Furthermore let us define the phase shift Φk = φk+−φk−, and a “transition matrix”

T k
i by Ak+

i = Ak−
i T k

i . [Since the magnitudes of A and T are the most interesting

quantities we will not study their phases here.] We find the following results:

Soliton 1:

|A1−
1 | = |α1|/∆1, |A1−

2 | = |β1|/∆1, (15)

|T 1
1 | =

|1 − λ2α2/α1|
√

|1 − λ1λ2|
, |T 1

2 | =
|1 − λ2β2/β1|
√

|1 − λ1λ2|
, (16)

φ1− =
1

2
R1, Φ1 =

1

2
(R3 − R1 − R2). (17)

Soliton 2:

|A2−
1 | = |α2|/∆2, |A2−

2 | = |β2|/∆2, (18)

|T 2
1 | =

|1 − λ1α1/α2|
√

|1 − λ1λ2|
|T 2

2 | =
|1 − λ1β1/β2|
√

|1 − λ1λ2|
, (19)

φ2− =
1

2
R2, Φ2 =

1

2
(R3 − R1 − R2)(= Φ1). (20)

where

∆i =
√

µ(|αi|2 + |βi|2), λ1 = κ21/κ11, λ2 = κ12/κ22. (21)

The expressions above are scale invariant in the way that, for example, allows us to

take βi = 1. If we also have α1 = α2 then one can easily verify that |T j
i | = 1, which

implies perfect elastic scattering. We also note that the noninteracting stationary

pulses discussed in [17] follow with the choice α2 = β1 = 0, k1I = k2I = 0.

One can verify that |Ai−
1 |2 + |Ai−

2 |2 = |Ai+
1 |2 + |Ai+

2 |2 = 1/µ so that the total

intensity of each soliton is conserved. However, the distribution of this intensity

among the two component fields can change during collision. It turns out that an

inelastic effect can be obtained just by changing the relative phases of the parameters

αi, βi.
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In figure 1 we have a picture of a head-on collision with k1 = 1 + i, k2 = 2 − i,

βi = 1, α1 = 1 and α2 = (39 + i80)/89. We still have |α2| = 1, but its nontrivial

phase (α2 = eiθ, θ ≈ 64o) is enough to cause quite dramatic non-elasticity. The

initial time-profiles at both ends of the x-axis are evenly split between the two

components, but the profile observed later at the large positive x end is almost

completely in component 2. If we had chosen α2 = 1 the scattering would have been

elastic. Thus, by changing the relative phase of just one component of one soliton

we are able to change the final state quite dramatically.

Finally, we wish to connect explicitly our results on inelastic collision with that

of the work of Manakov in [8]. In formulating the results that he obtained by an

asymptotic analysis of the inverse scattering problem associated with (1), Manakov

used a (complex unit) polarization vector obtained from the amplitudes of the soli-

tons ((19) and (20) in [8]). Correspondingly, in our case the initial polarization

vectors are

ĉi = (αi, βi)
T /
√

|αi|2 + |βi|2, (22)

while the final vectors can be expressed as

ĉ1
′ =

1

χ

k1 − k2

k1 + k∗
2

(

ĉ1 −
k2 + k∗

2

k1 + k∗
2

(ĉ1 · ĉ2
∗)ĉ2

)

, (23)

ĉ2
′ =

1

χ

k2 − k1

k2 + k∗
1

(

ĉ2 −
k1 + k∗

1

k2 + k∗
1

(ĉ2 · ĉ1
∗)ĉ1

)

, (24)

where χ =
|k1 − k2|
|k1 + k∗

2|

{

1 − (k1 + k∗

1)(k2 + k∗

2)

|k1 + k∗
2|2

|ĉ1 · ĉ2
∗|2
}

1

2

. (25)

(The connection between Manakov’s ζ and our k is ζ1 = (−ik2)
∗, ζ2 = −ik2.)

Manakov pointed out that during soliton collision their velocities and amplitudes

(intensities) do not change but the associated unit polarization vectors do change

provided they are neither parallel nor orthogonal. Our observation, illustrated in

Fig. 1, is that even if we keep the initial amplitudes unchanged and just change their

relative phases we can change the amplitude distribution in the final polarization

vector. The parametric choice associated with Fig.1 is ĉ1 = (1/
√

2, 1/
√

2)T , ĉ2 =
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(−(39 + 80i)/(89
√

2), 1/
√

2)T , ζ1 = 1 + i, ζ2 = −1 − 2i. Each component here

has magnitude 1/
√

2. After collision the unit polarization vectors take the values

ĉ1
′ = (−0.0190+0.0593i,−0.734+0.677i), ĉ2

′ = (0.422+0.272i, 0.462−0.731i), with

magnitude distribution (0.0623, 0.998) and (0.502, 0.865), respectively. One can also

note that the magnitude of the first component of ĉ1
′ can be even made exactly zero

if we can also change the parameters ki suitably. However, in practical applications

it is probably only the relative phase that can be easily modified.

To conclude, the general two-soliton solution (7) of the (1+1)-dimensional sys-

tem (1) exhibits a novel type of inelastic collision, not seen in any other (1+1)-

dimensional evolution equation. Naturally such a property will have important ram-

ifications in optical fiber communication such as providing intensity pump sources,

soliton switching and so on, which remain to be explored.

It will also be of interest to investigate the ramifications of the above type

of inelastic collision in non-integrable cases, for example when the nonlinear cross

coupling coefficients are different from one.

The work of R.R. and M.L. forms part of a Department of Science and Tech-

nology research project. The work of J.H. is partially supported by the Academy of

Finland, project 31445.

Figure Captions

Fig.1 Intensity profiles |q1| (top) and |q2| (bottom) of the head-on collision solution

(7) with the parameter values k1 = 1 + i, k2 = 2 − i, β1 = β2 = α1 = 1 and

α2 = (39 + i80)/89.
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